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This paper presents a vision-aided, horizontal velocity control sys-

tem for unmanned aerial vehicles (UAVs). Angular velocity data pro-

vided by an Inertial Measurement Unit (IMU) is combined with pixel

displacement data given by an optical flow sensor to produce a mea-

sure of horizontal velocity in two dimensions. Robust velocity control

is achieved without reliance on the Global Positioning System (GPS).

To validate the proposed approach, a series of dynamic simulations

and hardware experiments were conducted. The hardware tests were

designed to characterize the output of the optical flow sensor as a func-

tion of horizontal velocity and altitude. This data was then used to for-

mulate an optical flow sensor mathematical model that, to our knowl-

edge, is new and has not appeared in any prior optical flow sensor-

related literature. This model is shown to produce output data that

is consistent with the experimentally measured sensor data gathered

under equivalent conditions. In addition, this model has been used to

create the optical flow sensormodel employedwhen simulation testing

a UAV’s controlled dynamic motion. Simulation results demonstrate

that this method successfully achieves accurate and reliable control of

a UAV’s velocity in the horizontal plane.

I. INTRODUCTION

Localization is the process of determining an ob-
ject’s position and possibly also its orientation in space.
It is related to navigation and is a process that is critical
in aerospace and robotics applications [1].A similar and
less stringent process is that of location stabilization,
which involves the control of an object’s velocity and
stabilization of its location, but does not also require
knowledge of the object’s location. The process targeted
by the work presented in this paper is that of location
stabilization.

To perform localization and location stabilization,
robots typically estimate their velocity and position by
numerically integrating acceleration data provided by
an inertial measurement unit (IMU) [2], [3]. This IMU
data contains, however, measurement noise and sensor
bias errors that can significantly degrade the accuracy
of these estimates [4]. The numerical integration pro-
cesses involved in generating the estimates can also in-
troduce additional error, which further degrades accu-
racy [5]. Euler integration, for example, causes trunca-
tion errors similar to Taylor series approximations [6].
These and other sources of error can lead to the deteri-
oration of the velocity and position signals required for
accurate localization and stabilization. Over time, these
errors can accumulate, resulting in significant inaccura-
cies that affect the system’s performance [7]. The impact
of these drift errors can be mitigated by adding sensors
that are able to observe the drift. A wide range of sen-
sors can be used for this purpose, one being the optical
flow sensor (OFS).

Cameras in unmanned aerial vehicles (UAVs) can
aid in localization through object recognition and track-
ing, utilizing landmarks. Smart cameras and applica-
ble software libraries will calculate motion from frame
changes and use digital signal processing to detect
changes in shadow levels in each pixel [8]. These ap-
proaches, however, are computationally demanding, and
issues like unknown obstacles or lighting changes can
cause data inaccuracies. To address these, SLAM (simul-
taneous localization and mapping) uses multiple cam-
eras and LightDetection andRanging (LIDAR) sensors
to handle environmental lighting changes [9]. SLAM
combines multiple sensors to generate a 3D map of
the surroundings [10], offering accurate position estima-
tion but at a high computational cost. Self-maneuvering
UAVsmust also be capable of autonomous landing. Sev-
eral researchers, such as [8] and [11], have investigated
the use of cameras and vision-aided systems for au-
tonomous landing by fusing data from cameras, OFS,
and IMUs without the need for altimeters like LIDAR
or ultrasonic sensors. These studies demonstrate that
vision-based systems can accurately measure both alti-
tude and horizontal velocity, which is expected to im-
prove landing performance. In contrast, our work does
not involve a camera and instead relies on an altime-
ter, showing that horizontal velocity can be measured
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effectively using only the OFS, IMU, and altitude sensor.
Additionally, this sensor configuration requires signifi-
cantly fewer computational resources than vision-based
systems. OFS provide a low cost and computationally
tractable approach for drone location stabilization, plat-
form navigation [12], [13], and to perform position and
velocity control, as done in this paper and in [14]. Their
effectiveness as a sensor for short-term stabilization has
been established [15], but their applicability for long-
term positioning is still under active research. Studies
assessing the potential of OFS for position estimation,
particularly when fused with other sensor systems, are
found in [13] and [16].

This paper presents a new mathematical model for
an OFS (the Truth Model) and compares this model to
experimentally measured sensor data captured over a
range of operating conditions that would be typical when
the OFS is mounted on a drone, i.e., limited altitude, lim-
ited velocity, and limited roll and pitch tilt angles, i.e., less
than 25◦.This newOFSmodel is shownherein to provide
good results for several test cases that fall within this op-
erating envelope.

This paper also presents a horizontal velocity control
system design for rotary wing UAVs based on the new
OFS model. This design involves a velocity sensor equa-
tion that combines the output of the OFS with angular
rate data given by an IMU, and from these produces a
measure of the drone platform horizontal translational
velocity in two dimensions. A simulation study is per-
formed to assess the impact that OFS pixel quanization
has on control system performance. The velocity sensor
and control design presented herein assumes that plat-
form’s altitude above the ground is known,and available
as an input to the velocity sensor. Altitude data is as-
sumed to be provided, for example, by a separate device
such as a sonar or radar altimeter. Two single-axis mod-
els are applied to generate the 2D output from a single
two-axis OFS.

To assess the OFS’s response to changes in the phys-
ical environment, we constructed a linear rail setup to
observe the OFS’s output at various sensor velocities
and altitudes. Experiments were also conducted to de-
termine the sensor’s resilience to environmental fluctu-
ations, varying light levels, and surface textures. These
test results are reported herein, and the results are used
to validate the new OFS model proposed herein.

A Simulink model of the physical plant (i.e., a fixed-
wing UAV), the proposed velocity sensor, the OFS,
and the Control Law were constructed to evaluate this
system’s performance. It is a single-axis, continuous-
time dynamic model of a UAV’s horizontal motion
and includes an IMU model, a hybrid (continuous-time,
discrete-time) model of an OFS, and a discrete-time
proportional–integral (PI) controller. Performance has
been assessed in three scenarios: a step response in com-
manded velocity, a response to a wind gust, and the
tracking of very slow velocity commands. Each scenario
demonstrates an important drone control quality that is

Figure 1. Scene velocity as a function of platform linear and angular
velocities.

facilitated by the OFS. The results demonstrate (a) the
rapid response rise time of approximately 1 s, (b) the de-
tection and rejection of location perturbations caused by
wind, and (c) the control of velocity at very low velocity
setpoint levels.These results indicate that the control de-
sign approach proposed here is an effective method for
controlling a drone’s horizontal velocity.

Section II outlines the problem formulation and fun-
damentalOFS equations,detailing theOFSTruthModel
and Velocity Sensor Model for control. Section III, Ex-
perimental Setup, covers the linear velocity rail system,
IMU,and PMW3901OFS.Section IV,Simulated andEx-
perimental OFS Results and Comparison, compares ex-
perimental results with simulations, including constant
velocity tests, oscillatory motion, and additional testing.
Section V discusses the control design, plant dynam-
ics, and simulation results, including step response, wind
gust response, and slow movement. Finally, Section VI
presents conclusions.

II. PROBLEM FORMULATION AND SENSOR MODEL

The problem under consideration is illustrated in
Fig. 1, which portrays a drone equipped with an OFS as-
sembly at an altitude A, moving with horizontal veloc-
ity Vx, and rotating with angular velocity ωy about the
y axis. The platform’s translational motion is limited to
motion along the x axis, and the pitch angle θ is assumed
to be small, i.e., less than 25◦ in magnitude. The sensor’s
field of view (FOV) is centered at the location where the
zB and x axes intersect. The platform body coordinate
frame contains axes xB and zB (yB is not shown).

The pinhole model of the image motion observed by
an OFS, given in [15], is often used to mathematically
characterize the output of this device. This model de-
fines the instantaneous velocity of the image falling on
the image plane at a pixel located at (x, y) on the im-
age plane with focal distance f . This pixel velocity field,
also called the optical flow field, is represented symboli-
cally asP(x, y, f ) = {δx, δy},where δx and δy are the com-
ponents of the optical flow velocity vector on the image
plane at location (x, y). The detailed derivation of these
linear, continuous-time velocities is provided in [15] and
expressed as:

δx = Vzx−Vx f
A

− ωy f + ωzy+ ωxxy− ωyx2

f
, (1)
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δy = Vzy−Vy f
A

+ ωx f − ωzx+ ωxy2 − ωyxy
f

, (2)

where A is the distance from the OFS to the ground,
i.e., the altitude. As noted in [15], however, an OFS pro-
duces a single pair of values at every sample time and
not the velocities being observed at each pixel over the
field of the image plane. An OFS device and process-
ing algorithm generate, in a sense, the mean of the opti-
cal flow field in a central neighborhood of pixels around
the center point at pixel P(0, 0, f ). Thus, it is sensible to
compute the output of an OFS device, as noted in [15],
using the velocity values given by (δx, δy) at the point
P(0, 0, f ). After substituting this point into equations
(1) and (2), we find:

δx = −Vx f
A

− ωy f, (3)

δy = −Vy f
A

+ ωx f, (4)

Noting that δx and δy are linear velocities of a pixel at an
orthogonal distance f , we can divide equations (3) and
(4) through by f and use angular velocities �x = δx

f and

�y = δy

f :

�x = −Vx
A

− ωy, (5)

�y = −Vy
A

+ ωx. (6)

This allows us to work in terms of the angular velocity of
the OFS body, a more natural and physically observable
quantity associated withOFSmotion rather than the lin-
ear translational optical flow present on the image plane.
Here, equation (6) applies to Fig. 1, while equation (5)
pertains to translational motion along the y axis and is
not pictured. The problem formulation for that case is
analogous to that of the x axis but involves the assem-
bly’s velocity in the y direction and roll angular veloc-
ity about the x axis. These are the equations we carry
forward into the development of the hybrid continuous-
time and discrete-time model of the OFS output. Refer-
ence [15] also includes a discrete-timeOFSmodel.A key
difference between that model and the one being pre-
sented here is that this newmodel incorporates the finite
resolution and quantization associated with the pixels.
Additionally, our model computes the quantized angu-
lar displacement observed by the sensor and the change
in image angle from one image frame to the next. Thus,
it does not quantize the instantaneous angular velocity
appearing near the center of the image frame, but quan-
tizes the integrated, continuous-time velocity (i.e., accu-
mulated angular displacement up to the time when the
most recent image frame is captured).

A. OFS Truth Model

The model created to represent the OFS output is
one that involves the integral of the angular rate of the

scene. Since both equations (5) and (6) are very simi-
lar,we will continue with only equation (5),dropping the
subscripts for clarity. Equation (5) is then:

� = −ω − V
A

, (7)

where � is the scene angular velocity, ω is the angular
velocity of the sensor body,V is the sensor translational
velocity, and A is the sensor distance (or altitude) from
the scene being observed (i.e., the ground). Integrating
this to produce an angle:

φ(t) =
∫ t

t0

(
−ω − V

A

)
dt, (8)

where ω,V, and A are functions of the continuous time
variable t.

To produce the sensor output, we integrate φ(t) to
the frame time kT at frame index k, quantizing to the
quantization step size Q, and generate the difference in
the quantized result:

φ(kT ) =
∫ kT

t0

(
−ω − V

A

)
dt, (9)

Xk = floor
(

φk

Q

)
, (10)

�Xk = Xk −Xk−1. (11)

This value,�Xk, is what comes out of the sensor to rep-
resent motion of the scene in one direction. It is an inte-
ger value and has units of counts. There is an equivalent
equations for �Yk, representing motion in the other or-
thogonal direction.

B. Sensor Model for Conversion to Linear Velocity

To convert from the sensor output’s change in scene
angle�Xk to linear velocity,we integrate the scene angle
over a single frame time period:

�φk =
∫ kT

(k−1)T

(
−ω − V

A

)
dt. (12)

To generate this integrated result,we assume that the
inputs are constant over the very short time period T :

�φk = −ωkT − Vk
Ak

T. (13)

The angular rate ωk is the pitch angular velocity and
is provided by the IMU. The altitude Ak is assumed to
be known, provided by an altitude sensor, which can be
a barometric altimeter’s measure of the distance above
the take-off altitude, assuming that the ground is rel-
atively flat. Equation (11) is converted from units of
counts to units of radians (angle) using the quantization
step size:

�φk = �XkQ. (14)
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Table I
Linear Rail Test Bed Hardware Component

Component type Specifications

PMW3901MB (2-axis optical flow sensor) Measurement range: 80 mm-infinity, 4-Wire SPI @ 2 MHz
HC-SR04 (Ultrasonic ranging sensor) Measurement range: 2 cm–400 cm, eight 40 kHz signal transmit and detect.
2× Atmega328P (Arduino) Low power AVR 8-bit microcontroller, 32K bytes of progammable flash memory, and

support of SPI/I2C communication.
DRV8825 (stepper motor driver IC) Rated for 2.5 A max current, and a resolution of 32 microsteps.
ZD-0029 R REIFENG (limit switch) Connect VCC (ramps of +); Black line: Connect GND(ramps of -); Green line: Connect

SIGNAL(ramps in s).
Nema 17 stepper motor Bipolar stepper, Step Angle: 1.8deg, with a holding torque of 45 Ncm (63.74oz.in)
AC/DC power supply 110/220 V AC in, adjustable up to 12 V 30 A out.

Combining equations (13) and (14) and solving for ve-
locityVk:

Vk =
[
−ωk − �Xk

(
Q
T

)]
Ak. (15)

This is the equation that will be used to produce a veloc-
ity measurement that will serve as the feedback signal
for velocity control.

The OFS is an imaging device that generates pixel
flow measurements from the scene in view. By compar-
ing pixel content between successive frames of an image,
the direction and speed ofmotion of the image are deter-
mined within the sensor. Consider the case in which the
scene is moving by several pixels in distance from one
frame to the next,with a frame capture time of 20ms (i.e.,
50 Hz). The delta-angle output produced by the sensor
is an integer count value representing the angular rota-
tion measured between the two frame images, quantized
to an integer representing the pixel size. The fractional
part of the motion is removed from the output by quan-
tization.When the motion is slow enough so that it takes
more than 20 ms to move a signal pixel, then the output
data toggles between 0 and 1 with a duty cycle that de-
pends on velocity. If motion is very slow so that it takes
several frames, e.g., 10, to move by a single pixel, then
the output will sit at zero (0) counts until the scene fi-
nally reaches a distance of one pixel, and at that sample
time it will output a change of 1 pixel, then it will drop
back to outputting zeros while moving to the next pixel
quantum distance.

The OFS’s quantization of angular position has an
advantage over that of a sensor that measured angu-
lar velocity; the OFS does not introduce an accumulat-
ing error due to quantization. A velocity sensor, on the
other hand, could experience an angular rate that re-
mains within one quantum,and thatmotionwould never
be evident in the sensor’s output. The OFS instead is
sensing angular displacement, or the integral of the an-
gular rate, and detecting the change in that angle from
frame to frame, so that even the smallest angular rate in-
put is eventually detected when that motion reaches an
angular displacement of one pixel. The sensor outputs a
count value of 1 when the distance accumulated exceeds

another quantization step size.When the sensor is mov-
ing slowly and therefore the scene is moving slowly over
the focal plane, the sensor produces a stream of 0’s punc-
tuated with a periodic value of 1 count that occurs when
the distance traversed reaches a distance equaling one
pixel.

III. EXPERIMENTAL SETUP

A. Linear Velocity Rail System

We evaluated the PMW3901 sensor’s ability to adapt
to environmental changes in light intensity, surface tex-
ture, and altitude using a linear rail system with 80/20
aluminum extrusion bars, powered by a Nema 17 step-
per motor and a DRV8825 stepper driver.

The PMW3901 collects 2D displacement data, and
an HC-SR04 ultrasonic sensor is used to measure al-
titude. This setup is most effective for distances under
5 m. A powered rail sliding mechanism replicates lin-
ear flight along a single axis using 80/20 aluminum extru-
sion rods and a stepper motor-powered belt drive. Two
Atmega328P (Arduino) microcontrollers handle data
collection and slider motion. The stepper motor, driven
by a DRV8825 driver IC and powered by a 12V, 30A
power supply,determines the slider position using a limit
switch for homing the slider and tracking individual step-
per motor steps. The setup can be placed on sawhorses
to simulate varying altitudes. The hardware components
of the linear rail test bed are detailed in Table I, while
the system layout is depicted in Fig. 2.

B. Inertial Measurement Unit

An IMUmeasures the linear accelerations and angu-
lar rotational rates that occur along a coordinate frame
that is attached to the IMU body. This body frame ro-
tates with the IMU itself. Since the IMU senses 3 axes
of rate and acceleration, it is referred to as a 6-axis sen-
sor.A model of the IMU can be found in [17]. This IMU
was not integrated with the experimental test setup but
will be used in hardware testing that will involve both
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Figure 2. Linear rail system with stepper-driven belt drive.

Figure 3. The VN-100 IMU/AHRS by VectorNav technologies.

the OFS and IMU. It is described here, therefore, for
reference.

1) VN-100 IMU/AHRS Sensor Specifications: The
VN-100, manufactured by VectorNav Technologies,
shown in Fig. 3, is an example of an IMU that is com-
monly used in applications such as UAVs, drones, and
robotics. Tables II and III provide details of its per-
formance specifications and attitude/heave capabilities.
The VN-100’s compact size and low power consumption
make it an attractive option for use in small or portable
devices where space and power are limited. Linear ac-
celerations measured by the IMU must be transformed
from the IMU body to a navigation frame, corrected for
gravity, and integrated to produce platform velocity and
position. As noted, IMU sensor noise causes the dead-
reckoning navigation solution to deviate from the cor-
rect solutionwith a randomwalk type of error that grows
with time and is unbounded. To constraint the growth
of these drift errors, an aided inertial navigation algo-
rithm will utilize measurement data provided by addi-
tional sensors to improve or aid the solution produced
by the IMU alone.Sensor data may include, for example,
optical flow,measurement of platform ground speed, air

Table III
The VN-100 IMU Attitude and Heave Performance

Specification Value

Range (heading/yaw, roll) ±180◦
Range (pitch) ±90◦
Heading (magnetic) 2.0◦ RMS
Pitch/roll (static) 0.5◦ RMS
Pitch/roll (dynamic) 1.0◦ RMS
Heave accuracy 5% or 5 cm
Delayed heave accuracy 2% or 2 cm
Angular resolution 0.001◦

speed,altitude above ground, range to a specific location,
etc.

C. OFS Model

The Pimoroni PMW3901 OFS, shown in Fig. 4, is
an example of an embedded light-tracking optical sen-
sor. It captures a collection of pixel displacement values
known as an optical flow field, and then averages this
field over a region at the center of the sensor’s Field of
View, producing what is designated a pixel vector with x
and y components. The Pimoroni sensor data sheet indi-
cates that the sensor has a Field of View (FOV) of 42◦,
(±21◦).Detailed specifications of the PMW3901Optical
Flow Sensor are provided in Table IV. From a series of
tests at varying velocities during which the sensor pixel
vector outputs were captured, it was observed that the
PMW3901 must move a minimum of 0.0015 radians to
register a new output with a change of 1 pixel count. The
flow vectors producedwithin the sensor in either the x or

Table II
Sensor Performance Specifications

Specification Accelerometer Gyroscope Magnetometer Barometer

Range ±16 g ±2000◦/s ±2.5 Gauss 10–1200 mbar
In-run bias stability <0.04 mg <10◦/h - -
Noise density 0.14 mg/

√
Hz 0.0035◦/s/

√
Hz 140 µGauss/

√
Hz -

Bandwidth 260 Hz 256 Hz 200 Hz 200 Hz
Cross-axis sensitivity ±0.05◦ <0.05◦ ±0.05◦ -
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Figure 4. The Pimoroni PMW3901 optical flow sensor.

y direction must separately average to this quantization
level to produce a new pixel count of 1. A key feature
of the sensor is that it is not measuring velocity but is
measuring a change in the location of the scene.

IV. SIMULATED AND EXPERIMENTAL OFS RESULTS
AND COMPARISON

A. Constant Velocity Tests at Fixed Altitudes

This section contains the results of the experiments
performed to assess the PMW3901 sensor’s ability to
provide useful velocity and displacement measurement
data at various speeds and over a range of fixed altitudes.
This evaluation was primarily focused on understanding
the sensor’s performance when altitude is known, with
the aim of gauging the reliability of its raw data output.
Tests were conducted on the linear rail system described
above. In this first set of tests, the sensor was moved at a
constant velocity from one end of the rail system to the
other.Sensor output data was captured for a brief period
before motion began and ended after motion stopped
at the other end. Hardware tests and simulations were
run at four velocities: 0.05, 0.1, 0.2, and 0.3 m/sec, all with
a sampling frequency of 50 Hz and all at a distance of
0.66 m between the OFS and the ground scene. These
results are given in Fig. 5.

For an input velocity setpoint of 0.05 m/s on the
rail system, the OFS model produces an output hav-
ing a mean value of 1.016 counts/sample when motion
is occurring (4.7–15.4 s). In all four cases, the mean
“counts/sample” values shown on each plot were com-
puted over the time periods of OFS motion. Multipli-
cation by the sample rate of 50 samples/s produces the
sensor’s Output Rate in counts/s, the third column of
Table V. For example: 1.016 counts/sample × 50 sam-
ples/s = 50.8 counts/s.

Table IV
Specifications of the PMW3901 Optical Flow Sensor

Specification Value

Field of view (FOV) 42◦ (±21◦)
Minimum radian change for output ≈ 0.0015 radians
Frame time 20 ms (50 Hz)
Quantization level for output 1 pixel count
Motion detection type Angular displacement

Table V
Sensor Raw Output Parameters and Derived Quantization Step Size

Velocity True angular rate � Output rate Quant step—Q
(m/s) (radians/s) (counts/s) (radians/count)

0.05 0.076 50.8 0.001501
0.1 0.152 102.5 0.001483
0.2 0.303 199 0.001522
0.3 0.455 294 0.001548

To generate the quantization step size Q, we use the
relation:

Q · (Output Rate) = �

radians
count

· counts
s

= radians
s

.
(16)

The true angular rate � is computed with equation
(5) with ωy = 0 (the OFS was not rotating):

�x = −Vx
A

. (17)

For an altitude of 0.66 m and the velocity setpoint
values of column 1, negated since the rail system veloc-
ities were in the negative direction, one computes the
quantization step size given in column 4, which differ
slightly due to random error present in the test setup.

The mean Quantization Step Q for the PMW3901
computed by averaging these values is thus 0.0015 radi-
ans/count or 0.086 deg/count. This value has been used
in the optical sensor model as well as in the computation
of platform velocity from sensor output data.The jumpi-
ness in this data is due in part to the pixel quantization;
however, quantization error does not account for all of
the “noise” that is observed. It is conjectured that this
jumpiness represents real velocity perturbations caused
by stepper motor velocity jitter and imperfections in the
test setup. In addition, there may be additive measure-
ment error contributed by the sensor itself. Our suspi-
cion,however, is that the hashiness in themeasuredOFS
output data is caused primarily by actual velocity pertur-
bations.TheOFS output can be used tomeasure transla-
tion displacement by summing the �Xk values. This was
done for all 4 velocity test cases, with the results shown
here in Fig. 6.

These summed outputs reach values of 526, 521, 506,
and 504 counts for the four velocities of 0.5, 1.0, 2.0, and
3.0, respectively. Converting from counts to distance us-
ing the formulaQA (

∑
�Xk) produces a set of distance

measurements ranging from 0.52 to 0.05 m, a difference
of 4%.

B. Comparison to Simulation

The OFS Truth Model developed in Section II and
defined in equations (9)–(11) is shown here in Fig. 7 as a
Simulink model in block diagram form.

The results produced by this model are compared to
the experimental results plotted in Fig. 5 first by driv-
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Figure 5. Optical flow sensor output on one axis during rail testing with approximately constant linear velocities.

ing the model with a purely constant velocity of 0.5 m/s,
and second by driving the model with a velocity profile
derived from the experimentally captured �Xk samples,
creating a piecewise constant, continuous-time velocity
signal as �Xk/�T . The results of the simulations are
given in Fig. 8, with the constant velocity results on the

Figure 6. Running sum (discrete integration) of OFS output samples
for four velocity setpoints.

left, and the experimentally measured velocity data on
the right.

For the constant velocity case, the OFS models’ out-
put is very regular and periodic, giving an output of 1
countmost often, separated by an occasional output of 0.
For the case on the right, in which the velocity is derived
from the experimental data, the OFSmodel produces an
output that precisely matches the output of the actual
physical OFS device (see Fig. 5). This indicates that the
model faithfully represents what is happening within the
OFS in this scenario, i.e., constant velocity, low altitude,
and zero angular velocity conditions. It should be noted
that the new model produces results that match the out-
put of the OFS when driving it with velocity time histo-
ries derived from the data of the other “constant” veloc-
ity cases. Since the simulated OFS outputs matched the
experimental data of Fig. 5, they are not replotted here.

C. Test Results with Oscillatory Input Motion and
Varying Altitude

Dependence of SensorOutput Flow onAltitude:Tests
were performed to highlight the impact of altitude on the
magnitude of flow vectors and the level of noise present
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Figure 7. The OFS truth model.

Figure 8. Comparison of OFS model outputs for constant and variable velocity, experimentally measured velocity data, velocity setpoint of
0.5 m/s.

in the data. These observations underscored the signif-
icance of altitude adjustments in accurately computing
platform velocity. In this test, the rail system was mov-
ing in a triangular manner with directions of travel re-
versals separated by periods of constant velocity magni-
tudes of 0.02 m/s. The sample frequency was 25 Hz, so

in a single sample, the slider moved 0.8 mm. At a dis-
tance of 17 cm above the ground, this equates to an an-
gular change of 47 mrad (8e−4/17e−3). Given the quan-
tization size Q = 0.0015 rad/count, this leads to an
estimated �Xk optical flow count [see equation (11)]
of 0.047/0.0015 = 31.4 counts/sample. As noted in

Figure 9. Sensor output data during periodic, constant velocity triangular wave motion at two altitudes, 17 and 62.5 cm.
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Fig. 9a, the output is nominally equal to this expected
output level. When elevated to 62.5 cm, the angular
change becomes 12.8 mrad, and the output nominally
8.5 counts/sample. This is clearly reflected in the plot of
Fig. 9(b).

D. Additional Characterization Tests

To better understand the impact of quantization and
altitude,we expanded our experimental study to include
other environmental variables to verify if consistent ve-
locity readings are maintained at a fixed altitude.

1) Light Level Tests: Given the OFS’s reliance on
shadow changes for velocity determination, we exam-
ined how varying light conditions affect displacement
accuracy. Two tests evaluated the PMW3901MB sen-
sor’s performance under different lighting: one at dusk
and another in direct sunlight, both at 0.66 m altitude.
The observed displacements were 0.59 m and 0.57 m, re-
spectively, demonstrating the sensor’s ability to produce
comparable displacement readings across light levels.

2) Surface Quality Tests: The sensor’s response to
surface texture was also assessed, given the significance
of landmarks and texture in displacement detection.
Two scenarios were compared:one with a checkerboard-
taped grid surface and another over a wooden floor. The
displacement estimations were 0.61 m for the textured
surface and 0.58 m for the nontextured, with the actual
displacement set at 0.6 m. Interestingly, flow counts var-
ied significantly between surfaces, with nontextured sur-
faces eliciting larger vector magnitudes due to fewer but
more pronounced feature changes.

V. HORIZONTAL HOLD CONTROL DESIGN AND
SIMULATION TESTING

A. Plant Dynamics

The OFS model developed above has been used in
two ways. First, to create a Sensor Truth Model for use
in simulation of the system involving the sensor. Sec-
ondly, to produce an algorithm for converting the OFS
output signals to translational velocity measurements.
These measurements in the x- and y-directions are used
in generating the control signals that act to drive the
drone velocity to zero, thereby holding the drone steady,
or to some non-zero setpoint velocity provided by the
pilot. A single-axis controller is developed and applied
separately to each axis. One controls the translational
motion of the drone in the Fwd-Rev direction, and the
other controls the Left-Right translational motion.

To produce a dynamic model of the drone along a
single axis, we assume that the platform has two degrees
of freedom: translation along one axis (x-axis) and rota-
tional about an axis that is perpendicular to the x-axis
and horizontal (i.e. the pitch axis). A diagram of the
drone is given below in Fig. 10. We assume the drone is

Figure 10. Free-body diagram of drone—single-axis horizontal
motion.

not accelerating vertically, and therefore the weight of
the drone is equal to the component of thrust in the ver-
tical direction (FV ). The thrust of the props (FT ) has ver-
tical component

FV = FT cos(θ ) (18)

and horizontal component

FH = −FT sin(θ ). (19)

The horizontal component of thrust causes the drone
to accelerate. The vertical causes it to remain at a fixed
altitude.

Since

FV = mg, (20)

we have:

FT = mg
cos(θ )

, (21)

FH = −FT sin(θ )

= −
(

mg
cos(θ )

)
sin(θ ),

= −mg tan(θ ) (22)

Using Newton’s second law, the sum of the forces acting
on a body along an axis equals the change in momentum
along that axis ∑

F = mẍ (23)

leads to:

mẍ = FH + FW (24)

= −mg tan(θ ) + FW , (25)

where FW is the disturbance force due, for example, to
wind gusts.

The dynamic angular response of the platform is as-
sumed to be governed by a pitch control system having a
second-order response with a rise time of 0.3 s. The cor-
responding second-order system is:

θ

u
= �2

p

s2 + 2ζ�ps+ �2
p

(26)
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with �p = 5.4 rad/s and ζ = 0.71. In this model, the in-
put u is the commanded pitch angle, or the pitch angle
setpoint.

The following state vector is defined:

x = [
ω θ v x

]′ = [
x1 x2 x3 x4

]′
, (27)

which leads to the following state space model:

ẋ1 = �2
p (u− x2) − 2ζ�pẋ1

ẋ2 = x1

ẋ3 = −g tan (x2) + FW

ẋ4 = x3, (28)

where FW is the force of the wind and u is the control
input.

B. Simulink Simulation Model and Control Design

A model of the single-axis translational motion of
a drone platform, the OFS, IMU, and Proportional-
Integral-Derivative (PID) controller was developed,
with the top level block diagram shown in Fig. 11.

A velocity setpoint, shown at left, is the signal in-
jected by the drone pilot. This command is compared to
the velocity achieved to produce an error signal, which
enters a PI controller producing a commanded pitch an-
gle u same as in equation (28) into the plant.

TheOFSblock content is provided in Fig.7.The IMU
model is pictured in Fig. 14.

The coefficients and parameters required to simu-
late this model and reproduce the results presented in
this paper are detailed in Table VI. A PI controller was
designed with gains specifically chosen to achieve a 1 s
step response rise time and sufficient integral action to
mitigate the effects of constant wind disturbances. The
PI controller coefficients, along with other essential pa-
rameters, including the UAV’s rotational dynamic coef-
ficients for an attitude-stabilized quadcopter, are pro-
vided in Table VI. These parameters were used in the
simulations model of Figs. 7 and 11–15, and simulation
results of Figs. 16 and 17.

Figure 12. Controller with proportional and integral paths, and pitch
angle command saturation.

C. Simulation Test Results

Simulation tests were performed to assess the effec-
tiveness of a horizontal velocity control system for a
drone, incorporating the OFS and an IMU. The results
were generated using the single-axis dynamic model
discussed earlier, a model that includes a continuous-
time fourth-order representation of plant dynamics and
discrete-time models for the OFS, IMU, and the digi-
tally implemented PI controller.Both sensors operate at
a frequency of 50 Hz, and each sensor model includes
a computational latency of one sample period, 20 ms.
There are no other impairments or noise sources added
to the sensor outputs.

D. Step Response in Velocity

The step response test is conducted to ensure that
the system responds to changes in velocity setpoints with
an appropriate speed of response sufficient to meet a
drone pilot’s expectations for responsiveness yet avoid-
ing jerky or erratic behavior. The results of this simu-
lation test are presented in Fig. 16. At the 5 s mark, a
step change command is initiated by the pilot, command-
ing a velocity change from 0 to 2 m/s. This is shown in
Fig. 16(a) where we see that the velocity increases from
0 to 2 m/s with a rising time of less than 1 s and a setting
time of about 2 s. The true velocity exceeds the setpoint
with an acceptable level of overshoot, settling at 2 m/s
as desired. To effect this change, the controller caused
the platform’s pitch angle to drop to −20◦ as shown in
Fig. 16(b). The drone then pitches forward and acceler-
ates along the positive x-axis. During this transient re-
sponse, the OFS and IMU generated outputs are de-
picted in Fig. 16(c) and (d), respectively.

Figure 11. Control system model with single-axis drone (plant) and sensors.
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Table VI
Simulation Model Parameters

Figure 13. Plant model based on drone dynamics.

E. Response to a Wind Gust

The purpose of the wind gust test is to verify that the
controlled system’s response to a wind gust is acceptably
small. The results of this simulation test are as follows:
Commencing at 5 s, a headwind force of 4 Newtons is
applied, representing a significant force relative to the
drone’s weight of 22 Newtons. The headwind drives the
drone backward and the velocity sensed is negative as
shown in Fig. 17(a). In response to this horizontal veloc-
ity disturbance, the controller initiates a 10◦ downward
pitch, as illustrated in Fig. 17(b), to counteract the wind.
The drone is driven backwards a distance of about 2.7
m at which point it comes to a halt with zero velocity.
The integral part of the PI controller has developed a
10◦ pitch angle to hold the drone against the headwind.
The pilot can command the drone to follow a positive
velocity setpoint if they wish to move the drone back to

Figure 14. Inertial measurement unit Simulink block diagram.

its original location. The OFS output during this time is
shown in Fig. 17(d).

F. Very Slow Movement

The very slow movement test is designated to ver-
ify that the highly quantized output from the OFS is ad-
equate to enable the velocity controller to induce ex-
tremely low-velocity horizontal motion. The results of
this simulation test are illustrated in Fig. 18.The velocity-
commanded setpoint transitions from 0 to 1 cm/s at 2 s
[see Fig. 18(a)]. At this speed, the drone moves at a
barely perceptible pace. The resulting OFS output is a
pulse stream with a very low duty cycle, as shown in
Fig. 19, with pulses that alternate between 0 and −1 at a
rate of approximately 7 Hz.Noting that we are sampling
the sensor’s output at a rate of 50 Hz, this stream is pro-
ducing one count over a period of 7 or 8 samples. The re-
sults show that the controller achieves the commanded 1
cm/s velocity as noted in Fig. 18(a).Although the pulsing
introduces some jumpiness in the control signal (pitch
angle command), the plant’s dynamics effectively filter
out this “noise,” resulting in a smooth achieved veloc-
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Figure 15. Velocity sensor Simulink block diagram.

ity. The IMU’s Pitch Rate output during this period is
presented in Fig. 18(d).The successful completion of this
test indicates that the OFS’s output is indeed adequate
for the velocity controller to induce and regulate ex-
tremely low-velocity horizontal motion, thereby affirm-
ing its suitability for tasks that demand high levels of pre-
cision and control.

Zooming into the OFS output in Fig. 19, we see that
it does not produce a non-zero output for 0.7 s after the
commanded step change at 2 s. During this period, the
sensor has not yet experienced sufficient motion to gen-
erate an output. Subsequently, once the output initiates,

the sensor produces a pulsed signal stream with a low -
duty cycle. The average output is effectively a fraction of
one count.

VI. CONCLUSIONS AND FUTURE WORK

The ability to effectively process and integrate data
from a diverse set of sensors is important in UAV navi-
gation, localization, and control, and can improve system
operational performance and safety. In this paper, a new
OFS model was presented, a model that captures the
impact of pixel quantization and uses platform angular

Figure 16. Step response in velocity.
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Figure 17. Response to wind gust.

Figure 18. Very slow commanded velocity of 1 cm/s (0.01 m/s).
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Figure 19. Optical flow sensor output during very slow commanded
velocity of 10 cm/s.

rate and linear velocity to generate the OFS output.This
model accurately reflects a key feature of the sensor—
the fact that it is measuring angular displacement rather
than angular velocity. How this impacts platform hori-
zontal velocity control is discussed.From this newmodel,
a velocity measurement equation was derived that fuses
platform IMU and OFS data. The combination of data
from these sensors has been shown to enable the gener-
ation of accurate velocity estimates in two dimensions, a
feature particularly beneficial in GPS-compromised en-
vironments. Using this velocity measurement as feed-
back, a control system for horizontally stabilizing drone
location has been proposed.Future workwill include the
assessment of IMU bias and random noise error on hor-
izontal hold control system performance.
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