Decision-Level Fusion Performance Improvement From Enhanced HRR Radar Clutter Suppression

Volume Number:
Issue Number:
Starting page
Ending page
Publication Date:
Publication Date
1 December 2011
Bart Kahler, Erik Blasch

paper Menu


Airborne radar tracking in moving ground vehicle scenarios is impacted by sensor, target, and environmental dynamics. Moving targets can be characterized by 1-D High Range Resolution (HRR) Radar profiles with sufficient Signal-to-Noise Ratio (SNR). The amplitude feature information for each range bin of the HRR pro-file is used to discern one target from another to help maintain track or to identify a vehicle. Typical radar clutter suppression algorithms developed for processing moving ground target data not only remove the surrounding clutter, but a portion of the target signature. Enhanced clutter suppression can be achieved using a Multi-channel Signal Subspace (MSS) algorithm, which preserves target features. In this paper, we (1) exploit extra feature information from enhanced clutter suppression for Automatic Target Recognition (ATR), (2) present a Decision-Level Fusion (DLF) gain com-parison using Displaced Phase Center Antenna (DPCA) and MSS clutter suppressed HRR data; and (3) develop a confusion-matrix identity fusion result for Simultaneous Tracking and Identification (STID). The results show that more channels for MSS increase identification over DPCA, result in a slightly noisier clutter suppressed image, and preserve more target features after clutter cancellation. The paper contributions include extending a two-channel MSS clutter cancellation technique to three channels, verifying the MSS is superior to the DPCA technique for target identification, and a com-parison of these techniques in a novel multi-look confusion matrix decision-level fusion process.