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We consider arbitrary nonlinear stochastic discrete-time state

space models (SSMs) with time-invariant parameters and nonadditive

Gaussian disturbances. Given an observation trajectory, the goal is to

obtain an estimate of the augmented state (the underlying state tra-

jectory and the time-invariant parameters of the model). A numerical

approach to checking this type of observability is given, and a quanti-

tative assessment of the degree of observability is provided. In general,

no global statements for all observation trajectories can be made on

the observability of nonlinear SSMs. However, we can find regions of

the state-observation space (consisting of all possible observation tra-

jectories and corresponding state trajectories) in which an estimate of

the augmented state can be obtained. This is achieved by approximat-

ing the continuous distribution of observation trajectories and state

trajectories using an optimal discrete distribution.The associated loca-

tions of the point masses are called design values. For these design val-

ues, we can then check whether the augmented state can be recovered.

We could also use random realizations of the observation trajectory.

However, when using design values, a smaller number of considered

observation trajectories is required to achieve a good coverage of the

space. We illustrate our approach to checking observability for differ-

ent specifications of discrete-time SSMs in univariate and multivariate

settings.

I. INTRODUCTION

In time series analysis, state spacemodels (SSMs) are
a common tool to model the dynamic behavior of ob-
served multivariate data Zt, t = 1, . . . ,T , using multi-
variate latent states Xt, t = 0, . . . ,T . As in [12], we con-
sider arbitrary nonlinear stochastic discrete-time SSMs
with unknown time-invariant parameters � and non-
additive Gaussian disturbances εt, ηt, t = 1, . . . ,T , of
the form

Observation equation:Zt = g(�,Xt , εt )

State equation:Xt = h(�,Xt−1, ηt ) for t = 1, . . . ,T.

(1)
More details on this model can be found in Section II.A.

For a given observation trajectory z1, . . . , zT , the goal
is to obtain an estimate of the augmented state � con-
sisting of initial state x0, state trajectory x1, . . . , xT , and
parameters�. Simulations show that the joint maximum
a posteriori (MAP) estimator is biased in this situation.
Instead, we choose the marginal MAP estimator to re-
cover the augmented state. To avoid high-dimensional
integration for the marginalization, a Bayesian Markov
chain Monte Carlo (MCMC) setup is chosen.

In general, no global statements for all observation
trajectories can be made on the observability of non-
linear SSMs [11], [13], [24]. This means that an estimate
of the augmented state cannot necessarily be recovered
for all observation trajectories (see [18, p. 2] for an in-
tuitive example). We call a given SSM observable if the
marginalMAP estimator exists, i.e., if themarginalMAP
estimate can be recovered for at least one realization of
the observation trajectory. Section II.B gives the exact
theoretical definition of observability.

Our contribution is a novel approach to checking this
type of observability in practice.As no global statements
for all observation trajectories can be made, all possi-
ble realizations of the observation trajectory and cor-
responding state trajectory have to be analyzed. This is
in general not possible, which is why we only consider
a set of appropriately selected disturbance realizations
called design disturbances. For obtaining design distur-
bances,we approximate the distribution of the Gaussian
disturbances by a discrete distribution. For that, the ap-
proach proposed in [32] is used, which minimizes a dis-
tance measure similar to Cramér-vonMises between the
continuous and the discrete distribution. The locations
of the pointmasses of this discrete distribution are called
the design disturbances.

Since observability properties depend on the param-
eters �, the initial state x0, and the number of time steps
T , observability is always considered for fixed values of
�, x0, and T . Each design disturbance leads to a corre-
sponding design state trajectory and observation trajec-
tory by plugging it into the corresponding model. The
detailed construction of these design values is given in
Section III.A.

The design disturbances are created to cover the
space of disturbances homogeneously. Our simulations
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show that they allow us to choose a smaller number of
considered observation trajectories compared to using
random values to obtain a satisfactory coverage of the
space. Furthermore, they are determined offline before
checking for observability and hence do not lead to ad-
ditional computational effort.

For all chosen design observation trajectories, we ex-
ecute two tasks. The first task is used to obtain informa-
tion about the type of extrema of the posterior density
(see Section III.B). In the second task, we then check
whether the augmented state can be recovered by con-
sidering the marginal MAP estimate of the posterior
density (see Section III.C). This tells us in which regions
of the state-observation space the marginal MAP esti-
mator is defined for the fixed time-invariant parameters
�, initial state x0, and T .

There are many applications of SSMs in the litera-
ture. For example, [6] uses SSMs to describe flight con-
trol systems. In [36], the models are used to facilitate bi-
ological and biomedical modeling, while [17] use SSMs
to analyze epidemiological data. Furthermore, [22] and
[23] propose copula-based SSMs to capture the time
dynamics in air pollution. Regarding observability, sev-
eral definitions and approaches to checking it are de-
veloped. One approach is to use Kalman’s observabil-
ity matrix [3], [17], [20]. However, this approach is only
used for linear SSMs. A definition for nonlinear observ-
ability based on the so-called indistinguishability is given
in [20]. The models that are considered allow for deter-
ministic input only in the state equation, which is de-
scribed by a differential equation. The suggested ap-
proach to check this kind of observability is an exten-
sion of Kalman’s observability matrix using Lie deriva-
tives. An algebraic approach for nonlinear polynomial
SSMs of this type is proposed in [15]. In [28], it is noted
that the existing approaches checking for observabil-
ity cannot identify for which observation trajectories
the underlying parameters can be obtained. For mod-
els with uncertainties, which are restricted to bounded
intervals, [28] solve this problem by using interval anal-
ysis. An overview of different observability definitions
found in the literature is given in [37] and more recently
[3]. In contrast to our approach, the literature imposes
restrictions on the considered models, such as linearity
or a specific form. Furthermore, only a deterministic in-
put is allowed, in most cases only in the observation
equation.

The remainder of the paper is organized as follows:
In Section II,we introduce the type ofmodel we consider
and the theoretical definition of observability based on
the existence of themarginalMAP estimator.Section III
describes our proposal to check this definition of observ-
ability in practice using design observation trajectories.
In Section IV, we illustrate how this approach can be
used to decide upon observability of different examples
of Gaussian SSMs. Section V concludes the paper and
gives an outlook for possible adaptions and for future
work to extend the approach to non-Gaussian SSMs. In

Figure 1. A general SSM for d = p = 1.

Section VI, an overview over the most important defini-
tions is given.

II. SSMS AND OBSERVABILITY NOTATIONS

A. Stochastic SSMs

We describe the model (1) in more detail now.

1) Definitions: The random variable Zt ∈ Rd de-
notes the observation at time t, while Xt ∈ Rp rep-
resents the (latent) state at time t. This latent state is
an underlying variable driving the behavior of the ob-
servations. The state equation describes the evolution
of the unobserved latent state over time depending on
the random disturbances ηt, t = 1, . . . ,T , while the
observation equation describes how the observation Zt

at time t is defined, given the latent state Xt and the
random disturbance εt at time t. We define the ran-
dom observation trajectory from time point 1 to T by
ZT = (Z�

1 , . . . ,Z�
T )

� ∈ RT ·d with realization zT =
(z�

1 , . . . , z�
T )

�. The random trajectory of the latent state
is defined by XT = (X�

1 , . . . ,X�
T )

� ∈ RT ·p with realiza-
tion xT = (x�

1 , . . . , x�
T )

�. Figure 1 illustrates an SSM for
d = p = 1.

We assume the initial value x0 to be fixed and un-
known and denote by xtrue0 the true underlying value.Fur-
thermore, � is a vector of unknown time-invariant pa-
rameters, where �true is the true underlying value of �.

For the disturbances (εt )t=1,...,T and (ηt )t=1,...,T ,we as-
sume that they are serially independent and indepen-
dent of each other at all time points [12, Ch. 9] with
εt ∼ N d(0,Rt ) and ηt ∼ N p(0,Qt ), where Rt ∈ Rd×d

and Qt ∈ Rp×p are known covariance matrices.

2) Underlying Parameters: Consider an SSM of the
form (1) with fixed true underlying values �true and xtrue0 .
Given an observation trajectory zT from that model,
the underlying unknown true parameters are �true =
(�true, xtrue0 , xT ). The values �true and xtrue0 always stay
the same, but the trajectory xT of the state is chang-
ing with every realization of the disturbances εt and
ηt, t = 1, . . . ,T , and hence every observation trajectory
zT . Consequently, there is not one common true under-
lying value of xT that could be compared for different
zT ’s. Thus, we treat xT as a nuisance parameter vector,
and the parameters of interest are � and x0. Following
[5] and [25], the vector � = (�, x0, xT ) of unknown
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parameters is called the augmented state, consisting of
the time-invariant parameters, the initial state, and the
state trajectory. Even though we primarily consider the
parameters � and x0 in our proposed approach, we are
also interested in xT in applications to allow for predic-
tive simulation.

For better readability, we write � = (�, x0, xT ) in-
stead of � = (��, x�

0 , x �
T )�. This notation will be used

throughout the paper, e.g, also for zT , ZT , xT , and XT .

3) Posterior Density: The joint posterior density of
(1) is defined by

�(�|zT ) ∝ � (�|zT ) · p(�) =
[

T∏
t=1

fz (zt |xt,�)

]

·
[

T∏
t=1

px (xt |xt−1,�)

]
· p0(x0) · p�(�).

(2)

The corresponding log-posterior density is defined by
π (�|zT ) = log(�(�|zT )). Here, � (�|zT ) is the likeli-
hood of � given zT , p(�) is the prior of the parameter
vector �, p0 is the prior for x0,

∏T
t=1 px (·|xt−1,�) is the

prior for xT given x0, and p� is the prior for �. The func-
tion fz (zt |xt,�) is the density ofZT |{Xt = xt,�} defined
by the observation equation.

The prior p0 might depend on the true underlying
value of x0 if information about it is available. The prior∏T

t=1 px (·|xt−1,�) of xT might either just be the prod-
uct of the densities fx (xt |xt−1,�) of Xt |{Xt−1 = xt−1,�}
defined by the state equation, i.e., px = fx, or more in-
formation might be available on xT that can be incorpo-
rated. For example, the support of fx could be restricted
to obtain px.

Example 1. If the true underlying value �true
i of a time-

invariant parameter component �i ∈ (−1, 1) of � is
known, we define the restricted prior

pres
�true
i
(�i) =

{
U (0, 1) for �true

i > 0,
U (−1, 0) for �true

i < 0. (3)

If �true
i is not known, prior expert knowledge might be

available on the sign of �i.

4) Models Linear in State: One type of SSM,which is
often studied, is linear in the states Xt and is given by

Zt = A(�) · Xt + B(�) · εt ,

Xt = C(�) · Xt−1 +D(�) · ηt
(4)

for t = 1, . . . ,T , and A(�) ∈ Rd×p,B(�) ∈
Rd×d,C(�) ∈ Rp×p, and D(�) ∈ Rp×p for unknown
�. Note that the matrices A(�), etc, do not need to be
linear in the parameters � in order for the model to be
linear in the states. The disturbance distributions are de-
fined as before.

We introduce one example of this type now.

Example 2. The model we consider with d = p = 1 is of
the form

Zt = aXt +
√
1 − a2 · εt , Xt = aXt−1 +

√
1 − a2 · ηt ,

t = 1, . . . ,T,

(5)
with εt ∼ N (0, 1) i.i.d. and ηt ∼ N (0, 1) i.i.d. inde-
pendent. The parameter � = a ∈ (−1, 1) is unknown,
so the parameters of interest are a and x0 with unknown
nuisance parameters x1, . . . , xT . Using Zt |{Xt = xt , a} ∼
N (axt, 1 − a2), Xt |{Xt−1 = xt−1, a} ∼ N (axt−1, 1 − a2),
we determine the posterior for � = (a, x0, xT ) as

�(�|zT ) ∝
[

T∏
t=1

1√
1 − a2

· e− (zt−axt )2
2(1−a2 )

]

·
[

T∏
t=1

1√
1 − a2

· e− (xt−axt−1 )
2

2(1−a2 )

]
· presatrue (a). (6)

We use a noninformative prior for x0. For known atrue,
the prior of a is chosen by presatrue (a), as defined in (3).
For small values of |a|, this restriction is necessary as
otherwise the posterior becomes bimodal. For larger val-
ues of |a|, the restriction might not always be necessary.
Furthermore, in general, the integral over all parameters
a ∈ (−1, 1), xt ∈ (−∞,∞), t = 0, . . . ,T, of (6) with
uniform prior on (−1, 1) for a might not exist.

The log-posterior is of the form

π (�|zT ) = −1
2

1
1 − a2

[
T∑
t=1

(zt − axt )2 +
T∑
t=1

(xt − axt−1)2
]

− T log(1 − a2) + log(presatrue (a)).

B. Theoretical Definition of Observability

For different values of �true, xtrue0 , and T , the observ-
ability properties of a given SSM can vary [20]. For this
reason, observability is always investigated for a fixed
initial value xtrue0 and fixed time-invariant parameters
�true. Hence, if certain values of the parameters (�, x0)
are of special interest, they can be studied in detail. Ad-
ditionally, different numbers of time steps T can be con-
sidered.

To define our notion of observability, we first con-
sider a fixed but arbitrary observation trajectory zT with
corresponding state trajectory xT of model (1) using xtrue0
and �true, i.e.,

Zt = g(�true,Xt , εt ) for t = 1, . . . ,T,

Xt = h(�true,Xt−1, ηt ) for t = 2, . . . ,T,

X1 = h(�true, xtrue0 , η1)

and study the posterior �(�|zT ) defined in (2) using
priors, which are specified specifically for each model.
Then, two tasks are carried out. In the first task, we ob-
tain information about the type of extrema of �(�|zT )
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by checking if the joint MAP estimate can be obtained.
In the second task, we consider the marginal MAP es-
timate. The existence of the marginal MAP estimate
in the second task depends on the type of extrema
of the joint posterior, which is investigated in the first
task.

1) Existence of Joint MAP Estimate: We want to in-
vestigate if the joint MAP estimate

�̂(zT ) = (�̂(zT ), x̂0(zT ), x̂T (zT )) = argmax
�

�(�|zT )
(7)

exists, from which we obtain information about
the type of extrema of the posterior. For this,
we maximize the log-posterior π , i.e., �̂(zT ) =
(�̂(zT ), x̂0(zT ), x̂T (zT )) = argmax

�

π (�|zT ).
Given an observation trajectory zT , the ideal case is

to have a unique maximum of the corresponding log-
posterior π (·|zT ).However, there are three further cases
to be considered.

To define the three cases, we first have to define the
notion of a ridge. For a function f : RN → R, a ridge is a
curve consisting of local maxima inN− 1 dimensions.A
point u0 ∈ RN is such a local maximum if f (u) < f (u0)
for u ∈ S ⊂ RN with dim(S ) = N − 1.We define the set
of localmaxima on a ridge by SR and say a ridge is of con-
stant height if f (u1) = f (u2) for all u1 
= u2 ∈ SR and of
variable height otherwise. For an example of a variable
height ridge, see Figure 4, which shows that a ridge is in
general a nonlinear feature of the posterior density. Ex-
amples where ridges are encountered are given in [29]
and [30].

The three cases are given as follows:
1. No maximum: In the case of no finite maximum,

a maximum can only be found on the boundary, and it
is not possible to recover the true augmented state. This
might happen if we have a ridge of variable height with
no local maxima within the boundaries.

2. Finitely many maxima: In the case of two or more
distinct maxima with the same log-posterior value, no
unique joint MAP estimate �̂(zT ) of � given zT can be
recovered.However, it might be possible to find a unique
maximum argmax� π (�|zT ) when constraining the pa-
rameter space using restricting priors on the parameters.
In general, the value of the posterior in the distinct local
maxima is not the same.Then, a constraint of the param-
eter space around the global maximum is usually carried
out. This also leads to a posterior with a unique maxi-
mum.

3. Infinitely many maxima: In the case where there
is a ridge of constant height of the log-posterior,
the function does not have a distinct maximum
argmax� π (�|zT ). In that case, it is not possible to re-
cover the true augmented state. However, it might be
possible to find estimates for functions of parameters.

Example 3 (Finitely many maxima). Consider a slightly
changed version of the model in (5) with d = p = 1 given
by

Zt = aXt +
√
1 − a2 · εt , Xt = a2Xt−1 +

√
1 − a4 · ηt ,

t = 1, . . . ,T,

with εt ∼ N (0, 1) i.i.d. and ηt ∼ N (0, 1)
i.i.d. independent for unknown a ∈ (−1, 1). Then,
given an observation trajectory zT with underlying pa-
rameter values (atrue, xtrue0 , xT ), the parameter values
(−atrue,−xtrue0 ,−xT ) lead to the same posterior value.
Hence, we can use the prior presatrue (a) to constrain the pa-
rameter space and to find the unique underlying parame-
ter values (atrue, xtrue0 , xT ).

Example 4 (No maximum). For εt ∼ N (0, 1), ηt ∼
N (0, 1) i.i.d. independent, consider

Zt = aXt + εt , Xt = Xt−1 + ηt , t = 1, . . . ,T. (8)

We are interested in a ∈ (−1, 1), the initial state x0, and the
latent state trajectory xT , given an observation trajectory
zT . The log-posterior is given in (13). For a given zT , the
posterior has a ridge of variable height for small values
of T.More details are given in Section IV.

Amodel of the form (4) is often called a linear SSM.
However, it is only linear in the statesXt .We call an SSM
linear if it is linear in both the states Xt and the time-
invariant parameters �.

For a linear model and a given observation trajec-
tory zT , the derivatives d

d�i
π (�|zT ), i = 1, . . . , |�|, of

the log-posterior form a system of linear equations for
the parameters in �. Hence, it is only possible to have
none, one unique, or infinitely many maxima. The sec-
ond case of having finitely many maxima cannot occur
[11], [20].

Consider, for example, the model given in (8), which
is of the form (4) and hence linear in the states Xt, t =
0, . . . ,T . If the parameter a is known and not of interest,
it is also a linearmodel because it is linear in all unknown
parameters X0, . . . ,XT . However, if a is of interest and
� = a, the derivative of the log-posterior in (13) with
respect to a is

∑T
t=1(ztxt − ax2t ), which is obviously not

linear in xt . Hence, this model is nonlinear and only lin-
ear in the states Xt .

2) Existence of Marginal MAP Estimate: This ap-
proach of considering themarginalMAP estimate is also
used in [22], [23] to estimate the unknown parameters.
The differences between joint and marginal MAP esti-
mates are discussed in [14, Ch. 13] and [27].
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Consider the marginal posterior densities

�(� j|zT ) =
∫

�(�, x0, xT |zT ) d�− j dx0 dxT ,

j = 1, . . . , |�|,

�(x0,i|zT ) =
∫

�(�, x0, xT |zT ) d�dx0,−ixT ,

i = 1, . . . , p,

�(xt,i|zT ) =
∫

�(�, x0, xT |zT ) d�dx0 dxt,−i dxT,−t ,

i = 1, . . . , p, t = 1, . . . ,T,

(9)
where xt = (xt,1, . . . , xt,p), xt,−i = (xt,1, . . . , xt,i−1, xt,i+1,

. . . , xt,p) ∈ Rp−1 for t = 0, . . . ,T , �− j = � \ {� j} ∈
R|�|−1, xT,−t = (x1, . . . , xt−1, xt+1, . . . , xT ) ∈ Rp(T−1).

We maximize the marginal posterior densi-
ties defined in (9) over � j, j = 1, . . . , |�|, and
xt,i, t = 0, . . . ,T, i = 1, . . . , p, respectively, and
obtain �̂ j(zT )mar = argmax� j

�(� j|zT ) and
x̂t,i(zT )mar = argmaxxt,i �(xt,i|zT ). The marginal
MAP estimate is then denoted by �̂(zT )mar =
(�̂(zT )mar, x̂0(zT )mar, x̂T (zT )mar). If one of the three
cases of (1) no maximum, (2) finitely many maxima, or
(3) infinitely many maxima occurs and the joint MAP
estimate cannot be recovered, then it might also not be
possible to recover the marginal MAP estimate. How
to obtain the marginal MAP estimate in practice is
discussed in Section III.C.

3) The Definition of Observability: Until now, we
have considered a fixed but arbitrary observation trajec-
tory zT with underlying xT . Now,we define the notion of
observability for a given SSM of the form (1).

Definition 1. Define the state-observation space as the
space of all possible realizations of the observation tra-
jectory ZT and corresponding state trajectory XT , i.e., for
xtrue0 ∈ R,�true ∈ R|�|, define

SO(�true, xtrue0 ,T ) =
{Realizations (xT , zT ) of (XT , ZT ) :

Zt = g(�true,Xt , εt ), t = 1, . . . ,T,

Xt = h(�true,Xt−1, ηt ) for t = 2, . . . ,T,

X1 = h(�true, xtrue0 , ηt ),

εt ∼ N d(0,Rt ) i.i.d., and ηt ∼ N p(0,Qt )

i.i.d. independent}.

(10)

Remark 1. The joint MAP estimator and the marginal
MAP estimator of a nonlinear SSM are not necessarily
defined for all elements of SO(�true, xtrue0 ,T ).

The phenomenon of Remark 1 can also be found in
the literature on SSMs, where the state equation is de-
scribed by a differential equation, for which the concepts
can be transferred to our type of model. In [24], it is

stated that the observability for nonlinear systems is, in
general, not only a local property but also depends on the
input of the system. The authors of [13] talk about bad in-
puts,and the same arguments can be found in [11].These
“bad” inputs lead to observation trajectories for which
the augmented state cannot be recovered. In the setup of
this paper, they correspond to “bad” realizations of the
disturbances, inducing realizations in SO(�true, xtrue0 ,T ),
for which the augmented state cannot be recovered.This
leads to the following definitions:

Definition 2 (Existence of the joint MAP estimator). If
the log-posterior π (·|zT ) does not have a dis-
tinct maximum for a given zT , no unique joint
MAP estimate �̂(zT ) of � can be recovered. Let
E (�true, xtrue0 ,T ) ⊂ SO(�true, xtrue0 ,T ) ⊂ RT (p+d) be the
set of realizations zT and corresponding xT such that
�̂(zT ) = argmax� π (�|zT ) can be uniquely recovered.
If E (�true, xtrue0 ,T ) = ∅, the estimator �̂(ZT ) does not
exist. If E (�true, xtrue0 ,T ) 
= ∅, the estimator

�̂(ZT ) =
⎧⎨⎩ �̂(zT ), (XT , ZT ) = (xT , zT )

∈ E (�true, xtrue0 ,T )
undefined, otherwise

exists but is not necessarily defined for every realization
(xT , zT ) ∈ SO(�true, xtrue0 ,T ).

If the joint MAP estimator exists, it is often biased,
and a Bayesian analysis for all parameters jointly is not
the best approach [14, Ch. 13.4]. However, the existence
of �̂(ZT ) and the type of extrema of the posterior pro-
vide information for the marginal MAP approach.

Definition 3 (Observability based on marginal MAP
estimator). Let Emar(�true, xtrue0 ,T ) ⊂ SO(�true, xtrue0 ,

T ) be the set of realizations (xT , zT ) such that the
marginal MAP estimate �̂(zT )mar can be uniquely re-
covered. If Emar(�true, xtrue0 ,T ) = ∅, �̂(ZT )mar does
not exist, and we call the model unobservable. If
Emar(�true, xtrue0 ,T ) 
= ∅, we call the model observable.
Then,

�̂(ZT )mar =
⎧⎨⎩ �̂(zT )mar, (XT , ZT ) = (xT , zT )

∈ Emar(�true, xtrue0 ,T )
undefined, otherwise

exists but is not necessarily defined for every (xT , zT ) ∈
SO(�true, xtrue0 ,T ). If we constrain our parameter space
to obtain a unique marginal MAP estimate (recall case 2.
Finitely manymaxima),we call our model locally observ-
able.
Remark 2. InDefinition 3,we define amodel to be locally
observable if the parameter space has to be constrained
due to finitely many maxima of the posterior density. This
should not be confused with a different type of locality
that is described in Remark 1, stating that the (marginal)
MAP estimator is not necessarily defined for all realiza-
tions (xT , zT ) ∈ SO(�true, xtrue0 ,T ).

In the ideal case, the estimator �̂(ZT )mar

is consistent for the parameters of interest, i.e.,
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(�̂(ZT )mar, x̂0(ZT )mar)
P→ (�true, xtrue0 ) for T → ∞.

If not, a bias would be detected by the algorithm and
could be taken into account.

For an observable model, we do not only want to an-
swer the question of observability but also want to know
how well it is observable. As measures, we consider the
cardinality of E (�true, xtrue0 ,T ) and Emar(�true, xtrue0 ,T ),
E(�̂(ZT )), Var(�̂(ZT )), and MSE(�̂(ZT )) as well
as E(�̂(ZT )mar), Var(�̂(ZT )mar), and MSE(�̂(ZT )mar).
We introduce the local variance, which is also used to
quantify the degree of observability: Given an obser-
vation trajectory zT , we want to approximate the pos-
terior �(·|zT ) by a Gaussian density in � at the joint
MAP estimate �̂(zT ) if it exists, using a second-order
Taylor polynomial. For given zT , the local variances of
the parameter estimates �̂ j (zT ) are then defined by
the variances of the fitted Gaussian density. Hence, they
are given by LVar(�̂ j(zT )) := −H−1

π (�̂(zT )) j j, j =
1, . . . , |�|, where Hπ (·) ∈ R|�|×|�| is the Hessian matrix
of π (·|zT ). In [18], the local variance is derived in detail
for the one-dimensional parameter case.

Hence, we now have two types of variances. The first
one is the variance Var(�̂(ZT )) of the estimator �̂(ZT ).
In contrast to Var(�̂(ZT )), the local variance considers
how peaked the maximum of π (·|zT ) in the joint MAP
estimate �̂(zT ) is, given one specific observation trajec-
tory zT . Themaximum of π (·|zT ) is gettingmore peaked
if the local variances are decreasing (see [18, Fig. 2]).

III. PROPOSAL TO CHECK OBSERVABILITY IN
PRACTICE

From Remark 1 we know that the joint and
marginal MAP estimators might not be defined ev-
erywhere. In particular, the existence of �̂(zT ) de-
pends on the realization (xT , zT ) of (XT , ZT ), i.e.,
E (�true, xtrue0 ,T ) 
= SO(�true, xtrue0 ,T ) (see Definition

2). The same holds for the marginal MAP estimator
�̂(ZT )mar, i.e.,Emar(�true, xtrue0 ,T ) 
= SO(�true, xtrue0 ,T )
(see Definition 3). We want to know for which ele-
ments in SO(�true, xtrue0 ,T ) the estimators are defined
if they exist. In general, the estimators cannot be deter-
mined analytically to see where they are defined.Hence,
in theory, we have to try all realizations (xT , zT ) ∈
SO(�true, xtrue0 ,T ) to check if a joint or marginal MAP
estimate of π (·|zT ) can be recovered. That is not pos-
sible in practice as there are infinitely many elements in
SO(�true, xtrue0 ,T ). Instead, for fixed values of�true, xtrue0 ,
and T , we construct K design observation trajecto-
ries z̃ (k)

T = z̃ (k)
T (�true, xtrue0 ) with corresponding design

state trajectory x̃ (k)
T = x̃ (k)

T (�true, xtrue0 ),k = 1, . . . ,K,
approximately representing all possible elements in
SO(�true, xtrue0 ,T ).

For this, the disturbance distribution is approximated
by a discrete distribution and the corresponding loca-
tions of the point masses are used as designed distur-
bance realizations, from which we construct the design
values z̃ (k)

T and x̃ (k)
T . Then, given one design observation

trajectory z̃ (k)
T , the goal is to check whether we can esti-

mate the augmented state (�true, xtrue0 , x̃ (k)
T ). We discuss

the construction of these design observation trajectories
in detail now.

A. Construction of the Design Observation Trajectories

The construction of the K design observations
z̃(k)t and the corresponding design states x̃(k)t , t =
1, . . . ,T,k = 1, . . . ,K, approximately representing
SO(�true, xtrue0 ,T ), given �true, xtrue0 ,T , and K, will now
be discussed in detail. We only consider Rt = Id and
Qt = Ip. For different covariance matrices, transforma-
tions or other approaches to approximate non-standard
multivariate normal distributions could be used.

Figure 2. Left: Illustration of the design disturbance vectors (η̃(k)
1 , ε̃

(k)
1 ) for k = 1, . . . , 5, together with the contour plot of the standard normal

density. Right: Illustration of the corresponding (x̃(k)1 , z̃(k)1 ), k = 1, . . . , 5, together with the contour plot of the theoretical density for atrue =
0.9, xtrue0 = 8.
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1) Case: d = p = 1: The parts of Model (1)
with d = p = 1 on which we have an influence
are the disturbances εt and ηt, t = 1, . . . ,T , because
they are not fixed to a specific value. Hence, we need
to find suitable values for them. In order to obtain
K design disturbance vectors, we use the fact that
(η1, . . . , ηT , ε1, . . . , εT ) ∼ N 2T (0, I2T ). Then, we ap-
proximate the distribution of N 2T (0, I2T ) by a discrete
distribution withK point mass vectors in R2T and obtain
(η̃(k)

1 , . . . , η̃
(k)
T , ε̃

(k)
1 , . . . , ε̃

(k)
T ),k = 1, . . . ,K. To do this,

the algorithm introduced in [32] is used.
The idea of this algorithm is to approximate the con-

tinuous distribution of N q(0, Iq) by a discrete distribu-
tion that takes on K point-symmetric point masses with
equal probability. The locations of the point masses of
this discrete distribution are called discrete approxima-
tions or deterministic samples. For an even number of
valuesK = 2N, the discrete distribution takes on the val-
ues {s1, . . . , sN,−s1, . . . ,−sN}. For an odd number K =
2N + 1, we add 0. Hence, the vectors we have to find
are given by Sq

N = {s1, . . . , sN}. To find the optimal val-
ues of the vectors in Sq

N , we need a distance measure be-
tween a continuous and a discrete distribution. For this,
the so-called localized cumulative distribution function
of [19] is utilized. Then, a distance measure based on the
Cramér-von Mises distance for the localized cumulative
distribution function is defined.Minimizing the distance
between N q(0, Iq) and the desired discrete distribution
over Sq

N leads to an optimal discrete approximation.
We obtain a matrix with dimensions 2T × K con-

sisting of the design disturbance values. The kth col-
umn corresponds to one design disturbance vector
(η̃(k)

1 , . . . , η̃
(k)
T , ε̃

(k)
1 , . . . , ε̃

(k)
T ) for k = 1, . . . ,K,where the

first half belongs to the state disturbance ηt, t = 1, . . . ,T ,
and the second half belongs to the observation distur-
bance εt, t = 1, . . . ,T . Given these design disturbance
vectors, the design observations and corresponding de-
sign states are defined by

z̃(k)t = g(�true, x̃(k)t , ε̃
(k)
t ), t = 1, . . . ,T,

x̃(k)t = h(�true, x̃(k)t−1, η̃
(k)
t ), t = 2, . . . ,T,

x̃(k)1 = h(�true, xtrue0 , η̃
(k)
1 )

for fixed values xtrue0 and �true of the initial state x0 and
the time-invariant parameters �.

Example 5 .For T = 1, we approximate the distri-
bution of N 2(0, I2) by K = 5 values. This leads to
the approximations of the disturbances (η1, ε1) shown
on the left side of Fig. 2. Then we obtain z̃(k)1 =
g(�true, x̃(k)1 , ε̃

(k)
1 ) and x̃(k)1 = h(�true, xtrue0 , η̃

(k)
1 ) for k =

1, . . . , 5. For the model given in 2, this means z̃(k)1 =
atruex̃(k)1 + √

1 − (atrue)2 · ε̃
(k)
1 and x̃(k)1 = atruextrue0 +√

1 − (atrue)2 · η̃
(k)
1 . On the right side of Fig. 2, the result

is plotted together with the contour plot of the theoretical
density of (X1,Z1) for atrue = 0.9, xtrue0 = 8.

2) Case: General d and p: For general d and p,
the construction of the design observation trajectories
can be done analogously. For Rt = Id and Qt =
Ip, the joint distribution of (η1, . . . , ηT , ε1, . . . , εT ) is
N (d+p)T (0, I(d+p)T ),which we approximate by a discrete
distribution with K values to obtain design observation
disturbances that we can insert into the model. We ob-
tain a matrix with dimensions (d + p)T × K consisting
of the design disturbance values.This leads to design ob-
servation trajectories z̃ (k)

T = (z̃(k)1 , . . . , z̃(k)T ), based on

the design state trajectories x̃ (k)
T = (x̃(k)1 , . . . , x̃(k)T ),k =

1, . . . ,K.

B. Finding the Joint MAP Estimate Using Deterministic
Numerical Optimization

As described in Section II.B , we want to investi-
gate whether the joint MAP estimator exists to obtain
information about the type of extrema of the posterior.
Furthermore, we are interested in the properties of the
joint MAP estimator, such as mean, variance, and lo-
cal variance. Using the design observation trajectories
z̃ (k)
T ,k = 1, . . . ,K, we maximize the K posterior den-
sities �(·|z̃ (k)

T ),k = 1, . . . ,K, defined in (2), numerically
over �.

The numerical maximization of �(·|z̃ (k)
T ) is done us-

ing a primal barrier method (see [26, Sec. 19.6]) for
k = 1, . . . ,K. When obtaining the optimization result,
we have to perform checks to make sure that we have
found amaximum.Due to the phenomenon described in
Remark 1, it might be possible that for some design vec-
tors z̃ (k)

T with corresponding x̃ (k)
T , no maximum can be

found. This leads to the estimates �̂(z̃ (k)
T ),k ∈ K max ⊂

{1, . . . ,K}, with |K max| ≤ K.
The optimization procedure searches for minima;

hence, we use the function −2π (·|z̃ (k)
T ) for the optimiza-

tion. Then, given a design observation trajectory z̃ (k)
T , we

check the following properties of the result �̂(z̃ (k)
T ) to

ensure that the optimizer has converged to a minimum.
The thresholds are chosen based on results of numerical
studies we executed.For the kth optimization,we choose
(�true, xtrue0 , x̃ (k)

T ) as initial value.

Numerical Checks. Hessian: Is the Hessian
H−2π (�̂(z̃ (k)

T )) of −2π (·|z̃ (k)
T ) in �̂(z̃ (k)

T ) positive def-
inite? Then, we have a minimum of −2π (·|z̃ (k)

T ) and
hence a maximum of �(·|z̃ (k)

T ).

Gradients: Are the gradients of −2π (�̂(z̃ (k)
T )) close to

zero, i.e., smaller than a threshold? The threshold we use
is 10−5.

Eigenvalues: Is the result a ridge? The ratio of the small-
est eigenvalue to the largest eigenvalue of H−2π (�̂(z̃ (k)

T ))
should not be too small. We want a ratio of > r0 =
0.00001. The ratio we consider is the inverse of the condi-
tion number of the Hessian, which is often considered in
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the literature [33], [34] and can be used in sensitivity anal-
ysis the way we also use it [16, Sec. 8.3.3]. As the thresh-
old of r0 is chosen based on results of numerical studies,
one more step is applied to ensure that a ridge is present.
In the case of a ratio < r0, another starting point for the
optimization is chosen. That starting point is close to the
found optimum but shifted in the direction of the ridge. If
this new optimization leads to a different value than be-
fore, we conclude that a ridge is present.

One way to quantify the observability of an SSM
is the number |K max| of design observation trajecto-
ries z̃ (k)

T with corresponding x̃ (k)
T , for which a unique

estimate �̂(z̃ (k)
T ) can be recovered. We denote the set

of values k for which a maximum can be recovered
by K max = K max(�true, xtrue0 ,T ) = {k ∈ {1, . . . ,K} :
argmax��(�|z̃ (k)

T (�true, xtrue0 )) fulfills numerical checks
listed above} ⊂ {1, . . . ,K} with |K max| ≤ K. For fur-
ther analyses, only the results �̂(z̃ (k)

T ),k ∈ K max, are
considered.

We say that the degree of observability for the fixed
values�true, xtrue0 , andT increases with |K max|.Given the
estimates �̂(z̃ (k)

T ),k ∈ K max, that were recovered, the
mean, variance, and MSE of the corresponding estima-
tor �̂(ZT ) can be estimated. The local variance can be
used as another indicator of the degree of observability.
A lower local variance indicates a higher degree of ob-
servability as the joint MAP estimator has higher preci-
sion.

C. Finding the Marginal MAP Estimate Using MCMC
Sampling

In general, the integrals in the marginal posterior
densities in (9) cannot be determined analytically. One
solution to this is to use MCMC methods to approxi-
mately solve the integrals. We use a variant of Hamil-
tonian Monte Carlo (HMC), more specifically the No-
U-Turn-Sampler [21] implemented in Stan [8], a plat-
form for statistical modeling. Using Stan, we obtain
MCMC samples from the posterior. Then, we can de-
terminemarginalMAP estimates from univariate kernel
density estimates.

The three cases of (1) no maximum, (2) finitely many
maxima, and (3) infinitely many maxima of the poste-
rior can lead to convergence problems in the MCMC
sampler. According to [1], ridges in the posterior density
[...] wreak havocwith both sampling and inference.Addi-
tionally, multimodal posteriors lead to problems, which
can however be avoided by constraining the parameter
space if the posterior is not highly multimodal. Further-
more, there are examples where there are no posterior
modes and numerical stability issues can arise as sam-
pled parameters approach constraint boundaries [1].That
is why we first obtain information about the type of ex-
trema by considering the joint MAP estimate to under-
stand when such situations occur.

Sampling with Stan from the log-posterior π (·|z̃ (k)
T )

for one fixed z̃ (k)
T outputs the samples

�(z̃ (k)
T )(r) =

(
�(z̃ (k)

T )(r), x0(z̃
(k)
T )(r), x1(z̃

(k)
T )(r), . . . , xT (z̃

(k)
T )(r)

)
,

r = 1, . . . ,R,

of �, where R is the number of MCMC samples we ob-
tain after discarding the burn-in phase.

Define K Stan = K Stan(�true, xtrue0 ,T ) = {k ∈ {1,
. . . ,K} : Stan converges when sampling from π (·|z̃ (k)

T
(�true, xtrue0 ))} with ∣∣K Stan

∣∣ ≤ K. To check convergence,
no divergent transitions after warmup are allowed. Fur-
thermore, the convergence diagnostics R-hat [14] as
well as bulk and tail effective sample size [35] are con-
sidered. Additionally, the maximum treedepth and the
Bayesian Fraction of Missing Information (BFMI) [7]
are checked. For more information on convergence di-
agnostics and the exact thresholds used in Stan to check
convergence, see [2]. Only the results �̂(z̃ (k)

T )mar,k ∈
K Stan, are considered for further analyses. Hence, the
diagnostics of all considered Stan runs are within the
desired thresholds.

If
∣∣K Stan

∣∣ is close to K, we say that the model has
a high degree of observability. If no marginal MAP esti-
mate is recovered, i.e.,

∣∣K Stan
∣∣ = 0,we conclude that the

model is not observable for the chosen values of �true,
xtrue0 , and T .

With the output of Stan, it is possible to approxi-
mate the marginal MAP estimate of the parameters as
it is done in [22] and [23].We obtain the marginal MAP
estimate of � j by

�̂ j(z̃
(k)
T )mar = argmax kde((� j(z̃

(k)
T )(r))r=1,...,R),

j = 1, . . . , |�|, (11)

where kde is the kernel density estimate [31]. The values
�̂(z̃ (k)

T )mar,k ∈ K Stan, can be used to estimate themean
and variance of the marginal MAP estimator �̂(ZT )mar.

For j = 1, . . . , |�|, we can determine 90% credible
intervals (�̂ j(z̃

(k)
T )q5, �̂ j(z̃

(k)
T )q95) for � j by

�̂ j(z̃
(k)
T )q5 = empirical 5%-quantile of (� j(z̃

(k)
T )(r))r=1,...,R,

�̂ j(z̃
(k)
T )q95 = empirical 95%-quantile of (� j(z̃

(k)
T )(r))r=1,...,R.

(12)
For every parameter � j, we determine the percent-

age of iterations k ∈ K Stan, for which the true value
�true

j is in the interval (�̂ j(z̃
(k)
T )q5, �̂ j(z̃

(k)
T )q95), j =

1, . . . , |�|, i.e.,
Ĉover90(�true

j )

=
|{k ∈ K Stan : �̂ j(z̃

(k)
T )q5 < �true

j < �̂ j(z̃
(k)
T )q95}|

|K Stan| .

To get an idea how the marginal MAP estimator per-
forms for the latent states xt,i, t = 1, . . . ,T, i = 1, . . . , p,
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we estimate the bias by

B̂ias(xt,i) =
∑

k∈K Stan

(
x̂t,i(z̃

(k)
T )mar − x̃(k)t,i

)
|K Stan| ,

t = 1, . . . ,T, i = 1, . . . , p,

where x̃(k)t = (x̃(k)t,1 , . . . , x̃(k)t,p ), and the MSE by

M̂SE(xt,i) =
∑

k∈K Stan

(
x̂t,i(z̃

(k)
T )mar − x̃(k)t,i

)2

|K Stan| ,

t = 1, . . . ,T, i = 1, . . . , p.

IV. ILLUSTRATIONS

We consider the different scenarios given in Table I.
In the following, we give an overview of the SSMs

we investigate together with the respective definition of
� and the log-posterior π (�|zT ). The prior p�(�) is
abbreviated by p(�). The disturbances are always as-
sumed to be standard normal i.i.d. and independent and
the prior p0 of x0 is set to the uniformative prior. For
sampling using Stan, we always consider 4 chains with
10 000 iterations and a burn-in of 4 000, respectively,
leading to R = 24 000. Note here that running Stan on
π (·|z̃ (k)

T ) can be parallelized for each k = 1, . . . ,K. We
allow for random initial values in order to investigate the
behaviorwhen the true underlying values are not known.

We do not show the detailed results for all the con-
sideredmodels.However, they are available from the au-
thors upon request.

1) Model (Same,d=p=1) (Same dynamics for obser-
vations and states for d=p=1):

Zt = aXt +
√
1 − a2 · εt , Xt = aXt−1 +

√
1 − a2 · ηt ,

t = 1, . . . ,T.

Log-posterior of � = (a, x0, xT ):

π (�|zT ) = −1
2

1
1 − a2

[
T∑
t=1

(zt − axt )2 +
T∑
t=1

(xt − axt−1)2
]

− T log(1 − a2) + log(presatrue (a)).

2) Model (Sep,d=p=1) (Separate dynamics for ob-
servations and states for d=p=1):

Zt = bXt +
√
1 − b2 · εt , Xt = aXt−1 +

√
1 − a2 · ηt ,

t = 1, . . . ,T.

Log-posterior of � = (a,b, x0, xT ):

π (�|zT ) = −
[

T∑
t=1

(zt − bxt )2

2(1 − b2)
+ (xt − axt−1)2

2(1 − a2)

]

− T
2

[
log(1 − a2) + log(1 − b2)

] + log(p(a,b)).

3) Model (Sep,d=2,p=1) (Separate dynamics for
bivariate observations driven by single states):

Zt,1 = aXt +
√
1 − a2 · εt,1 , Zt,2 = bXt +

√
1 − b2 · εt,2 ,

Xt = cXt−1 +
√
1 − c2 · ηt .

Log-posterior of � = (a,b, c, x0, xT ):

π (�|zT ) = − 1
2

1
1 − a2

T∑
t=1

(zt,1 − axt )2

− T
2
log(1 − a2) − 1

2
1

1 − b2

T∑
t=1

(zt,2 − bxt )2

− T
2
log(1 − b2) − 1

2
1

1 − c2

T∑
t=1

(xt − cxt−1)2

− T
2
log(1 − c2) + log(p(a,b, c)).

4) Model (Sep,d=1,p=2) (Separate dynamics for
univariate observations and bivariate states):

Zt = aXt,1 + bXt,2 +
√
1 − a2 − b2 · εt

Xt,1 = cXt−1,1 +
√
1 − c2 · ηt,1 , Xt,2 = dXt−1,2

+
√
1 − d2 · ηt,2 , t = 1, . . . ,T

Table I
The Considered Scenarios

Dim. d of observations Dim. p of state Linearity Considered models

1 1 Nonlinear (Same,d=p=1), (Sep,d=p=1),
(linear only in state) (Sep,d=p=1,ranWalk)

2 1 Nonlinear (Sep,d=2,p=1)
(linear only in state)

1 2 Nonlinear (Sep,d=1,p=2)
(linear only in state)

1 1 Nonlinear (Sep,d=p=1,
Multiplicative)
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Log-posterior of � = (a,b, c,d, x0, xT ):

π (�|zT ) = − 1
2

1
1 − a2 − b2

T∑
t=1

(zt − axt,1 − bxt,2)2

− T
2
log(1 − a2 − b2)

− 1
2

1
1 − c2

T∑
t=1

(xt,1 − cxt−1,1)2

− T
2
log(1 − c2)

− 1
2

1
1 − d2

T∑
t=1

(xt,2 − dxt−1,2)2

− T
2
log(1 − d2) + log(p(a,b, c,d)).

5) Model (Sep,d=p=1,ranWalk) (Univariate ob-
servations with random walk state dynamics):

Zt = aXt + εt , Xt = Xt−1 + ηt , t = 1, . . . ,T

Log-posterior of � = (a, x0, xT ):

π (�|zT ) = −1
2

T∑
t=1

(zt − axt )2 − 1
2

T∑
t=1

(xt − xt−1)2

+ log(presatrue (a)).
(13)

6) Model (Sep,d=p=1,Multiplicative) (Addi-
tive state and multiplicative observation equation):

Zt = √
a ·Xt · εt , Xt = a+Xt−1 + ηt , t = 1, . . . ,T.

Log-posterior of � = (a, x0, xT ):

π (�|zT ) = −1
2

T∑
t=1

(
z2t

a · x2t
+ log(a · x2t )

)

− 1
2

T∑
t=1

(xt − a− xt−1)2 + log(p(a)).

A. Model (Same,d=p=1)
To decide on the number of design pointsK, we con-

sider VKi = ( |K max|
Ki

, Ê(â(ZT )), Ê(x̂0(ZT )), V̂ar(â(ZT )),

V̂ar(x̂0(ZT )),LVar(â(z̃
(k)
T )),LVar(x̂0(z̃

(k)
T ))) ∈ R7 of the

joint MAP estimator (â(ZT ), x̂0(ZT )) when using Ki =
i · 100 design observation trajectories. Ê and V̂ar de-
note the empirical mean and variance (see Table II).
LVar(�̂i(z̃

(k)
T )) is the mean of the local variances over

k.
We want to find the value of i for which VKi

has converged. For that, define the relative difference
RD (x, y) = |x−y|

max(|x|,|y|) between two values x, y ∈ R. For
vectors,RD is defined component-wise. Then, we deter-
mine the smallest value i, for which RD(VKi ,VKj ) <

(c1, c1, c1, c2, c2, c2, c2) for all j > i and choose the num-
ber of design values as K = i · 100. The values (c1, c2) ∈
R2 are chosen thresholds. We choose two different val-
ues because |K max| /Ki and the empirical means are con-
verging faster than the empirical and the local variance.

Using the design disturbance values allows us to
choose a smaller value of K compared to using random
values of the disturbances. Numerical studies show that
when using random values of the disturbances, a higher
value of i has to be chosen to ensure convergence of
VKi . For example, for (atrue, xtrue0 ) = (0.9, 8),T = 4,
we choose K = 300 using (c1, c2) = (0.01, 0.01) and
the design disturbances. When using random values of
the disturbances for the same setup, we have to choose

Table II
Top and Middle: The Empirical Mean and Variance of the Joint MAP Estimator (Left) and the Marginal MAP Estimator (Right)

Joint MAP estimation Marginal MAP estimation

T
(
Ê(â(ZT )), Ê(x̂0(ZT ))

) (
Ê(â(ZT )mar), Ê(x̂0(ZT )mar)

)
(μ̄, ν̄) =

∑
k∈K max (â(z̃ (k)

T ),x̂0(z̃
(k)
T ))

|K max| (μ̄mar, ν̄mar) =
∑

k∈K Stan (â(z̃
(k)
T )mar,x̂0(z̃

(k)
T )mar )

|K Stan|
20 (0.941, 7.15) (0.896, 8.07)
50 (0.949, 6.99) (0.898, 8.05)
T

(
V̂ar(â(ZT )), V̂ar(x̂0(ZT ))

) (
V̂ar(â(ZT )mar), V̂ar(x̂0(ZT )mar)

)
∑

k∈K max
(
(â(z̃ (k)

T )−μ̄)2,(x̂0(z̃
(k)
T )−ν̄)2

)
|K max|−1

∑
k∈K Stan

(
(â(z̃ (k)

T )mar−μ̄mar)2,(x̂0(z̃
(k)
T )mar−ν̄mar )2

)
|K Stan|−1

20 (0.0001960, 0.468) (0.000605, 0.728)
50 (0.0000756, 0.374) (0.000355, 0.602)

T
(
M̂SE(â(ZT )), M̂SE(x̂0(ZT ))

) (
M̂SE(â(ZT )mar), M̂SE(x̂0(ZT )mar)

)
20 (0.00184, 1.18) (0.000621, 0.733)
50 (0.00248, 1.40) (0.000360, 0.605)

The Empirical Mean is Closest to the True Values (atrue, xtrue0 ) = (0.9, 8) When Using the Marginal MAP Estimate. Bottom: The Estimated

MSE for the Two Estimators.
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(c1, c2) = (0.01, 0.03), and it only converges for values
between K = 2500 and K = 4500 or higher depending
on the realizations.

In the following,we investigate observability proper-
ties for different choices of (atrue, xtrue0 ).

(atrue, xtrue0 ) = (0.9, 8). For T = 20 and T = 50, we de-
termine the values of K as described above. For T = 20,
we chooseK = 1300 with (c1, c2) = (0.01, 0.03), and for
T = 50,we chooseK = 3100with (c1, c2) = (0.01, 0.04).
K increases withT becausemore values are necessary to
accurately cover a higher-dimensional space.

Maximizing the log-posterior densities
π (�|z̃ (k)

T ),k = 1, . . . ,K, leads to the left side of Fig. 3,
showing the estimates (â(z̃ (k)

T ), x̂0(z̃
(k)
T )),k ∈ K max,

of (a, x0). The joint MAP estimator exists with
|K max| /K = 1 but is biased. The empirical expected
value and variance of the corresponding estimator
(â(ZT ), x̂0(ZT )) are reported in the left part of Table II.
The bias is increasing in T, while the empirical variance
is decreasing. As expected, the mean of the K local
variances is decreasing for increasing T (not shown
here).

Using Stan to obtain the marginal MAP estimates
as discussed in Section III.C, the right side of Fig.3 shows
that the issue of the bias gets solved.However, there is a
trade-off with the variance. This can also be seen on the
right side of Table II.

To study the joint behavior of bias and variance, we
report estimates for the MSE of a and x0 for the joint
and marginal MAP estimation, respectively (bottom of
Table II).

The estimated MSE of the marginal MAP estimator
is always smaller. This is due to the fact that the bias
is a lot smaller for the marginal MAP estimator com-
pared to the joint MAP estimator, and the variance is
not increasing enough to obtain a higher value of the
MSE values. The values of the estimated coverage of a,
x0, and x1, . . . , xT , as well as the estimated average bias
and MSE of xt, t = 1, . . . ,T , are satisfactory (Table III).

(atrue, xtrue0 ) = (0.7, 8). We study the behavior of the
model for a smaller value of a. We need a larger value
of T in order to ensure a good degree of observability.
Hence, we consider T = 100 and choose K = 3600 with
(c1, c4) = (0.01, 0.06). The joint MAP approach leads
again to an obvious bias with |K max| = K. Compared
to (atrue, xtrue0 ) = (0.9, 8), the local variance shows that
the maximum of the posterior here is on average less
peaked.

We use Stan to obtain the marginal MAP estimates,
leading to a value of

∣∣K Stan
∣∣ = 2910 smaller than |K max|.

As before, using the marginal MAP estimator solves the
issue of the bias, but we have a trade-off with the vari-
ance. However, the estimated MSE is smaller for the
marginal estimator.The averageMSEof xt, t = 1, . . . ,T ,
is slightly higher compared to the case (atrue, xtrue0 ) =
(0.9, 8). The estimated coverage of a, x0, and x1, . . . , xT
is satisfactory.

B. Model (Sep,d=p=1)
For this model, we face the problem of hav-

ing multiple modes with equal height. Consider

Figure 3. (atrue, xtrue0 ) = (0.9, 8): Pairwise scatter plots of the joint MAP estimates (â(z̃ (k)
T ), x̂0(z̃

(k)
T )), k ∈ K max, with

∣∣K max
∣∣ = K (left) and

marginal MAP estimates (â(z̃ (k)
T )mar, x̂0(z̃

(k)
T )mar), k ∈ K Stan, with

∣∣K Stan
∣∣ = K (right) for different values of T . The true values are indicated

by the lines.
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Table III
The Estimated Coverage of the Parameters � = (a, x0, x1, . . . , xT ) as well as the Average Estimated Bias and MSE of xt , t = 1, . . . ,T , for the

Marginal MAP Estimates

T Ĉover90(atrue, xtrue0 ) 1
T

∑T
t=1 Ĉover90(x

true
t ) 1

T

∑T
t=1 |B̂ias(xt )| 1

T

∑T
t=1 M̂SE(xt )

20 0.870, 0.895 0.910 0.00892 0.116
50 0.893, 0.905 0.909 0.00335 0.105

�1 = (a,b, x0, xT ) and �2 = (a,−b,−x0,−xT ). As
π (�1|zT ) = π (�2|zT ), the posterior has two distinct
modes, so we have to constrain our parameter space.
One solution is to constrain both a and b while it is also
possible to only pose restrictions on b.We consider both
options.

Kreuzer et al. [22] approach the problem slightly dif-
ferent. The correlation between two consecutive obser-
vations Zt−1 and Zt is Cor(Zt−1,Zt ) = b2 · a. From this
formula, it is obvious that there is an identifiability prob-
lem in b.As a solution, themodel is reduced to a problem
with one time-invariant parameter by setting b = ac for
some c ≥ 1 and the remaining parameter a is restricted
to (0,1). Then,Cor(Zt−1,Zt ) = a2c+1, so that the identifi-
ability problem is solved.With c = 1, this leads toModel
(Same,d=p=1).

(atrue,btrue, xtrue0 ) = (0.9, 0.9, 8):Restricting both a and b
to (0,1). We considerT = 75 andK = 4000 and choose
the prior of a and b by p(a,b) = presatrue (a) · presbtrue (b). We
obtain |K max| = 1956, hence the value of |K max| /K is
significantly smaller than 1. There is an obvious bias of
the joint MAP estimator again.

Using the marginal MAP estimates, we obtain
3680 = ∣∣K Stan

∣∣ > |K max|. Using the marginal approach
solves the issue of the bias again but leads to a trade-off
with the variance. However, the MSE is smaller for the
marginal approach again. The estimated coverage of a,
b, x0, and x1, . . . , xT as well as the average bias andMSE
of xt, t = 1, . . . ,T , are satisfactory.

(atrue,btrue, xtrue0 ) = (0.9, 0.9, 8): Restricting b to (0,1)
only. The prior of a and b is now chosen by p(a,b) =
1(−1,1)(a) · presbtrue (b), and we consider again T = 75 and
K = 4000. Compared to the case where we restrict a
and b, the value of

∣∣K Stan
∣∣ decreases from 3680 to 2109,

i.e., the degree of observability is decreasing. However,
the values of the marginal MAP approach when only re-
stricting b are very similar to restricting both a and b.

C. Model (Sep,d=2,p=1)
As noted by [23], the parameters �1 =

(a,b, c, x0, xT ) and �2 = (−a,−b, c,−x0,−xT ) give
the same posterior value and thus two distinct maxima.
Hence, we have to restrict our parameter space. [23]
propose to restrict only a to (0,1) and impose no further
restrictions. We show now that this leads to an observ-

able model. However,
∣∣K Stan

∣∣ increases significantly
when also restricting the variables b and c.

(atrue,btrue, ctrue, xtrue0 ) = (0.9, 0.9, 0.9, 8): Restricting a,
b, and c to (0,1). The prior of a, b, and c is chosen by
p(a,b, c) = presatrue (a) · presbtrue (b) · presctrue (c). We investigate
T = 50 and K = 4000. We are now in the case of d = 2
and p = 1.The joint MAP approach leads to a biased es-
timator again, which is solved by the marginal MAP ap-
proach, for which we obtain 3995 = ∣∣K Stan

∣∣ > |K max| =
1833. The values of the estimated coverage of a, b, x0,
and x1, . . . , xT , as well as the average bias and MSE of
xt, t = 1, . . . ,T , are satisfactory.

(atrue,btrue, ctrue, xtrue0 ) = (0.9, 0.9, 0.9, 8): Restricting
only a. The prior we use is p(a,b, c) = presatrue (a) ·
1(−1,1)(b) · 1(−1,1)(c). Then, all the values of the marginal
approach are practically identical to the case before.The
difference is that

∣∣K Stan
∣∣ = 2972, which is lower than

the value before. Hence, the degree of observability in-
creases when setting more restrictions.

D. Model (Sep,d=1,p=2)
As a prior, we use p(a,b, c,d) = presatrue (a) · presbtrue (b) ·

presctrue (c) · presdtrue (d). For this model, we have d = 1 and p =
2, which means that the dimension of the latent variable
is higher than the dimension of the observation. This
leads to unobservability of the model, i.e.,

∣∣K Stan
∣∣ = 0.

As an additional step to setting no initial values for the
MCMC sampling,we also set the initial value to the true
parameters to make sure that no marginal MAP esti-
mates can be recovered.

E. Model (Sep,d=p=1,ranWalk)
As a prior for a, we use

patrue (a) =
{
1, a ∈ (0,∞) atrue > 0
1, a ∈ (−∞, 0) atrue < 0. (14)

(atrue, xtrue0 ) = (0.9, 8) : T = 4. For T = 4, this
model is not observable.Nomaximumof π (�|z̃ (k)

T ),k =
1, . . . ,K, that fulfills our checks is found on the bounded
support when usingK = 2000 design observation trajec-
tories, i.e., |K max| = 0. The reason is that the posterior
is a ridge of variable height, as shown in Fig. 4 for de-
sign observation z̃ (1)

4 . The figure shows the profile pos-
terior π (a, x0|z̃ (1)

4 ) = max
x1,...,x4

π (a, x0, x1, . . . , x4|z̃ (1)
4 ). Fur-
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Figure 4. (atrue, xtrue0 ) = (0.9, 8): Profile posterior π (a, x0|z̃ (1)
4 ).

thermore,Stan does not converge for any k = 1, . . . ,K,
when sampling from π (�|z̃ (k)

T ), i.e.,
∣∣K Stan

∣∣ = 0. This
makes sense with the information we have on the type
of the extrema of the posterior.

(atrue, xtrue0 ) = (0.9, 8) : T = 100. For T = 100, the
optimization procedure still does not find any joint max-
imum of the log-posteriors π (�|z̃ (k)

T ),k = 1, . . . , 4000.
However, the marginal approach converges for 1575 out
of 4000 design observation trajectories. Hence, for T =
100, the model is observable, but the degree of observ-
ability is low.

F. Model (Sep,d=p=1,Multiplicative)
As the prior of a, we choose (14) again and

(atrue, xtrue0 ) = (0.9, 8). In contrast to the previous ex-
amples, we set the initial values for sampling in Stan to
the true underlying values. We investigate T = 50 and
K = 4000.

For the joint MAP approach, we obtain |K max| =
3995. Using the marginal MAP approach, we obtain∣∣K Stan

∣∣ = 2598 and that the bias as well as the variance
and the MSE are higher compared to the other models
we considered. The estimated MSE values are better for
the marginal MAP approach.While the values of the es-
timated bias and MSE of xt, t = 1, . . . ,T , are high com-
pared to the other examples, the coverage is satisfactory.

V. CONCLUSIONS AND OUTLOOK

For a statistical SSM, we propose a definition of ob-
servability based on the existence or non-existence of a
chosen parameter estimator. In particular, we consider
the marginal MAP estimator in this paper. We provide
an algorithm to check this definition of observability in
practice. The algorithm allows us to check the observ-
ability properties of very general SSMs with Gaussian
disturbances. Furthermore, we do not only answer the
question of observability, but we also provide a quanti-
tative observability measure given by the values |K max|
and

∣∣K Stan
∣∣, the local variance, as well as the properties

of the joint and marginal MAP estimator.

In general, observability is not a global property
for all observation trajectories and has to be checked
for every realization of the observation trajectory with
corresponding state trajectory. Given this insight, the
key idea of the proposed algorithm is to use deter-
ministic approximations of the distribution of observa-
tion trajectories and state trajectories. Our simulations
show that one advantage over using random observa-
tions is that the necessary number of samples is re-
duced in order to guarantee convergence of the prop-
erties of the joint MAP estimator (see Model (Same,
d=p=1)). To the best of the authors’ knowledge, this is
the first time that deterministic approximations are used
in order to obtain observability properties of stochastic
SSMs.

To obtain marginal MAP estimates, the program-
ming language Stan is used to sample from the poste-
rior density, which works well for the considered exam-
ples.Alternatives could be the iterated batch importance
sampling algorithm [9], the particleMarkov chainMonte
Carlo algorithm [4], or the SMC2 algorithm [10].

In numerical studies, we check the observability
properties of interesting SSMs with random distur-
bances using the proposed definition of observability
and our algorithm. The numerical studies show that the
approach works and that using the marginal MAP esti-
mator leads to satisfactory results for the considered ex-
amples.Note that the definition of observability can also
be adapted to other types of estimators.

In this work, the initial state x0 is treated as an un-
known fixed value. This information might, for exam-
ple, be given in a scenario where a mobile robot always
starts from the same position. However, our approach
can be adapted to consider observability for unknown
random values of x0. The next step is to extend this ap-
proach to copula SSMs [22], [23], where observability is
still an open question. For that, the design values have to
be modified.

VI. GLOSSARY OF DEFINITIONS

Notation Explanation

ZT = (Z�
1 , . . . ,Z�

T )
� ∈ RT ·d Random observation trajectory ZT

for t = 1, . . . ,T , consisting of the
observations Zt at time point t

zT = (z�
1 , . . . , z�

T )
� Realization of ZT

XT = (X�
1 , . . . ,X�

T )
� ∈ RT ·p Random trajectory XT of the latent

state, consisting of the latent states
Xt at time point t

xT = (x�
1 , . . . , x�

T )
� Realization of XT

X0 Initial state
xtrue0 True underlying value of X0
� Vector of unknown time-invariant

parameters
�true True underlying value of �
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Notation Explanation

(εt )t=1,...,T and (ηt )t=1,...,T Disturbances, serially independent
and independent of each other at
all time points with εt ∼ N d(0,Rt )
and ηt ∼ N p(0,Qt ), where
Rt ∈ Rd×d and Qt ∈ Rp×p are
known covariance matrices

�true = (�true, xtrue0 , xT ) Underlying unknown true parameters
�(�|zT ) Joint posterior density
π (�|zT ) Log-posterior density
�̂(zT ) = argmax

�

�(�|zT ) Joint MAP estimate

�̂(zT )mar Marginal MAP estimate
SO(�true, xtrue0 ,T ) State-observation space
E (�true, xtrue0 ,T ) ⊂ RT (p+d) Set of realizations zT and

corresponding xT such that �̂(zT )
can be uniquely recovered

�̂(ZT ) Joint MAP estimator
Emar(�true, xtrue0 ,T ) ⊂

RT (p+d)
Set of realizations (xT , zT ) such that

�̂(zT )mar can be uniquely
recovered

�̂(ZT )mar Marginal MAP estimator
LVar

(
�̂ j (zT )

)
Local variance of �̂ j (zT )

(η̃(k)
1 , . . . , η̃

(k)
T , ε̃

(k)
1 , . . . , ε̃

(k)
T ) Design disturbance vectors for

d = p = 1
z̃ (k)
T = (z̃(k)1 , . . . , z̃(k)T ) Design observation trajectories

x̃ (k)
T = (x̃(k)1 , . . . , x̃(k)T ) Design state trajectory

K max Set of values k for which a maximum
is recovered and |K max| ≤ K

�(z̃ (k)
T )(r) MCMC samples

K Stan Set of values k for which Stan
converges and |K Stan| ≤ K
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