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In multiple extended object tracking, the Poisson multi-Bernoulli

mixture (PMBM) tracker is considered state-of-the-art. Originally, it

was presented with the gamma Gaussian inverse Wishart (GGIW)

target model, which is a random matrix model. When track-

ing larger objects using a light detection and ranging (LiDAR)

sensor, measurements are generated by the contour rather than

the whole target surface, and it is beneficial to model this with

the target model. A target model that has this capability is the

Gaussian process (GP) extent model. This paper presents a PMBM

tracker using this target model.We also discuss considerations related

to the use of the GP model in the PMBM framework. Secondly, we

present improvements in the target model that increase the robust-

ness of the model by dealing with the inherent non-linearities using

the Gauss–Newton method. Furthermore, we incorporate an improve-

ment to the tracker that utilizes the concept of negative information

to generate virtual measurements that are then used in the Gauss–

Newton optimization. In relation to this, we also present an occlusion

model that utilizes the same negative informationmodel to ensure that

the state estimate is consistent in the presence of occluding targets.
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The presented methods are compared to the GGIW-PMBM tracker

on simulated and real LiDAR data gathered from maritime vessels.

The results show that the GP model outperforms the GGIW model

by providing a better estimate of the extent and more accurate track-

ing, asmeasured by theGOSPAmetric.Utilizing negative information

for state estimation and occlusion modeling further improves the state

estimate and tracking performance.

I. INTRODUCTION

Target tracking, the issue of estimating the kine-
matic state of one or several objects, has long used the
point approximation when parsing sensor data. With
the advent of high-resolution sensors, it is now com-
mon that a measurement source gives rise to multiple
measurements. This has given rise to extended object
tracking models, which enable the modeling of a target’s
extent in addition to its kinematic properties by infer-
ring information from the spatial distribution of these
measurements [1]. Initial approaches assumed that the
spatial distribution of the measurements could be mod-
eled by a Gaussian distribution around the center of
the target extent. This results in an estimated ellipsoidal
extent [2]. This is known as the random matrix model.
A version of this model, the gamma Gaussian inverse
Wishart (GGIW) model, was used to demonstrate
an extended object Poisson multi-Bernoulli mixture
(PMBM) filter [3] based on the original PMBM filter
[4]. This filter has also been used with a set of trajectory
framework [5]. Work has also been conducted to inves-
tigate improvements with regard to data association [6]
and reducing complexity by approximating the PMBM
posterior as a PMB [7]. In [8], a factor graph represen-
tation of the PMBM posterior was used to present a
PMB filter using the particle belief propagation method
presented in [9]. However, the random matrix model is
not the only target model for extended objects.Another
method, the random hypersurface model,models the ex-
tent using star-convex shapes and represents the shape
using a parametrization of the contour [10]. This enables
the modeling of more complex shapes. It also allows an
easier way to model measurements that originate from
the contour, such as measurements generated by an
LiDAR sensor. The most promising and investigated of
these models uses Gaussian processes (GP) to estimate
the extent [11]. This model has been further improved
with different estimation methods [12], [13] and aug-
mented with the use of virtual measurements that use
negative information [14].

The GP model has also been used to implement
multi-object tracking filters, such as the δ-GLMB filter
[15] and the probability hypothesis density (PHD) filter
[16]. In previous work comparing different filter struc-
tures, it has been shown that the PMBM has a more ef-
ficient structure and it can initialize a track faster with
its Poisson birth model as compared to Bernoulli birth
models [17].
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A key challenge to consider for multiple extended
object tracking is occlusion, since this will cause objects
to not generate measurements. Previous methods have
looked at the specific target model and calculated a non-
constant probability of detection [18], [19] based on the
state of other targets using the GGIW model; this has
also been done in the context of the extended object
PMBM filter [3]. Another approach was presented in
[20], which calculates an occlusion likelihood based on
random variables inferred from the current set of targets.
This occlusion likelihood is represented by a Gaussian
mixture, which can be used to update the state of unde-
tected objects, infer the existence of objects, and inform
data association.

In this paper, we aim to present an extended object
PMBMtracker using theGP targetmodel with the appli-
cable prediction and update formulas. We also provide
an example of a Poisson birth density for the GP tar-
get model. Furthermore, we introduce an improvement
to dealing with the nonlinearity of the measurement
model for the GP target model. In addition, we present
a method to incorporate negative information into the
estimate of object states for this model by the use of vir-
tual measurements, similar to the method in [14]. To en-
sure that this can be utilized in a multi-object context,
we also utilize these virtual measurements to model tar-
get occlusion. Finally, we show the application of the de-
veloped tracker on LiDAR data gathered by tracking
smaller maritime vessels. This article is an extension of
[21] with the additional inclusion of the method of us-
ing negative information for state estimation and occlu-
sion handling, as well as a refined criterion for initializa-
tion for the Gauss–Newton (GN) optimization. It also
includes amore complex simulation scenario and amore
detailed exposition of the method. The article is orga-
nized as follows: In Section II, we introduce the relevant
theory and previous work, and in Section III, we present
the improvement to the GP target model, along with the
incorporation of negative information into the state es-
timation. In Section IV, we present the applicable pre-
diction and update formulas for a PMBM filter utilizing
the GP target model, the specific approximations that
are used in this paper, as well as the utilization of neg-
ative information to model occlusion. In Section V, we
present the simulation study, and in Section VI, the re-
sults on the real maritime data are presented.

II. BACKGROUND

In this section, we present a summary of the method
of extent estimation usingGP presented in [11].Then we
outline the theory related to the extended object PMBM
filter, which was presented in [3].

A. Notation

In the following,we present the most significant vari-
ables as well as the notation used in this work.

NOMENCLATURE

(·)∗ Quantities related to the virtual measurements.
(·)b Quantities related to the birth process.
(·) f Quantities related to the radial function f.
(·)u Quantities related to unknown targets.
(·)un/(·)un Quantities related to nth component of the PPP intensity

of unknown targets.
(·) j,i Quantities related to the ith Bernoulli in the jth

multi-Bernoulli in an MBM.
(·)k Quantity at time step k.
α Shape parameter of gamma distribution.
β Inverse scale parameter of gamma distribution.
η f Forgetting factor for extent prediction.
ηv Occlusion correction factor for gamma distribution.
ηγ Forgetting factor for gamma prediction.
ˆ(·) Estimation of a random variable.

κmin/max The minimum and maximum angle occupied by an
extended object.

λc Clutter rate.
λm Measurement rate.
I Set of targets in a multi-Bernoulli.
I
j,i
O Set of occluding targets for target i in the jth MB.

I
j,i
pO Set of partially occluding targets for target i in the jth MB.

J Set of components in an MBM.
F Process model transition matrix.
H Measurement matrix.
h(x) Vector of predicted measurements for a target.
P State covariance matrix.
Q Process noise covariance matrix.
R Measurement noise covariance matrix.
x State space vector of a target.
xc Position of target centroid.
zk Vector of measurements for one scan at timestep k.
φ Heading of a target.
σ(·) Standard deviation of a quantity.
θ Angle used in the radial function f.
D A PPP intensity function.
f Probability density function.
f (θ ) Radial function which is estimated by a GP.
k(θ, θ ′) Covariance function for a GP.
Lj
C Likelihood of measurement cell assignment.

lC Predictive likelihood of a measurement set being assigned
to an estimated target.

PD Probability of detection.
PG Gating probability.
PO Probability of occlusion.
PS Probability of survival.
PpO Probability of partial occlusion.
QD Probability of missed detection.
r Existence probability.
T Sampling time.
vi Visibility ratio of object i.
w j Weight of the jth multi-Bernoulli in an MBM.
we Window length of gamma prediction.
zl The lth measurement in a set.
θ (G) θ defined in the global frame.
θ (L) θ defined in the local target frame.

B. Gaussian Process

AGP can be considered a distribution over functions
[22]. It is completely specified by its mean functionm(γ )
and covariance function k(γ , γ ′).Using GPs to estimate
a radial function means that we can write

f (θ ) ∼ GP(m(θ ),k(θ, θ ′)), (1)
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where f (θ ) defines the radius at angle θ .We want to es-
timate the values of this function using measurements of
only some of its values.This is amethod known asGP re-
gression.We define a vector ofN different points known
as test points � f = [θ f

1 ... θ
f
N]. Further, we define a

measurement model as

zk = f (θk) + ηk, ηk ∼ N (0,R), (2)

where zk is a measurement of the unknown function,
θk is the training input, which is the point at which the
measurement is taken, and ηk is the measurement noise.
If we have m measurements of the function, we define
z = [z1 ... zm] and their corresponding input val-
ues � = [θ1 ... θm] to learn the function values for
� f . In the original paper [11], it is shown that the state

x f =
[
f (θ f

1 ) ... f (θ f
N )
]T
, which defines the extent,

can be recursively estimated using the following state
space model:

x fk+1 = F fx fk + wk, wk ∼ N (0,Q f )

zk = H f (θk)x
f
k + ε

f
k , ε

f
k ∼ N (0,R f ).

(3)

Themeasurementmodel is in turn given by the following
matrices:

H f (θk) = K(θk,� f )
[
K(� f ,� f )

]−1

R f (θk) = k(θk, θk) + R − H f (θk)K(� f , θk),
(4)

where K in turn is defined as a covariance matrix where
the elements are made up of the elementwise evaluation
of the covariance function k(θ, θ ′). The process model is
defined by

F f = e−η f T I, Q f = (1 − e−2η f T
)
K(� f ,� f ), (5)

where T is the sampling time. The parameter for this
model is a forgetting factor η f .

1) Covariance Functions: As can be inferred from the
equations above, the covariance function is the com-
ponent that defines the GP and any prior information
about the shapes. Therefore, we want to encode the pe-
riodicity of f (θ ) in the covariance function. Such a func-
tion was presented in the original article as

k(θ, θ ′) = σ 2
f e

− 1
2l2

(
sin2 |θ−θ ′ |

2

)
+ σ 2

r . (6)

This function gives a high correlation for two function
values f (θ ) and f (θ ′) when their respective angles are
closer and a lower correlation when they are further
apart. σ f , the signal variance, defines the magnitude of
this correlation, and the length-scale l defines the dis-
tance on which it acts. σr is a constant bias term, which
can be used to formulate the GP as a zero mean GP
by stating m(θ ) ∼ N (0, σ 2

r ), integrating out m(θ ), and
adding it as a contribution to the covariance function.

It is also desirable to design a covariance function
that encodes axial symmetry since, in many cases, targets
are symmetric about the longitudinal axis. Since the lon-
gitudinal axis is defined at θ = 0, this is equivalent to an

even function. One such function can be built using the
smallest signed angle function

ssa(θ ) := π − [(π − θ )(mod2π )], (7)

i.e., ssa(θ ) is the only angle in (−π, π ] such that ssa(θ ) ≡
θ . The absolute value of this function is both 2π -periodic
and even, which is equivalent to the radial curve of f (θ )
being closed and symmetric about the longitudinal axis,
as desired.We define the symmetric covariance function
as

k(θ, θ ′) = σ 2
f e

− 1
2l2

(|ssa(θ )|−|ssa(θ ′ )|)2 + σ 2
r + σ 2

n δ(θ, θ ′), (8)

where σn is a noise term that models individual features
of a specific point, such as a sharp corner, by adding a
small term to each diagonal part of the constructed co-
variance matrix. This has the added benefit of regulariz-
ing the covariance matrix [23].

C. State Space Model for Extended Targets

To perform joint estimation of the extent and state of
the target, an augmented state space vector is defined

xk =
[
xck

T φk
(
x∗
k

T) x fk
T
]T

, (9)

where xck is the position of the centroid of the target from
which the extent is defined,φ is the heading of the target,
and x∗

k are any additional kinematic states of the target.
In the original paper, these are the velocity in each di-
rection in 2D ẋck, and the angular velocity φ̇k.We use the
same state space vector in this paper.

For this augmented state space vector, we define the
following state space description:

xk+1 = Fxk + w, w ∼ N (0,Q)

zk = hk(xk) + ηk, ηk ∼ N (0,Rk),
(10)

where zk, hk(xk), and Rk are all augmentations given by
measurements of one scan of the target

zk =
[
z1k

T
, ..., zmk

T
]T

Rk = diag
[
R1
k, ..., Rm

k

]
hk(xk) =

[
h1k(xk)

T, ..., hmk (xk)
T
]T

.

(11)

To define themeasurement equation hlk(xk) for a sin-
gle measurement zlk, we utilize the measurement equa-
tion defined by the randomhypersurfacemodel for a tar-
get contour parametrized by a function f .

zlk = xck + p(θ lk) f (θ
l
k) + ηlk

p(θ lk) =
[
cos θ lk
sin θ lk

]
,

(12)

where zlk is the measurement l at time k and θ lk is the
corresponding angle of the origin of themeasurement of
the target contour. θ lk can be expressed both in a global
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Figure 1. Visualization of the variables used in the measurement
equation of the GP target model. The global frame is defined by N -
North and E - East. The points marked with fn correspond to the n-th
element of x f , i.e., the test points, and the crosses marked with zn rep-
resents measurements of the contour. The visualized θG and θL corre-
spond to θ1k

(G)
(xck) and θ1k

(L)
(xck, φk) respectively, i.e., they are defined

for z1.

frame θ lk
(G)

and the local target frame θ lk
(L)

as

θ lk
(L)

(xck, φk) = θ lk
(G)

(xck) − φk

θ lk
(G)

(xck) = ∠ (zk,l − xck) .

(13)

Inserting the expressions for GP regression (3) into
the measurement equation (12), we attain

zlk = xck + plk(θ
l
k
(G)

(xck))H
f
(
θ lk

(L)
(xck, φk)

)
x fk + ηlk

= hlk(xk) + ηlk, ηlk ∼ N (0,Rl
k)

Rl
k = plk(θ

l
k
(G)

(xck))R
f
(
θ lk

(L)
(xck, φk)

)
plk(θ

l
k
(G)

(xck))
T + R.

(14)
This is a nonlinear measurement model and therefore
needs to be estimated using a nonlinear filtering tech-
nique. It should be noted that this is an implicit equa-
tion due to the dependence of zlk contained in θ lk

(G)
(xck).

See Fig. 1 for a graphical representation of the rela-
tionship between the variables used in the measurement
equation.

For the motion model, the motion can be described
with a linear state spacemodel and this can be combined

with the process model for the extent as

F =
[
F̄ 0
0 F f

]
,Q =

[
Q̄ 0
0 Q f

]
, (15)

where F f andQ f are given by (5), and F̄ and Q̄ are given
by themotionmodel used.For this work,we use the con-
stant velocity model combined with a constant angular
velocity. The model matrices are defined as

F̄ =
[
1 T
0 1

]
⊗ I3,

Q̄ =
[
T 3

3
T 2

2
T 2

2 T

]
⊗
⎡⎣σ 2

c 0 0
0 σ 2

c 0
0 0 σ 2

φ

⎤⎦ ,

(16)

where σc is the standard deviation of the process noise
for position and σφ is the standard deviation for the
heading angle.

D. The PMBM Filter

To model the problem of tracking multiple targets,
the PMBM filter utilizes random finite sets (RFS) to
model both the unknown number of targets and the
unknown number of measurements. The set of object
states at time k is modeled as Xk = {x1k, . . . , xnkk }
and the measurements collected at time step k are de-
fined as Zk = {z1k, . . . , zmk

k } with zlk denoting a single
measurement.

The PMBM conjugate prior is a combination of a
Poisson point process (PPP) and a multi-Bernoulli mix-
ture (MBM), where the PPP represents the targets that
have not been detectedXu

k and the MBM represents the
targets that have been detected Xd

k. A PMBM density is
fully parametrized by

Du
k, {w j

k, {r j,ik , ( f j,ik )}i∈Ik|k′ } j∈Jk|k′ , (17)

whereDu
k is the intensity function of the PPP for the un-

known targets. The Bernoulli modeling target i is repre-
sented by the probability density f j,ik , which represents
both the kinematic state and the extent of the target,
along with any additional information that can be in-
ferred from it.A Bernoulli set also contains a parameter
r that represents the existence probability of the target.
The different components in the MBM are represented
by an index j ∈ J and correspond to a data association
hypothesis with the weight w j representing the relative
likelihood of each hypothesis. Additional assumptions
are that new targets appear in the region according to
a PPP with birth intensity function Db

k, targets survive
with probability PS and evolve with a transition density
gk|k−1.Clutter is modeled as a PPPwith rate λc and a uni-
form spatial distribution. Each target is detected with a
probabilityPD and, if detected, generates measurements
according to a PPPwith rate λm(x) and a spatial distribu-
tion l(ZC|xk), given by the chosen target model.ZC is the
subset of measurements assigned to a specific measure-
ment cell C, and lC is the likelihood of this assignment.
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Recursions based on these assumptions are presented in
the original paper on the PMBM filter for extended ob-
jects [3].

E. Estimating Measurement Rate

The Poisson rate λm(x) models the cardinality of the
measurement set, i.e., the expected number of measure-
ments. The simplest assumption is a constant rate, but
this is not in good agreement with the physical reality of
many sensors, since the number of returns usually scales
by distance.A more realistic approach was developed in
[24] and has since been used as part of the GGIW target
model in several works, such as [3], [25]. It has also been
used in combination with the GP model [15]. It utilizes
that a Poisson rate can be estimated using a gamma dis-
tribution because it is the conjugate prior to the Poisson
distribution.A gamma distribution can be parametrized
by parameters α and β, where α is the shape parameter
and β is the inverse scale parameter, i.e., λm ∼ G(α, β).
These can be updated using the following recursions:

αk|k−1 = αk−1

ηγ

, βk|k−1 = βk−1

ηγ

αk = αk|k−1 + |ZC|, βk = βk|k−1 + 1.

(18)

The forgetting factor ηγ is defined as ηγ = 1
1− 1

we

, which

means that only information from the time steps within
the window length we is trusted. By estimating these
parameters for each target, we can determine a target-
specific Poisson rate λm(x) for each target.

III. IMPROVEMENTS TO THE GP TARGET MODEL

In this section, we present the suggested improve-
ments to the GP target model by using the iterated ex-
tended Kalman filter to improve the linearization. We
also present how negative information can be used in
this framework.

A. Handling Nonlinearities in the Measurement
Equation

Since the measurement equation (14) is nonlinear
there arises a need to use nonlinear filtering to deal with
this non-linearity and estimateH. The original paper on
the GP model applies the extended Kalman filter [11].
Subsequent work has been done to improve this method
by dealing with the non-linearities differently or aug-
menting the approach [12]–[14]. In this work,we propose
using the iterated extended Kalman filter (IEKF) to im-
prove the linearization. It has been shown that applying
the IEKF is equivalent to GN optimization of the maxi-
mum likelihood function defined as

q(ξ) =
([

zk
x̂

]
−
[
h(ξ)

ξ

])T [R 0
0 P

]−1 ([zk
x̂

]
−
[
h(ξ)

ξ

])
.

(19)

Here,h(ξ) and zk are defined by (11) and (14).The IEKF
is therefore a maximum a posteriori estimator of the
state [26]. Equivalently, the IEKF will suffer from the
same shortcomings as GN methods, in particular when
there are several local optima or the initialization point
is far away. In this specific case, h(ξ) is not globally con-
vex and has several local optima.

To mitigate this, we suggest designing a set of heuris-
tic constraints for the initial point of the optimization to
ensure that it converges on the most relevant local opti-
mum.In [14], the concept of negative information is used
to augment the model. Inspired by this, we can define
constraints for the centroid xc for a given target. Con-
sider a return from a laser- ranging sensor hitting an ex-
tended object.We can then state the following constraint
for xc := [xp, yp] given more than two measurements:

min(∠zk) < atan2 (yp, xp) < max(∠zk)

min ||zk|| <

√
(yp)2 + (xp)2.

(20)

Essentially, the center of the extended object’s angle
with regard to the sensor should be between the mini-
mumandmaximumangles,and it should be further away
than the closest measurement return. We enforce this
condition prior to optimization by first calculating the
mean range and angle of the measurements generated
by the contour

θ c = mean(∠zk)

rc = mean(||zk||) + min x f .
(21)

Themean of the angle is corrected to ensure that it is not
affected by the discontinuity in the unit circle. Then we
convert the point to cartesian coordinates according to

xc = rc
[
cos(θ c)
sin(θ c)

]
, (22)

This means that if either constraint is violated, xc will be
initiated behind the wall of sensor measurements gener-
ated by the object contour.There is also a local optimum
relating to the heading. In particular, φ + π , i.e., the re-
verse heading, is a local optimum since it is also aligned
with the symmetry axis defined by the covariance func-
tion. To avoid this local optimum, we can utilize the ve-
locity vector to design a similar constraint for the head-
ing as for the centroid, i.e., φ is initialized according to
the following criteria:

φ =
{
φ if (φ − atan2(ẏp, ẋp)) < π/3
atan2(ẏp, ẋp) if (φ − atan2(ẏp, ẋp)) ≥ π/3 .

(23)
This scheme will not be applicable in all cases, e.g., re-
versing targets or surface vessels that drift with a strong
current, but for most cases where tracking targets is rel-
evant, this condition will be applicable.
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B. Negative Information

In [14], the concept of negative information is used
to constrain the bounds of the estimated extent so that it
doesn’t expand beyond the received measurements. This
is achieved by estimating the minimum and maximum
angles of the extended object and comparing these to
the minimum and maximum angles of the actual mea-
surements associatedwith that object.Theminimumand
maximum angles of the measurement set are therefore
used as an additionalmeasurement; thesemeasurements
are termed virtual measurements. A generic measure-
ment equation for these virtual measurements can be
written as

max∠zk = hmaxk (xk) + ηmaxk , ηmaxk ∼ N (0,Rmax
k )

min∠zk = hmink (xk) + ηmink , ηmink ∼ N (0,Rmin
k ).

(24)
We use the same approach, but we perform the state es-
timation utilizing the IEKF framework presented above.

The key assumption that allows us to perform the
state estimation in the IEKF framework is to assume
that, for the GP target model, the minimum and maxi-
mum angles of an extended object are achieved by sam-
pling points of the extent, i.e., one of the elements of � f .
Then, we can derive an expression for these points in
global coordinates since we can calculate the global po-
sition of each test point from the following expression:

x fG = xck + x fk

[
cos
(
� f + φk

)
sin
(
� f + φk

)] . (25)

We can then calculate the minimum and maximum an-
gles that the extended object occupies

κmin = min∠x fG
κmax = max∠x fG.

(26)

This allows us to determine the angular sector that an
extended object occupies. These relations are presented
graphically in Fig. 2. To define the measurement equa-
tion for these angles, we define

θ
(L)
max = θ f

max

θ
(G)
max(φk) = ∠

(
x fG − xck

)
= θ f

max + φk,
(27)

where θ
f
max is the element of � f which corresponds to

κmax, which can be defined both in the local target frame
(L) and the global frame (G).The time index k has been
omitted from θ for notational convenience. With these
definitions, we can compute the points to the extent that
correspond most closely to the measurements with the
maximum and minimum angles using (14)

zmaxk = xck + pk(θ
(G)
max(φk))Hf (θ f

max

)
x fk . (28)

Figure 2. The extreme angles of the extended object κmin and κmax
are given by the points f1 and f4, respectively, which are equivalent
to x fG calculated for the 1st and 4th test point. The angles given by
measurements z0 and z4 are the virtual measurements, and κmin and
κmax are the corresponding predicted virtual measurements.

Utilizing this expression, we can calculate the global an-
gle of these points

hmaxk (xk) = ∠zmaxk

= atan2

⎛⎝ ypk + sin(θ (G)
max(φk))Hf

(
θ
f
max

)
x fk

xpk + cos(θ (G)
max(φk))Hf

(
θ
f
max

)
x fk

⎞⎠ .
(29)

For the minimum angle, substitute θ
f
max for θ

f
min. The

measurement Jacobian for this equation can be found by
calculating the partial derivatives; see Appendix A for
the applicable expressions. The noise component should
also be transformed to extract the angular component.
However, since we have chosen θ

f
max to be a test point,

there is no uncertainty from the GP regression [22],
R f = 0, and we are simply left with the noise compo-
nent of the measurement, which we can define as

Rmax
k = σ 2

κ , (30)

where σκ is the standard deviation of the angular com-
ponent of the measurement noise. The actual measure-
ments, which are used as virtual measurements, can be
found by finding the measurements with the minimum
and maximum angles. These virtual measurements are
then used to augment the quantities in (11) such that

z∗
k = [zk, max∠zk, min∠zk]T

R∗
k = diag

[
Rk, Rmax

k , Rmin
k

]
h∗
k(xk) = [hk(xk), hmaxk (xk), hmink (xk),

]T
,

(31)

where zk,Rk, and hk(x) are defined by (11).Correspond-
ingly, we can define a new cost function as

q(ξ) =
([

z∗
k
x̂

]
−
[
h∗(ξ)

ξ

])T [R∗ 0
0 P

]−1 ([z∗
k
x̂

]
−
[
h∗(ξ)

ξ

])
.

(32)
This ensures that the virtual measurements are included
in the GN optimization.
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Table I
GP Update Algorithm

Input: Predicted state and covariance xk|k−1,Pk|k−1, Associated
measurements ZC

Output: Updated state and covariance x̂k,Pk, Measurement
likelihood lC

if Equation (20) and |ZC| ≥ 2 then
xiter ← xk|k−1 modified by Equations (22) and (23)

else
xiter ← xk|k−1

end if
if |ZC| ≥ 2 and not partialOcclusion and xiter 
= xk|k−1 then
negativeInformation = True

else
negativeInformation = False

end if
i ← 0
while i ≤ GPMaxIterations and eps > 10−4 do
xupd ← SingleGPUpdate(xk|k−1, xiter,Pk|k−1,ZC)
eps ← xiter − xupd
xiter ← xupd
i ← i+ 1
if i > GPMaxIterations and NegativeInformation and (eps > 10−4

or φ̇upd > π/4) then
i ← 0
eps ← 103

xiter ← xk|k−1
NegativeInformation = False

end if
end while
xk ← xupd
Update covariance Pk
Update α and β according to (18)
Calculate measurement set likelihood lC via (41)

1) Practical Considerations: We only generate these
virtual measurements if we have at least two measure-
ments; otherwise, the virtual measurements will be iden-
tical, which implies a very small extent and will have
the practical effect of shrinking extents. Incorporating
these virtual measurements can be viewed as further
constraining the optimization problem. In some cases,
this can prevent convergence of the iterative optimiza-
tion, and this is usually not desirable. Therefore, if the
optimization does not converge while using virtual mea-
surements, we repeat the optimization without includ-
ing them in the cost function. Similarly, the use of virtual
measurements has a tendency to estimate a rather large
rotation of the extent in certain situations, which can be
seen as another undesirable local optimum. We there-
fore also repeat the optimization without virtual mea-
surements if the estimated rotational velocity is higher
than a certain threshold.We also do not use virtual mea-
surements when the initialization criteria in (20) and
(23) are used, as convergence is harder to achieve in that
case. The full method is summarized in algorithmic form
in Tables I and II.

IV. THE GP-PMBM TRACKER

Given the state space model presented above, we
now provide the specific closed-form expressions for the

Table II
SingleGPUpdate

Input: Predicted state and covariance xk|k−1,Pk|k−1,
Current state xiter, Associated measurements ZC

Output: Updated state xupd
for all z ∈ ZC do
Evaluate equation (14) with xiter
end for
Construct Hk,Rk, h(x) via equation (11)
if NegativeInformation then
κmin/max ← via equation (26)
Evaluate equation (29) and augment Hk,Rk, h(x), zk with result
end if
Sk ← HkPk|k−1HT

k + Rk

Wk ← Pk|k−1HT
kS

−1
k

xupd ← xk|k−1 + Wk
(
(zk − h(x)) − Hk(xk|k−1 − xiter)

)
PMBM filter recursions for the GP model based on the
general form given in [3]. We then discuss specific con-
siderations for using the GPmodel in the PMBM frame-
work and present the approximations used to make the
tracker computationally feasible. Finally, we present the
way occlusion is modeled using the information given by
the virtual measurements in the previous section.

A. PMBM Filter Recursions with a GP Target Model

For the special case where the probability of survival
PS is constant and the following holds:

Du
k−1(x) =

Nu∑
n=1

dunN (x; xun,Pu
n)G(αun, βu

n )

f j,ik−1(x) = N (x; x j,ik−1,Pk−1)G(α j,i
k−1, β

j,i
k−1)

gk|k−1(x|x′) = N (x;Fx′,Q),

(33)

i.e., the probability distribution representing the target
state in the Bernoulli components is a gamma-Gaussian
distribution, and the PPP intensity is a linear combi-
nation of gamma-Gaussian distributions, i.e., a gamma-
Gaussian mixture. The state transition density for the
Gaussian and the gamma component is assumed to be
independent, which enables separate prediction of the
state and extent from the measurement rate. This as-
sumption was used in [24]. The closed-form expression
is then given by

Du
k|k−1(x) = Db(x)

+PS
Nu∑
n=1

dunN (x;Fxun,FPu
nF

T + Q)G(αun, βu
n )

w
j
k|k−1 = w

j
k

r j,ik|k−1 = r j,ik PS

f j,ik|k−1 = N (x;Fx j,ik−1,FP
j,i
k−1F

T + Q)

× G(α j,i
k|k−1, β

j,i
k|k−1).

(34)
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For the update step, we define the following pre-
dicted set densities

f j,ik|k−1(x) = N (x; x j,ik|k−1,P
j,i
k|k−1)G(α j,i

k|k−1, β
j,i
k|k−1)

Du
k|k−1(x) =

Nu∑
n=1

dunN (x; xun,Pu
n)G(αun, βu

n ). (35)

For a nonempty set of measurementsZC conditioned on
a target x, the extended object measurement set likeli-
hood [3] is given by

l(ZC|x) = PDe−λmλ|ZC|
m

∏
z∈ZC

l(z|x). (36)

l(z|x) is the single measurement likelihood,which in our
case is given by the GP target model, i.e., (14). Due to
the non-linearity of the measurement model, we make
the following assumption:

l(zl |x) ≈ N (zl;hl (x),Rl ) ≈ N (zl;Hlx,Rl ), (37)

i.e.,h(x) defined in (14) is approximated by linearization
with the jacobian matrixHl .With this, the product of the
single measurement likelihoods can be written as

N (z;Hx,R) =
∏
zl∈ZC

N (zl;Hlx,Rl ). (38)

Here, z and R correspond to the augmented vectors and
matrices defined in (11) for all measurements in the set
ZC andH is the concatenation of all matricesHl given by
thesemeasurements.This is the joint likelihood of all the
measurements in the setZC.Furthermore, to incorporate
virtual measurements, we define the following:

N (z∗;H∗x,R∗) = N (z;Hx,R)×
N (max∠z;Hmaxx,Rmax)N (min∠z;Hminx,Rmin),

(39)
where z∗ and R∗ are defined in (31) and H∗ is the lin-
earization of h∗

k(xk). This is the joint likelihood of all
measurements in the set ZC if virtual measurements are
incorporated. Given this, we can write the extended ob-
ject measurement set likelihood as

l(ZC|x) = PDe−λmλ|ZC|
m N (z∗;H∗x,R∗). (40)

Using this, we can define the likelihood of a measure-
ment set belonging to a measurement cell C conditioned
on a given target estimate as

lC(α, β, x̂,P,ZC) = PD
�(α + |ZC|)βα

�(α)(β + 1)(α+|ZC|)|ZC|!
× N (z∗;H∗x̂,S∗),

(41)

where x̂ is the estimated mean of the target and the in-
novation covariance S∗ is given by a Kalman filter up-
date step and is as such defined by the matrices H∗,R∗,
and the predicted covariance P corresponding to the tar-
get estimate. It is again assumed that the measurement
rate and the combined state and extent are independent.

The predicted likelihood of the gamma component was
derived in [24].We assume that the probability of detec-
tion PD can be approximated as

PD(x)p(x) ≈ PD(x̂)p(x), (42)

where p(x) is a generic gamma-Gaussian probability dis-
tribution and x̂ is the mean of that distribution. This as-
sumption holds trivially when PD(·) is constant and is
expected to hold when it is a sufficiently smooth func-
tion within the uncertainty area of the estimate [3].
With these definitions,we can state the following closed-
form expressions. The PPP component representing un-
detected targets is updated as

Du
k(x) = QDDu

k|k−1(x), (43)

i.e., the weight of each undetected target in the mixture
is updated with the effective probability of a missed de-
tection, defined as

QD = 1 − PD + PDe−λm , (44)

where the exponential term is the Poisson probability of
a target generating no detections, this is equivalent to the
likelihood of an empty set of measurements. The MBM
is updated based on the associations made of measure-
ments to measurement cells. The weights for the associ-
ation hypotheses are updated as

w
j,A
k =

w
j
k|k−1

∏
C∈A L

j
C∑

j∈Jk|k−1

∑
A∈A j

w
j
k|k−1

∏
C∈A L

j
C

, (45)

i.e., the weight of an association hypothesisA is given by
a product of the likelihoods L of all measurement cells,
normalized over all association hypotheses.

The updated parameters for the Gaussian distribu-
tions are given by a Kalman filter update step, and the
updated gamma parameters for a measurement cell are
given by (18). This corresponds to applying the steps in
Table I.

The form of the update step for measurement cellC
depends on if the measurement cell is associated with a
detected or undetected target. The current time index k
is omitted for brevity. For detected targets, we have two
cases to consider

Lj
C =

{
1 − r j,iCk|k−1 + r j,iCk|k−1QD |ZC| = 0
r j,iCk|k−1lC(α

j,iC , β j,iC , x̂ j,iC ,P j,iC ,ZC) |ZC| 
= 0

r j,iCk =
⎧⎨⎩

r
j,iC
k|k−1QD

1−r j,iCk|k−1 + r
j,iC
k|k−1QD

|ZC| = 0

1 |ZC| 
= 0

f j,iCk (x) =
{
N (x; x j,iCk|k−1,P

j,iC
k|k−1)G(α j,iC , β j,iC ) |ZC| = 0

N (x; x̂ j,iC ,P j,iC )G(α j,iC , β j,iC ) |ZC| 
= 0
.

(46)
If measurements are assigned to undetected targets,
there are also two cases to consider, since it is assumed
that a cell containing more than one measurement can-
not be clutter-originated.Note that the result is a compo-
nent of theMBMsince the target has nowbeen detected.
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For the following, we define lC = lC(αun, β
u
n , x̂

u
n,P

u
n,ZC):

Lj
C =

{
Dc +∑Nu

n=1 d
u
nlC |ZC| = 1∑Nu

n=1 d
u
nlC |ZC| > 1

r j,iCk =
{ ∑Nu

n=1 d
u
nlC

Dc+∑Nu
n=1 dunlC

|ZC| = 1

1 |ZC| > 1

f j,iCk (x) =
Nu∑
n=1

dunN (x; x̂un, P̂u
n)G(αun, βu

n ).

(47)

See Appendix B for a derivation of these expressions.

B. Initialization and Birth Process

The GPmodel is generally not observable, especially
with fewmeasurements.Therefore, there is no unique so-
lution, and the solution depends on the choice of prior
used to initialize the estimate. The choice of prior is
therefore of key importance. In particular, the general
characteristics of the extent prior and the prior value of
the heading need to be specified. In the PMBM frame-
work, the prior estimates are encoded in the birth pro-
cess intensity Db. Using the mixture representation of
the PPP intensity function, i.e.,

Db(x) =
Nb∑
n=1

wb
np

b
n(x), (48)

we can define several priors, and since the weight of the
PPP components will be updated based on the likeli-
hood of the measurements, the resulting estimate will be
weighted.Selecting these priors is still not a trivial choice
and, inmost cases,are tuned to fit the particular problem.
For instance, in [15] where a GPmodel was used to track
vehicles, the prior for the extent (xf0) was chosen to cor-
respond to the extent of a real vehicle.

In this work, we use a similar method to the one that
was used to define a birth density along the edge of the
surveillance area in [18]. We assume an expected max-
imum range of the sensor Rb, and use it to set the po-
sitional component of the birth process intensity. Given
Nb components, an angle for each component is defined
as ψb

n = n2π
Nb . The prior for the centroid is then given by

xcn = Rb

[
cosψb

n

sinψb
n

]
, (49)

i.e., spread the mixture components uniformly on or
slightly beyond the edge of the circle defined by themax-
imum range of the sensor. By placing it beyond, the cen-
troid will be placed behind the first measurements. The
heading can be defined by

φb
n = ψb

n + π, (50)

i.e., the direction toward the sensor. The direction of the
velocity vector can be defined similarly along with a pre-

defined magnitude vb, i.e.,

ẋcn = vb

[
cosφb

n

sinφb
n

]
. (51)

The angular velocity φ̇b
n can be assumed to be 0 rad/s.

The covariance of all these kinematic states is inflated
to ensure that the mixture components can represent a
variety of states.With regards to the extent, it should be
tailored to the targets that are expected to appear. In this
case, because we are tracking ships, we define the extent
prior as a ship-like shape with a pointed bow and a flat
stern with symmetry along the vertical axis. If it is de-
sirable to track targets with very different shapes, one
can also include different shapes in the birth intensity
function.

C. Mixture Reduction

Mixture reduction is also a necessary tool used in the
birth process to reduce all the components in the PPP
mixture into one Bernoulli. It can also be used to merge
Bernoullis that are similar. The merging is done using
standard Gaussian mixture reduction for the kinematic
and extent states and by the method derived in [24] for
the parameters of the gamma distribution.

D. Reducing Associations

To reduce the number of data associations, gating is
performed as an initial step. Gating for the GP model
was presented in the original paper presenting themodel
[11], and the same method is used in this work. This sep-
arates the targets and measurements into independent
subgroups. Further reduction of association hypotheses
is done using the stochastic optimization method pre-
sented in [6] to find the most likely associations. As
an implementational detail, we calculate the predicted
measurement and the measurement matrix for each
measurement-object pair once during the gating process
and store them for use during the stochastic optimiza-
tion method to avoid redundant computation of (14),
which involves one GP regression per measurement, a
relatively expensive computation.

E. Occlusion

To utilize negative information for state estimation
in a multiobject framework, we have to account for the
occluding effect of other targets. A natural choice to
model occlusion would be to modify the probability of
detection PD. For multiple extended object tracking, this
has been done in [18] and further modified in [19]. They
used the GIWmodel and calculated a probability of de-
tection based on the angles occupied by each target and
their distance to the sensor. Partial occlusion was han-
dled by discretizing each point on the extent of a target,
calculating the probability of detection for each point,

96 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 19, NO. 2 DECEMBER 2024



and taking the maximum as the probability of detection
for that target. This method was reused in the PMBM
framework in [3]. Another approach was presented in
[20], which calculates an occlusion likelihood based on
the current targets. This occlusion likelihood is repre-
sented by a Gaussian mixture that can be used to update
the state of undetected objects, infer the existence of ob-
jects, and inform the association of data.

The zone being occluded by a specific object is given
by the angles occupied and the distance of the object
from the sensor which we define as (κ imin, κ

i
max, ρ

i). In
[20], this is expressed as a combination of the following
conditions. Object i is fully occluded by object iO if the
following conditions are true

B = (κ imin ≥ κ
iO
min) ∩ (κ iOmax ≥ κ imax)

R = (ρ i ≥ ρ iO ).
(52)

Condition B can be referred to as the bearing condition
and condition R can be referred to as the radial condi-
tion. An object is partially occluded if either of the fol-
lowing bearing conditions are true in combination with
the radial condition R

Bmin = (κ iOmax ≥ κ imax) ∩ (κ imax ≥ κ
iO
min)

Bmax = (κ iOmax ≥ κ imin) ∩ (κ imin ≥ κ
iO
min). (53)

Figure 3 shows an examplewhere these cases occur.With
this, we can define the probability of a target i being oc-
cluded by another target iO as

Pi,iOO = p(B,R,E) = p(B|E)p(R|E)p(E), (54)

where p(B|E) and P(R|E) is the probability of the con-
ditions of (52) being true conditional on the existence of
target iO and p(E) = riO , i.e., the probability of existence
of target iO. For partial occlusion, we can similarly state

Pi,iOpO = p(Bmax/min,R,E) = p(Bmax/min|E)p(R|E)p(E).
(55)

In [20], (κ imin, κ
i
max, ρ

i) were all assumed Gaussian dis-
tributed.We can then calculate the resulting probability

of the occlusion conditions by using the cumulative dis-
tribution function

p(B|E) = �

⎛⎝ κ iOmax − κ imax√
σ 2

κ
iO
max

+ σ 2
κ imax

⎞⎠�

⎛⎝ κ imin − κ
iO
min√

σ 2
κ
iO
min

+ σ 2
κ imin

⎞⎠ ,

(56)
where �(·) is the cumulative distribution function of
a Gaussian distribution with zero mean and unit vari-
ance; for more details, see [20]. Using the virtual mea-
surements generated in the previous section,we can find
a Gaussian distribution for κ imin and κ imax from (28) and
calculate the resulting innovation variance for each vir-
tual measurement according to

σ 2
κ imin

= Hi
minP

iHi
min

T + Rmin

σ 2
κ imax

= Hi
maxP

iHi
max

T + Rmax.

(57)

The probability of partial occlusion can be calculated in
the same manner using the same terms, which becomes

p(Bmin|E) = �

⎛⎝ κ iOmax − κ imin√
σ 2

κ
iO
max

+ σ 2
κ imin

⎞⎠�

⎛⎝ κ imax − κ iOmax√
σ 2

κ
iO
max

+ σ 2
κ imax

⎞⎠

p(Bmax|E) = �

⎛⎝ κ
iO
min − κ imin√
σ 2

κ
iO
min

+ σ 2
κ imin

⎞⎠�

⎛⎝ κ imax − κ
iO
min√

σ 2
κ
iO
min

+ σ 2
κ imax

⎞⎠ .

(58)
For ρ i, we do not have an equivalent way to calculate a
Gaussian distribution, so we instead define

p(R|E) =
{
1 if ||xci|| > ||xciO ||
0 otherwise

. (59)

With this, we can calculate the probability of occlusion
for each target pair. Furthermore, with a PMBM frame-
work, both the detected and undetected targets can be
occluded, and therefore, we should calculate the prob-
ability of occlusion for both these sets. However, only
detected targets will have an occluding effect.

Occlusion or partial occlusion have different effects
on othermodel parameters. If we determine that a target

Figure 3. Three targets, where object 1 is occluded by object 2, which in turn is partially occluded by object 3. The angles κ are shown for each
object. The measurements generated by the sensor are represented by crosses, and the measurements used for the virtual measurements are
shown by the larger crosses.
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is wholly occluded by another, the probability of detec-
tion will be lowered for that target. Taking the proba-
bility of occlusion into account therefore gives a target-
specific probability of detection

PiD = PD
∏
iO∈IO

(1 − Pi,iOO ), (60)

where IO is the total set of occluding targets for target
i. If the occlusion probability of any target is 1, then we
will have PD = 0; this will cause issues with likelihood
calculations, so we enforce a minimum probability of de-
tection. For a component of the PPP mixture un, the ex-
pression becomes

PunD = PD
∑
j∈J

w j

∏
iO∈I

j
O

(1 − Pun,iOO ), (61)

i.e., the probability of detection of a component is a
weighted average of the probability of detection for ev-
ery hypothesis in the MBM.

F. Partial Occlusion

Partial occlusion will not affect the probability of de-
tecting the target according to the model assumptions
since the target will still generate measurements. How-
ever, it will affect the model parameters in other ways.
The first is the way negative information is utilized for
state estimation since partial occlusion will not match
with the assumptions underlying the generation of the
virtual measurements. Specifically, if the target is par-
tially occluded, the expected angle κ will no longer cor-
respond to either the minimum or maximum angles of
the measurement set, depending on the part of the tar-
get that is occluded. In this work,we therefore do not uti-
lize negative information for the state estimation when
a target is partially occluded, but we note that it is pos-
sible to do so by calculating where κ would intersect
on the target contour and use that in place of θ

f
max/min

in the measurement equation for negative information.
In addition, partial occlusion will affect the number of
measurements that are generated by the objects, which
will have an impact on the association likelihood in (41)
since the gamma distribution will not be able to account
for this. So this effect needs to be managed as well, and
in this work, we do this by defining a heuristic visibility
ratio

vi = min(κ i
pO

max) − max(κ i
pO

min)
κ imax − κ imin

, (62)

where ipO ∈ IpO are the partially occluding objects.Here,
we simply consider the mean of κ , ignoring the uncer-
tainty of each estimate. With this ratio, we also need to
consider the probability of occlusion. We define a cor-
rection factor as

ηiv = 1 − PipO(1 − vi). (63)

The probability of occlusion becomes more complicated
to calculate for multiple occluding objects since they will
all occlude different sectors of the object; each part of
an object’s extent will therefore, in theory, have its own
probability of occlusion. For the sake of simplicity, we
utilize the maximum probability of occlusion of the ob-
jects partially occluding object i

PipO = maxPi,iO∈IpO

pO . (64)

Again, for the PPP component, the correction factor
should also consider the weights of the MBM, giving the
resulting expression

ηunv =
∑
j∈J

w jη
j
v, (65)

where η
j
v is defined as the correction factor calculated

for component un using the Bernoullis in the jth MBM.
This correction factor is then utilized to modify the pa-
rameters of the gamma distribution.We assume that the
Poisson rate of a partially occluded target is ηvλm, and re-
call that λm is gamma distributed with shape parameter
α and inverse scale parameter β. Given this, the Poisson
rate of a partially occluded target is gamma distributed
with the following parameters:

ηvλm ∼ G
(

α,
β

ηv

)
. (66)

This is equivalent to scaling the gamma distribution
since we have divided the inverse scaling parameter with
our scaling factor ηv . We can express this in the existing
gamma recursions as

αk|k−1 = αk−1

ηγ

, βk|k−1 = βk−1

ηvηγ

αk = αk|k−1 + |ZC|, βk = ηv(βk|k−1 + 1).

(67)

In this way, the parameters of the gammadistribution are
in line with the number of measurements we expect to
receive; in other words, the predictive likelihood of the
expected number of measurements is preserved

�(αk|k−1 + |ZC|)βαk|k−1

k|k−1

�(αk|k−1)(βk|k−1 + 1)(αk|k−1+|ZC|)|ZC|! . (68)

1) Practical Considerations: The visibility ratio de-
fined in (62) is only well defined between 0 and 1. How-
ever, it could take on values larger than 1 if the expres-
sions are applied naively as stated. Therefore, we en-
force the conditions in (53) explicitly. In the presence of
full occlusion, the visibility ratio will become a negative
value. In this case, we set the correction factor to 1. This
is for practical reasons since a very low correction factor
while not receiving any measurements for an extended
period could cause the target estimate to be overly at-
tracted to clutter.

The whole procedure for correcting for occlusion is
presented in Table III. Finally, the complete update step
for the GP-PMBM tracker is presented in Table IV.
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Table III
Occlusion Correction

Input: A predicted PMBM
Output: A probability of detection PD and a correction factor ηv

for every component in the predicted PMBM
for j ∈ J do
for i ∈ I do
(κ imin, κ

i
max) ← via Equation (26)

end for
for i ∈ I ∪Du do
for iO ∈ I/∈i do
condmin← κ

iO
min ≤ κ imin and κ

iO
max ≥ κ imin

condmax← κ
iO
min ≤ κ imax and κ

iO
max ≥ κ imax

conddistance← ||xci|| > ||xciO ||
if conddistance then
POi,iO ← via Equation (54)

end if
if condmin and condmax and conddistance then

ηv ← 1
else if not condmin and condmax and conddistance then
Save κ

iO
max

Assign iO ∈ IpO

PpOi,iO ← via Equation (55)
else if condmin and not condmax and conddistance then
Save κ

iO
min

Assign iO ∈ IpO

PpOi,iO ← via Equation (55)
end if

end for
Determine min(κ i

pO

max) and max(κ i
pO

min)
vi ← via Equation (62)
ηiv ← via Equation (63)
PiD ← via Equation (60)

end for
end for
PunD ← via Equation (61)
η
un
v ← via Equation (65)

V. SIMULATION STUDY

In this section, we present the result from a Monte
Carlo simulation study where the performance of the
PMBM-tracker using the presented GP model is com-
pared with the implementation using the GGIW model
as presented in [5]1. For the GP model, we present re-
sults without the negative information and occlusion
handling as GP, and the results including those features
are presented as GP-NI.

A. Simulation Scenario

The scenario consists of 8 ships that are born from
timestep 1 to 50. The simulation area is 200× 200 m
in total with a sensor placed at the center, which has a
measurement range of 100 m. Two vessels spawn from
each side of the area and approach the center, where
they turn. The scenario was particularly handcrafted to
simulate occlusion, so that some vessels are born behind

1The implementation for the GGIW model was taken from
github.com/yuhsuansia/Extended-target-PMBM-tracker, and this
implementation was modified for use with the GP model

Table IV
Full GP-PMBMUpdate

Input: A predicted Poisson Multi-Bernoulli Mixture and a
measurement set Z

Output: An updated Poisson Multi-Bernoulli Mixture
Correct for occlusion via Table III
Perform gating for each component of the PMBM
for j ∈ J do
Compute most likely subset of associations A j
for A ∈ A j do
forC ∈ A do
if New Target then
for Each component of Du ∈ C do
Update component(s) via Table I

end for
f j,iC ← via mixture reduction of component(s)
Lj
C, r j,iC ← via Equation (47)

else if Existing Target then
f j,iC ← via Table I
Lj
C, r j,iC ← via Equation (46)

end if
end for
for Targets without Detection do
f j,iC ,Lj

C, r j,iC ← via Equation (46)
end for

end for
end for
Update weights via Equation (45)
UpdateDu via Equation (43)

another vessel. When the vessels reach the center, they
appear close together and are frequently wholly or par-
tially occluded during this time, with vessels traveling
alongside one another. See Fig. 4 for a view of the sce-
nario. The scenario lasts for 240 timesteps, and each ves-
sel persists for 190 timesteps. The extent is modeled by
a ship that is 6 m long, 3 m wide, and has a pointed bow
where the full width is achieved 2 m behind it. The mea-
surements are generated by simulating an LiDAR with
a simulated maximum range of 100 m, angular resolu-
tion 0.5◦, and a modeled radial accuracy of 0.1 m. Mea-
surements are only generated if they hit a simulated hull,
and only onemeasurement is generated per angle,which
simulates occlusion. In addition, clutter is generated us-
ing a PPPwith λc = 20 and a uniform spatial distribution,
but the clutter measurements are also corrected for oc-
clusion. The results are averaged over 100 Monte Carlo
simulation runs.

B. Parameters

The PMBM parameters are chosen as follows: prob-
ability of detection PD = 0.90 for the standard model
and PD = 0.99 when occlusion is modeled, probability
of survival PS = 0.95, and clutter rate λc = 20. The gat-
ing probability is set at PG = 0.99; the pruning parame-
ters are 0.01 for the existence probability, 0.005 for PPP
mixture components, and 0.005 for MBM components.
Both target models use σc = 0.2 m as the noise param-
eter for the CV model and σr = 0.1 m for the measure-
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Figure 4. Visualization of the simulation scenario with the trajectories of all vessels, along with the ship extents and measurements visualized
for timestep 105. Note that this does not show the whole simulation area but only the 100× 100 m area in the center. The simulated LiDAR
sensor is placed at the origin.

ment noise; the GP model uses σφ = 0.1 rad as noise for
the constant angular velocitymodel.For the virtual mea-
surements, the measurement noise strength is σκ = 0.5◦,
the same as the simulated sensor resolution. Both target
models use we = 20 as the length of the gamma predic-
tion window. For the GP target model, we use nine test
angles to parametrize the extent, and the hyperparam-
eters are σ f = 1.0 m, σr = 0.5 m, σn = 0.01 m, l = π/4
rad and the forgetting factor η f = 0.001. The maxi-
mum amount of IEKF iterations is 50. For the GGIW
target model, we use 200 for the extent prediction win-
dow. The birth intensity function is defined according to
the method defined above with Nb = 36 components
and a range Rb = 105 m and a velocity magnitude of
vb = 1 m/s. The extent prior is roughly equivalent to the
true extent for the GP model, and for the GGIWmodel,
it is an ellipse with the same length and width defining
the semi-axes; this is combined with the prior heading
to calculate a prior value for the shape matrix X . The
prior value of the gamma distribution is α0 = 900 and
β0 = 100. The covariance of the Gaussians is inflated to
ensure coverage of the whole circle, the standard devia-

tion of the positional component is 20 m, 3 m/s for the
velocity component, and for the GP model the heading
component isπ/4 rad and the angular velocity isπ/4 rad.
In the case of the extent, for the GP model, the prior co-
variance is given by the covariance function.

C. Performance Evaluation

To compare the performance of the trackers, the
generalized optimal sub-pattern assignment (GOSPA)
metric [27] is used to provide a single metric for the per-
formance of a multiobject tracking algorithm by incor-
porating localization error, missed targets, and false tar-
gets into a single metric.The parameters for the GOSPA
metric were cut off c = 10 and power p = 2. To com-
pare the extent estimates of the target models, we use
the process of associating estimates to targets to gen-
erate additional measures that are comparable between
them.One suchmeasure is the Intersection-Over-Union
(IOU) metric, which has been used in previous work to
comparemethods for extent estimation [11], [12].To cal-
culate the IOU metric for the GGIW model, the shape
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Table V
Mean Value of Metrics for the Simulated Scenario

Model GP GP-NI GGIW

GOSPA 9.52 8.26 11.40
Loc. Err. 5.47 4.53 11.07
Missed 1.55 1.03 1.91
False 0.33 0.48 0.31
IOU 0.59 0.64 0.33
Heading (rad) 0.40 0.30 1.75
Time (s) 115.90 158.96 118.19

The best values are highlighted in bold.

matrix X is decomposed to retrieve the length of the
semi-axes, corresponding to the 2-σ ellipsoid, and the el-
lipse orientation. The heading error is calculated using
the samemethod. Finally, the computation time for each
run is also presented; however, it should be noted that
the GP methods were made more computationally effi-
cient by precomputing themeasurementmatrices during
gating, which makes it hard to compare their computa-
tional times with that of the GGIWmethod, which does
not have this implementation efficiency.

D. Results

The metrics are presented in Table V. Note the dis-
parity of the IOUmetric. This is primarily due to the in-
ability of the GGIWmodel to model contour-generated
measurements, since the GGIW model assumes a uni-
formdistribution,and thus centers the ellipse on the con-
tour instead, which causes large localization errors and
large errors in extent estimation. Note also the larger
heading error, showing an inability to estimate the head-
ing as a separate state. We can also note the improve-
ment in utilizing negative information and modeling oc-
clusion as compared to the base GP method with the

improvement in localization error and the IOU metric,
as well as the reduction of the number of missed tar-
gets. However, it increases the number of false targets.
The evolution of the metrics during the simulation run is
shown in Fig.5. It shows that theGGIWmodel has worse
IOU and a worse localization error across the whole run,
although the localization error is smaller while the ships
are close to the sensor, due to the fact that the side of
the vessel ismeasured rather than the front or rear.Com-
paring the regularmethodwith the negative information
method, we can note the disparity in the IOU metric
starting around timestep 100, which is when occlusion
occurs in the simulation, as well as the subsequent dis-
parity in the localization error. This shows that the use
of negative information results in an improved state es-
timate, particularly when targets are close together. The
handling of occlusion also results in a notable improve-
ment in the number of missed targets, due to the method
being better at maintaining a track when occlusions oc-
cur,but the track is still lost for some targets due to occlu-
sion. This is paired with an increase in false targets, par-
ticularly during the middle of the run, when a large part
of the surveillance area is occluded by the targets. The
reason for this could be that thewaywemodel partial oc-
clusion for undetected targets results in more erroneous
detections due to clutter.With these results, we can state
that the combination of modeling occlusion and nega-
tive information constitutes an improvement over the
base GP method. However, it comes with an increase in
computational time and false targets.

VI. TEST DATA

In this section, we present the result from real Li-
DAR data gathered from tests in Trondheim utilizing
the two platformsmilliAmpere andmilliAmpere2 in the
Trondheim canal [28].

Figure 5. The evolution over the course of the simulation run for selected metrics as an average over all MC simulations.
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A. Test Scenario

We present two separate scenarios, one with a single
vessel performingmaneuvers in front of the sensor in the
canal (see Fig. 6a) and one with two vessels traveling in
separate directions in the canal and passing each other
(see Fig. 6b). The data from the first scenario was gath-
ered using milliAmpere2, which is equipped with two
Ouster OS1 32 LiDARs. These two point clouds were
combined, and the returns from land and static obsta-
cles along the canal were filtered out using manual land
masking, and the point cloud was transformed to 2D by
only retaining the point closest to the sensor in each an-
gular resolution sector. The second scenario was pub-
lished in [29] (as scenario 13) and is reused in this work.

B. Parameters

Most of the parameters used are similar to the simu-
lation study. The range used to define the birth intensity
Rb is reduced to 40 and 65 m, respectively, due to the ob-
served range at which the LiDARs were able to detect
the target vessels. For the second scenario, α0 was set to
500 to account for the lower sensor resolution. The ex-
tent priors were set such that the length and width of the
prior were roughly equivalent to the target vessels, but
the same prior was used to represent both ships in the
second scenario. In addition, some tweaks were made to
attempt to mitigate some observed effects that are not
modeled. To account for wake clutter, the clutter rate
was increased to λc = 60 and λc = 100 for the first and
second scenario, respectively. Finally, to account for er-
rors related to sway affecting the pitch of the LiDAR
sensor, the measurement noise σr was set to 0.5 m.

C. Performance Evaluation

We use the same metrics that were used in the simu-
lation study,with the ground truth data gathered used to

Table VI
Mean Value of Metrics for the Real LiDAR Data

Test 1 Test 2
Model GP GP-NI GGIW GP GP-NI GGIW

GOSPA 1.51 1.31 2.45 4.76 3.95 4.06
Loc. Err. 0.85 0.66 1.80 4.81 3.68 3.49
Missed 0.08 0.07 0.07 0.08 0.08 0.10
False 0.00 0.00 0.01 0.01 0.00 0.00
IOU 0.36 0.50 0.12 0.20 0.26 0.31
Heading (rad) 0.37 0.19 1.30 0.46 0.34 1.86
Time (s) 96.35 111.51 161.31 256.53 257.85 253.26

The best values are highlighted in bold.

calculate the metrics. For the first scenario, ground truth
was measured by using a dual antenna inertial naviga-
tion system (INS), and the extent of the vessel was mea-
sured to be able to compare the estimated extent with
the ground truth. For the second scenario, the ground
truth data gathered was only positional global naviga-
tion satellite system (GNSS) datawithout heading; in ad-
dition, the exact position of the GNSS receiver was un-
known,which is a significant source of error for the IOU
calculation. The heading was inferred from the velocity
vector, which is also a source of error for the calculation
of the IOU and heading error metrics.

D. Results

The first scenario is quite simple from a target track-
ing perspective, it is simply a test of target birth and
the ability of the target models to track the ship while
it is performing complex maneuvers. The relevant met-
rics are presented in Table VI, and the plots are shown
in Fig. 7. The GP model is able to track the target over
the whole scenario.However, as the target gets closer to
the sensor, the IOU value degrades; this is due to wake
clutter being detected by the LiDAR around timestep
400. These wake measurements are associated with the

Figure 6. Visualization of the test scenarios, along with the extent and measurements visualized for three different timesteps, with the sensor
platform placed at the origin. Note the measurements generated by the wake, as well as the occlusion in the second scenario.
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Figure 7. The evolution throughout the single target test run for selected metrics.

target because it does not adhere to the uniform clutter
model.This affects the extent estimate and consequently
the state estimate. The estimate is able to recover when
the vessel completes a turn. In this case, utilizing neg-
ative information confers an improvement in the IOU
and correspondingly in the localization error. This is due
to the ability to more quickly adjust the extent estimate
after being affected by the wake clutter, which we are
able to do immediately due to the use of virtualmeasure-
ments in the update step, whereas the base GP method
cannot adjust the extent estimate if it is estimated as too
large. The GGIWmodel initializes another track during
one of the turning maneuvers to continue tracking the
target, resulting in a false target for a few timesteps.

The second scenario is more complex, as it entails
two targets, with one target being occluded by the other.

The metrics are given in Table VI, and the evolution
over time is shown in Fig. 8. Here, the base GP model
performs worse compared to the GGIW model, with
a higher localization error and lower IOU metric. This
is due to the disruptive effect of wake clutter on the
GP model, which causes the extent estimates to get sig-
nificantly worse when the wake is detectable, between
timestep 1200 and 1300. This coincides with one vessel
occluding the other, and the combined effect of these
two phenomena has a major negative effect on the ex-
tent estimate. This also affects the centroid estimate, re-
sulting in a larger localization error. Utilizing negative
information mitigates this effect since the occlusion is
better managed and the effect of the wake clutter is
somewhat mitigated by the extent estimate being cor-
rected faster due to the use of negative information in

Figure 8. The evolution over the course of the multi-target test run for selected metrics.
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the state estimate, but it is still worse than the GGIW
model, albeit it is quicker to initialize an estimate, re-
sulting in a lower share of missing targets and a lower
GOSPA score. However, even with the use of negative
information, the wake clutter still has an effect on the
state estimate, as observed by the peak in localization er-
ror and the dip in IOU around 1230. The GGIW model
is less affected by this shortcoming because of the as-
sumption that measurements are uniformly distributed.
Another thing of note is the relatively poor extent esti-
mate of the GPmethods at the beginning and the end of
the scenario; this is due to scans from the LiDAR hitting
at different heights of the target vessel, where the extent
may be radically different. Since this method only uti-
lizes information in 2D, this is a source of model incon-
sistency, and therefore the extent of the vessel is not esti-
mated correctly. This is also a contributing factor to the
GGIW model being able to estimate the extent better,
which can be seen at the start of the scenario.

VII. CONCLUSION

This paper has presented the use of the GP model as
a target model in the extended object PMBM-tracker,
presented an improvement of the GP target model by
using GN optimization, suggested a heuristic method to
mitigate the fact that the measurement model is non-
convex, and we have highlighted the need for a well-
designed birth density and provided an example. We
have also presented a method to utilize negative infor-
mation both to improve the state estimation and to han-
dle occlusion. Furthermore, we have demonstrated the
resulting tracker on both simulated and real data and
compared the performance against the standard GGIW-
PMBM tracker. It shows that the GP model can gen-
erally track targets more accurately, as measured by
GOSPA,and provide a better extent estimate when only
a part of the target is detected by the sensor, asmeasured
by the IOUmetric. It also enables a correct heading esti-
mate since the heading is explicitly modeled as a part of
the state. In addition, applying the method to real mar-
itime data shows that wake clutter is an issue that needs
to be addressed.The use of negative information further
increases tracking performance and improves the state
estimation. Furthermore, it specifically mitigates issues
with occlusion and partially mitigates the effect of wake
clutter, providing more robust performance on real mar-
itime data.

A. Future Work

It would be of interest to look further into the issue of
data association for this target model. Particularly given
the computational cost of the method, of which the main
part of the computational time is taken up by the data as-
sociation step. Recent developments in this area for ex-
tended object PMBM filters have shown that it is possi-
ble to achieve a drastic reduction in computational time

by reducing the PMBM to a PMB representation [7].Di-
rectly estimating a PMB either by the use of belief prop-
agation [8], [9] or blocked Gibbs sampling [30] has also
shown a drastic reduction in computational time and
better performance compared to estimating a PMBM. It
would therefore be interesting to explore if the GP tar-
getmodel can be integrated into thesemethods.Another
venue of future work would be to extend the method to
also include 3D information, for which there already ex-
ist several targetmodels [31], [32].This would resolve the
issue of model consistency when applying it to real data,
which could prevent the issues where different LiDAR
beams hit the target boat. It could also aid in reducing
the effect of wake clutter on the extent estimate. It would
also be of interest to directly incorporate a model that
accounts for wake clutter into the filter.Recent work has
explored how tomodel arbitrary sources of clutter in the
PMBM framework [33], and wake clutter could be mod-
eled in this framework. Clutter models for wake clutter
in the context of target tracking already exist [34], [35],
and they could be applied by adapting them to extended
targets.

ACKNOWLEDGMENT

The authors would like to acknowledge the help of
Øystein Kaarstad Helgesen in providing data sets from
milliAmpere, Erik Wilthil at Zeabuz, and Egil Eide for
assistance in collecting the data frommilliAmpere2, and
Simen Eldevik at DNV for providing ideas that con-
tributed to the improvement of the Gauss–Newton op-
timization method used in the paper.

APPENDIX A

PARTIAL DERIVATIVES FOR NEGATIVE INFORMATION

Following the approach in [11], we divide the deriva-
tive into the following components:

dhmax(x)
dx

=
[
dhmax(x)
dxc

dhmax(x)
dφ

dhmax(x)
dx f

]
. (69)

The time index has been omitted for brevity. The deriva-
tives can be found by applying the chain rule and the
quotient rule.We start by making the substitution

u = uy
ux

=
yp + sin

(
θ
f
max + φ

)
Hf
(
θ
f
max

)
x f

xp + cos(θ f
max + φ)Hf

(
θ
f
max

)
x f

. (70)

We also introduce the following shorthands:

H f (θ f
max

) = H f

θ f
max + φ = θ

(G)
max.

(71)

The derivative of arctan(u) is 1
1+u2 ; therefore, according

to the chain rule, we get

dhmax(x)
dx

= 1
1 + u2

[
du
dxc

du
dφ

du
dx f

]
. (72)
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To calculate the partial derivatives, we apply the quo-
tient rule. Doing this results in

du
dxp

= −
yp + sin

(
θ
(G)
max

)
H fx f

ux2

du
dyp

= 1
ux

du
dφ

=
H fx f

(
H fx f + xp cos

(
θ
(G)
max

)
+ yp sin

(
θ
(G)
max

))
ux2

du
dx f

=
H f
(
xp sin

(
θ
(G)
max

)
− yp cos

(
θ
(G)
max

))
ux2

.

(73)
By expanding

1
1 + u2

= ux2

ux2 + uy2
, (74)

then multiplying this expression with the ones above we
end up with the final partial derivatives

du
dx

= −
y+ sin

(
θ
(G)
max

)
H fx f

ux2 + uy2

du
dy

=
xp + cos

(
θ
(G)
max

)
H fx f

ux2 + uy2

du
dφ

=
H fx f

(
H fx f + x cos

(
θ
(G)
max

)
+ y sin

(
θ
(G)
max

))
ux2 + uy2

du
dx f

=
H f
(
x sin

(
θ
(G)
max

)
− y cos

(
θ
(G)
max

))
ux2 + uy2

. (75)

It follows that the partial derivatives for the minimum
angle can be found by substituting θ

f
max with θ

f
min.

APPENDIX B

PMBM FLTER RECURSIONS FOR A GP TARGET MODEL

B.1. Prediction

As stated in the main text, we utilize the expressions
derived for an extended object PMBM filter in [3] and
use those to derive closed-form expressions.

The posterior distribution of a PMBM prior is a
PMBM with parameters

Du
k−1, {w j

k−1, {r j,ik−1, ( f
j,i
k−1)}i∈Ik|k′ } j∈Jk|k′ . (76)

Then, the predicted distribution is a PMBMwith pa-
rameters

Du
k|k−1, {w j

k|k−1, {r j,ik|k−1, ( f
j,i
k|k−1)}i∈Ik|k′ } j∈Jk|k′ , (77)

where the parameters are given by

Du
k|k−1 = Db(x) + 〈Du

k−1;PSgk|k−1(x)〉
w

j
k|k−1 = w

j
k−1

r j,ik|k−1 = 〈 f j,ik−1;PS〉r j,ik−1

f j,ik|k−1 = 〈 f j,ik−1;PSgk|k−1(x)〉
〈 f j,ik−1;PS〉

.

(78)

For the Gaussians, we can derive the expressions using
the product rule and integrating the resulting expression

〈
f j,ik−1;PSgk|k−1(x)

〉
= PS

∫
N (xk−1; x j,ik−1,Pk−1)N (xk;Fx′,Q)dxk−1

= PSN (xk;Fx j,ik−1,FP
j,1
k|k−1F

T + Q)
∫

N (xk−1; ·, ·)dxk−1

= PSN (xk;Fx j,ik−1,FP
j,1
k|k−1F

T + Q)

〈Dk−1;PSgk|k−1(x)〉

= PS

∫ Nu∑
n=1

dunN (xk−1, xun,P
u
n)N (xk;Fx′,Q)dxk−1

= PS
Nu∑
n=1

dunN (xk;Fxun,FPu
nF

T + Q)
∫

N (xk−1; ·, ·)dxk−1

= PS
Nu∑
n=1

dunN (xk;Fxun,FPu
nF

T + Q)

〈
f j,ik ;PS

〉 = PS

∫
f j,ik−1(x)dx = PS.

(79)
The gamma component does not have a similar expres-
sion, and we instead use the heuristic defined in [24] and
presented in (18). Inserting these expressions into (78)
and simplifying results in (34).

B.2. Update

Starting with the predicted PMBM and given the set
of measurements Zk. The posterior distribution is then
also a PMBM with parameters

Du
k, {w j,A

k , {r j,Ck , ( f j,Ck )}C∈A} j∈Jk|k−1,A∈A j , (80)

where A j is the set of all possible data associations
for the association hypothesis with index j. If measure-
ment cell C belongs to a detected target, the following
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expressions apply:

Lj
C =

{
1 − r j,iCk|k−1 + r j,iCk|k−1〈 f j,iCk|k−1;QD〉 |ZC| = 0
r j,iCk|k−1〈 f j,iCk|k−1; l(ZC|x)〉 |ZC| 
= 0

r j,iCk =
⎧⎨⎩

r
j,iC
k|k−1〈 f

j,iC
k|k−1;QD〉

1−r j,iCk|k−1+r
j,iC
k|k−1〈 f

j,iC
k|k−1;QD〉 |ZC| = 0

1 |ZC| 
= 0

f j,iCk (x) =

⎧⎪⎪⎨⎪⎪⎩
QD f

j,iC
k|k−1

〈QD; f j,iCk|k−1〉
|ZC| = 0

l(ZC|x) f j,iCk|k−1

〈l(ZC|x); f j,iCk|k−1〉
|ZC| 
= 0

.

(81)

If measurements are assigned to an undetected target,
we instead have the following expressions:

Lj
C =

{
Dc + 〈Du

k|k−1; l(ZC|x)〉 |ZC| = 1
〈Du

k|k−1; l(ZC|x)〉 |ZC| > 1

r j,iCk =
{ 〈Du

k|k−1;l(ZC|x)〉
Dc+〈Du

k|k−1;l(ZC|x)〉 |ZC| = 1

1 |ZC| > 1

f j,iCk (x) =
l(ZC|x)Du

k|k−1

〈l(ZC|x);Du
k|k−1〉

.

(82)

QD is assumed scalar, so we get

〈QD; f j,iCk|k−1〉 = QD

∫
f j,iCk|k−1(x)dx = QD

〈QD;Du
k|k−1〉 = QD

∫
Du
k|k−1(x)dx = QD

QD f
j,iC
k|k−1 = QDN (x, x j,ik|k−1,Pk|k−1),

(83)

where the integrals all evaluate to 1 since the integrands
are probability distribution functions. The remaining ex-
pressions are a collection of products and inner products
of distributions.We can write a generic product

p(x)l(ZC|x) =
PDN (x; x̂k|k−1,Pk|k−1)G(λm;αk|k−1, βk|k−1)

× PDe−λmλ|ZC|
m N (z;Hx,R).

(84)

Given that we have assumed independence between the
measurement rate and the combined state and extent,
we can treat the Gaussian components and the gamma
and Poisson components separately. First, we evaluate
the products of the Gaussian distributions,which is done
using the product rule for Gaussians, which states that

N (z;Hx,R)N (x; x̂k|k−1,Pk|k−1)

= N (z;Hx̂k|k−1,S)N (x; x̂k,Pk),
(85)

where the first term is recognized as the posterior distri-
bution and the second term is the predictive likelihood.

The inner product can consequently be written as∫
N (z;Hx,R)N (x; xk|k−1,Pk|k−1)dx

= N (z;Hx̂k|k−1,S)
∫

N (x; x̂k,Pk)dx

= N (z;Hx̂k|k−1,S),

(86)

which corresponds to a marginalization of x. For the
gamma component, the key element is that the gamma
distribution is the conjugate prior of the Poisson distri-
bution, and the number of measurements |ZC| is Poisson
distributed PS(|ZC|; λm). In [24], it was shown that the
product evaluates to

G(λm;αk|k−1, βk|k−1)PS(|ZC|; λm)

= G(λm;αk|k−1 + |ZC|, βk|k−1 + 1)

×
�(αk|k−1 + |ZC|)βαk|k−1

k|k−1

�(αk|k−1)(βk|k−1 + 1)(αk|k−1+|ZC|)|ZC|! ,
(87)

where the first term is the posterior of the gamma distri-
bution and the second term is the predictive likelihood.
From this,we can combine the two expressions and write
a combined predictive likelihood as

lC(α, β, x,P,ZC) = PD
�(α + |ZC|)βα

�(α)(β + 1)(α+|ZC|)|ZC|!
× N (z;Hx̂k|k−1,S).

(88)

The posterior can be found from Bayes rule

p(x)l(ZC|x)
〈p(x); l(ZC|x)〉 = N (x; x̂k,Pk)G(λm;αk, βk). (89)

Replacing the generic probability density p with f j,iC or
the components of the mixture Du results in the follow-
ing predictive likelihoods:

〈l(ZC|x); f j,iCk|k−1〉 = lC(α j,iC , β j,iC , x j,iCk|k−1,P
j,iC
k|k−1,ZC)

〈l(ZC|x);Du
k|k−1〉 =

Nu∑
n=1

dunlC(α
u
n, β

u
n , x

u
n,P

u
n,ZC)

(90)
and the following posterior distributions:

l(ZC|x)Du
k|k−1

〈l(ZC|x);Du
k|k−1〉

=
Nu∑
n=1

dunN (x; x̂un, P̂u
n)G(αun, βu

n )

l(ZC|x) f j,iCk|k−1

〈l(ZC|x); f j,iCk|k−1〉
= N (x; x̂ j,iCk , P̂ j,iC

k )G(α j,iC
k , β

j,iC
k ).

(91)

Inserting these expressions into (81) and (82) results
in (46) and (47), respectively.
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