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Comment: Preliminary considerations of this paper have been pre-
sented at the 25th International Conference on Information Fusion
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method from Gaussian models (which express Gaussian random vari-
ables as a function of desired parameters and a Gaussian disturbance
term) to general nonlinearGaussian state spacemodels. The algorithm
uses the distributional approximations presented in [32].
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On the Observability of
General Nonlinear Gaussian
State Space Models Using
Discrete Distributional
Approximations

ARIANE HANEBECK
CLAUDIA CZADO

We consider arbitrary nonlinear stochastic discrete-time state

space models (SSMs) with time-invariant parameters and nonadditive

Gaussian disturbances. Given an observation trajectory, the goal is to

obtain an estimate of the augmented state (the underlying state tra-

jectory and the time-invariant parameters of the model). A numerical

approach to checking this type of observability is given, and a quanti-

tative assessment of the degree of observability is provided. In general,

no global statements for all observation trajectories can be made on

the observability of nonlinear SSMs. However, we can find regions of

the state-observation space (consisting of all possible observation tra-

jectories and corresponding state trajectories) in which an estimate of

the augmented state can be obtained. This is achieved by approximat-

ing the continuous distribution of observation trajectories and state

trajectories using an optimal discrete distribution.The associated loca-

tions of the point masses are called design values. For these design val-

ues, we can then check whether the augmented state can be recovered.

We could also use random realizations of the observation trajectory.

However, when using design values, a smaller number of considered

observation trajectories is required to achieve a good coverage of the

space. We illustrate our approach to checking observability for differ-

ent specifications of discrete-time SSMs in univariate and multivariate

settings.

I. INTRODUCTION

In time series analysis, state spacemodels (SSMs) are
a common tool to model the dynamic behavior of ob-
served multivariate data Zt, t = 1, . . . ,T , using multi-
variate latent states Xt, t = 0, . . . ,T . As in [12], we con-
sider arbitrary nonlinear stochastic discrete-time SSMs
with unknown time-invariant parameters � and non-
additive Gaussian disturbances εt, ηt, t = 1, . . . ,T , of
the form

Observation equation:Zt = g(�,Xt , εt )

State equation:Xt = h(�,Xt−1, ηt ) for t = 1, . . . ,T.

(1)
More details on this model can be found in Section II.A.

For a given observation trajectory z1, . . . , zT , the goal
is to obtain an estimate of the augmented state � con-
sisting of initial state x0, state trajectory x1, . . . , xT , and
parameters�. Simulations show that the joint maximum
a posteriori (MAP) estimator is biased in this situation.
Instead, we choose the marginal MAP estimator to re-
cover the augmented state. To avoid high-dimensional
integration for the marginalization, a Bayesian Markov
chain Monte Carlo (MCMC) setup is chosen.

In general, no global statements for all observation
trajectories can be made on the observability of non-
linear SSMs [11], [13], [24]. This means that an estimate
of the augmented state cannot necessarily be recovered
for all observation trajectories (see [18, p. 2] for an in-
tuitive example). We call a given SSM observable if the
marginalMAP estimator exists, i.e., if themarginalMAP
estimate can be recovered for at least one realization of
the observation trajectory. Section II.B gives the exact
theoretical definition of observability.

Our contribution is a novel approach to checking this
type of observability in practice.As no global statements
for all observation trajectories can be made, all possi-
ble realizations of the observation trajectory and cor-
responding state trajectory have to be analyzed. This is
in general not possible, which is why we only consider
a set of appropriately selected disturbance realizations
called design disturbances. For obtaining design distur-
bances,we approximate the distribution of the Gaussian
disturbances by a discrete distribution. For that, the ap-
proach proposed in [32] is used, which minimizes a dis-
tance measure similar to Cramér-vonMises between the
continuous and the discrete distribution. The locations
of the pointmasses of this discrete distribution are called
the design disturbances.

Since observability properties depend on the param-
eters �, the initial state x0, and the number of time steps
T , observability is always considered for fixed values of
�, x0, and T . Each design disturbance leads to a corre-
sponding design state trajectory and observation trajec-
tory by plugging it into the corresponding model. The
detailed construction of these design values is given in
Section III.A.

The design disturbances are created to cover the
space of disturbances homogeneously. Our simulations
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show that they allow us to choose a smaller number of
considered observation trajectories compared to using
random values to obtain a satisfactory coverage of the
space. Furthermore, they are determined offline before
checking for observability and hence do not lead to ad-
ditional computational effort.

For all chosen design observation trajectories, we ex-
ecute two tasks. The first task is used to obtain informa-
tion about the type of extrema of the posterior density
(see Section III.B). In the second task, we then check
whether the augmented state can be recovered by con-
sidering the marginal MAP estimate of the posterior
density (see Section III.C). This tells us in which regions
of the state-observation space the marginal MAP esti-
mator is defined for the fixed time-invariant parameters
�, initial state x0, and T .

There are many applications of SSMs in the litera-
ture. For example, [6] uses SSMs to describe flight con-
trol systems. In [36], the models are used to facilitate bi-
ological and biomedical modeling, while [17] use SSMs
to analyze epidemiological data. Furthermore, [22] and
[23] propose copula-based SSMs to capture the time
dynamics in air pollution. Regarding observability, sev-
eral definitions and approaches to checking it are de-
veloped. One approach is to use Kalman’s observabil-
ity matrix [3], [17], [20]. However, this approach is only
used for linear SSMs. A definition for nonlinear observ-
ability based on the so-called indistinguishability is given
in [20]. The models that are considered allow for deter-
ministic input only in the state equation, which is de-
scribed by a differential equation. The suggested ap-
proach to check this kind of observability is an exten-
sion of Kalman’s observability matrix using Lie deriva-
tives. An algebraic approach for nonlinear polynomial
SSMs of this type is proposed in [15]. In [28], it is noted
that the existing approaches checking for observabil-
ity cannot identify for which observation trajectories
the underlying parameters can be obtained. For mod-
els with uncertainties, which are restricted to bounded
intervals, [28] solve this problem by using interval anal-
ysis. An overview of different observability definitions
found in the literature is given in [37] and more recently
[3]. In contrast to our approach, the literature imposes
restrictions on the considered models, such as linearity
or a specific form. Furthermore, only a deterministic in-
put is allowed, in most cases only in the observation
equation.

The remainder of the paper is organized as follows:
In Section II,we introduce the type ofmodel we consider
and the theoretical definition of observability based on
the existence of themarginalMAP estimator.Section III
describes our proposal to check this definition of observ-
ability in practice using design observation trajectories.
In Section IV, we illustrate how this approach can be
used to decide upon observability of different examples
of Gaussian SSMs. Section V concludes the paper and
gives an outlook for possible adaptions and for future
work to extend the approach to non-Gaussian SSMs. In

Figure 1. A general SSM for d = p = 1.

Section VI, an overview over the most important defini-
tions is given.

II. SSMS AND OBSERVABILITY NOTATIONS

A. Stochastic SSMs

We describe the model (1) in more detail now.

1) Definitions: The random variable Zt ∈ Rd de-
notes the observation at time t, while Xt ∈ Rp rep-
resents the (latent) state at time t. This latent state is
an underlying variable driving the behavior of the ob-
servations. The state equation describes the evolution
of the unobserved latent state over time depending on
the random disturbances ηt, t = 1, . . . ,T , while the
observation equation describes how the observation Zt

at time t is defined, given the latent state Xt and the
random disturbance εt at time t. We define the ran-
dom observation trajectory from time point 1 to T by
ZT = (Z�

1 , . . . ,Z�
T )

� ∈ RT ·d with realization zT =
(z�

1 , . . . , z�
T )

�. The random trajectory of the latent state
is defined by XT = (X�

1 , . . . ,X�
T )

� ∈ RT ·p with realiza-
tion xT = (x�

1 , . . . , x�
T )

�. Figure 1 illustrates an SSM for
d = p = 1.

We assume the initial value x0 to be fixed and un-
known and denote by xtrue0 the true underlying value.Fur-
thermore, � is a vector of unknown time-invariant pa-
rameters, where �true is the true underlying value of �.

For the disturbances (εt )t=1,...,T and (ηt )t=1,...,T ,we as-
sume that they are serially independent and indepen-
dent of each other at all time points [12, Ch. 9] with
εt ∼ N d(0,Rt ) and ηt ∼ N p(0,Qt ), where Rt ∈ Rd×d

and Qt ∈ Rp×p are known covariance matrices.

2) Underlying Parameters: Consider an SSM of the
form (1) with fixed true underlying values �true and xtrue0 .
Given an observation trajectory zT from that model,
the underlying unknown true parameters are �true =
(�true, xtrue0 , xT ). The values �true and xtrue0 always stay
the same, but the trajectory xT of the state is chang-
ing with every realization of the disturbances εt and
ηt, t = 1, . . . ,T , and hence every observation trajectory
zT . Consequently, there is not one common true under-
lying value of xT that could be compared for different
zT ’s. Thus, we treat xT as a nuisance parameter vector,
and the parameters of interest are � and x0. Following
[5] and [25], the vector � = (�, x0, xT ) of unknown
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parameters is called the augmented state, consisting of
the time-invariant parameters, the initial state, and the
state trajectory. Even though we primarily consider the
parameters � and x0 in our proposed approach, we are
also interested in xT in applications to allow for predic-
tive simulation.

For better readability, we write � = (�, x0, xT ) in-
stead of � = (��, x�

0 , x �
T )�. This notation will be used

throughout the paper, e.g, also for zT , ZT , xT , and XT .

3) Posterior Density: The joint posterior density of
(1) is defined by

�(�|zT ) ∝ � (�|zT ) · p(�) =
[

T∏
t=1

fz (zt |xt,�)

]

·
[

T∏
t=1

px (xt |xt−1,�)

]
· p0(x0) · p�(�).

(2)

The corresponding log-posterior density is defined by
π (�|zT ) = log(�(�|zT )). Here, � (�|zT ) is the likeli-
hood of � given zT , p(�) is the prior of the parameter
vector �, p0 is the prior for x0,

∏T
t=1 px (·|xt−1,�) is the

prior for xT given x0, and p� is the prior for �. The func-
tion fz (zt |xt,�) is the density ofZT |{Xt = xt,�} defined
by the observation equation.

The prior p0 might depend on the true underlying
value of x0 if information about it is available. The prior∏T

t=1 px (·|xt−1,�) of xT might either just be the prod-
uct of the densities fx (xt |xt−1,�) of Xt |{Xt−1 = xt−1,�}
defined by the state equation, i.e., px = fx, or more in-
formation might be available on xT that can be incorpo-
rated. For example, the support of fx could be restricted
to obtain px.

Example 1. If the true underlying value �true
i of a time-

invariant parameter component �i ∈ (−1, 1) of � is
known, we define the restricted prior

pres
�true
i
(�i) =

{
U (0, 1) for �true

i > 0,
U (−1, 0) for �true

i < 0. (3)

If �true
i is not known, prior expert knowledge might be

available on the sign of �i.

4) Models Linear in State: One type of SSM,which is
often studied, is linear in the states Xt and is given by

Zt = A(�) · Xt + B(�) · εt ,

Xt = C(�) · Xt−1 +D(�) · ηt
(4)

for t = 1, . . . ,T , and A(�) ∈ Rd×p,B(�) ∈
Rd×d,C(�) ∈ Rp×p, and D(�) ∈ Rp×p for unknown
�. Note that the matrices A(�), etc, do not need to be
linear in the parameters � in order for the model to be
linear in the states. The disturbance distributions are de-
fined as before.

We introduce one example of this type now.

Example 2. The model we consider with d = p = 1 is of
the form

Zt = aXt +
√
1 − a2 · εt , Xt = aXt−1 +

√
1 − a2 · ηt ,

t = 1, . . . ,T,

(5)
with εt ∼ N (0, 1) i.i.d. and ηt ∼ N (0, 1) i.i.d. inde-
pendent. The parameter � = a ∈ (−1, 1) is unknown,
so the parameters of interest are a and x0 with unknown
nuisance parameters x1, . . . , xT . Using Zt |{Xt = xt , a} ∼
N (axt, 1 − a2), Xt |{Xt−1 = xt−1, a} ∼ N (axt−1, 1 − a2),
we determine the posterior for � = (a, x0, xT ) as

�(�|zT ) ∝
[

T∏
t=1

1√
1 − a2

· e− (zt−axt )2
2(1−a2 )

]

·
[

T∏
t=1

1√
1 − a2

· e− (xt−axt−1 )
2

2(1−a2 )

]
· presatrue (a). (6)

We use a noninformative prior for x0. For known atrue,
the prior of a is chosen by presatrue (a), as defined in (3).
For small values of |a|, this restriction is necessary as
otherwise the posterior becomes bimodal. For larger val-
ues of |a|, the restriction might not always be necessary.
Furthermore, in general, the integral over all parameters
a ∈ (−1, 1), xt ∈ (−∞,∞), t = 0, . . . ,T, of (6) with
uniform prior on (−1, 1) for a might not exist.

The log-posterior is of the form

π (�|zT ) = −1
2

1
1 − a2

[
T∑
t=1

(zt − axt )2 +
T∑
t=1

(xt − axt−1)2
]

− T log(1 − a2) + log(presatrue (a)).

B. Theoretical Definition of Observability

For different values of �true, xtrue0 , and T , the observ-
ability properties of a given SSM can vary [20]. For this
reason, observability is always investigated for a fixed
initial value xtrue0 and fixed time-invariant parameters
�true. Hence, if certain values of the parameters (�, x0)
are of special interest, they can be studied in detail. Ad-
ditionally, different numbers of time steps T can be con-
sidered.

To define our notion of observability, we first con-
sider a fixed but arbitrary observation trajectory zT with
corresponding state trajectory xT of model (1) using xtrue0
and �true, i.e.,

Zt = g(�true,Xt , εt ) for t = 1, . . . ,T,

Xt = h(�true,Xt−1, ηt ) for t = 2, . . . ,T,

X1 = h(�true, xtrue0 , η1)

and study the posterior �(�|zT ) defined in (2) using
priors, which are specified specifically for each model.
Then, two tasks are carried out. In the first task, we ob-
tain information about the type of extrema of �(�|zT )
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by checking if the joint MAP estimate can be obtained.
In the second task, we consider the marginal MAP es-
timate. The existence of the marginal MAP estimate
in the second task depends on the type of extrema
of the joint posterior, which is investigated in the first
task.

1) Existence of Joint MAP Estimate: We want to in-
vestigate if the joint MAP estimate

�̂(zT ) = (�̂(zT ), x̂0(zT ), x̂T (zT )) = argmax
�

�(�|zT )
(7)

exists, from which we obtain information about
the type of extrema of the posterior. For this,
we maximize the log-posterior π , i.e., �̂(zT ) =
(�̂(zT ), x̂0(zT ), x̂T (zT )) = argmax

�

π (�|zT ).
Given an observation trajectory zT , the ideal case is

to have a unique maximum of the corresponding log-
posterior π (·|zT ).However, there are three further cases
to be considered.

To define the three cases, we first have to define the
notion of a ridge. For a function f : RN → R, a ridge is a
curve consisting of local maxima inN− 1 dimensions.A
point u0 ∈ RN is such a local maximum if f (u) < f (u0)
for u ∈ S ⊂ RN with dim(S ) = N − 1.We define the set
of localmaxima on a ridge by SR and say a ridge is of con-
stant height if f (u1) = f (u2) for all u1 
= u2 ∈ SR and of
variable height otherwise. For an example of a variable
height ridge, see Figure 4, which shows that a ridge is in
general a nonlinear feature of the posterior density. Ex-
amples where ridges are encountered are given in [29]
and [30].

The three cases are given as follows:
1. No maximum: In the case of no finite maximum,

a maximum can only be found on the boundary, and it
is not possible to recover the true augmented state. This
might happen if we have a ridge of variable height with
no local maxima within the boundaries.

2. Finitely many maxima: In the case of two or more
distinct maxima with the same log-posterior value, no
unique joint MAP estimate �̂(zT ) of � given zT can be
recovered.However, it might be possible to find a unique
maximum argmax� π (�|zT ) when constraining the pa-
rameter space using restricting priors on the parameters.
In general, the value of the posterior in the distinct local
maxima is not the same.Then, a constraint of the param-
eter space around the global maximum is usually carried
out. This also leads to a posterior with a unique maxi-
mum.

3. Infinitely many maxima: In the case where there
is a ridge of constant height of the log-posterior,
the function does not have a distinct maximum
argmax� π (�|zT ). In that case, it is not possible to re-
cover the true augmented state. However, it might be
possible to find estimates for functions of parameters.

Example 3 (Finitely many maxima). Consider a slightly
changed version of the model in (5) with d = p = 1 given
by

Zt = aXt +
√
1 − a2 · εt , Xt = a2Xt−1 +

√
1 − a4 · ηt ,

t = 1, . . . ,T,

with εt ∼ N (0, 1) i.i.d. and ηt ∼ N (0, 1)
i.i.d. independent for unknown a ∈ (−1, 1). Then,
given an observation trajectory zT with underlying pa-
rameter values (atrue, xtrue0 , xT ), the parameter values
(−atrue,−xtrue0 ,−xT ) lead to the same posterior value.
Hence, we can use the prior presatrue (a) to constrain the pa-
rameter space and to find the unique underlying parame-
ter values (atrue, xtrue0 , xT ).

Example 4 (No maximum). For εt ∼ N (0, 1), ηt ∼
N (0, 1) i.i.d. independent, consider

Zt = aXt + εt , Xt = Xt−1 + ηt , t = 1, . . . ,T. (8)

We are interested in a ∈ (−1, 1), the initial state x0, and the
latent state trajectory xT , given an observation trajectory
zT . The log-posterior is given in (13). For a given zT , the
posterior has a ridge of variable height for small values
of T.More details are given in Section IV.

Amodel of the form (4) is often called a linear SSM.
However, it is only linear in the statesXt .We call an SSM
linear if it is linear in both the states Xt and the time-
invariant parameters �.

For a linear model and a given observation trajec-
tory zT , the derivatives d

d�i
π (�|zT ), i = 1, . . . , |�|, of

the log-posterior form a system of linear equations for
the parameters in �. Hence, it is only possible to have
none, one unique, or infinitely many maxima. The sec-
ond case of having finitely many maxima cannot occur
[11], [20].

Consider, for example, the model given in (8), which
is of the form (4) and hence linear in the states Xt, t =
0, . . . ,T . If the parameter a is known and not of interest,
it is also a linearmodel because it is linear in all unknown
parameters X0, . . . ,XT . However, if a is of interest and
� = a, the derivative of the log-posterior in (13) with
respect to a is

∑T
t=1(ztxt − ax2t ), which is obviously not

linear in xt . Hence, this model is nonlinear and only lin-
ear in the states Xt .

2) Existence of Marginal MAP Estimate: This ap-
proach of considering themarginalMAP estimate is also
used in [22], [23] to estimate the unknown parameters.
The differences between joint and marginal MAP esti-
mates are discussed in [14, Ch. 13] and [27].
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Consider the marginal posterior densities

�(� j|zT ) =
∫

�(�, x0, xT |zT ) d�− j dx0 dxT ,

j = 1, . . . , |�|,

�(x0,i|zT ) =
∫

�(�, x0, xT |zT ) d�dx0,−ixT ,

i = 1, . . . , p,

�(xt,i|zT ) =
∫

�(�, x0, xT |zT ) d�dx0 dxt,−i dxT,−t ,

i = 1, . . . , p, t = 1, . . . ,T,

(9)
where xt = (xt,1, . . . , xt,p), xt,−i = (xt,1, . . . , xt,i−1, xt,i+1,

. . . , xt,p) ∈ Rp−1 for t = 0, . . . ,T , �− j = � \ {� j} ∈
R|�|−1, xT,−t = (x1, . . . , xt−1, xt+1, . . . , xT ) ∈ Rp(T−1).

We maximize the marginal posterior densi-
ties defined in (9) over � j, j = 1, . . . , |�|, and
xt,i, t = 0, . . . ,T, i = 1, . . . , p, respectively, and
obtain �̂ j(zT )mar = argmax� j

�(� j|zT ) and
x̂t,i(zT )mar = argmaxxt,i �(xt,i|zT ). The marginal
MAP estimate is then denoted by �̂(zT )mar =
(�̂(zT )mar, x̂0(zT )mar, x̂T (zT )mar). If one of the three
cases of (1) no maximum, (2) finitely many maxima, or
(3) infinitely many maxima occurs and the joint MAP
estimate cannot be recovered, then it might also not be
possible to recover the marginal MAP estimate. How
to obtain the marginal MAP estimate in practice is
discussed in Section III.C.

3) The Definition of Observability: Until now, we
have considered a fixed but arbitrary observation trajec-
tory zT with underlying xT . Now,we define the notion of
observability for a given SSM of the form (1).

Definition 1. Define the state-observation space as the
space of all possible realizations of the observation tra-
jectory ZT and corresponding state trajectory XT , i.e., for
xtrue0 ∈ R,�true ∈ R|�|, define

SO(�true, xtrue0 ,T ) =
{Realizations (xT , zT ) of (XT , ZT ) :

Zt = g(�true,Xt , εt ), t = 1, . . . ,T,

Xt = h(�true,Xt−1, ηt ) for t = 2, . . . ,T,

X1 = h(�true, xtrue0 , ηt ),

εt ∼ N d(0,Rt ) i.i.d., and ηt ∼ N p(0,Qt )

i.i.d. independent}.

(10)

Remark 1. The joint MAP estimator and the marginal
MAP estimator of a nonlinear SSM are not necessarily
defined for all elements of SO(�true, xtrue0 ,T ).

The phenomenon of Remark 1 can also be found in
the literature on SSMs, where the state equation is de-
scribed by a differential equation, for which the concepts
can be transferred to our type of model. In [24], it is

stated that the observability for nonlinear systems is, in
general, not only a local property but also depends on the
input of the system. The authors of [13] talk about bad in-
puts,and the same arguments can be found in [11].These
“bad” inputs lead to observation trajectories for which
the augmented state cannot be recovered. In the setup of
this paper, they correspond to “bad” realizations of the
disturbances, inducing realizations in SO(�true, xtrue0 ,T ),
for which the augmented state cannot be recovered.This
leads to the following definitions:

Definition 2 (Existence of the joint MAP estimator). If
the log-posterior π (·|zT ) does not have a dis-
tinct maximum for a given zT , no unique joint
MAP estimate �̂(zT ) of � can be recovered. Let
E (�true, xtrue0 ,T ) ⊂ SO(�true, xtrue0 ,T ) ⊂ RT (p+d) be the
set of realizations zT and corresponding xT such that
�̂(zT ) = argmax� π (�|zT ) can be uniquely recovered.
If E (�true, xtrue0 ,T ) = ∅, the estimator �̂(ZT ) does not
exist. If E (�true, xtrue0 ,T ) 
= ∅, the estimator

�̂(ZT ) =
⎧⎨⎩ �̂(zT ), (XT , ZT ) = (xT , zT )

∈ E (�true, xtrue0 ,T )
undefined, otherwise

exists but is not necessarily defined for every realization
(xT , zT ) ∈ SO(�true, xtrue0 ,T ).

If the joint MAP estimator exists, it is often biased,
and a Bayesian analysis for all parameters jointly is not
the best approach [14, Ch. 13.4]. However, the existence
of �̂(ZT ) and the type of extrema of the posterior pro-
vide information for the marginal MAP approach.

Definition 3 (Observability based on marginal MAP
estimator). Let Emar(�true, xtrue0 ,T ) ⊂ SO(�true, xtrue0 ,

T ) be the set of realizations (xT , zT ) such that the
marginal MAP estimate �̂(zT )mar can be uniquely re-
covered. If Emar(�true, xtrue0 ,T ) = ∅, �̂(ZT )mar does
not exist, and we call the model unobservable. If
Emar(�true, xtrue0 ,T ) 
= ∅, we call the model observable.
Then,

�̂(ZT )mar =
⎧⎨⎩ �̂(zT )mar, (XT , ZT ) = (xT , zT )

∈ Emar(�true, xtrue0 ,T )
undefined, otherwise

exists but is not necessarily defined for every (xT , zT ) ∈
SO(�true, xtrue0 ,T ). If we constrain our parameter space
to obtain a unique marginal MAP estimate (recall case 2.
Finitely manymaxima),we call our model locally observ-
able.
Remark 2. InDefinition 3,we define amodel to be locally
observable if the parameter space has to be constrained
due to finitely many maxima of the posterior density. This
should not be confused with a different type of locality
that is described in Remark 1, stating that the (marginal)
MAP estimator is not necessarily defined for all realiza-
tions (xT , zT ) ∈ SO(�true, xtrue0 ,T ).

In the ideal case, the estimator �̂(ZT )mar

is consistent for the parameters of interest, i.e.,
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(�̂(ZT )mar, x̂0(ZT )mar)
P→ (�true, xtrue0 ) for T → ∞.

If not, a bias would be detected by the algorithm and
could be taken into account.

For an observable model, we do not only want to an-
swer the question of observability but also want to know
how well it is observable. As measures, we consider the
cardinality of E (�true, xtrue0 ,T ) and Emar(�true, xtrue0 ,T ),
E(�̂(ZT )), Var(�̂(ZT )), and MSE(�̂(ZT )) as well
as E(�̂(ZT )mar), Var(�̂(ZT )mar), and MSE(�̂(ZT )mar).
We introduce the local variance, which is also used to
quantify the degree of observability: Given an obser-
vation trajectory zT , we want to approximate the pos-
terior �(·|zT ) by a Gaussian density in � at the joint
MAP estimate �̂(zT ) if it exists, using a second-order
Taylor polynomial. For given zT , the local variances of
the parameter estimates �̂ j (zT ) are then defined by
the variances of the fitted Gaussian density. Hence, they
are given by LVar(�̂ j(zT )) := −H−1

π (�̂(zT )) j j, j =
1, . . . , |�|, where Hπ (·) ∈ R|�|×|�| is the Hessian matrix
of π (·|zT ). In [18], the local variance is derived in detail
for the one-dimensional parameter case.

Hence, we now have two types of variances. The first
one is the variance Var(�̂(ZT )) of the estimator �̂(ZT ).
In contrast to Var(�̂(ZT )), the local variance considers
how peaked the maximum of π (·|zT ) in the joint MAP
estimate �̂(zT ) is, given one specific observation trajec-
tory zT . Themaximum of π (·|zT ) is gettingmore peaked
if the local variances are decreasing (see [18, Fig. 2]).

III. PROPOSAL TO CHECK OBSERVABILITY IN
PRACTICE

From Remark 1 we know that the joint and
marginal MAP estimators might not be defined ev-
erywhere. In particular, the existence of �̂(zT ) de-
pends on the realization (xT , zT ) of (XT , ZT ), i.e.,
E (�true, xtrue0 ,T ) 
= SO(�true, xtrue0 ,T ) (see Definition

2). The same holds for the marginal MAP estimator
�̂(ZT )mar, i.e.,Emar(�true, xtrue0 ,T ) 
= SO(�true, xtrue0 ,T )
(see Definition 3). We want to know for which ele-
ments in SO(�true, xtrue0 ,T ) the estimators are defined
if they exist. In general, the estimators cannot be deter-
mined analytically to see where they are defined.Hence,
in theory, we have to try all realizations (xT , zT ) ∈
SO(�true, xtrue0 ,T ) to check if a joint or marginal MAP
estimate of π (·|zT ) can be recovered. That is not pos-
sible in practice as there are infinitely many elements in
SO(�true, xtrue0 ,T ). Instead, for fixed values of�true, xtrue0 ,
and T , we construct K design observation trajecto-
ries z̃ (k)

T = z̃ (k)
T (�true, xtrue0 ) with corresponding design

state trajectory x̃ (k)
T = x̃ (k)

T (�true, xtrue0 ),k = 1, . . . ,K,
approximately representing all possible elements in
SO(�true, xtrue0 ,T ).

For this, the disturbance distribution is approximated
by a discrete distribution and the corresponding loca-
tions of the point masses are used as designed distur-
bance realizations, from which we construct the design
values z̃ (k)

T and x̃ (k)
T . Then, given one design observation

trajectory z̃ (k)
T , the goal is to check whether we can esti-

mate the augmented state (�true, xtrue0 , x̃ (k)
T ). We discuss

the construction of these design observation trajectories
in detail now.

A. Construction of the Design Observation Trajectories

The construction of the K design observations
z̃(k)t and the corresponding design states x̃(k)t , t =
1, . . . ,T,k = 1, . . . ,K, approximately representing
SO(�true, xtrue0 ,T ), given �true, xtrue0 ,T , and K, will now
be discussed in detail. We only consider Rt = Id and
Qt = Ip. For different covariance matrices, transforma-
tions or other approaches to approximate non-standard
multivariate normal distributions could be used.

Figure 2. Left: Illustration of the design disturbance vectors (η̃(k)
1 , ε̃

(k)
1 ) for k = 1, . . . , 5, together with the contour plot of the standard normal

density. Right: Illustration of the corresponding (x̃(k)1 , z̃(k)1 ), k = 1, . . . , 5, together with the contour plot of the theoretical density for atrue =
0.9, xtrue0 = 8.
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1) Case: d = p = 1: The parts of Model (1)
with d = p = 1 on which we have an influence
are the disturbances εt and ηt, t = 1, . . . ,T , because
they are not fixed to a specific value. Hence, we need
to find suitable values for them. In order to obtain
K design disturbance vectors, we use the fact that
(η1, . . . , ηT , ε1, . . . , εT ) ∼ N 2T (0, I2T ). Then, we ap-
proximate the distribution of N 2T (0, I2T ) by a discrete
distribution withK point mass vectors in R2T and obtain
(η̃(k)

1 , . . . , η̃
(k)
T , ε̃

(k)
1 , . . . , ε̃

(k)
T ),k = 1, . . . ,K. To do this,

the algorithm introduced in [32] is used.
The idea of this algorithm is to approximate the con-

tinuous distribution of N q(0, Iq) by a discrete distribu-
tion that takes on K point-symmetric point masses with
equal probability. The locations of the point masses of
this discrete distribution are called discrete approxima-
tions or deterministic samples. For an even number of
valuesK = 2N, the discrete distribution takes on the val-
ues {s1, . . . , sN,−s1, . . . ,−sN}. For an odd number K =
2N + 1, we add 0. Hence, the vectors we have to find
are given by Sq

N = {s1, . . . , sN}. To find the optimal val-
ues of the vectors in Sq

N , we need a distance measure be-
tween a continuous and a discrete distribution. For this,
the so-called localized cumulative distribution function
of [19] is utilized. Then, a distance measure based on the
Cramér-von Mises distance for the localized cumulative
distribution function is defined.Minimizing the distance
between N q(0, Iq) and the desired discrete distribution
over Sq

N leads to an optimal discrete approximation.
We obtain a matrix with dimensions 2T × K con-

sisting of the design disturbance values. The kth col-
umn corresponds to one design disturbance vector
(η̃(k)

1 , . . . , η̃
(k)
T , ε̃

(k)
1 , . . . , ε̃

(k)
T ) for k = 1, . . . ,K,where the

first half belongs to the state disturbance ηt, t = 1, . . . ,T ,
and the second half belongs to the observation distur-
bance εt, t = 1, . . . ,T . Given these design disturbance
vectors, the design observations and corresponding de-
sign states are defined by

z̃(k)t = g(�true, x̃(k)t , ε̃
(k)
t ), t = 1, . . . ,T,

x̃(k)t = h(�true, x̃(k)t−1, η̃
(k)
t ), t = 2, . . . ,T,

x̃(k)1 = h(�true, xtrue0 , η̃
(k)
1 )

for fixed values xtrue0 and �true of the initial state x0 and
the time-invariant parameters �.

Example 5 .For T = 1, we approximate the distri-
bution of N 2(0, I2) by K = 5 values. This leads to
the approximations of the disturbances (η1, ε1) shown
on the left side of Fig. 2. Then we obtain z̃(k)1 =
g(�true, x̃(k)1 , ε̃

(k)
1 ) and x̃(k)1 = h(�true, xtrue0 , η̃

(k)
1 ) for k =

1, . . . , 5. For the model given in 2, this means z̃(k)1 =
atruex̃(k)1 + √

1 − (atrue)2 · ε̃
(k)
1 and x̃(k)1 = atruextrue0 +√

1 − (atrue)2 · η̃
(k)
1 . On the right side of Fig. 2, the result

is plotted together with the contour plot of the theoretical
density of (X1,Z1) for atrue = 0.9, xtrue0 = 8.

2) Case: General d and p: For general d and p,
the construction of the design observation trajectories
can be done analogously. For Rt = Id and Qt =
Ip, the joint distribution of (η1, . . . , ηT , ε1, . . . , εT ) is
N (d+p)T (0, I(d+p)T ),which we approximate by a discrete
distribution with K values to obtain design observation
disturbances that we can insert into the model. We ob-
tain a matrix with dimensions (d + p)T × K consisting
of the design disturbance values.This leads to design ob-
servation trajectories z̃ (k)

T = (z̃(k)1 , . . . , z̃(k)T ), based on

the design state trajectories x̃ (k)
T = (x̃(k)1 , . . . , x̃(k)T ),k =

1, . . . ,K.

B. Finding the Joint MAP Estimate Using Deterministic
Numerical Optimization

As described in Section II.B , we want to investi-
gate whether the joint MAP estimator exists to obtain
information about the type of extrema of the posterior.
Furthermore, we are interested in the properties of the
joint MAP estimator, such as mean, variance, and lo-
cal variance. Using the design observation trajectories
z̃ (k)
T ,k = 1, . . . ,K, we maximize the K posterior den-
sities �(·|z̃ (k)

T ),k = 1, . . . ,K, defined in (2), numerically
over �.

The numerical maximization of �(·|z̃ (k)
T ) is done us-

ing a primal barrier method (see [26, Sec. 19.6]) for
k = 1, . . . ,K. When obtaining the optimization result,
we have to perform checks to make sure that we have
found amaximum.Due to the phenomenon described in
Remark 1, it might be possible that for some design vec-
tors z̃ (k)

T with corresponding x̃ (k)
T , no maximum can be

found. This leads to the estimates �̂(z̃ (k)
T ),k ∈ K max ⊂

{1, . . . ,K}, with |K max| ≤ K.
The optimization procedure searches for minima;

hence, we use the function −2π (·|z̃ (k)
T ) for the optimiza-

tion. Then, given a design observation trajectory z̃ (k)
T , we

check the following properties of the result �̂(z̃ (k)
T ) to

ensure that the optimizer has converged to a minimum.
The thresholds are chosen based on results of numerical
studies we executed.For the kth optimization,we choose
(�true, xtrue0 , x̃ (k)

T ) as initial value.

Numerical Checks. Hessian: Is the Hessian
H−2π (�̂(z̃ (k)

T )) of −2π (·|z̃ (k)
T ) in �̂(z̃ (k)

T ) positive def-
inite? Then, we have a minimum of −2π (·|z̃ (k)

T ) and
hence a maximum of �(·|z̃ (k)

T ).

Gradients: Are the gradients of −2π (�̂(z̃ (k)
T )) close to

zero, i.e., smaller than a threshold? The threshold we use
is 10−5.

Eigenvalues: Is the result a ridge? The ratio of the small-
est eigenvalue to the largest eigenvalue of H−2π (�̂(z̃ (k)

T ))
should not be too small. We want a ratio of > r0 =
0.00001. The ratio we consider is the inverse of the condi-
tion number of the Hessian, which is often considered in
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the literature [33], [34] and can be used in sensitivity anal-
ysis the way we also use it [16, Sec. 8.3.3]. As the thresh-
old of r0 is chosen based on results of numerical studies,
one more step is applied to ensure that a ridge is present.
In the case of a ratio < r0, another starting point for the
optimization is chosen. That starting point is close to the
found optimum but shifted in the direction of the ridge. If
this new optimization leads to a different value than be-
fore, we conclude that a ridge is present.

One way to quantify the observability of an SSM
is the number |K max| of design observation trajecto-
ries z̃ (k)

T with corresponding x̃ (k)
T , for which a unique

estimate �̂(z̃ (k)
T ) can be recovered. We denote the set

of values k for which a maximum can be recovered
by K max = K max(�true, xtrue0 ,T ) = {k ∈ {1, . . . ,K} :
argmax��(�|z̃ (k)

T (�true, xtrue0 )) fulfills numerical checks
listed above} ⊂ {1, . . . ,K} with |K max| ≤ K. For fur-
ther analyses, only the results �̂(z̃ (k)

T ),k ∈ K max, are
considered.

We say that the degree of observability for the fixed
values�true, xtrue0 , andT increases with |K max|.Given the
estimates �̂(z̃ (k)

T ),k ∈ K max, that were recovered, the
mean, variance, and MSE of the corresponding estima-
tor �̂(ZT ) can be estimated. The local variance can be
used as another indicator of the degree of observability.
A lower local variance indicates a higher degree of ob-
servability as the joint MAP estimator has higher preci-
sion.

C. Finding the Marginal MAP Estimate Using MCMC
Sampling

In general, the integrals in the marginal posterior
densities in (9) cannot be determined analytically. One
solution to this is to use MCMC methods to approxi-
mately solve the integrals. We use a variant of Hamil-
tonian Monte Carlo (HMC), more specifically the No-
U-Turn-Sampler [21] implemented in Stan [8], a plat-
form for statistical modeling. Using Stan, we obtain
MCMC samples from the posterior. Then, we can de-
terminemarginalMAP estimates from univariate kernel
density estimates.

The three cases of (1) no maximum, (2) finitely many
maxima, and (3) infinitely many maxima of the poste-
rior can lead to convergence problems in the MCMC
sampler. According to [1], ridges in the posterior density
[...] wreak havocwith both sampling and inference.Addi-
tionally, multimodal posteriors lead to problems, which
can however be avoided by constraining the parameter
space if the posterior is not highly multimodal. Further-
more, there are examples where there are no posterior
modes and numerical stability issues can arise as sam-
pled parameters approach constraint boundaries [1].That
is why we first obtain information about the type of ex-
trema by considering the joint MAP estimate to under-
stand when such situations occur.

Sampling with Stan from the log-posterior π (·|z̃ (k)
T )

for one fixed z̃ (k)
T outputs the samples

�(z̃ (k)
T )(r) =

(
�(z̃ (k)

T )(r), x0(z̃
(k)
T )(r), x1(z̃

(k)
T )(r), . . . , xT (z̃

(k)
T )(r)

)
,

r = 1, . . . ,R,

of �, where R is the number of MCMC samples we ob-
tain after discarding the burn-in phase.

Define K Stan = K Stan(�true, xtrue0 ,T ) = {k ∈ {1,
. . . ,K} : Stan converges when sampling from π (·|z̃ (k)

T
(�true, xtrue0 ))} with ∣∣K Stan

∣∣ ≤ K. To check convergence,
no divergent transitions after warmup are allowed. Fur-
thermore, the convergence diagnostics R-hat [14] as
well as bulk and tail effective sample size [35] are con-
sidered. Additionally, the maximum treedepth and the
Bayesian Fraction of Missing Information (BFMI) [7]
are checked. For more information on convergence di-
agnostics and the exact thresholds used in Stan to check
convergence, see [2]. Only the results �̂(z̃ (k)

T )mar,k ∈
K Stan, are considered for further analyses. Hence, the
diagnostics of all considered Stan runs are within the
desired thresholds.

If
∣∣K Stan

∣∣ is close to K, we say that the model has
a high degree of observability. If no marginal MAP esti-
mate is recovered, i.e.,

∣∣K Stan
∣∣ = 0,we conclude that the

model is not observable for the chosen values of �true,
xtrue0 , and T .

With the output of Stan, it is possible to approxi-
mate the marginal MAP estimate of the parameters as
it is done in [22] and [23].We obtain the marginal MAP
estimate of � j by

�̂ j(z̃
(k)
T )mar = argmax kde((� j(z̃

(k)
T )(r))r=1,...,R),

j = 1, . . . , |�|, (11)

where kde is the kernel density estimate [31]. The values
�̂(z̃ (k)

T )mar,k ∈ K Stan, can be used to estimate themean
and variance of the marginal MAP estimator �̂(ZT )mar.

For j = 1, . . . , |�|, we can determine 90% credible
intervals (�̂ j(z̃

(k)
T )q5, �̂ j(z̃

(k)
T )q95) for � j by

�̂ j(z̃
(k)
T )q5 = empirical 5%-quantile of (� j(z̃

(k)
T )(r))r=1,...,R,

�̂ j(z̃
(k)
T )q95 = empirical 95%-quantile of (� j(z̃

(k)
T )(r))r=1,...,R.

(12)
For every parameter � j, we determine the percent-

age of iterations k ∈ K Stan, for which the true value
�true

j is in the interval (�̂ j(z̃
(k)
T )q5, �̂ j(z̃

(k)
T )q95), j =

1, . . . , |�|, i.e.,
Ĉover90(�true

j )

=
|{k ∈ K Stan : �̂ j(z̃

(k)
T )q5 < �true

j < �̂ j(z̃
(k)
T )q95}|

|K Stan| .

To get an idea how the marginal MAP estimator per-
forms for the latent states xt,i, t = 1, . . . ,T, i = 1, . . . , p,
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we estimate the bias by

B̂ias(xt,i) =
∑

k∈K Stan

(
x̂t,i(z̃

(k)
T )mar − x̃(k)t,i

)
|K Stan| ,

t = 1, . . . ,T, i = 1, . . . , p,

where x̃(k)t = (x̃(k)t,1 , . . . , x̃(k)t,p ), and the MSE by

M̂SE(xt,i) =
∑

k∈K Stan

(
x̂t,i(z̃

(k)
T )mar − x̃(k)t,i

)2

|K Stan| ,

t = 1, . . . ,T, i = 1, . . . , p.

IV. ILLUSTRATIONS

We consider the different scenarios given in Table I.
In the following, we give an overview of the SSMs

we investigate together with the respective definition of
� and the log-posterior π (�|zT ). The prior p�(�) is
abbreviated by p(�). The disturbances are always as-
sumed to be standard normal i.i.d. and independent and
the prior p0 of x0 is set to the uniformative prior. For
sampling using Stan, we always consider 4 chains with
10 000 iterations and a burn-in of 4 000, respectively,
leading to R = 24 000. Note here that running Stan on
π (·|z̃ (k)

T ) can be parallelized for each k = 1, . . . ,K. We
allow for random initial values in order to investigate the
behaviorwhen the true underlying values are not known.

We do not show the detailed results for all the con-
sideredmodels.However, they are available from the au-
thors upon request.

1) Model (Same,d=p=1) (Same dynamics for obser-
vations and states for d=p=1):

Zt = aXt +
√
1 − a2 · εt , Xt = aXt−1 +

√
1 − a2 · ηt ,

t = 1, . . . ,T.

Log-posterior of � = (a, x0, xT ):

π (�|zT ) = −1
2

1
1 − a2

[
T∑
t=1

(zt − axt )2 +
T∑
t=1

(xt − axt−1)2
]

− T log(1 − a2) + log(presatrue (a)).

2) Model (Sep,d=p=1) (Separate dynamics for ob-
servations and states for d=p=1):

Zt = bXt +
√
1 − b2 · εt , Xt = aXt−1 +

√
1 − a2 · ηt ,

t = 1, . . . ,T.

Log-posterior of � = (a,b, x0, xT ):

π (�|zT ) = −
[

T∑
t=1

(zt − bxt )2

2(1 − b2)
+ (xt − axt−1)2

2(1 − a2)

]

− T
2

[
log(1 − a2) + log(1 − b2)

] + log(p(a,b)).

3) Model (Sep,d=2,p=1) (Separate dynamics for
bivariate observations driven by single states):

Zt,1 = aXt +
√
1 − a2 · εt,1 , Zt,2 = bXt +

√
1 − b2 · εt,2 ,

Xt = cXt−1 +
√
1 − c2 · ηt .

Log-posterior of � = (a,b, c, x0, xT ):

π (�|zT ) = − 1
2

1
1 − a2

T∑
t=1

(zt,1 − axt )2

− T
2
log(1 − a2) − 1

2
1

1 − b2

T∑
t=1

(zt,2 − bxt )2

− T
2
log(1 − b2) − 1

2
1

1 − c2

T∑
t=1

(xt − cxt−1)2

− T
2
log(1 − c2) + log(p(a,b, c)).

4) Model (Sep,d=1,p=2) (Separate dynamics for
univariate observations and bivariate states):

Zt = aXt,1 + bXt,2 +
√
1 − a2 − b2 · εt

Xt,1 = cXt−1,1 +
√
1 − c2 · ηt,1 , Xt,2 = dXt−1,2

+
√
1 − d2 · ηt,2 , t = 1, . . . ,T

Table I
The Considered Scenarios

Dim. d of observations Dim. p of state Linearity Considered models

1 1 Nonlinear (Same,d=p=1), (Sep,d=p=1),
(linear only in state) (Sep,d=p=1,ranWalk)

2 1 Nonlinear (Sep,d=2,p=1)
(linear only in state)

1 2 Nonlinear (Sep,d=1,p=2)
(linear only in state)

1 1 Nonlinear (Sep,d=p=1,
Multiplicative)
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Log-posterior of � = (a,b, c,d, x0, xT ):

π (�|zT ) = − 1
2

1
1 − a2 − b2

T∑
t=1

(zt − axt,1 − bxt,2)2

− T
2
log(1 − a2 − b2)

− 1
2

1
1 − c2

T∑
t=1

(xt,1 − cxt−1,1)2

− T
2
log(1 − c2)

− 1
2

1
1 − d2

T∑
t=1

(xt,2 − dxt−1,2)2

− T
2
log(1 − d2) + log(p(a,b, c,d)).

5) Model (Sep,d=p=1,ranWalk) (Univariate ob-
servations with random walk state dynamics):

Zt = aXt + εt , Xt = Xt−1 + ηt , t = 1, . . . ,T

Log-posterior of � = (a, x0, xT ):

π (�|zT ) = −1
2

T∑
t=1

(zt − axt )2 − 1
2

T∑
t=1

(xt − xt−1)2

+ log(presatrue (a)).
(13)

6) Model (Sep,d=p=1,Multiplicative) (Addi-
tive state and multiplicative observation equation):

Zt = √
a ·Xt · εt , Xt = a+Xt−1 + ηt , t = 1, . . . ,T.

Log-posterior of � = (a, x0, xT ):

π (�|zT ) = −1
2

T∑
t=1

(
z2t

a · x2t
+ log(a · x2t )

)

− 1
2

T∑
t=1

(xt − a− xt−1)2 + log(p(a)).

A. Model (Same,d=p=1)
To decide on the number of design pointsK, we con-

sider VKi = ( |K max|
Ki

, Ê(â(ZT )), Ê(x̂0(ZT )), V̂ar(â(ZT )),

V̂ar(x̂0(ZT )),LVar(â(z̃
(k)
T )),LVar(x̂0(z̃

(k)
T ))) ∈ R7 of the

joint MAP estimator (â(ZT ), x̂0(ZT )) when using Ki =
i · 100 design observation trajectories. Ê and V̂ar de-
note the empirical mean and variance (see Table II).
LVar(�̂i(z̃

(k)
T )) is the mean of the local variances over

k.
We want to find the value of i for which VKi

has converged. For that, define the relative difference
RD (x, y) = |x−y|

max(|x|,|y|) between two values x, y ∈ R. For
vectors,RD is defined component-wise. Then, we deter-
mine the smallest value i, for which RD(VKi ,VKj ) <

(c1, c1, c1, c2, c2, c2, c2) for all j > i and choose the num-
ber of design values as K = i · 100. The values (c1, c2) ∈
R2 are chosen thresholds. We choose two different val-
ues because |K max| /Ki and the empirical means are con-
verging faster than the empirical and the local variance.

Using the design disturbance values allows us to
choose a smaller value of K compared to using random
values of the disturbances. Numerical studies show that
when using random values of the disturbances, a higher
value of i has to be chosen to ensure convergence of
VKi . For example, for (atrue, xtrue0 ) = (0.9, 8),T = 4,
we choose K = 300 using (c1, c2) = (0.01, 0.01) and
the design disturbances. When using random values of
the disturbances for the same setup, we have to choose

Table II
Top and Middle: The Empirical Mean and Variance of the Joint MAP Estimator (Left) and the Marginal MAP Estimator (Right)

Joint MAP estimation Marginal MAP estimation

T
(
Ê(â(ZT )), Ê(x̂0(ZT ))

) (
Ê(â(ZT )mar), Ê(x̂0(ZT )mar)

)
(μ̄, ν̄) =

∑
k∈K max (â(z̃ (k)

T ),x̂0(z̃
(k)
T ))

|K max| (μ̄mar, ν̄mar) =
∑

k∈K Stan (â(z̃
(k)
T )mar,x̂0(z̃

(k)
T )mar )

|K Stan|
20 (0.941, 7.15) (0.896, 8.07)
50 (0.949, 6.99) (0.898, 8.05)
T

(
V̂ar(â(ZT )), V̂ar(x̂0(ZT ))

) (
V̂ar(â(ZT )mar), V̂ar(x̂0(ZT )mar)

)
∑

k∈K max
(
(â(z̃ (k)

T )−μ̄)2,(x̂0(z̃
(k)
T )−ν̄)2

)
|K max|−1

∑
k∈K Stan

(
(â(z̃ (k)

T )mar−μ̄mar)2,(x̂0(z̃
(k)
T )mar−ν̄mar )2

)
|K Stan|−1

20 (0.0001960, 0.468) (0.000605, 0.728)
50 (0.0000756, 0.374) (0.000355, 0.602)

T
(
M̂SE(â(ZT )), M̂SE(x̂0(ZT ))

) (
M̂SE(â(ZT )mar), M̂SE(x̂0(ZT )mar)

)
20 (0.00184, 1.18) (0.000621, 0.733)
50 (0.00248, 1.40) (0.000360, 0.605)

The Empirical Mean is Closest to the True Values (atrue, xtrue0 ) = (0.9, 8) When Using the Marginal MAP Estimate. Bottom: The Estimated

MSE for the Two Estimators.
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(c1, c2) = (0.01, 0.03), and it only converges for values
between K = 2500 and K = 4500 or higher depending
on the realizations.

In the following,we investigate observability proper-
ties for different choices of (atrue, xtrue0 ).

(atrue, xtrue0 ) = (0.9, 8). For T = 20 and T = 50, we de-
termine the values of K as described above. For T = 20,
we chooseK = 1300 with (c1, c2) = (0.01, 0.03), and for
T = 50,we chooseK = 3100with (c1, c2) = (0.01, 0.04).
K increases withT becausemore values are necessary to
accurately cover a higher-dimensional space.

Maximizing the log-posterior densities
π (�|z̃ (k)

T ),k = 1, . . . ,K, leads to the left side of Fig. 3,
showing the estimates (â(z̃ (k)

T ), x̂0(z̃
(k)
T )),k ∈ K max,

of (a, x0). The joint MAP estimator exists with
|K max| /K = 1 but is biased. The empirical expected
value and variance of the corresponding estimator
(â(ZT ), x̂0(ZT )) are reported in the left part of Table II.
The bias is increasing in T, while the empirical variance
is decreasing. As expected, the mean of the K local
variances is decreasing for increasing T (not shown
here).

Using Stan to obtain the marginal MAP estimates
as discussed in Section III.C, the right side of Fig.3 shows
that the issue of the bias gets solved.However, there is a
trade-off with the variance. This can also be seen on the
right side of Table II.

To study the joint behavior of bias and variance, we
report estimates for the MSE of a and x0 for the joint
and marginal MAP estimation, respectively (bottom of
Table II).

The estimated MSE of the marginal MAP estimator
is always smaller. This is due to the fact that the bias
is a lot smaller for the marginal MAP estimator com-
pared to the joint MAP estimator, and the variance is
not increasing enough to obtain a higher value of the
MSE values. The values of the estimated coverage of a,
x0, and x1, . . . , xT , as well as the estimated average bias
and MSE of xt, t = 1, . . . ,T , are satisfactory (Table III).

(atrue, xtrue0 ) = (0.7, 8). We study the behavior of the
model for a smaller value of a. We need a larger value
of T in order to ensure a good degree of observability.
Hence, we consider T = 100 and choose K = 3600 with
(c1, c4) = (0.01, 0.06). The joint MAP approach leads
again to an obvious bias with |K max| = K. Compared
to (atrue, xtrue0 ) = (0.9, 8), the local variance shows that
the maximum of the posterior here is on average less
peaked.

We use Stan to obtain the marginal MAP estimates,
leading to a value of

∣∣K Stan
∣∣ = 2910 smaller than |K max|.

As before, using the marginal MAP estimator solves the
issue of the bias, but we have a trade-off with the vari-
ance. However, the estimated MSE is smaller for the
marginal estimator.The averageMSEof xt, t = 1, . . . ,T ,
is slightly higher compared to the case (atrue, xtrue0 ) =
(0.9, 8). The estimated coverage of a, x0, and x1, . . . , xT
is satisfactory.

B. Model (Sep,d=p=1)
For this model, we face the problem of hav-

ing multiple modes with equal height. Consider

Figure 3. (atrue, xtrue0 ) = (0.9, 8): Pairwise scatter plots of the joint MAP estimates (â(z̃ (k)
T ), x̂0(z̃

(k)
T )), k ∈ K max, with

∣∣K max
∣∣ = K (left) and

marginal MAP estimates (â(z̃ (k)
T )mar, x̂0(z̃

(k)
T )mar), k ∈ K Stan, with

∣∣K Stan
∣∣ = K (right) for different values of T . The true values are indicated

by the lines.
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Table III
The Estimated Coverage of the Parameters � = (a, x0, x1, . . . , xT ) as well as the Average Estimated Bias and MSE of xt , t = 1, . . . ,T , for the

Marginal MAP Estimates

T Ĉover90(atrue, xtrue0 ) 1
T

∑T
t=1 Ĉover90(x

true
t ) 1

T

∑T
t=1 |B̂ias(xt )| 1

T

∑T
t=1 M̂SE(xt )

20 0.870, 0.895 0.910 0.00892 0.116
50 0.893, 0.905 0.909 0.00335 0.105

�1 = (a,b, x0, xT ) and �2 = (a,−b,−x0,−xT ). As
π (�1|zT ) = π (�2|zT ), the posterior has two distinct
modes, so we have to constrain our parameter space.
One solution is to constrain both a and b while it is also
possible to only pose restrictions on b.We consider both
options.

Kreuzer et al. [22] approach the problem slightly dif-
ferent. The correlation between two consecutive obser-
vations Zt−1 and Zt is Cor(Zt−1,Zt ) = b2 · a. From this
formula, it is obvious that there is an identifiability prob-
lem in b.As a solution, themodel is reduced to a problem
with one time-invariant parameter by setting b = ac for
some c ≥ 1 and the remaining parameter a is restricted
to (0,1). Then,Cor(Zt−1,Zt ) = a2c+1, so that the identifi-
ability problem is solved.With c = 1, this leads toModel
(Same,d=p=1).

(atrue,btrue, xtrue0 ) = (0.9, 0.9, 8):Restricting both a and b
to (0,1). We considerT = 75 andK = 4000 and choose
the prior of a and b by p(a,b) = presatrue (a) · presbtrue (b). We
obtain |K max| = 1956, hence the value of |K max| /K is
significantly smaller than 1. There is an obvious bias of
the joint MAP estimator again.

Using the marginal MAP estimates, we obtain
3680 = ∣∣K Stan

∣∣ > |K max|. Using the marginal approach
solves the issue of the bias again but leads to a trade-off
with the variance. However, the MSE is smaller for the
marginal approach again. The estimated coverage of a,
b, x0, and x1, . . . , xT as well as the average bias andMSE
of xt, t = 1, . . . ,T , are satisfactory.

(atrue,btrue, xtrue0 ) = (0.9, 0.9, 8): Restricting b to (0,1)
only. The prior of a and b is now chosen by p(a,b) =
1(−1,1)(a) · presbtrue (b), and we consider again T = 75 and
K = 4000. Compared to the case where we restrict a
and b, the value of

∣∣K Stan
∣∣ decreases from 3680 to 2109,

i.e., the degree of observability is decreasing. However,
the values of the marginal MAP approach when only re-
stricting b are very similar to restricting both a and b.

C. Model (Sep,d=2,p=1)
As noted by [23], the parameters �1 =

(a,b, c, x0, xT ) and �2 = (−a,−b, c,−x0,−xT ) give
the same posterior value and thus two distinct maxima.
Hence, we have to restrict our parameter space. [23]
propose to restrict only a to (0,1) and impose no further
restrictions. We show now that this leads to an observ-

able model. However,
∣∣K Stan

∣∣ increases significantly
when also restricting the variables b and c.

(atrue,btrue, ctrue, xtrue0 ) = (0.9, 0.9, 0.9, 8): Restricting a,
b, and c to (0,1). The prior of a, b, and c is chosen by
p(a,b, c) = presatrue (a) · presbtrue (b) · presctrue (c). We investigate
T = 50 and K = 4000. We are now in the case of d = 2
and p = 1.The joint MAP approach leads to a biased es-
timator again, which is solved by the marginal MAP ap-
proach, for which we obtain 3995 = ∣∣K Stan

∣∣ > |K max| =
1833. The values of the estimated coverage of a, b, x0,
and x1, . . . , xT , as well as the average bias and MSE of
xt, t = 1, . . . ,T , are satisfactory.

(atrue,btrue, ctrue, xtrue0 ) = (0.9, 0.9, 0.9, 8): Restricting
only a. The prior we use is p(a,b, c) = presatrue (a) ·
1(−1,1)(b) · 1(−1,1)(c). Then, all the values of the marginal
approach are practically identical to the case before.The
difference is that

∣∣K Stan
∣∣ = 2972, which is lower than

the value before. Hence, the degree of observability in-
creases when setting more restrictions.

D. Model (Sep,d=1,p=2)
As a prior, we use p(a,b, c,d) = presatrue (a) · presbtrue (b) ·

presctrue (c) · presdtrue (d). For this model, we have d = 1 and p =
2, which means that the dimension of the latent variable
is higher than the dimension of the observation. This
leads to unobservability of the model, i.e.,

∣∣K Stan
∣∣ = 0.

As an additional step to setting no initial values for the
MCMC sampling,we also set the initial value to the true
parameters to make sure that no marginal MAP esti-
mates can be recovered.

E. Model (Sep,d=p=1,ranWalk)
As a prior for a, we use

patrue (a) =
{
1, a ∈ (0,∞) atrue > 0
1, a ∈ (−∞, 0) atrue < 0. (14)

(atrue, xtrue0 ) = (0.9, 8) : T = 4. For T = 4, this
model is not observable.Nomaximumof π (�|z̃ (k)

T ),k =
1, . . . ,K, that fulfills our checks is found on the bounded
support when usingK = 2000 design observation trajec-
tories, i.e., |K max| = 0. The reason is that the posterior
is a ridge of variable height, as shown in Fig. 4 for de-
sign observation z̃ (1)

4 . The figure shows the profile pos-
terior π (a, x0|z̃ (1)

4 ) = max
x1,...,x4

π (a, x0, x1, . . . , x4|z̃ (1)
4 ). Fur-
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Figure 4. (atrue, xtrue0 ) = (0.9, 8): Profile posterior π (a, x0|z̃ (1)
4 ).

thermore,Stan does not converge for any k = 1, . . . ,K,
when sampling from π (�|z̃ (k)

T ), i.e.,
∣∣K Stan

∣∣ = 0. This
makes sense with the information we have on the type
of the extrema of the posterior.

(atrue, xtrue0 ) = (0.9, 8) : T = 100. For T = 100, the
optimization procedure still does not find any joint max-
imum of the log-posteriors π (�|z̃ (k)

T ),k = 1, . . . , 4000.
However, the marginal approach converges for 1575 out
of 4000 design observation trajectories. Hence, for T =
100, the model is observable, but the degree of observ-
ability is low.

F. Model (Sep,d=p=1,Multiplicative)
As the prior of a, we choose (14) again and

(atrue, xtrue0 ) = (0.9, 8). In contrast to the previous ex-
amples, we set the initial values for sampling in Stan to
the true underlying values. We investigate T = 50 and
K = 4000.

For the joint MAP approach, we obtain |K max| =
3995. Using the marginal MAP approach, we obtain∣∣K Stan

∣∣ = 2598 and that the bias as well as the variance
and the MSE are higher compared to the other models
we considered. The estimated MSE values are better for
the marginal MAP approach.While the values of the es-
timated bias and MSE of xt, t = 1, . . . ,T , are high com-
pared to the other examples, the coverage is satisfactory.

V. CONCLUSIONS AND OUTLOOK

For a statistical SSM, we propose a definition of ob-
servability based on the existence or non-existence of a
chosen parameter estimator. In particular, we consider
the marginal MAP estimator in this paper. We provide
an algorithm to check this definition of observability in
practice. The algorithm allows us to check the observ-
ability properties of very general SSMs with Gaussian
disturbances. Furthermore, we do not only answer the
question of observability, but we also provide a quanti-
tative observability measure given by the values |K max|
and

∣∣K Stan
∣∣, the local variance, as well as the properties

of the joint and marginal MAP estimator.

In general, observability is not a global property
for all observation trajectories and has to be checked
for every realization of the observation trajectory with
corresponding state trajectory. Given this insight, the
key idea of the proposed algorithm is to use deter-
ministic approximations of the distribution of observa-
tion trajectories and state trajectories. Our simulations
show that one advantage over using random observa-
tions is that the necessary number of samples is re-
duced in order to guarantee convergence of the prop-
erties of the joint MAP estimator (see Model (Same,
d=p=1)). To the best of the authors’ knowledge, this is
the first time that deterministic approximations are used
in order to obtain observability properties of stochastic
SSMs.

To obtain marginal MAP estimates, the program-
ming language Stan is used to sample from the poste-
rior density, which works well for the considered exam-
ples.Alternatives could be the iterated batch importance
sampling algorithm [9], the particleMarkov chainMonte
Carlo algorithm [4], or the SMC2 algorithm [10].

In numerical studies, we check the observability
properties of interesting SSMs with random distur-
bances using the proposed definition of observability
and our algorithm. The numerical studies show that the
approach works and that using the marginal MAP esti-
mator leads to satisfactory results for the considered ex-
amples.Note that the definition of observability can also
be adapted to other types of estimators.

In this work, the initial state x0 is treated as an un-
known fixed value. This information might, for exam-
ple, be given in a scenario where a mobile robot always
starts from the same position. However, our approach
can be adapted to consider observability for unknown
random values of x0. The next step is to extend this ap-
proach to copula SSMs [22], [23], where observability is
still an open question. For that, the design values have to
be modified.

VI. GLOSSARY OF DEFINITIONS

Notation Explanation

ZT = (Z�
1 , . . . ,Z�

T )
� ∈ RT ·d Random observation trajectory ZT

for t = 1, . . . ,T , consisting of the
observations Zt at time point t

zT = (z�
1 , . . . , z�

T )
� Realization of ZT

XT = (X�
1 , . . . ,X�

T )
� ∈ RT ·p Random trajectory XT of the latent

state, consisting of the latent states
Xt at time point t

xT = (x�
1 , . . . , x�

T )
� Realization of XT

X0 Initial state
xtrue0 True underlying value of X0
� Vector of unknown time-invariant

parameters
�true True underlying value of �
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Notation Explanation

(εt )t=1,...,T and (ηt )t=1,...,T Disturbances, serially independent
and independent of each other at
all time points with εt ∼ N d(0,Rt )
and ηt ∼ N p(0,Qt ), where
Rt ∈ Rd×d and Qt ∈ Rp×p are
known covariance matrices

�true = (�true, xtrue0 , xT ) Underlying unknown true parameters
�(�|zT ) Joint posterior density
π (�|zT ) Log-posterior density
�̂(zT ) = argmax

�

�(�|zT ) Joint MAP estimate

�̂(zT )mar Marginal MAP estimate
SO(�true, xtrue0 ,T ) State-observation space
E (�true, xtrue0 ,T ) ⊂ RT (p+d) Set of realizations zT and

corresponding xT such that �̂(zT )
can be uniquely recovered

�̂(ZT ) Joint MAP estimator
Emar(�true, xtrue0 ,T ) ⊂

RT (p+d)
Set of realizations (xT , zT ) such that

�̂(zT )mar can be uniquely
recovered

�̂(ZT )mar Marginal MAP estimator
LVar

(
�̂ j (zT )

)
Local variance of �̂ j (zT )

(η̃(k)
1 , . . . , η̃

(k)
T , ε̃

(k)
1 , . . . , ε̃

(k)
T ) Design disturbance vectors for

d = p = 1
z̃ (k)
T = (z̃(k)1 , . . . , z̃(k)T ) Design observation trajectories

x̃ (k)
T = (x̃(k)1 , . . . , x̃(k)T ) Design state trajectory

K max Set of values k for which a maximum
is recovered and |K max| ≤ K

�(z̃ (k)
T )(r) MCMC samples

K Stan Set of values k for which Stan
converges and |K Stan| ≤ K
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Optical Flow and IMU Fusion
for Drone Horizontal Velocity
Control
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This paper presents a vision-aided, horizontal velocity control sys-

tem for unmanned aerial vehicles (UAVs). Angular velocity data pro-

vided by an Inertial Measurement Unit (IMU) is combined with pixel

displacement data given by an optical flow sensor to produce a mea-

sure of horizontal velocity in two dimensions. Robust velocity control

is achieved without reliance on the Global Positioning System (GPS).

To validate the proposed approach, a series of dynamic simulations

and hardware experiments were conducted. The hardware tests were

designed to characterize the output of the optical flow sensor as a func-

tion of horizontal velocity and altitude. This data was then used to for-

mulate an optical flow sensor mathematical model that, to our knowl-

edge, is new and has not appeared in any prior optical flow sensor-

related literature. This model is shown to produce output data that

is consistent with the experimentally measured sensor data gathered

under equivalent conditions. In addition, this model has been used to

create the optical flow sensormodel employedwhen simulation testing

a UAV’s controlled dynamic motion. Simulation results demonstrate

that this method successfully achieves accurate and reliable control of

a UAV’s velocity in the horizontal plane.

I. INTRODUCTION

Localization is the process of determining an ob-
ject’s position and possibly also its orientation in space.
It is related to navigation and is a process that is critical
in aerospace and robotics applications [1].A similar and
less stringent process is that of location stabilization,
which involves the control of an object’s velocity and
stabilization of its location, but does not also require
knowledge of the object’s location. The process targeted
by the work presented in this paper is that of location
stabilization.

To perform localization and location stabilization,
robots typically estimate their velocity and position by
numerically integrating acceleration data provided by
an inertial measurement unit (IMU) [2], [3]. This IMU
data contains, however, measurement noise and sensor
bias errors that can significantly degrade the accuracy
of these estimates [4]. The numerical integration pro-
cesses involved in generating the estimates can also in-
troduce additional error, which further degrades accu-
racy [5]. Euler integration, for example, causes trunca-
tion errors similar to Taylor series approximations [6].
These and other sources of error can lead to the deteri-
oration of the velocity and position signals required for
accurate localization and stabilization. Over time, these
errors can accumulate, resulting in significant inaccura-
cies that affect the system’s performance [7]. The impact
of these drift errors can be mitigated by adding sensors
that are able to observe the drift. A wide range of sen-
sors can be used for this purpose, one being the optical
flow sensor (OFS).

Cameras in unmanned aerial vehicles (UAVs) can
aid in localization through object recognition and track-
ing, utilizing landmarks. Smart cameras and applica-
ble software libraries will calculate motion from frame
changes and use digital signal processing to detect
changes in shadow levels in each pixel [8]. These ap-
proaches, however, are computationally demanding, and
issues like unknown obstacles or lighting changes can
cause data inaccuracies. To address these, SLAM (simul-
taneous localization and mapping) uses multiple cam-
eras and LightDetection andRanging (LIDAR) sensors
to handle environmental lighting changes [9]. SLAM
combines multiple sensors to generate a 3D map of
the surroundings [10], offering accurate position estima-
tion but at a high computational cost. Self-maneuvering
UAVsmust also be capable of autonomous landing. Sev-
eral researchers, such as [8] and [11], have investigated
the use of cameras and vision-aided systems for au-
tonomous landing by fusing data from cameras, OFS,
and IMUs without the need for altimeters like LIDAR
or ultrasonic sensors. These studies demonstrate that
vision-based systems can accurately measure both alti-
tude and horizontal velocity, which is expected to im-
prove landing performance. In contrast, our work does
not involve a camera and instead relies on an altime-
ter, showing that horizontal velocity can be measured
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effectively using only the OFS, IMU, and altitude sensor.
Additionally, this sensor configuration requires signifi-
cantly fewer computational resources than vision-based
systems. OFS provide a low cost and computationally
tractable approach for drone location stabilization, plat-
form navigation [12], [13], and to perform position and
velocity control, as done in this paper and in [14]. Their
effectiveness as a sensor for short-term stabilization has
been established [15], but their applicability for long-
term positioning is still under active research. Studies
assessing the potential of OFS for position estimation,
particularly when fused with other sensor systems, are
found in [13] and [16].

This paper presents a new mathematical model for
an OFS (the Truth Model) and compares this model to
experimentally measured sensor data captured over a
range of operating conditions that would be typical when
the OFS is mounted on a drone, i.e., limited altitude, lim-
ited velocity, and limited roll and pitch tilt angles, i.e., less
than 25◦.This newOFSmodel is shownherein to provide
good results for several test cases that fall within this op-
erating envelope.

This paper also presents a horizontal velocity control
system design for rotary wing UAVs based on the new
OFS model. This design involves a velocity sensor equa-
tion that combines the output of the OFS with angular
rate data given by an IMU, and from these produces a
measure of the drone platform horizontal translational
velocity in two dimensions. A simulation study is per-
formed to assess the impact that OFS pixel quanization
has on control system performance. The velocity sensor
and control design presented herein assumes that plat-
form’s altitude above the ground is known,and available
as an input to the velocity sensor. Altitude data is as-
sumed to be provided, for example, by a separate device
such as a sonar or radar altimeter. Two single-axis mod-
els are applied to generate the 2D output from a single
two-axis OFS.

To assess the OFS’s response to changes in the phys-
ical environment, we constructed a linear rail setup to
observe the OFS’s output at various sensor velocities
and altitudes. Experiments were also conducted to de-
termine the sensor’s resilience to environmental fluctu-
ations, varying light levels, and surface textures. These
test results are reported herein, and the results are used
to validate the new OFS model proposed herein.

A Simulink model of the physical plant (i.e., a fixed-
wing UAV), the proposed velocity sensor, the OFS,
and the Control Law were constructed to evaluate this
system’s performance. It is a single-axis, continuous-
time dynamic model of a UAV’s horizontal motion
and includes an IMU model, a hybrid (continuous-time,
discrete-time) model of an OFS, and a discrete-time
proportional–integral (PI) controller. Performance has
been assessed in three scenarios: a step response in com-
manded velocity, a response to a wind gust, and the
tracking of very slow velocity commands. Each scenario
demonstrates an important drone control quality that is

Figure 1. Scene velocity as a function of platform linear and angular
velocities.

facilitated by the OFS. The results demonstrate (a) the
rapid response rise time of approximately 1 s, (b) the de-
tection and rejection of location perturbations caused by
wind, and (c) the control of velocity at very low velocity
setpoint levels.These results indicate that the control de-
sign approach proposed here is an effective method for
controlling a drone’s horizontal velocity.

Section II outlines the problem formulation and fun-
damentalOFS equations,detailing theOFSTruthModel
and Velocity Sensor Model for control. Section III, Ex-
perimental Setup, covers the linear velocity rail system,
IMU,and PMW3901OFS.Section IV,Simulated andEx-
perimental OFS Results and Comparison, compares ex-
perimental results with simulations, including constant
velocity tests, oscillatory motion, and additional testing.
Section V discusses the control design, plant dynam-
ics, and simulation results, including step response, wind
gust response, and slow movement. Finally, Section VI
presents conclusions.

II. PROBLEM FORMULATION AND SENSOR MODEL

The problem under consideration is illustrated in
Fig. 1, which portrays a drone equipped with an OFS as-
sembly at an altitude A, moving with horizontal veloc-
ity Vx, and rotating with angular velocity ωy about the
y axis. The platform’s translational motion is limited to
motion along the x axis, and the pitch angle θ is assumed
to be small, i.e., less than 25◦ in magnitude. The sensor’s
field of view (FOV) is centered at the location where the
zB and x axes intersect. The platform body coordinate
frame contains axes xB and zB (yB is not shown).

The pinhole model of the image motion observed by
an OFS, given in [15], is often used to mathematically
characterize the output of this device. This model de-
fines the instantaneous velocity of the image falling on
the image plane at a pixel located at (x, y) on the im-
age plane with focal distance f . This pixel velocity field,
also called the optical flow field, is represented symboli-
cally asP(x, y, f ) = {δx, δy},where δx and δy are the com-
ponents of the optical flow velocity vector on the image
plane at location (x, y). The detailed derivation of these
linear, continuous-time velocities is provided in [15] and
expressed as:

δx = Vzx−Vx f
A

− ωy f + ωzy+ ωxxy− ωyx2

f
, (1)
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δy = Vzy−Vy f
A

+ ωx f − ωzx+ ωxy2 − ωyxy
f

, (2)

where A is the distance from the OFS to the ground,
i.e., the altitude. As noted in [15], however, an OFS pro-
duces a single pair of values at every sample time and
not the velocities being observed at each pixel over the
field of the image plane. An OFS device and process-
ing algorithm generate, in a sense, the mean of the opti-
cal flow field in a central neighborhood of pixels around
the center point at pixel P(0, 0, f ). Thus, it is sensible to
compute the output of an OFS device, as noted in [15],
using the velocity values given by (δx, δy) at the point
P(0, 0, f ). After substituting this point into equations
(1) and (2), we find:

δx = −Vx f
A

− ωy f, (3)

δy = −Vy f
A

+ ωx f, (4)

Noting that δx and δy are linear velocities of a pixel at an
orthogonal distance f , we can divide equations (3) and
(4) through by f and use angular velocities �x = δx

f and

�y = δy

f :

�x = −Vx
A

− ωy, (5)

�y = −Vy
A

+ ωx. (6)

This allows us to work in terms of the angular velocity of
the OFS body, a more natural and physically observable
quantity associated withOFSmotion rather than the lin-
ear translational optical flow present on the image plane.
Here, equation (6) applies to Fig. 1, while equation (5)
pertains to translational motion along the y axis and is
not pictured. The problem formulation for that case is
analogous to that of the x axis but involves the assem-
bly’s velocity in the y direction and roll angular veloc-
ity about the x axis. These are the equations we carry
forward into the development of the hybrid continuous-
time and discrete-time model of the OFS output. Refer-
ence [15] also includes a discrete-timeOFSmodel.A key
difference between that model and the one being pre-
sented here is that this newmodel incorporates the finite
resolution and quantization associated with the pixels.
Additionally, our model computes the quantized angu-
lar displacement observed by the sensor and the change
in image angle from one image frame to the next. Thus,
it does not quantize the instantaneous angular velocity
appearing near the center of the image frame, but quan-
tizes the integrated, continuous-time velocity (i.e., accu-
mulated angular displacement up to the time when the
most recent image frame is captured).

A. OFS Truth Model

The model created to represent the OFS output is
one that involves the integral of the angular rate of the

scene. Since both equations (5) and (6) are very simi-
lar,we will continue with only equation (5),dropping the
subscripts for clarity. Equation (5) is then:

� = −ω − V
A

, (7)

where � is the scene angular velocity, ω is the angular
velocity of the sensor body,V is the sensor translational
velocity, and A is the sensor distance (or altitude) from
the scene being observed (i.e., the ground). Integrating
this to produce an angle:

φ(t) =
∫ t

t0

(
−ω − V

A

)
dt, (8)

where ω,V, and A are functions of the continuous time
variable t.

To produce the sensor output, we integrate φ(t) to
the frame time kT at frame index k, quantizing to the
quantization step size Q, and generate the difference in
the quantized result:

φ(kT ) =
∫ kT

t0

(
−ω − V

A

)
dt, (9)

Xk = floor
(

φk

Q

)
, (10)

�Xk = Xk −Xk−1. (11)

This value,�Xk, is what comes out of the sensor to rep-
resent motion of the scene in one direction. It is an inte-
ger value and has units of counts. There is an equivalent
equations for �Yk, representing motion in the other or-
thogonal direction.

B. Sensor Model for Conversion to Linear Velocity

To convert from the sensor output’s change in scene
angle�Xk to linear velocity,we integrate the scene angle
over a single frame time period:

�φk =
∫ kT

(k−1)T

(
−ω − V

A

)
dt. (12)

To generate this integrated result,we assume that the
inputs are constant over the very short time period T :

�φk = −ωkT − Vk
Ak

T. (13)

The angular rate ωk is the pitch angular velocity and
is provided by the IMU. The altitude Ak is assumed to
be known, provided by an altitude sensor, which can be
a barometric altimeter’s measure of the distance above
the take-off altitude, assuming that the ground is rel-
atively flat. Equation (11) is converted from units of
counts to units of radians (angle) using the quantization
step size:

�φk = �XkQ. (14)
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Table I
Linear Rail Test Bed Hardware Component

Component type Specifications

PMW3901MB (2-axis optical flow sensor) Measurement range: 80 mm-infinity, 4-Wire SPI @ 2 MHz
HC-SR04 (Ultrasonic ranging sensor) Measurement range: 2 cm–400 cm, eight 40 kHz signal transmit and detect.
2× Atmega328P (Arduino) Low power AVR 8-bit microcontroller, 32K bytes of progammable flash memory, and

support of SPI/I2C communication.
DRV8825 (stepper motor driver IC) Rated for 2.5 A max current, and a resolution of 32 microsteps.
ZD-0029 R REIFENG (limit switch) Connect VCC (ramps of +); Black line: Connect GND(ramps of -); Green line: Connect

SIGNAL(ramps in s).
Nema 17 stepper motor Bipolar stepper, Step Angle: 1.8deg, with a holding torque of 45 Ncm (63.74oz.in)
AC/DC power supply 110/220 V AC in, adjustable up to 12 V 30 A out.

Combining equations (13) and (14) and solving for ve-
locityVk:

Vk =
[
−ωk − �Xk

(
Q
T

)]
Ak. (15)

This is the equation that will be used to produce a veloc-
ity measurement that will serve as the feedback signal
for velocity control.

The OFS is an imaging device that generates pixel
flow measurements from the scene in view. By compar-
ing pixel content between successive frames of an image,
the direction and speed ofmotion of the image are deter-
mined within the sensor. Consider the case in which the
scene is moving by several pixels in distance from one
frame to the next,with a frame capture time of 20ms (i.e.,
50 Hz). The delta-angle output produced by the sensor
is an integer count value representing the angular rota-
tion measured between the two frame images, quantized
to an integer representing the pixel size. The fractional
part of the motion is removed from the output by quan-
tization.When the motion is slow enough so that it takes
more than 20 ms to move a signal pixel, then the output
data toggles between 0 and 1 with a duty cycle that de-
pends on velocity. If motion is very slow so that it takes
several frames, e.g., 10, to move by a single pixel, then
the output will sit at zero (0) counts until the scene fi-
nally reaches a distance of one pixel, and at that sample
time it will output a change of 1 pixel, then it will drop
back to outputting zeros while moving to the next pixel
quantum distance.

The OFS’s quantization of angular position has an
advantage over that of a sensor that measured angu-
lar velocity; the OFS does not introduce an accumulat-
ing error due to quantization. A velocity sensor, on the
other hand, could experience an angular rate that re-
mains within one quantum,and thatmotionwould never
be evident in the sensor’s output. The OFS instead is
sensing angular displacement, or the integral of the an-
gular rate, and detecting the change in that angle from
frame to frame, so that even the smallest angular rate in-
put is eventually detected when that motion reaches an
angular displacement of one pixel. The sensor outputs a
count value of 1 when the distance accumulated exceeds

another quantization step size.When the sensor is mov-
ing slowly and therefore the scene is moving slowly over
the focal plane, the sensor produces a stream of 0’s punc-
tuated with a periodic value of 1 count that occurs when
the distance traversed reaches a distance equaling one
pixel.

III. EXPERIMENTAL SETUP

A. Linear Velocity Rail System

We evaluated the PMW3901 sensor’s ability to adapt
to environmental changes in light intensity, surface tex-
ture, and altitude using a linear rail system with 80/20
aluminum extrusion bars, powered by a Nema 17 step-
per motor and a DRV8825 stepper driver.

The PMW3901 collects 2D displacement data, and
an HC-SR04 ultrasonic sensor is used to measure al-
titude. This setup is most effective for distances under
5 m. A powered rail sliding mechanism replicates lin-
ear flight along a single axis using 80/20 aluminum extru-
sion rods and a stepper motor-powered belt drive. Two
Atmega328P (Arduino) microcontrollers handle data
collection and slider motion. The stepper motor, driven
by a DRV8825 driver IC and powered by a 12V, 30A
power supply,determines the slider position using a limit
switch for homing the slider and tracking individual step-
per motor steps. The setup can be placed on sawhorses
to simulate varying altitudes. The hardware components
of the linear rail test bed are detailed in Table I, while
the system layout is depicted in Fig. 2.

B. Inertial Measurement Unit

An IMUmeasures the linear accelerations and angu-
lar rotational rates that occur along a coordinate frame
that is attached to the IMU body. This body frame ro-
tates with the IMU itself. Since the IMU senses 3 axes
of rate and acceleration, it is referred to as a 6-axis sen-
sor.A model of the IMU can be found in [17]. This IMU
was not integrated with the experimental test setup but
will be used in hardware testing that will involve both
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Figure 2. Linear rail system with stepper-driven belt drive.

Figure 3. The VN-100 IMU/AHRS by VectorNav technologies.

the OFS and IMU. It is described here, therefore, for
reference.

1) VN-100 IMU/AHRS Sensor Specifications: The
VN-100, manufactured by VectorNav Technologies,
shown in Fig. 3, is an example of an IMU that is com-
monly used in applications such as UAVs, drones, and
robotics. Tables II and III provide details of its per-
formance specifications and attitude/heave capabilities.
The VN-100’s compact size and low power consumption
make it an attractive option for use in small or portable
devices where space and power are limited. Linear ac-
celerations measured by the IMU must be transformed
from the IMU body to a navigation frame, corrected for
gravity, and integrated to produce platform velocity and
position. As noted, IMU sensor noise causes the dead-
reckoning navigation solution to deviate from the cor-
rect solutionwith a randomwalk type of error that grows
with time and is unbounded. To constraint the growth
of these drift errors, an aided inertial navigation algo-
rithm will utilize measurement data provided by addi-
tional sensors to improve or aid the solution produced
by the IMU alone.Sensor data may include, for example,
optical flow,measurement of platform ground speed, air

Table III
The VN-100 IMU Attitude and Heave Performance

Specification Value

Range (heading/yaw, roll) ±180◦
Range (pitch) ±90◦
Heading (magnetic) 2.0◦ RMS
Pitch/roll (static) 0.5◦ RMS
Pitch/roll (dynamic) 1.0◦ RMS
Heave accuracy 5% or 5 cm
Delayed heave accuracy 2% or 2 cm
Angular resolution 0.001◦

speed,altitude above ground, range to a specific location,
etc.

C. OFS Model

The Pimoroni PMW3901 OFS, shown in Fig. 4, is
an example of an embedded light-tracking optical sen-
sor. It captures a collection of pixel displacement values
known as an optical flow field, and then averages this
field over a region at the center of the sensor’s Field of
View, producing what is designated a pixel vector with x
and y components. The Pimoroni sensor data sheet indi-
cates that the sensor has a Field of View (FOV) of 42◦,
(±21◦).Detailed specifications of the PMW3901Optical
Flow Sensor are provided in Table IV. From a series of
tests at varying velocities during which the sensor pixel
vector outputs were captured, it was observed that the
PMW3901 must move a minimum of 0.0015 radians to
register a new output with a change of 1 pixel count. The
flow vectors producedwithin the sensor in either the x or

Table II
Sensor Performance Specifications

Specification Accelerometer Gyroscope Magnetometer Barometer

Range ±16 g ±2000◦/s ±2.5 Gauss 10–1200 mbar
In-run bias stability <0.04 mg <10◦/h - -
Noise density 0.14 mg/

√
Hz 0.0035◦/s/

√
Hz 140 µGauss/

√
Hz -

Bandwidth 260 Hz 256 Hz 200 Hz 200 Hz
Cross-axis sensitivity ±0.05◦ <0.05◦ ±0.05◦ -
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Figure 4. The Pimoroni PMW3901 optical flow sensor.

y direction must separately average to this quantization
level to produce a new pixel count of 1. A key feature
of the sensor is that it is not measuring velocity but is
measuring a change in the location of the scene.

IV. SIMULATED AND EXPERIMENTAL OFS RESULTS
AND COMPARISON

A. Constant Velocity Tests at Fixed Altitudes

This section contains the results of the experiments
performed to assess the PMW3901 sensor’s ability to
provide useful velocity and displacement measurement
data at various speeds and over a range of fixed altitudes.
This evaluation was primarily focused on understanding
the sensor’s performance when altitude is known, with
the aim of gauging the reliability of its raw data output.
Tests were conducted on the linear rail system described
above. In this first set of tests, the sensor was moved at a
constant velocity from one end of the rail system to the
other.Sensor output data was captured for a brief period
before motion began and ended after motion stopped
at the other end. Hardware tests and simulations were
run at four velocities: 0.05, 0.1, 0.2, and 0.3 m/sec, all with
a sampling frequency of 50 Hz and all at a distance of
0.66 m between the OFS and the ground scene. These
results are given in Fig. 5.

For an input velocity setpoint of 0.05 m/s on the
rail system, the OFS model produces an output hav-
ing a mean value of 1.016 counts/sample when motion
is occurring (4.7–15.4 s). In all four cases, the mean
“counts/sample” values shown on each plot were com-
puted over the time periods of OFS motion. Multipli-
cation by the sample rate of 50 samples/s produces the
sensor’s Output Rate in counts/s, the third column of
Table V. For example: 1.016 counts/sample × 50 sam-
ples/s = 50.8 counts/s.

Table IV
Specifications of the PMW3901 Optical Flow Sensor

Specification Value

Field of view (FOV) 42◦ (±21◦)
Minimum radian change for output ≈ 0.0015 radians
Frame time 20 ms (50 Hz)
Quantization level for output 1 pixel count
Motion detection type Angular displacement

Table V
Sensor Raw Output Parameters and Derived Quantization Step Size

Velocity True angular rate � Output rate Quant step—Q
(m/s) (radians/s) (counts/s) (radians/count)

0.05 0.076 50.8 0.001501
0.1 0.152 102.5 0.001483
0.2 0.303 199 0.001522
0.3 0.455 294 0.001548

To generate the quantization step size Q, we use the
relation:

Q · (Output Rate) = �

radians
count

· counts
s

= radians
s

.
(16)

The true angular rate � is computed with equation
(5) with ωy = 0 (the OFS was not rotating):

�x = −Vx
A

. (17)

For an altitude of 0.66 m and the velocity setpoint
values of column 1, negated since the rail system veloc-
ities were in the negative direction, one computes the
quantization step size given in column 4, which differ
slightly due to random error present in the test setup.

The mean Quantization Step Q for the PMW3901
computed by averaging these values is thus 0.0015 radi-
ans/count or 0.086 deg/count. This value has been used
in the optical sensor model as well as in the computation
of platform velocity from sensor output data.The jumpi-
ness in this data is due in part to the pixel quantization;
however, quantization error does not account for all of
the “noise” that is observed. It is conjectured that this
jumpiness represents real velocity perturbations caused
by stepper motor velocity jitter and imperfections in the
test setup. In addition, there may be additive measure-
ment error contributed by the sensor itself. Our suspi-
cion,however, is that the hashiness in themeasuredOFS
output data is caused primarily by actual velocity pertur-
bations.TheOFS output can be used tomeasure transla-
tion displacement by summing the �Xk values. This was
done for all 4 velocity test cases, with the results shown
here in Fig. 6.

These summed outputs reach values of 526, 521, 506,
and 504 counts for the four velocities of 0.5, 1.0, 2.0, and
3.0, respectively. Converting from counts to distance us-
ing the formulaQA (

∑
�Xk) produces a set of distance

measurements ranging from 0.52 to 0.05 m, a difference
of 4%.

B. Comparison to Simulation

The OFS Truth Model developed in Section II and
defined in equations (9)–(11) is shown here in Fig. 7 as a
Simulink model in block diagram form.

The results produced by this model are compared to
the experimental results plotted in Fig. 5 first by driv-
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Figure 5. Optical flow sensor output on one axis during rail testing with approximately constant linear velocities.

ing the model with a purely constant velocity of 0.5 m/s,
and second by driving the model with a velocity profile
derived from the experimentally captured �Xk samples,
creating a piecewise constant, continuous-time velocity
signal as �Xk/�T . The results of the simulations are
given in Fig. 8, with the constant velocity results on the

Figure 6. Running sum (discrete integration) of OFS output samples
for four velocity setpoints.

left, and the experimentally measured velocity data on
the right.

For the constant velocity case, the OFS models’ out-
put is very regular and periodic, giving an output of 1
countmost often, separated by an occasional output of 0.
For the case on the right, in which the velocity is derived
from the experimental data, the OFSmodel produces an
output that precisely matches the output of the actual
physical OFS device (see Fig. 5). This indicates that the
model faithfully represents what is happening within the
OFS in this scenario, i.e., constant velocity, low altitude,
and zero angular velocity conditions. It should be noted
that the new model produces results that match the out-
put of the OFS when driving it with velocity time histo-
ries derived from the data of the other “constant” veloc-
ity cases. Since the simulated OFS outputs matched the
experimental data of Fig. 5, they are not replotted here.

C. Test Results with Oscillatory Input Motion and
Varying Altitude

Dependence of SensorOutput Flow onAltitude:Tests
were performed to highlight the impact of altitude on the
magnitude of flow vectors and the level of noise present
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Figure 7. The OFS truth model.

Figure 8. Comparison of OFS model outputs for constant and variable velocity, experimentally measured velocity data, velocity setpoint of
0.5 m/s.

in the data. These observations underscored the signif-
icance of altitude adjustments in accurately computing
platform velocity. In this test, the rail system was mov-
ing in a triangular manner with directions of travel re-
versals separated by periods of constant velocity magni-
tudes of 0.02 m/s. The sample frequency was 25 Hz, so

in a single sample, the slider moved 0.8 mm. At a dis-
tance of 17 cm above the ground, this equates to an an-
gular change of 47 mrad (8e−4/17e−3). Given the quan-
tization size Q = 0.0015 rad/count, this leads to an
estimated �Xk optical flow count [see equation (11)]
of 0.047/0.0015 = 31.4 counts/sample. As noted in

Figure 9. Sensor output data during periodic, constant velocity triangular wave motion at two altitudes, 17 and 62.5 cm.
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Fig. 9a, the output is nominally equal to this expected
output level. When elevated to 62.5 cm, the angular
change becomes 12.8 mrad, and the output nominally
8.5 counts/sample. This is clearly reflected in the plot of
Fig. 9(b).

D. Additional Characterization Tests

To better understand the impact of quantization and
altitude,we expanded our experimental study to include
other environmental variables to verify if consistent ve-
locity readings are maintained at a fixed altitude.

1) Light Level Tests: Given the OFS’s reliance on
shadow changes for velocity determination, we exam-
ined how varying light conditions affect displacement
accuracy. Two tests evaluated the PMW3901MB sen-
sor’s performance under different lighting: one at dusk
and another in direct sunlight, both at 0.66 m altitude.
The observed displacements were 0.59 m and 0.57 m, re-
spectively, demonstrating the sensor’s ability to produce
comparable displacement readings across light levels.

2) Surface Quality Tests: The sensor’s response to
surface texture was also assessed, given the significance
of landmarks and texture in displacement detection.
Two scenarios were compared:one with a checkerboard-
taped grid surface and another over a wooden floor. The
displacement estimations were 0.61 m for the textured
surface and 0.58 m for the nontextured, with the actual
displacement set at 0.6 m. Interestingly, flow counts var-
ied significantly between surfaces, with nontextured sur-
faces eliciting larger vector magnitudes due to fewer but
more pronounced feature changes.

V. HORIZONTAL HOLD CONTROL DESIGN AND
SIMULATION TESTING

A. Plant Dynamics

The OFS model developed above has been used in
two ways. First, to create a Sensor Truth Model for use
in simulation of the system involving the sensor. Sec-
ondly, to produce an algorithm for converting the OFS
output signals to translational velocity measurements.
These measurements in the x- and y-directions are used
in generating the control signals that act to drive the
drone velocity to zero, thereby holding the drone steady,
or to some non-zero setpoint velocity provided by the
pilot. A single-axis controller is developed and applied
separately to each axis. One controls the translational
motion of the drone in the Fwd-Rev direction, and the
other controls the Left-Right translational motion.

To produce a dynamic model of the drone along a
single axis, we assume that the platform has two degrees
of freedom: translation along one axis (x-axis) and rota-
tional about an axis that is perpendicular to the x-axis
and horizontal (i.e. the pitch axis). A diagram of the
drone is given below in Fig. 10. We assume the drone is

Figure 10. Free-body diagram of drone—single-axis horizontal
motion.

not accelerating vertically, and therefore the weight of
the drone is equal to the component of thrust in the ver-
tical direction (FV ). The thrust of the props (FT ) has ver-
tical component

FV = FT cos(θ ) (18)

and horizontal component

FH = −FT sin(θ ). (19)

The horizontal component of thrust causes the drone
to accelerate. The vertical causes it to remain at a fixed
altitude.

Since

FV = mg, (20)

we have:

FT = mg
cos(θ )

, (21)

FH = −FT sin(θ )

= −
(

mg
cos(θ )

)
sin(θ ),

= −mg tan(θ ) (22)

Using Newton’s second law, the sum of the forces acting
on a body along an axis equals the change in momentum
along that axis ∑

F = mẍ (23)

leads to:

mẍ = FH + FW (24)

= −mg tan(θ ) + FW , (25)

where FW is the disturbance force due, for example, to
wind gusts.

The dynamic angular response of the platform is as-
sumed to be governed by a pitch control system having a
second-order response with a rise time of 0.3 s. The cor-
responding second-order system is:

θ

u
= �2

p

s2 + 2ζ�ps+ �2
p

(26)
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with �p = 5.4 rad/s and ζ = 0.71. In this model, the in-
put u is the commanded pitch angle, or the pitch angle
setpoint.

The following state vector is defined:

x = [
ω θ v x

]′ = [
x1 x2 x3 x4

]′
, (27)

which leads to the following state space model:

ẋ1 = �2
p (u− x2) − 2ζ�pẋ1

ẋ2 = x1

ẋ3 = −g tan (x2) + FW

ẋ4 = x3, (28)

where FW is the force of the wind and u is the control
input.

B. Simulink Simulation Model and Control Design

A model of the single-axis translational motion of
a drone platform, the OFS, IMU, and Proportional-
Integral-Derivative (PID) controller was developed,
with the top level block diagram shown in Fig. 11.

A velocity setpoint, shown at left, is the signal in-
jected by the drone pilot. This command is compared to
the velocity achieved to produce an error signal, which
enters a PI controller producing a commanded pitch an-
gle u same as in equation (28) into the plant.

TheOFSblock content is provided in Fig.7.The IMU
model is pictured in Fig. 14.

The coefficients and parameters required to simu-
late this model and reproduce the results presented in
this paper are detailed in Table VI. A PI controller was
designed with gains specifically chosen to achieve a 1 s
step response rise time and sufficient integral action to
mitigate the effects of constant wind disturbances. The
PI controller coefficients, along with other essential pa-
rameters, including the UAV’s rotational dynamic coef-
ficients for an attitude-stabilized quadcopter, are pro-
vided in Table VI. These parameters were used in the
simulations model of Figs. 7 and 11–15, and simulation
results of Figs. 16 and 17.

Figure 12. Controller with proportional and integral paths, and pitch
angle command saturation.

C. Simulation Test Results

Simulation tests were performed to assess the effec-
tiveness of a horizontal velocity control system for a
drone, incorporating the OFS and an IMU. The results
were generated using the single-axis dynamic model
discussed earlier, a model that includes a continuous-
time fourth-order representation of plant dynamics and
discrete-time models for the OFS, IMU, and the digi-
tally implemented PI controller.Both sensors operate at
a frequency of 50 Hz, and each sensor model includes
a computational latency of one sample period, 20 ms.
There are no other impairments or noise sources added
to the sensor outputs.

D. Step Response in Velocity

The step response test is conducted to ensure that
the system responds to changes in velocity setpoints with
an appropriate speed of response sufficient to meet a
drone pilot’s expectations for responsiveness yet avoid-
ing jerky or erratic behavior. The results of this simu-
lation test are presented in Fig. 16. At the 5 s mark, a
step change command is initiated by the pilot, command-
ing a velocity change from 0 to 2 m/s. This is shown in
Fig. 16(a) where we see that the velocity increases from
0 to 2 m/s with a rising time of less than 1 s and a setting
time of about 2 s. The true velocity exceeds the setpoint
with an acceptable level of overshoot, settling at 2 m/s
as desired. To effect this change, the controller caused
the platform’s pitch angle to drop to −20◦ as shown in
Fig. 16(b). The drone then pitches forward and acceler-
ates along the positive x-axis. During this transient re-
sponse, the OFS and IMU generated outputs are de-
picted in Fig. 16(c) and (d), respectively.

Figure 11. Control system model with single-axis drone (plant) and sensors.
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Table VI
Simulation Model Parameters

Figure 13. Plant model based on drone dynamics.

E. Response to a Wind Gust

The purpose of the wind gust test is to verify that the
controlled system’s response to a wind gust is acceptably
small. The results of this simulation test are as follows:
Commencing at 5 s, a headwind force of 4 Newtons is
applied, representing a significant force relative to the
drone’s weight of 22 Newtons. The headwind drives the
drone backward and the velocity sensed is negative as
shown in Fig. 17(a). In response to this horizontal veloc-
ity disturbance, the controller initiates a 10◦ downward
pitch, as illustrated in Fig. 17(b), to counteract the wind.
The drone is driven backwards a distance of about 2.7
m at which point it comes to a halt with zero velocity.
The integral part of the PI controller has developed a
10◦ pitch angle to hold the drone against the headwind.
The pilot can command the drone to follow a positive
velocity setpoint if they wish to move the drone back to

Figure 14. Inertial measurement unit Simulink block diagram.

its original location. The OFS output during this time is
shown in Fig. 17(d).

F. Very Slow Movement

The very slow movement test is designated to ver-
ify that the highly quantized output from the OFS is ad-
equate to enable the velocity controller to induce ex-
tremely low-velocity horizontal motion. The results of
this simulation test are illustrated in Fig. 18.The velocity-
commanded setpoint transitions from 0 to 1 cm/s at 2 s
[see Fig. 18(a)]. At this speed, the drone moves at a
barely perceptible pace. The resulting OFS output is a
pulse stream with a very low duty cycle, as shown in
Fig. 19, with pulses that alternate between 0 and −1 at a
rate of approximately 7 Hz.Noting that we are sampling
the sensor’s output at a rate of 50 Hz, this stream is pro-
ducing one count over a period of 7 or 8 samples. The re-
sults show that the controller achieves the commanded 1
cm/s velocity as noted in Fig. 18(a).Although the pulsing
introduces some jumpiness in the control signal (pitch
angle command), the plant’s dynamics effectively filter
out this “noise,” resulting in a smooth achieved veloc-
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Figure 15. Velocity sensor Simulink block diagram.

ity. The IMU’s Pitch Rate output during this period is
presented in Fig. 18(d).The successful completion of this
test indicates that the OFS’s output is indeed adequate
for the velocity controller to induce and regulate ex-
tremely low-velocity horizontal motion, thereby affirm-
ing its suitability for tasks that demand high levels of pre-
cision and control.

Zooming into the OFS output in Fig. 19, we see that
it does not produce a non-zero output for 0.7 s after the
commanded step change at 2 s. During this period, the
sensor has not yet experienced sufficient motion to gen-
erate an output. Subsequently, once the output initiates,

the sensor produces a pulsed signal stream with a low -
duty cycle. The average output is effectively a fraction of
one count.

VI. CONCLUSIONS AND FUTURE WORK

The ability to effectively process and integrate data
from a diverse set of sensors is important in UAV navi-
gation, localization, and control, and can improve system
operational performance and safety. In this paper, a new
OFS model was presented, a model that captures the
impact of pixel quantization and uses platform angular

Figure 16. Step response in velocity.
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Figure 17. Response to wind gust.

Figure 18. Very slow commanded velocity of 1 cm/s (0.01 m/s).
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Figure 19. Optical flow sensor output during very slow commanded
velocity of 10 cm/s.

rate and linear velocity to generate the OFS output.This
model accurately reflects a key feature of the sensor—
the fact that it is measuring angular displacement rather
than angular velocity. How this impacts platform hori-
zontal velocity control is discussed.From this newmodel,
a velocity measurement equation was derived that fuses
platform IMU and OFS data. The combination of data
from these sensors has been shown to enable the gener-
ation of accurate velocity estimates in two dimensions, a
feature particularly beneficial in GPS-compromised en-
vironments. Using this velocity measurement as feed-
back, a control system for horizontally stabilizing drone
location has been proposed.Future workwill include the
assessment of IMU bias and random noise error on hor-
izontal hold control system performance.
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A Multiple Extended Object
Tracker with the Gaussian
Process Model Utilizing
Negative Information

MARTIN BAERVELDT
MICHAEL ERNESTO LÓPEZ
EDMUND FØRLAND BREKKE

In multiple extended object tracking, the Poisson multi-Bernoulli

mixture (PMBM) tracker is considered state-of-the-art. Originally, it

was presented with the gamma Gaussian inverse Wishart (GGIW)

target model, which is a random matrix model. When track-

ing larger objects using a light detection and ranging (LiDAR)

sensor, measurements are generated by the contour rather than

the whole target surface, and it is beneficial to model this with

the target model. A target model that has this capability is the

Gaussian process (GP) extent model. This paper presents a PMBM

tracker using this target model.We also discuss considerations related

to the use of the GP model in the PMBM framework. Secondly, we

present improvements in the target model that increase the robust-

ness of the model by dealing with the inherent non-linearities using

the Gauss–Newton method. Furthermore, we incorporate an improve-

ment to the tracker that utilizes the concept of negative information

to generate virtual measurements that are then used in the Gauss–

Newton optimization. In relation to this, we also present an occlusion

model that utilizes the same negative informationmodel to ensure that

the state estimate is consistent in the presence of occluding targets.
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The presented methods are compared to the GGIW-PMBM tracker

on simulated and real LiDAR data gathered from maritime vessels.

The results show that the GP model outperforms the GGIW model

by providing a better estimate of the extent and more accurate track-

ing, asmeasured by theGOSPAmetric.Utilizing negative information

for state estimation and occlusion modeling further improves the state

estimate and tracking performance.

I. INTRODUCTION

Target tracking, the issue of estimating the kine-
matic state of one or several objects, has long used the
point approximation when parsing sensor data. With
the advent of high-resolution sensors, it is now com-
mon that a measurement source gives rise to multiple
measurements. This has given rise to extended object
tracking models, which enable the modeling of a target’s
extent in addition to its kinematic properties by infer-
ring information from the spatial distribution of these
measurements [1]. Initial approaches assumed that the
spatial distribution of the measurements could be mod-
eled by a Gaussian distribution around the center of
the target extent. This results in an estimated ellipsoidal
extent [2]. This is known as the random matrix model.
A version of this model, the gamma Gaussian inverse
Wishart (GGIW) model, was used to demonstrate
an extended object Poisson multi-Bernoulli mixture
(PMBM) filter [3] based on the original PMBM filter
[4]. This filter has also been used with a set of trajectory
framework [5]. Work has also been conducted to inves-
tigate improvements with regard to data association [6]
and reducing complexity by approximating the PMBM
posterior as a PMB [7]. In [8], a factor graph represen-
tation of the PMBM posterior was used to present a
PMB filter using the particle belief propagation method
presented in [9]. However, the random matrix model is
not the only target model for extended objects.Another
method, the random hypersurface model,models the ex-
tent using star-convex shapes and represents the shape
using a parametrization of the contour [10]. This enables
the modeling of more complex shapes. It also allows an
easier way to model measurements that originate from
the contour, such as measurements generated by an
LiDAR sensor. The most promising and investigated of
these models uses Gaussian processes (GP) to estimate
the extent [11]. This model has been further improved
with different estimation methods [12], [13] and aug-
mented with the use of virtual measurements that use
negative information [14].

The GP model has also been used to implement
multi-object tracking filters, such as the δ-GLMB filter
[15] and the probability hypothesis density (PHD) filter
[16]. In previous work comparing different filter struc-
tures, it has been shown that the PMBM has a more ef-
ficient structure and it can initialize a track faster with
its Poisson birth model as compared to Bernoulli birth
models [17].

88 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 19, NO. 2 DECEMBER 2024



A key challenge to consider for multiple extended
object tracking is occlusion, since this will cause objects
to not generate measurements. Previous methods have
looked at the specific target model and calculated a non-
constant probability of detection [18], [19] based on the
state of other targets using the GGIW model; this has
also been done in the context of the extended object
PMBM filter [3]. Another approach was presented in
[20], which calculates an occlusion likelihood based on
random variables inferred from the current set of targets.
This occlusion likelihood is represented by a Gaussian
mixture, which can be used to update the state of unde-
tected objects, infer the existence of objects, and inform
data association.

In this paper, we aim to present an extended object
PMBMtracker using theGP targetmodel with the appli-
cable prediction and update formulas. We also provide
an example of a Poisson birth density for the GP tar-
get model. Furthermore, we introduce an improvement
to dealing with the nonlinearity of the measurement
model for the GP target model. In addition, we present
a method to incorporate negative information into the
estimate of object states for this model by the use of vir-
tual measurements, similar to the method in [14]. To en-
sure that this can be utilized in a multi-object context,
we also utilize these virtual measurements to model tar-
get occlusion. Finally, we show the application of the de-
veloped tracker on LiDAR data gathered by tracking
smaller maritime vessels. This article is an extension of
[21] with the additional inclusion of the method of us-
ing negative information for state estimation and occlu-
sion handling, as well as a refined criterion for initializa-
tion for the Gauss–Newton (GN) optimization. It also
includes amore complex simulation scenario and amore
detailed exposition of the method. The article is orga-
nized as follows: In Section II, we introduce the relevant
theory and previous work, and in Section III, we present
the improvement to the GP target model, along with the
incorporation of negative information into the state es-
timation. In Section IV, we present the applicable pre-
diction and update formulas for a PMBM filter utilizing
the GP target model, the specific approximations that
are used in this paper, as well as the utilization of neg-
ative information to model occlusion. In Section V, we
present the simulation study, and in Section VI, the re-
sults on the real maritime data are presented.

II. BACKGROUND

In this section, we present a summary of the method
of extent estimation usingGP presented in [11].Then we
outline the theory related to the extended object PMBM
filter, which was presented in [3].

A. Notation

In the following,we present the most significant vari-
ables as well as the notation used in this work.

NOMENCLATURE

(·)∗ Quantities related to the virtual measurements.
(·)b Quantities related to the birth process.
(·) f Quantities related to the radial function f.
(·)u Quantities related to unknown targets.
(·)un/(·)un Quantities related to nth component of the PPP intensity

of unknown targets.
(·) j,i Quantities related to the ith Bernoulli in the jth

multi-Bernoulli in an MBM.
(·)k Quantity at time step k.
α Shape parameter of gamma distribution.
β Inverse scale parameter of gamma distribution.
η f Forgetting factor for extent prediction.
ηv Occlusion correction factor for gamma distribution.
ηγ Forgetting factor for gamma prediction.
ˆ(·) Estimation of a random variable.

κmin/max The minimum and maximum angle occupied by an
extended object.

λc Clutter rate.
λm Measurement rate.
I Set of targets in a multi-Bernoulli.
I
j,i
O Set of occluding targets for target i in the jth MB.

I
j,i
pO Set of partially occluding targets for target i in the jth MB.

J Set of components in an MBM.
F Process model transition matrix.
H Measurement matrix.
h(x) Vector of predicted measurements for a target.
P State covariance matrix.
Q Process noise covariance matrix.
R Measurement noise covariance matrix.
x State space vector of a target.
xc Position of target centroid.
zk Vector of measurements for one scan at timestep k.
φ Heading of a target.
σ(·) Standard deviation of a quantity.
θ Angle used in the radial function f.
D A PPP intensity function.
f Probability density function.
f (θ ) Radial function which is estimated by a GP.
k(θ, θ ′) Covariance function for a GP.
Lj
C Likelihood of measurement cell assignment.

lC Predictive likelihood of a measurement set being assigned
to an estimated target.

PD Probability of detection.
PG Gating probability.
PO Probability of occlusion.
PS Probability of survival.
PpO Probability of partial occlusion.
QD Probability of missed detection.
r Existence probability.
T Sampling time.
vi Visibility ratio of object i.
w j Weight of the jth multi-Bernoulli in an MBM.
we Window length of gamma prediction.
zl The lth measurement in a set.
θ (G) θ defined in the global frame.
θ (L) θ defined in the local target frame.

B. Gaussian Process

AGP can be considered a distribution over functions
[22]. It is completely specified by its mean functionm(γ )
and covariance function k(γ , γ ′).Using GPs to estimate
a radial function means that we can write

f (θ ) ∼ GP(m(θ ),k(θ, θ ′)), (1)
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where f (θ ) defines the radius at angle θ .We want to es-
timate the values of this function using measurements of
only some of its values.This is amethod known asGP re-
gression.We define a vector ofN different points known
as test points � f = [θ f

1 ... θ
f
N]. Further, we define a

measurement model as

zk = f (θk) + ηk, ηk ∼ N (0,R), (2)

where zk is a measurement of the unknown function,
θk is the training input, which is the point at which the
measurement is taken, and ηk is the measurement noise.
If we have m measurements of the function, we define
z = [z1 ... zm] and their corresponding input val-
ues � = [θ1 ... θm] to learn the function values for
� f . In the original paper [11], it is shown that the state

x f =
[
f (θ f

1 ) ... f (θ f
N )
]T
, which defines the extent,

can be recursively estimated using the following state
space model:

x fk+1 = F fx fk + wk, wk ∼ N (0,Q f )

zk = H f (θk)x
f
k + ε

f
k , ε

f
k ∼ N (0,R f ).

(3)

Themeasurementmodel is in turn given by the following
matrices:

H f (θk) = K(θk,� f )
[
K(� f ,� f )

]−1

R f (θk) = k(θk, θk) + R − H f (θk)K(� f , θk),
(4)

where K in turn is defined as a covariance matrix where
the elements are made up of the elementwise evaluation
of the covariance function k(θ, θ ′). The process model is
defined by

F f = e−η f T I, Q f = (1 − e−2η f T
)
K(� f ,� f ), (5)

where T is the sampling time. The parameter for this
model is a forgetting factor η f .

1) Covariance Functions: As can be inferred from the
equations above, the covariance function is the com-
ponent that defines the GP and any prior information
about the shapes. Therefore, we want to encode the pe-
riodicity of f (θ ) in the covariance function. Such a func-
tion was presented in the original article as

k(θ, θ ′) = σ 2
f e

− 1
2l2

(
sin2 |θ−θ ′ |

2

)
+ σ 2

r . (6)

This function gives a high correlation for two function
values f (θ ) and f (θ ′) when their respective angles are
closer and a lower correlation when they are further
apart. σ f , the signal variance, defines the magnitude of
this correlation, and the length-scale l defines the dis-
tance on which it acts. σr is a constant bias term, which
can be used to formulate the GP as a zero mean GP
by stating m(θ ) ∼ N (0, σ 2

r ), integrating out m(θ ), and
adding it as a contribution to the covariance function.

It is also desirable to design a covariance function
that encodes axial symmetry since, in many cases, targets
are symmetric about the longitudinal axis. Since the lon-
gitudinal axis is defined at θ = 0, this is equivalent to an

even function. One such function can be built using the
smallest signed angle function

ssa(θ ) := π − [(π − θ )(mod2π )], (7)

i.e., ssa(θ ) is the only angle in (−π, π ] such that ssa(θ ) ≡
θ . The absolute value of this function is both 2π -periodic
and even, which is equivalent to the radial curve of f (θ )
being closed and symmetric about the longitudinal axis,
as desired.We define the symmetric covariance function
as

k(θ, θ ′) = σ 2
f e

− 1
2l2

(|ssa(θ )|−|ssa(θ ′ )|)2 + σ 2
r + σ 2

n δ(θ, θ ′), (8)

where σn is a noise term that models individual features
of a specific point, such as a sharp corner, by adding a
small term to each diagonal part of the constructed co-
variance matrix. This has the added benefit of regulariz-
ing the covariance matrix [23].

C. State Space Model for Extended Targets

To perform joint estimation of the extent and state of
the target, an augmented state space vector is defined

xk =
[
xck

T φk
(
x∗
k

T) x fk
T
]T

, (9)

where xck is the position of the centroid of the target from
which the extent is defined,φ is the heading of the target,
and x∗

k are any additional kinematic states of the target.
In the original paper, these are the velocity in each di-
rection in 2D ẋck, and the angular velocity φ̇k.We use the
same state space vector in this paper.

For this augmented state space vector, we define the
following state space description:

xk+1 = Fxk + w, w ∼ N (0,Q)

zk = hk(xk) + ηk, ηk ∼ N (0,Rk),
(10)

where zk, hk(xk), and Rk are all augmentations given by
measurements of one scan of the target

zk =
[
z1k

T
, ..., zmk

T
]T

Rk = diag
[
R1
k, ..., Rm

k

]
hk(xk) =

[
h1k(xk)

T, ..., hmk (xk)
T
]T

.

(11)

To define themeasurement equation hlk(xk) for a sin-
gle measurement zlk, we utilize the measurement equa-
tion defined by the randomhypersurfacemodel for a tar-
get contour parametrized by a function f .

zlk = xck + p(θ lk) f (θ
l
k) + ηlk

p(θ lk) =
[
cos θ lk
sin θ lk

]
,

(12)

where zlk is the measurement l at time k and θ lk is the
corresponding angle of the origin of themeasurement of
the target contour. θ lk can be expressed both in a global
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Figure 1. Visualization of the variables used in the measurement
equation of the GP target model. The global frame is defined by N -
North and E - East. The points marked with fn correspond to the n-th
element of x f , i.e., the test points, and the crosses marked with zn rep-
resents measurements of the contour. The visualized θG and θL corre-
spond to θ1k

(G)
(xck) and θ1k

(L)
(xck, φk) respectively, i.e., they are defined

for z1.

frame θ lk
(G)

and the local target frame θ lk
(L)

as

θ lk
(L)

(xck, φk) = θ lk
(G)

(xck) − φk

θ lk
(G)

(xck) = ∠ (zk,l − xck) .

(13)

Inserting the expressions for GP regression (3) into
the measurement equation (12), we attain

zlk = xck + plk(θ
l
k
(G)

(xck))H
f
(
θ lk

(L)
(xck, φk)

)
x fk + ηlk

= hlk(xk) + ηlk, ηlk ∼ N (0,Rl
k)

Rl
k = plk(θ

l
k
(G)

(xck))R
f
(
θ lk

(L)
(xck, φk)

)
plk(θ

l
k
(G)

(xck))
T + R.

(14)
This is a nonlinear measurement model and therefore
needs to be estimated using a nonlinear filtering tech-
nique. It should be noted that this is an implicit equa-
tion due to the dependence of zlk contained in θ lk

(G)
(xck).

See Fig. 1 for a graphical representation of the rela-
tionship between the variables used in the measurement
equation.

For the motion model, the motion can be described
with a linear state spacemodel and this can be combined

with the process model for the extent as

F =
[
F̄ 0
0 F f

]
,Q =

[
Q̄ 0
0 Q f

]
, (15)

where F f andQ f are given by (5), and F̄ and Q̄ are given
by themotionmodel used.For this work,we use the con-
stant velocity model combined with a constant angular
velocity. The model matrices are defined as

F̄ =
[
1 T
0 1

]
⊗ I3,

Q̄ =
[
T 3

3
T 2

2
T 2

2 T

]
⊗
⎡⎣σ 2

c 0 0
0 σ 2

c 0
0 0 σ 2

φ

⎤⎦ ,

(16)

where σc is the standard deviation of the process noise
for position and σφ is the standard deviation for the
heading angle.

D. The PMBM Filter

To model the problem of tracking multiple targets,
the PMBM filter utilizes random finite sets (RFS) to
model both the unknown number of targets and the
unknown number of measurements. The set of object
states at time k is modeled as Xk = {x1k, . . . , xnkk }
and the measurements collected at time step k are de-
fined as Zk = {z1k, . . . , zmk

k } with zlk denoting a single
measurement.

The PMBM conjugate prior is a combination of a
Poisson point process (PPP) and a multi-Bernoulli mix-
ture (MBM), where the PPP represents the targets that
have not been detectedXu

k and the MBM represents the
targets that have been detected Xd

k. A PMBM density is
fully parametrized by

Du
k, {w j

k, {r j,ik , ( f j,ik )}i∈Ik|k′ } j∈Jk|k′ , (17)

whereDu
k is the intensity function of the PPP for the un-

known targets. The Bernoulli modeling target i is repre-
sented by the probability density f j,ik , which represents
both the kinematic state and the extent of the target,
along with any additional information that can be in-
ferred from it.A Bernoulli set also contains a parameter
r that represents the existence probability of the target.
The different components in the MBM are represented
by an index j ∈ J and correspond to a data association
hypothesis with the weight w j representing the relative
likelihood of each hypothesis. Additional assumptions
are that new targets appear in the region according to
a PPP with birth intensity function Db

k, targets survive
with probability PS and evolve with a transition density
gk|k−1.Clutter is modeled as a PPPwith rate λc and a uni-
form spatial distribution. Each target is detected with a
probabilityPD and, if detected, generates measurements
according to a PPPwith rate λm(x) and a spatial distribu-
tion l(ZC|xk), given by the chosen target model.ZC is the
subset of measurements assigned to a specific measure-
ment cell C, and lC is the likelihood of this assignment.
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Recursions based on these assumptions are presented in
the original paper on the PMBM filter for extended ob-
jects [3].

E. Estimating Measurement Rate

The Poisson rate λm(x) models the cardinality of the
measurement set, i.e., the expected number of measure-
ments. The simplest assumption is a constant rate, but
this is not in good agreement with the physical reality of
many sensors, since the number of returns usually scales
by distance.A more realistic approach was developed in
[24] and has since been used as part of the GGIW target
model in several works, such as [3], [25]. It has also been
used in combination with the GP model [15]. It utilizes
that a Poisson rate can be estimated using a gamma dis-
tribution because it is the conjugate prior to the Poisson
distribution.A gamma distribution can be parametrized
by parameters α and β, where α is the shape parameter
and β is the inverse scale parameter, i.e., λm ∼ G(α, β).
These can be updated using the following recursions:

αk|k−1 = αk−1

ηγ

, βk|k−1 = βk−1

ηγ

αk = αk|k−1 + |ZC|, βk = βk|k−1 + 1.

(18)

The forgetting factor ηγ is defined as ηγ = 1
1− 1

we

, which

means that only information from the time steps within
the window length we is trusted. By estimating these
parameters for each target, we can determine a target-
specific Poisson rate λm(x) for each target.

III. IMPROVEMENTS TO THE GP TARGET MODEL

In this section, we present the suggested improve-
ments to the GP target model by using the iterated ex-
tended Kalman filter to improve the linearization. We
also present how negative information can be used in
this framework.

A. Handling Nonlinearities in the Measurement
Equation

Since the measurement equation (14) is nonlinear
there arises a need to use nonlinear filtering to deal with
this non-linearity and estimateH. The original paper on
the GP model applies the extended Kalman filter [11].
Subsequent work has been done to improve this method
by dealing with the non-linearities differently or aug-
menting the approach [12]–[14]. In this work,we propose
using the iterated extended Kalman filter (IEKF) to im-
prove the linearization. It has been shown that applying
the IEKF is equivalent to GN optimization of the maxi-
mum likelihood function defined as

q(ξ) =
([

zk
x̂

]
−
[
h(ξ)

ξ

])T [R 0
0 P

]−1 ([zk
x̂

]
−
[
h(ξ)

ξ

])
.

(19)

Here,h(ξ) and zk are defined by (11) and (14).The IEKF
is therefore a maximum a posteriori estimator of the
state [26]. Equivalently, the IEKF will suffer from the
same shortcomings as GN methods, in particular when
there are several local optima or the initialization point
is far away. In this specific case, h(ξ) is not globally con-
vex and has several local optima.

To mitigate this, we suggest designing a set of heuris-
tic constraints for the initial point of the optimization to
ensure that it converges on the most relevant local opti-
mum.In [14], the concept of negative information is used
to augment the model. Inspired by this, we can define
constraints for the centroid xc for a given target. Con-
sider a return from a laser- ranging sensor hitting an ex-
tended object.We can then state the following constraint
for xc := [xp, yp] given more than two measurements:

min(∠zk) < atan2 (yp, xp) < max(∠zk)

min ||zk|| <

√
(yp)2 + (xp)2.

(20)

Essentially, the center of the extended object’s angle
with regard to the sensor should be between the mini-
mumandmaximumangles,and it should be further away
than the closest measurement return. We enforce this
condition prior to optimization by first calculating the
mean range and angle of the measurements generated
by the contour

θ c = mean(∠zk)

rc = mean(||zk||) + min x f .
(21)

Themean of the angle is corrected to ensure that it is not
affected by the discontinuity in the unit circle. Then we
convert the point to cartesian coordinates according to

xc = rc
[
cos(θ c)
sin(θ c)

]
, (22)

This means that if either constraint is violated, xc will be
initiated behind the wall of sensor measurements gener-
ated by the object contour.There is also a local optimum
relating to the heading. In particular, φ + π , i.e., the re-
verse heading, is a local optimum since it is also aligned
with the symmetry axis defined by the covariance func-
tion. To avoid this local optimum, we can utilize the ve-
locity vector to design a similar constraint for the head-
ing as for the centroid, i.e., φ is initialized according to
the following criteria:

φ =
{
φ if (φ − atan2(ẏp, ẋp)) < π/3
atan2(ẏp, ẋp) if (φ − atan2(ẏp, ẋp)) ≥ π/3 .

(23)
This scheme will not be applicable in all cases, e.g., re-
versing targets or surface vessels that drift with a strong
current, but for most cases where tracking targets is rel-
evant, this condition will be applicable.
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B. Negative Information

In [14], the concept of negative information is used
to constrain the bounds of the estimated extent so that it
doesn’t expand beyond the received measurements. This
is achieved by estimating the minimum and maximum
angles of the extended object and comparing these to
the minimum and maximum angles of the actual mea-
surements associatedwith that object.Theminimumand
maximum angles of the measurement set are therefore
used as an additionalmeasurement; thesemeasurements
are termed virtual measurements. A generic measure-
ment equation for these virtual measurements can be
written as

max∠zk = hmaxk (xk) + ηmaxk , ηmaxk ∼ N (0,Rmax
k )

min∠zk = hmink (xk) + ηmink , ηmink ∼ N (0,Rmin
k ).

(24)
We use the same approach, but we perform the state es-
timation utilizing the IEKF framework presented above.

The key assumption that allows us to perform the
state estimation in the IEKF framework is to assume
that, for the GP target model, the minimum and maxi-
mum angles of an extended object are achieved by sam-
pling points of the extent, i.e., one of the elements of � f .
Then, we can derive an expression for these points in
global coordinates since we can calculate the global po-
sition of each test point from the following expression:

x fG = xck + x fk

[
cos
(
� f + φk

)
sin
(
� f + φk

)] . (25)

We can then calculate the minimum and maximum an-
gles that the extended object occupies

κmin = min∠x fG
κmax = max∠x fG.

(26)

This allows us to determine the angular sector that an
extended object occupies. These relations are presented
graphically in Fig. 2. To define the measurement equa-
tion for these angles, we define

θ
(L)
max = θ f

max

θ
(G)
max(φk) = ∠

(
x fG − xck

)
= θ f

max + φk,
(27)

where θ
f
max is the element of � f which corresponds to

κmax, which can be defined both in the local target frame
(L) and the global frame (G).The time index k has been
omitted from θ for notational convenience. With these
definitions, we can compute the points to the extent that
correspond most closely to the measurements with the
maximum and minimum angles using (14)

zmaxk = xck + pk(θ
(G)
max(φk))Hf (θ f

max

)
x fk . (28)

Figure 2. The extreme angles of the extended object κmin and κmax
are given by the points f1 and f4, respectively, which are equivalent
to x fG calculated for the 1st and 4th test point. The angles given by
measurements z0 and z4 are the virtual measurements, and κmin and
κmax are the corresponding predicted virtual measurements.

Utilizing this expression, we can calculate the global an-
gle of these points

hmaxk (xk) = ∠zmaxk

= atan2

⎛⎝ ypk + sin(θ (G)
max(φk))Hf

(
θ
f
max

)
x fk

xpk + cos(θ (G)
max(φk))Hf

(
θ
f
max

)
x fk

⎞⎠ .
(29)

For the minimum angle, substitute θ
f
max for θ

f
min. The

measurement Jacobian for this equation can be found by
calculating the partial derivatives; see Appendix A for
the applicable expressions. The noise component should
also be transformed to extract the angular component.
However, since we have chosen θ

f
max to be a test point,

there is no uncertainty from the GP regression [22],
R f = 0, and we are simply left with the noise compo-
nent of the measurement, which we can define as

Rmax
k = σ 2

κ , (30)

where σκ is the standard deviation of the angular com-
ponent of the measurement noise. The actual measure-
ments, which are used as virtual measurements, can be
found by finding the measurements with the minimum
and maximum angles. These virtual measurements are
then used to augment the quantities in (11) such that

z∗
k = [zk, max∠zk, min∠zk]T

R∗
k = diag

[
Rk, Rmax

k , Rmin
k

]
h∗
k(xk) = [hk(xk), hmaxk (xk), hmink (xk),

]T
,

(31)

where zk,Rk, and hk(x) are defined by (11).Correspond-
ingly, we can define a new cost function as

q(ξ) =
([

z∗
k
x̂

]
−
[
h∗(ξ)

ξ

])T [R∗ 0
0 P

]−1 ([z∗
k
x̂

]
−
[
h∗(ξ)

ξ

])
.

(32)
This ensures that the virtual measurements are included
in the GN optimization.
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Table I
GP Update Algorithm

Input: Predicted state and covariance xk|k−1,Pk|k−1, Associated
measurements ZC

Output: Updated state and covariance x̂k,Pk, Measurement
likelihood lC

if Equation (20) and |ZC| ≥ 2 then
xiter ← xk|k−1 modified by Equations (22) and (23)

else
xiter ← xk|k−1

end if
if |ZC| ≥ 2 and not partialOcclusion and xiter 
= xk|k−1 then
negativeInformation = True

else
negativeInformation = False

end if
i ← 0
while i ≤ GPMaxIterations and eps > 10−4 do
xupd ← SingleGPUpdate(xk|k−1, xiter,Pk|k−1,ZC)
eps ← xiter − xupd
xiter ← xupd
i ← i+ 1
if i > GPMaxIterations and NegativeInformation and (eps > 10−4

or φ̇upd > π/4) then
i ← 0
eps ← 103

xiter ← xk|k−1
NegativeInformation = False

end if
end while
xk ← xupd
Update covariance Pk
Update α and β according to (18)
Calculate measurement set likelihood lC via (41)

1) Practical Considerations: We only generate these
virtual measurements if we have at least two measure-
ments; otherwise, the virtual measurements will be iden-
tical, which implies a very small extent and will have
the practical effect of shrinking extents. Incorporating
these virtual measurements can be viewed as further
constraining the optimization problem. In some cases,
this can prevent convergence of the iterative optimiza-
tion, and this is usually not desirable. Therefore, if the
optimization does not converge while using virtual mea-
surements, we repeat the optimization without includ-
ing them in the cost function. Similarly, the use of virtual
measurements has a tendency to estimate a rather large
rotation of the extent in certain situations, which can be
seen as another undesirable local optimum. We there-
fore also repeat the optimization without virtual mea-
surements if the estimated rotational velocity is higher
than a certain threshold.We also do not use virtual mea-
surements when the initialization criteria in (20) and
(23) are used, as convergence is harder to achieve in that
case. The full method is summarized in algorithmic form
in Tables I and II.

IV. THE GP-PMBM TRACKER

Given the state space model presented above, we
now provide the specific closed-form expressions for the

Table II
SingleGPUpdate

Input: Predicted state and covariance xk|k−1,Pk|k−1,
Current state xiter, Associated measurements ZC

Output: Updated state xupd
for all z ∈ ZC do
Evaluate equation (14) with xiter
end for
Construct Hk,Rk, h(x) via equation (11)
if NegativeInformation then
κmin/max ← via equation (26)
Evaluate equation (29) and augment Hk,Rk, h(x), zk with result
end if
Sk ← HkPk|k−1HT

k + Rk

Wk ← Pk|k−1HT
kS

−1
k

xupd ← xk|k−1 + Wk
(
(zk − h(x)) − Hk(xk|k−1 − xiter)

)
PMBM filter recursions for the GP model based on the
general form given in [3]. We then discuss specific con-
siderations for using the GPmodel in the PMBM frame-
work and present the approximations used to make the
tracker computationally feasible. Finally, we present the
way occlusion is modeled using the information given by
the virtual measurements in the previous section.

A. PMBM Filter Recursions with a GP Target Model

For the special case where the probability of survival
PS is constant and the following holds:

Du
k−1(x) =

Nu∑
n=1

dunN (x; xun,Pu
n)G(αun, βu

n )

f j,ik−1(x) = N (x; x j,ik−1,Pk−1)G(α j,i
k−1, β

j,i
k−1)

gk|k−1(x|x′) = N (x;Fx′,Q),

(33)

i.e., the probability distribution representing the target
state in the Bernoulli components is a gamma-Gaussian
distribution, and the PPP intensity is a linear combi-
nation of gamma-Gaussian distributions, i.e., a gamma-
Gaussian mixture. The state transition density for the
Gaussian and the gamma component is assumed to be
independent, which enables separate prediction of the
state and extent from the measurement rate. This as-
sumption was used in [24]. The closed-form expression
is then given by

Du
k|k−1(x) = Db(x)

+PS
Nu∑
n=1

dunN (x;Fxun,FPu
nF

T + Q)G(αun, βu
n )

w
j
k|k−1 = w

j
k

r j,ik|k−1 = r j,ik PS

f j,ik|k−1 = N (x;Fx j,ik−1,FP
j,i
k−1F

T + Q)

× G(α j,i
k|k−1, β

j,i
k|k−1).

(34)
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For the update step, we define the following pre-
dicted set densities

f j,ik|k−1(x) = N (x; x j,ik|k−1,P
j,i
k|k−1)G(α j,i

k|k−1, β
j,i
k|k−1)

Du
k|k−1(x) =

Nu∑
n=1

dunN (x; xun,Pu
n)G(αun, βu

n ). (35)

For a nonempty set of measurementsZC conditioned on
a target x, the extended object measurement set likeli-
hood [3] is given by

l(ZC|x) = PDe−λmλ|ZC|
m

∏
z∈ZC

l(z|x). (36)

l(z|x) is the single measurement likelihood,which in our
case is given by the GP target model, i.e., (14). Due to
the non-linearity of the measurement model, we make
the following assumption:

l(zl |x) ≈ N (zl;hl (x),Rl ) ≈ N (zl;Hlx,Rl ), (37)

i.e.,h(x) defined in (14) is approximated by linearization
with the jacobian matrixHl .With this, the product of the
single measurement likelihoods can be written as

N (z;Hx,R) =
∏
zl∈ZC

N (zl;Hlx,Rl ). (38)

Here, z and R correspond to the augmented vectors and
matrices defined in (11) for all measurements in the set
ZC andH is the concatenation of all matricesHl given by
thesemeasurements.This is the joint likelihood of all the
measurements in the setZC.Furthermore, to incorporate
virtual measurements, we define the following:

N (z∗;H∗x,R∗) = N (z;Hx,R)×
N (max∠z;Hmaxx,Rmax)N (min∠z;Hminx,Rmin),

(39)
where z∗ and R∗ are defined in (31) and H∗ is the lin-
earization of h∗

k(xk). This is the joint likelihood of all
measurements in the set ZC if virtual measurements are
incorporated. Given this, we can write the extended ob-
ject measurement set likelihood as

l(ZC|x) = PDe−λmλ|ZC|
m N (z∗;H∗x,R∗). (40)

Using this, we can define the likelihood of a measure-
ment set belonging to a measurement cell C conditioned
on a given target estimate as

lC(α, β, x̂,P,ZC) = PD
�(α + |ZC|)βα

�(α)(β + 1)(α+|ZC|)|ZC|!
× N (z∗;H∗x̂,S∗),

(41)

where x̂ is the estimated mean of the target and the in-
novation covariance S∗ is given by a Kalman filter up-
date step and is as such defined by the matrices H∗,R∗,
and the predicted covariance P corresponding to the tar-
get estimate. It is again assumed that the measurement
rate and the combined state and extent are independent.

The predicted likelihood of the gamma component was
derived in [24].We assume that the probability of detec-
tion PD can be approximated as

PD(x)p(x) ≈ PD(x̂)p(x), (42)

where p(x) is a generic gamma-Gaussian probability dis-
tribution and x̂ is the mean of that distribution. This as-
sumption holds trivially when PD(·) is constant and is
expected to hold when it is a sufficiently smooth func-
tion within the uncertainty area of the estimate [3].
With these definitions,we can state the following closed-
form expressions. The PPP component representing un-
detected targets is updated as

Du
k(x) = QDDu

k|k−1(x), (43)

i.e., the weight of each undetected target in the mixture
is updated with the effective probability of a missed de-
tection, defined as

QD = 1 − PD + PDe−λm , (44)

where the exponential term is the Poisson probability of
a target generating no detections, this is equivalent to the
likelihood of an empty set of measurements. The MBM
is updated based on the associations made of measure-
ments to measurement cells. The weights for the associ-
ation hypotheses are updated as

w
j,A
k =

w
j
k|k−1

∏
C∈A L

j
C∑

j∈Jk|k−1

∑
A∈A j

w
j
k|k−1

∏
C∈A L

j
C

, (45)

i.e., the weight of an association hypothesisA is given by
a product of the likelihoods L of all measurement cells,
normalized over all association hypotheses.

The updated parameters for the Gaussian distribu-
tions are given by a Kalman filter update step, and the
updated gamma parameters for a measurement cell are
given by (18). This corresponds to applying the steps in
Table I.

The form of the update step for measurement cellC
depends on if the measurement cell is associated with a
detected or undetected target. The current time index k
is omitted for brevity. For detected targets, we have two
cases to consider

Lj
C =

{
1 − r j,iCk|k−1 + r j,iCk|k−1QD |ZC| = 0
r j,iCk|k−1lC(α

j,iC , β j,iC , x̂ j,iC ,P j,iC ,ZC) |ZC| 
= 0

r j,iCk =
⎧⎨⎩

r
j,iC
k|k−1QD

1−r j,iCk|k−1 + r
j,iC
k|k−1QD

|ZC| = 0

1 |ZC| 
= 0

f j,iCk (x) =
{
N (x; x j,iCk|k−1,P

j,iC
k|k−1)G(α j,iC , β j,iC ) |ZC| = 0

N (x; x̂ j,iC ,P j,iC )G(α j,iC , β j,iC ) |ZC| 
= 0
.

(46)
If measurements are assigned to undetected targets,
there are also two cases to consider, since it is assumed
that a cell containing more than one measurement can-
not be clutter-originated.Note that the result is a compo-
nent of theMBMsince the target has nowbeen detected.
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For the following, we define lC = lC(αun, β
u
n , x̂

u
n,P

u
n,ZC):

Lj
C =

{
Dc +∑Nu

n=1 d
u
nlC |ZC| = 1∑Nu

n=1 d
u
nlC |ZC| > 1

r j,iCk =
{ ∑Nu

n=1 d
u
nlC

Dc+∑Nu
n=1 dunlC

|ZC| = 1

1 |ZC| > 1

f j,iCk (x) =
Nu∑
n=1

dunN (x; x̂un, P̂u
n)G(αun, βu

n ).

(47)

See Appendix B for a derivation of these expressions.

B. Initialization and Birth Process

The GPmodel is generally not observable, especially
with fewmeasurements.Therefore, there is no unique so-
lution, and the solution depends on the choice of prior
used to initialize the estimate. The choice of prior is
therefore of key importance. In particular, the general
characteristics of the extent prior and the prior value of
the heading need to be specified. In the PMBM frame-
work, the prior estimates are encoded in the birth pro-
cess intensity Db. Using the mixture representation of
the PPP intensity function, i.e.,

Db(x) =
Nb∑
n=1

wb
np

b
n(x), (48)

we can define several priors, and since the weight of the
PPP components will be updated based on the likeli-
hood of the measurements, the resulting estimate will be
weighted.Selecting these priors is still not a trivial choice
and, inmost cases,are tuned to fit the particular problem.
For instance, in [15] where a GPmodel was used to track
vehicles, the prior for the extent (xf0) was chosen to cor-
respond to the extent of a real vehicle.

In this work, we use a similar method to the one that
was used to define a birth density along the edge of the
surveillance area in [18]. We assume an expected max-
imum range of the sensor Rb, and use it to set the po-
sitional component of the birth process intensity. Given
Nb components, an angle for each component is defined
as ψb

n = n2π
Nb . The prior for the centroid is then given by

xcn = Rb

[
cosψb

n

sinψb
n

]
, (49)

i.e., spread the mixture components uniformly on or
slightly beyond the edge of the circle defined by themax-
imum range of the sensor. By placing it beyond, the cen-
troid will be placed behind the first measurements. The
heading can be defined by

φb
n = ψb

n + π, (50)

i.e., the direction toward the sensor. The direction of the
velocity vector can be defined similarly along with a pre-

defined magnitude vb, i.e.,

ẋcn = vb

[
cosφb

n

sinφb
n

]
. (51)

The angular velocity φ̇b
n can be assumed to be 0 rad/s.

The covariance of all these kinematic states is inflated
to ensure that the mixture components can represent a
variety of states.With regards to the extent, it should be
tailored to the targets that are expected to appear. In this
case, because we are tracking ships, we define the extent
prior as a ship-like shape with a pointed bow and a flat
stern with symmetry along the vertical axis. If it is de-
sirable to track targets with very different shapes, one
can also include different shapes in the birth intensity
function.

C. Mixture Reduction

Mixture reduction is also a necessary tool used in the
birth process to reduce all the components in the PPP
mixture into one Bernoulli. It can also be used to merge
Bernoullis that are similar. The merging is done using
standard Gaussian mixture reduction for the kinematic
and extent states and by the method derived in [24] for
the parameters of the gamma distribution.

D. Reducing Associations

To reduce the number of data associations, gating is
performed as an initial step. Gating for the GP model
was presented in the original paper presenting themodel
[11], and the same method is used in this work. This sep-
arates the targets and measurements into independent
subgroups. Further reduction of association hypotheses
is done using the stochastic optimization method pre-
sented in [6] to find the most likely associations. As
an implementational detail, we calculate the predicted
measurement and the measurement matrix for each
measurement-object pair once during the gating process
and store them for use during the stochastic optimiza-
tion method to avoid redundant computation of (14),
which involves one GP regression per measurement, a
relatively expensive computation.

E. Occlusion

To utilize negative information for state estimation
in a multiobject framework, we have to account for the
occluding effect of other targets. A natural choice to
model occlusion would be to modify the probability of
detection PD. For multiple extended object tracking, this
has been done in [18] and further modified in [19]. They
used the GIWmodel and calculated a probability of de-
tection based on the angles occupied by each target and
their distance to the sensor. Partial occlusion was han-
dled by discretizing each point on the extent of a target,
calculating the probability of detection for each point,

96 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 19, NO. 2 DECEMBER 2024



and taking the maximum as the probability of detection
for that target. This method was reused in the PMBM
framework in [3]. Another approach was presented in
[20], which calculates an occlusion likelihood based on
the current targets. This occlusion likelihood is repre-
sented by a Gaussian mixture that can be used to update
the state of undetected objects, infer the existence of ob-
jects, and inform the association of data.

The zone being occluded by a specific object is given
by the angles occupied and the distance of the object
from the sensor which we define as (κ imin, κ

i
max, ρ

i). In
[20], this is expressed as a combination of the following
conditions. Object i is fully occluded by object iO if the
following conditions are true

B = (κ imin ≥ κ
iO
min) ∩ (κ iOmax ≥ κ imax)

R = (ρ i ≥ ρ iO ).
(52)

Condition B can be referred to as the bearing condition
and condition R can be referred to as the radial condi-
tion. An object is partially occluded if either of the fol-
lowing bearing conditions are true in combination with
the radial condition R

Bmin = (κ iOmax ≥ κ imax) ∩ (κ imax ≥ κ
iO
min)

Bmax = (κ iOmax ≥ κ imin) ∩ (κ imin ≥ κ
iO
min). (53)

Figure 3 shows an examplewhere these cases occur.With
this, we can define the probability of a target i being oc-
cluded by another target iO as

Pi,iOO = p(B,R,E) = p(B|E)p(R|E)p(E), (54)

where p(B|E) and P(R|E) is the probability of the con-
ditions of (52) being true conditional on the existence of
target iO and p(E) = riO , i.e., the probability of existence
of target iO. For partial occlusion, we can similarly state

Pi,iOpO = p(Bmax/min,R,E) = p(Bmax/min|E)p(R|E)p(E).
(55)

In [20], (κ imin, κ
i
max, ρ

i) were all assumed Gaussian dis-
tributed.We can then calculate the resulting probability

of the occlusion conditions by using the cumulative dis-
tribution function

p(B|E) = �

⎛⎝ κ iOmax − κ imax√
σ 2

κ
iO
max

+ σ 2
κ imax

⎞⎠�

⎛⎝ κ imin − κ
iO
min√

σ 2
κ
iO
min

+ σ 2
κ imin

⎞⎠ ,

(56)
where �(·) is the cumulative distribution function of
a Gaussian distribution with zero mean and unit vari-
ance; for more details, see [20]. Using the virtual mea-
surements generated in the previous section,we can find
a Gaussian distribution for κ imin and κ imax from (28) and
calculate the resulting innovation variance for each vir-
tual measurement according to

σ 2
κ imin

= Hi
minP

iHi
min

T + Rmin

σ 2
κ imax

= Hi
maxP

iHi
max

T + Rmax.

(57)

The probability of partial occlusion can be calculated in
the same manner using the same terms, which becomes

p(Bmin|E) = �

⎛⎝ κ iOmax − κ imin√
σ 2

κ
iO
max

+ σ 2
κ imin

⎞⎠�

⎛⎝ κ imax − κ iOmax√
σ 2

κ
iO
max

+ σ 2
κ imax

⎞⎠

p(Bmax|E) = �

⎛⎝ κ
iO
min − κ imin√
σ 2

κ
iO
min

+ σ 2
κ imin

⎞⎠�

⎛⎝ κ imax − κ
iO
min√

σ 2
κ
iO
min

+ σ 2
κ imax

⎞⎠ .

(58)
For ρ i, we do not have an equivalent way to calculate a
Gaussian distribution, so we instead define

p(R|E) =
{
1 if ||xci|| > ||xciO ||
0 otherwise

. (59)

With this, we can calculate the probability of occlusion
for each target pair. Furthermore, with a PMBM frame-
work, both the detected and undetected targets can be
occluded, and therefore, we should calculate the prob-
ability of occlusion for both these sets. However, only
detected targets will have an occluding effect.

Occlusion or partial occlusion have different effects
on othermodel parameters. If we determine that a target

Figure 3. Three targets, where object 1 is occluded by object 2, which in turn is partially occluded by object 3. The angles κ are shown for each
object. The measurements generated by the sensor are represented by crosses, and the measurements used for the virtual measurements are
shown by the larger crosses.
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is wholly occluded by another, the probability of detec-
tion will be lowered for that target. Taking the proba-
bility of occlusion into account therefore gives a target-
specific probability of detection

PiD = PD
∏
iO∈IO

(1 − Pi,iOO ), (60)

where IO is the total set of occluding targets for target
i. If the occlusion probability of any target is 1, then we
will have PD = 0; this will cause issues with likelihood
calculations, so we enforce a minimum probability of de-
tection. For a component of the PPP mixture un, the ex-
pression becomes

PunD = PD
∑
j∈J

w j

∏
iO∈I

j
O

(1 − Pun,iOO ), (61)

i.e., the probability of detection of a component is a
weighted average of the probability of detection for ev-
ery hypothesis in the MBM.

F. Partial Occlusion

Partial occlusion will not affect the probability of de-
tecting the target according to the model assumptions
since the target will still generate measurements. How-
ever, it will affect the model parameters in other ways.
The first is the way negative information is utilized for
state estimation since partial occlusion will not match
with the assumptions underlying the generation of the
virtual measurements. Specifically, if the target is par-
tially occluded, the expected angle κ will no longer cor-
respond to either the minimum or maximum angles of
the measurement set, depending on the part of the tar-
get that is occluded. In this work,we therefore do not uti-
lize negative information for the state estimation when
a target is partially occluded, but we note that it is pos-
sible to do so by calculating where κ would intersect
on the target contour and use that in place of θ

f
max/min

in the measurement equation for negative information.
In addition, partial occlusion will affect the number of
measurements that are generated by the objects, which
will have an impact on the association likelihood in (41)
since the gamma distribution will not be able to account
for this. So this effect needs to be managed as well, and
in this work, we do this by defining a heuristic visibility
ratio

vi = min(κ i
pO

max) − max(κ i
pO

min)
κ imax − κ imin

, (62)

where ipO ∈ IpO are the partially occluding objects.Here,
we simply consider the mean of κ , ignoring the uncer-
tainty of each estimate. With this ratio, we also need to
consider the probability of occlusion. We define a cor-
rection factor as

ηiv = 1 − PipO(1 − vi). (63)

The probability of occlusion becomes more complicated
to calculate for multiple occluding objects since they will
all occlude different sectors of the object; each part of
an object’s extent will therefore, in theory, have its own
probability of occlusion. For the sake of simplicity, we
utilize the maximum probability of occlusion of the ob-
jects partially occluding object i

PipO = maxPi,iO∈IpO

pO . (64)

Again, for the PPP component, the correction factor
should also consider the weights of the MBM, giving the
resulting expression

ηunv =
∑
j∈J

w jη
j
v, (65)

where η
j
v is defined as the correction factor calculated

for component un using the Bernoullis in the jth MBM.
This correction factor is then utilized to modify the pa-
rameters of the gamma distribution.We assume that the
Poisson rate of a partially occluded target is ηvλm, and re-
call that λm is gamma distributed with shape parameter
α and inverse scale parameter β. Given this, the Poisson
rate of a partially occluded target is gamma distributed
with the following parameters:

ηvλm ∼ G
(

α,
β

ηv

)
. (66)

This is equivalent to scaling the gamma distribution
since we have divided the inverse scaling parameter with
our scaling factor ηv . We can express this in the existing
gamma recursions as

αk|k−1 = αk−1

ηγ

, βk|k−1 = βk−1

ηvηγ

αk = αk|k−1 + |ZC|, βk = ηv(βk|k−1 + 1).

(67)

In this way, the parameters of the gammadistribution are
in line with the number of measurements we expect to
receive; in other words, the predictive likelihood of the
expected number of measurements is preserved

�(αk|k−1 + |ZC|)βαk|k−1

k|k−1

�(αk|k−1)(βk|k−1 + 1)(αk|k−1+|ZC|)|ZC|! . (68)

1) Practical Considerations: The visibility ratio de-
fined in (62) is only well defined between 0 and 1. How-
ever, it could take on values larger than 1 if the expres-
sions are applied naively as stated. Therefore, we en-
force the conditions in (53) explicitly. In the presence of
full occlusion, the visibility ratio will become a negative
value. In this case, we set the correction factor to 1. This
is for practical reasons since a very low correction factor
while not receiving any measurements for an extended
period could cause the target estimate to be overly at-
tracted to clutter.

The whole procedure for correcting for occlusion is
presented in Table III. Finally, the complete update step
for the GP-PMBM tracker is presented in Table IV.
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Table III
Occlusion Correction

Input: A predicted PMBM
Output: A probability of detection PD and a correction factor ηv

for every component in the predicted PMBM
for j ∈ J do
for i ∈ I do
(κ imin, κ

i
max) ← via Equation (26)

end for
for i ∈ I ∪Du do
for iO ∈ I/∈i do
condmin← κ

iO
min ≤ κ imin and κ

iO
max ≥ κ imin

condmax← κ
iO
min ≤ κ imax and κ

iO
max ≥ κ imax

conddistance← ||xci|| > ||xciO ||
if conddistance then
POi,iO ← via Equation (54)

end if
if condmin and condmax and conddistance then

ηv ← 1
else if not condmin and condmax and conddistance then
Save κ

iO
max

Assign iO ∈ IpO

PpOi,iO ← via Equation (55)
else if condmin and not condmax and conddistance then
Save κ

iO
min

Assign iO ∈ IpO

PpOi,iO ← via Equation (55)
end if

end for
Determine min(κ i

pO

max) and max(κ i
pO

min)
vi ← via Equation (62)
ηiv ← via Equation (63)
PiD ← via Equation (60)

end for
end for
PunD ← via Equation (61)
η
un
v ← via Equation (65)

V. SIMULATION STUDY

In this section, we present the result from a Monte
Carlo simulation study where the performance of the
PMBM-tracker using the presented GP model is com-
pared with the implementation using the GGIW model
as presented in [5]1. For the GP model, we present re-
sults without the negative information and occlusion
handling as GP, and the results including those features
are presented as GP-NI.

A. Simulation Scenario

The scenario consists of 8 ships that are born from
timestep 1 to 50. The simulation area is 200× 200 m
in total with a sensor placed at the center, which has a
measurement range of 100 m. Two vessels spawn from
each side of the area and approach the center, where
they turn. The scenario was particularly handcrafted to
simulate occlusion, so that some vessels are born behind

1The implementation for the GGIW model was taken from
github.com/yuhsuansia/Extended-target-PMBM-tracker, and this
implementation was modified for use with the GP model

Table IV
Full GP-PMBMUpdate

Input: A predicted Poisson Multi-Bernoulli Mixture and a
measurement set Z

Output: An updated Poisson Multi-Bernoulli Mixture
Correct for occlusion via Table III
Perform gating for each component of the PMBM
for j ∈ J do
Compute most likely subset of associations A j
for A ∈ A j do
forC ∈ A do
if New Target then
for Each component of Du ∈ C do
Update component(s) via Table I

end for
f j,iC ← via mixture reduction of component(s)
Lj
C, r j,iC ← via Equation (47)

else if Existing Target then
f j,iC ← via Table I
Lj
C, r j,iC ← via Equation (46)

end if
end for
for Targets without Detection do
f j,iC ,Lj

C, r j,iC ← via Equation (46)
end for

end for
end for
Update weights via Equation (45)
UpdateDu via Equation (43)

another vessel. When the vessels reach the center, they
appear close together and are frequently wholly or par-
tially occluded during this time, with vessels traveling
alongside one another. See Fig. 4 for a view of the sce-
nario. The scenario lasts for 240 timesteps, and each ves-
sel persists for 190 timesteps. The extent is modeled by
a ship that is 6 m long, 3 m wide, and has a pointed bow
where the full width is achieved 2 m behind it. The mea-
surements are generated by simulating an LiDAR with
a simulated maximum range of 100 m, angular resolu-
tion 0.5◦, and a modeled radial accuracy of 0.1 m. Mea-
surements are only generated if they hit a simulated hull,
and only onemeasurement is generated per angle,which
simulates occlusion. In addition, clutter is generated us-
ing a PPPwith λc = 20 and a uniform spatial distribution,
but the clutter measurements are also corrected for oc-
clusion. The results are averaged over 100 Monte Carlo
simulation runs.

B. Parameters

The PMBM parameters are chosen as follows: prob-
ability of detection PD = 0.90 for the standard model
and PD = 0.99 when occlusion is modeled, probability
of survival PS = 0.95, and clutter rate λc = 20. The gat-
ing probability is set at PG = 0.99; the pruning parame-
ters are 0.01 for the existence probability, 0.005 for PPP
mixture components, and 0.005 for MBM components.
Both target models use σc = 0.2 m as the noise param-
eter for the CV model and σr = 0.1 m for the measure-

A MULTIPLE EXTENDED OBJECT TRACKER WITH THE GAUSSIAN PROCESS MODEL 99

https://github.com/yuhsuansia/Extended-target-PMBM-tracker


Figure 4. Visualization of the simulation scenario with the trajectories of all vessels, along with the ship extents and measurements visualized
for timestep 105. Note that this does not show the whole simulation area but only the 100× 100 m area in the center. The simulated LiDAR
sensor is placed at the origin.

ment noise; the GP model uses σφ = 0.1 rad as noise for
the constant angular velocitymodel.For the virtual mea-
surements, the measurement noise strength is σκ = 0.5◦,
the same as the simulated sensor resolution. Both target
models use we = 20 as the length of the gamma predic-
tion window. For the GP target model, we use nine test
angles to parametrize the extent, and the hyperparam-
eters are σ f = 1.0 m, σr = 0.5 m, σn = 0.01 m, l = π/4
rad and the forgetting factor η f = 0.001. The maxi-
mum amount of IEKF iterations is 50. For the GGIW
target model, we use 200 for the extent prediction win-
dow. The birth intensity function is defined according to
the method defined above with Nb = 36 components
and a range Rb = 105 m and a velocity magnitude of
vb = 1 m/s. The extent prior is roughly equivalent to the
true extent for the GP model, and for the GGIWmodel,
it is an ellipse with the same length and width defining
the semi-axes; this is combined with the prior heading
to calculate a prior value for the shape matrix X . The
prior value of the gamma distribution is α0 = 900 and
β0 = 100. The covariance of the Gaussians is inflated to
ensure coverage of the whole circle, the standard devia-

tion of the positional component is 20 m, 3 m/s for the
velocity component, and for the GP model the heading
component isπ/4 rad and the angular velocity isπ/4 rad.
In the case of the extent, for the GP model, the prior co-
variance is given by the covariance function.

C. Performance Evaluation

To compare the performance of the trackers, the
generalized optimal sub-pattern assignment (GOSPA)
metric [27] is used to provide a single metric for the per-
formance of a multiobject tracking algorithm by incor-
porating localization error, missed targets, and false tar-
gets into a single metric.The parameters for the GOSPA
metric were cut off c = 10 and power p = 2. To com-
pare the extent estimates of the target models, we use
the process of associating estimates to targets to gen-
erate additional measures that are comparable between
them.One suchmeasure is the Intersection-Over-Union
(IOU) metric, which has been used in previous work to
comparemethods for extent estimation [11], [12].To cal-
culate the IOU metric for the GGIW model, the shape
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Table V
Mean Value of Metrics for the Simulated Scenario

Model GP GP-NI GGIW

GOSPA 9.52 8.26 11.40
Loc. Err. 5.47 4.53 11.07
Missed 1.55 1.03 1.91
False 0.33 0.48 0.31
IOU 0.59 0.64 0.33
Heading (rad) 0.40 0.30 1.75
Time (s) 115.90 158.96 118.19

The best values are highlighted in bold.

matrix X is decomposed to retrieve the length of the
semi-axes, corresponding to the 2-σ ellipsoid, and the el-
lipse orientation. The heading error is calculated using
the samemethod. Finally, the computation time for each
run is also presented; however, it should be noted that
the GP methods were made more computationally effi-
cient by precomputing themeasurementmatrices during
gating, which makes it hard to compare their computa-
tional times with that of the GGIWmethod, which does
not have this implementation efficiency.

D. Results

The metrics are presented in Table V. Note the dis-
parity of the IOUmetric. This is primarily due to the in-
ability of the GGIWmodel to model contour-generated
measurements, since the GGIW model assumes a uni-
formdistribution,and thus centers the ellipse on the con-
tour instead, which causes large localization errors and
large errors in extent estimation. Note also the larger
heading error, showing an inability to estimate the head-
ing as a separate state. We can also note the improve-
ment in utilizing negative information and modeling oc-
clusion as compared to the base GP method with the

improvement in localization error and the IOU metric,
as well as the reduction of the number of missed tar-
gets. However, it increases the number of false targets.
The evolution of the metrics during the simulation run is
shown in Fig.5. It shows that theGGIWmodel has worse
IOU and a worse localization error across the whole run,
although the localization error is smaller while the ships
are close to the sensor, due to the fact that the side of
the vessel ismeasured rather than the front or rear.Com-
paring the regularmethodwith the negative information
method, we can note the disparity in the IOU metric
starting around timestep 100, which is when occlusion
occurs in the simulation, as well as the subsequent dis-
parity in the localization error. This shows that the use
of negative information results in an improved state es-
timate, particularly when targets are close together. The
handling of occlusion also results in a notable improve-
ment in the number of missed targets, due to the method
being better at maintaining a track when occlusions oc-
cur,but the track is still lost for some targets due to occlu-
sion. This is paired with an increase in false targets, par-
ticularly during the middle of the run, when a large part
of the surveillance area is occluded by the targets. The
reason for this could be that thewaywemodel partial oc-
clusion for undetected targets results in more erroneous
detections due to clutter.With these results, we can state
that the combination of modeling occlusion and nega-
tive information constitutes an improvement over the
base GP method. However, it comes with an increase in
computational time and false targets.

VI. TEST DATA

In this section, we present the result from real Li-
DAR data gathered from tests in Trondheim utilizing
the two platformsmilliAmpere andmilliAmpere2 in the
Trondheim canal [28].

Figure 5. The evolution over the course of the simulation run for selected metrics as an average over all MC simulations.
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A. Test Scenario

We present two separate scenarios, one with a single
vessel performingmaneuvers in front of the sensor in the
canal (see Fig. 6a) and one with two vessels traveling in
separate directions in the canal and passing each other
(see Fig. 6b). The data from the first scenario was gath-
ered using milliAmpere2, which is equipped with two
Ouster OS1 32 LiDARs. These two point clouds were
combined, and the returns from land and static obsta-
cles along the canal were filtered out using manual land
masking, and the point cloud was transformed to 2D by
only retaining the point closest to the sensor in each an-
gular resolution sector. The second scenario was pub-
lished in [29] (as scenario 13) and is reused in this work.

B. Parameters

Most of the parameters used are similar to the simu-
lation study. The range used to define the birth intensity
Rb is reduced to 40 and 65 m, respectively, due to the ob-
served range at which the LiDARs were able to detect
the target vessels. For the second scenario, α0 was set to
500 to account for the lower sensor resolution. The ex-
tent priors were set such that the length and width of the
prior were roughly equivalent to the target vessels, but
the same prior was used to represent both ships in the
second scenario. In addition, some tweaks were made to
attempt to mitigate some observed effects that are not
modeled. To account for wake clutter, the clutter rate
was increased to λc = 60 and λc = 100 for the first and
second scenario, respectively. Finally, to account for er-
rors related to sway affecting the pitch of the LiDAR
sensor, the measurement noise σr was set to 0.5 m.

C. Performance Evaluation

We use the same metrics that were used in the simu-
lation study,with the ground truth data gathered used to

Table VI
Mean Value of Metrics for the Real LiDAR Data

Test 1 Test 2
Model GP GP-NI GGIW GP GP-NI GGIW

GOSPA 1.51 1.31 2.45 4.76 3.95 4.06
Loc. Err. 0.85 0.66 1.80 4.81 3.68 3.49
Missed 0.08 0.07 0.07 0.08 0.08 0.10
False 0.00 0.00 0.01 0.01 0.00 0.00
IOU 0.36 0.50 0.12 0.20 0.26 0.31
Heading (rad) 0.37 0.19 1.30 0.46 0.34 1.86
Time (s) 96.35 111.51 161.31 256.53 257.85 253.26

The best values are highlighted in bold.

calculate the metrics. For the first scenario, ground truth
was measured by using a dual antenna inertial naviga-
tion system (INS), and the extent of the vessel was mea-
sured to be able to compare the estimated extent with
the ground truth. For the second scenario, the ground
truth data gathered was only positional global naviga-
tion satellite system (GNSS) datawithout heading; in ad-
dition, the exact position of the GNSS receiver was un-
known,which is a significant source of error for the IOU
calculation. The heading was inferred from the velocity
vector, which is also a source of error for the calculation
of the IOU and heading error metrics.

D. Results

The first scenario is quite simple from a target track-
ing perspective, it is simply a test of target birth and
the ability of the target models to track the ship while
it is performing complex maneuvers. The relevant met-
rics are presented in Table VI, and the plots are shown
in Fig. 7. The GP model is able to track the target over
the whole scenario.However, as the target gets closer to
the sensor, the IOU value degrades; this is due to wake
clutter being detected by the LiDAR around timestep
400. These wake measurements are associated with the

Figure 6. Visualization of the test scenarios, along with the extent and measurements visualized for three different timesteps, with the sensor
platform placed at the origin. Note the measurements generated by the wake, as well as the occlusion in the second scenario.
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Figure 7. The evolution throughout the single target test run for selected metrics.

target because it does not adhere to the uniform clutter
model.This affects the extent estimate and consequently
the state estimate. The estimate is able to recover when
the vessel completes a turn. In this case, utilizing neg-
ative information confers an improvement in the IOU
and correspondingly in the localization error. This is due
to the ability to more quickly adjust the extent estimate
after being affected by the wake clutter, which we are
able to do immediately due to the use of virtualmeasure-
ments in the update step, whereas the base GP method
cannot adjust the extent estimate if it is estimated as too
large. The GGIWmodel initializes another track during
one of the turning maneuvers to continue tracking the
target, resulting in a false target for a few timesteps.

The second scenario is more complex, as it entails
two targets, with one target being occluded by the other.

The metrics are given in Table VI, and the evolution
over time is shown in Fig. 8. Here, the base GP model
performs worse compared to the GGIW model, with
a higher localization error and lower IOU metric. This
is due to the disruptive effect of wake clutter on the
GP model, which causes the extent estimates to get sig-
nificantly worse when the wake is detectable, between
timestep 1200 and 1300. This coincides with one vessel
occluding the other, and the combined effect of these
two phenomena has a major negative effect on the ex-
tent estimate. This also affects the centroid estimate, re-
sulting in a larger localization error. Utilizing negative
information mitigates this effect since the occlusion is
better managed and the effect of the wake clutter is
somewhat mitigated by the extent estimate being cor-
rected faster due to the use of negative information in

Figure 8. The evolution over the course of the multi-target test run for selected metrics.
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the state estimate, but it is still worse than the GGIW
model, albeit it is quicker to initialize an estimate, re-
sulting in a lower share of missing targets and a lower
GOSPA score. However, even with the use of negative
information, the wake clutter still has an effect on the
state estimate, as observed by the peak in localization er-
ror and the dip in IOU around 1230. The GGIW model
is less affected by this shortcoming because of the as-
sumption that measurements are uniformly distributed.
Another thing of note is the relatively poor extent esti-
mate of the GPmethods at the beginning and the end of
the scenario; this is due to scans from the LiDAR hitting
at different heights of the target vessel, where the extent
may be radically different. Since this method only uti-
lizes information in 2D, this is a source of model incon-
sistency, and therefore the extent of the vessel is not esti-
mated correctly. This is also a contributing factor to the
GGIW model being able to estimate the extent better,
which can be seen at the start of the scenario.

VII. CONCLUSION

This paper has presented the use of the GP model as
a target model in the extended object PMBM-tracker,
presented an improvement of the GP target model by
using GN optimization, suggested a heuristic method to
mitigate the fact that the measurement model is non-
convex, and we have highlighted the need for a well-
designed birth density and provided an example. We
have also presented a method to utilize negative infor-
mation both to improve the state estimation and to han-
dle occlusion. Furthermore, we have demonstrated the
resulting tracker on both simulated and real data and
compared the performance against the standard GGIW-
PMBM tracker. It shows that the GP model can gen-
erally track targets more accurately, as measured by
GOSPA,and provide a better extent estimate when only
a part of the target is detected by the sensor, asmeasured
by the IOUmetric. It also enables a correct heading esti-
mate since the heading is explicitly modeled as a part of
the state. In addition, applying the method to real mar-
itime data shows that wake clutter is an issue that needs
to be addressed.The use of negative information further
increases tracking performance and improves the state
estimation. Furthermore, it specifically mitigates issues
with occlusion and partially mitigates the effect of wake
clutter, providing more robust performance on real mar-
itime data.

A. Future Work

It would be of interest to look further into the issue of
data association for this target model. Particularly given
the computational cost of the method, of which the main
part of the computational time is taken up by the data as-
sociation step. Recent developments in this area for ex-
tended object PMBM filters have shown that it is possi-
ble to achieve a drastic reduction in computational time

by reducing the PMBM to a PMB representation [7].Di-
rectly estimating a PMB either by the use of belief prop-
agation [8], [9] or blocked Gibbs sampling [30] has also
shown a drastic reduction in computational time and
better performance compared to estimating a PMBM. It
would therefore be interesting to explore if the GP tar-
getmodel can be integrated into thesemethods.Another
venue of future work would be to extend the method to
also include 3D information, for which there already ex-
ist several targetmodels [31], [32].This would resolve the
issue of model consistency when applying it to real data,
which could prevent the issues where different LiDAR
beams hit the target boat. It could also aid in reducing
the effect of wake clutter on the extent estimate. It would
also be of interest to directly incorporate a model that
accounts for wake clutter into the filter.Recent work has
explored how tomodel arbitrary sources of clutter in the
PMBM framework [33], and wake clutter could be mod-
eled in this framework. Clutter models for wake clutter
in the context of target tracking already exist [34], [35],
and they could be applied by adapting them to extended
targets.
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APPENDIX A

PARTIAL DERIVATIVES FOR NEGATIVE INFORMATION

Following the approach in [11], we divide the deriva-
tive into the following components:

dhmax(x)
dx

=
[
dhmax(x)
dxc

dhmax(x)
dφ

dhmax(x)
dx f

]
. (69)

The time index has been omitted for brevity. The deriva-
tives can be found by applying the chain rule and the
quotient rule.We start by making the substitution

u = uy
ux

=
yp + sin

(
θ
f
max + φ

)
Hf
(
θ
f
max

)
x f

xp + cos(θ f
max + φ)Hf

(
θ
f
max

)
x f

. (70)

We also introduce the following shorthands:

H f (θ f
max

) = H f

θ f
max + φ = θ

(G)
max.

(71)

The derivative of arctan(u) is 1
1+u2 ; therefore, according

to the chain rule, we get

dhmax(x)
dx

= 1
1 + u2

[
du
dxc

du
dφ

du
dx f

]
. (72)
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To calculate the partial derivatives, we apply the quo-
tient rule. Doing this results in

du
dxp

= −
yp + sin

(
θ
(G)
max

)
H fx f

ux2

du
dyp

= 1
ux

du
dφ

=
H fx f

(
H fx f + xp cos

(
θ
(G)
max

)
+ yp sin

(
θ
(G)
max

))
ux2

du
dx f

=
H f
(
xp sin

(
θ
(G)
max

)
− yp cos

(
θ
(G)
max

))
ux2

.

(73)
By expanding

1
1 + u2

= ux2

ux2 + uy2
, (74)

then multiplying this expression with the ones above we
end up with the final partial derivatives

du
dx

= −
y+ sin

(
θ
(G)
max

)
H fx f

ux2 + uy2

du
dy

=
xp + cos

(
θ
(G)
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)
H fx f

ux2 + uy2

du
dφ

=
H fx f
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H fx f + x cos

(
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+ y sin
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du
dx f

=
H f
(
x sin

(
θ
(G)
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)
− y cos

(
θ
(G)
max

))
ux2 + uy2

. (75)

It follows that the partial derivatives for the minimum
angle can be found by substituting θ

f
max with θ

f
min.

APPENDIX B

PMBM FLTER RECURSIONS FOR A GP TARGET MODEL

B.1. Prediction

As stated in the main text, we utilize the expressions
derived for an extended object PMBM filter in [3] and
use those to derive closed-form expressions.

The posterior distribution of a PMBM prior is a
PMBM with parameters

Du
k−1, {w j

k−1, {r j,ik−1, ( f
j,i
k−1)}i∈Ik|k′ } j∈Jk|k′ . (76)

Then, the predicted distribution is a PMBMwith pa-
rameters

Du
k|k−1, {w j

k|k−1, {r j,ik|k−1, ( f
j,i
k|k−1)}i∈Ik|k′ } j∈Jk|k′ , (77)

where the parameters are given by

Du
k|k−1 = Db(x) + 〈Du

k−1;PSgk|k−1(x)〉
w

j
k|k−1 = w

j
k−1

r j,ik|k−1 = 〈 f j,ik−1;PS〉r j,ik−1

f j,ik|k−1 = 〈 f j,ik−1;PSgk|k−1(x)〉
〈 f j,ik−1;PS〉

.

(78)

For the Gaussians, we can derive the expressions using
the product rule and integrating the resulting expression

〈
f j,ik−1;PSgk|k−1(x)

〉
= PS

∫
N (xk−1; x j,ik−1,Pk−1)N (xk;Fx′,Q)dxk−1

= PSN (xk;Fx j,ik−1,FP
j,1
k|k−1F

T + Q)
∫

N (xk−1; ·, ·)dxk−1

= PSN (xk;Fx j,ik−1,FP
j,1
k|k−1F

T + Q)

〈Dk−1;PSgk|k−1(x)〉

= PS

∫ Nu∑
n=1

dunN (xk−1, xun,P
u
n)N (xk;Fx′,Q)dxk−1

= PS
Nu∑
n=1

dunN (xk;Fxun,FPu
nF

T + Q)
∫

N (xk−1; ·, ·)dxk−1

= PS
Nu∑
n=1

dunN (xk;Fxun,FPu
nF

T + Q)

〈
f j,ik ;PS

〉 = PS

∫
f j,ik−1(x)dx = PS.

(79)
The gamma component does not have a similar expres-
sion, and we instead use the heuristic defined in [24] and
presented in (18). Inserting these expressions into (78)
and simplifying results in (34).

B.2. Update

Starting with the predicted PMBM and given the set
of measurements Zk. The posterior distribution is then
also a PMBM with parameters

Du
k, {w j,A

k , {r j,Ck , ( f j,Ck )}C∈A} j∈Jk|k−1,A∈A j , (80)

where A j is the set of all possible data associations
for the association hypothesis with index j. If measure-
ment cell C belongs to a detected target, the following
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expressions apply:

Lj
C =

{
1 − r j,iCk|k−1 + r j,iCk|k−1〈 f j,iCk|k−1;QD〉 |ZC| = 0
r j,iCk|k−1〈 f j,iCk|k−1; l(ZC|x)〉 |ZC| 
= 0

r j,iCk =
⎧⎨⎩

r
j,iC
k|k−1〈 f

j,iC
k|k−1;QD〉

1−r j,iCk|k−1+r
j,iC
k|k−1〈 f

j,iC
k|k−1;QD〉 |ZC| = 0

1 |ZC| 
= 0

f j,iCk (x) =

⎧⎪⎪⎨⎪⎪⎩
QD f

j,iC
k|k−1

〈QD; f j,iCk|k−1〉
|ZC| = 0

l(ZC|x) f j,iCk|k−1

〈l(ZC|x); f j,iCk|k−1〉
|ZC| 
= 0

.

(81)

If measurements are assigned to an undetected target,
we instead have the following expressions:

Lj
C =

{
Dc + 〈Du

k|k−1; l(ZC|x)〉 |ZC| = 1
〈Du

k|k−1; l(ZC|x)〉 |ZC| > 1

r j,iCk =
{ 〈Du

k|k−1;l(ZC|x)〉
Dc+〈Du

k|k−1;l(ZC|x)〉 |ZC| = 1

1 |ZC| > 1

f j,iCk (x) =
l(ZC|x)Du

k|k−1

〈l(ZC|x);Du
k|k−1〉

.

(82)

QD is assumed scalar, so we get

〈QD; f j,iCk|k−1〉 = QD

∫
f j,iCk|k−1(x)dx = QD

〈QD;Du
k|k−1〉 = QD

∫
Du
k|k−1(x)dx = QD

QD f
j,iC
k|k−1 = QDN (x, x j,ik|k−1,Pk|k−1),

(83)

where the integrals all evaluate to 1 since the integrands
are probability distribution functions. The remaining ex-
pressions are a collection of products and inner products
of distributions.We can write a generic product

p(x)l(ZC|x) =
PDN (x; x̂k|k−1,Pk|k−1)G(λm;αk|k−1, βk|k−1)

× PDe−λmλ|ZC|
m N (z;Hx,R).

(84)

Given that we have assumed independence between the
measurement rate and the combined state and extent,
we can treat the Gaussian components and the gamma
and Poisson components separately. First, we evaluate
the products of the Gaussian distributions,which is done
using the product rule for Gaussians, which states that

N (z;Hx,R)N (x; x̂k|k−1,Pk|k−1)

= N (z;Hx̂k|k−1,S)N (x; x̂k,Pk),
(85)

where the first term is recognized as the posterior distri-
bution and the second term is the predictive likelihood.

The inner product can consequently be written as∫
N (z;Hx,R)N (x; xk|k−1,Pk|k−1)dx

= N (z;Hx̂k|k−1,S)
∫

N (x; x̂k,Pk)dx

= N (z;Hx̂k|k−1,S),

(86)

which corresponds to a marginalization of x. For the
gamma component, the key element is that the gamma
distribution is the conjugate prior of the Poisson distri-
bution, and the number of measurements |ZC| is Poisson
distributed PS(|ZC|; λm). In [24], it was shown that the
product evaluates to

G(λm;αk|k−1, βk|k−1)PS(|ZC|; λm)

= G(λm;αk|k−1 + |ZC|, βk|k−1 + 1)

×
�(αk|k−1 + |ZC|)βαk|k−1

k|k−1

�(αk|k−1)(βk|k−1 + 1)(αk|k−1+|ZC|)|ZC|! ,
(87)

where the first term is the posterior of the gamma distri-
bution and the second term is the predictive likelihood.
From this,we can combine the two expressions and write
a combined predictive likelihood as

lC(α, β, x,P,ZC) = PD
�(α + |ZC|)βα

�(α)(β + 1)(α+|ZC|)|ZC|!
× N (z;Hx̂k|k−1,S).

(88)

The posterior can be found from Bayes rule

p(x)l(ZC|x)
〈p(x); l(ZC|x)〉 = N (x; x̂k,Pk)G(λm;αk, βk). (89)

Replacing the generic probability density p with f j,iC or
the components of the mixture Du results in the follow-
ing predictive likelihoods:

〈l(ZC|x); f j,iCk|k−1〉 = lC(α j,iC , β j,iC , x j,iCk|k−1,P
j,iC
k|k−1,ZC)

〈l(ZC|x);Du
k|k−1〉 =

Nu∑
n=1

dunlC(α
u
n, β

u
n , x

u
n,P

u
n,ZC)

(90)
and the following posterior distributions:

l(ZC|x)Du
k|k−1

〈l(ZC|x);Du
k|k−1〉

=
Nu∑
n=1

dunN (x; x̂un, P̂u
n)G(αun, βu

n )

l(ZC|x) f j,iCk|k−1

〈l(ZC|x); f j,iCk|k−1〉
= N (x; x̂ j,iCk , P̂ j,iC

k )G(α j,iC
k , β

j,iC
k ).

(91)

Inserting these expressions into (81) and (82) results
in (46) and (47), respectively.
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SalFAU-Net: Saliency Fusion
Attention U-Net for Salient
Object Detection

KASSAWABRAHAMMULAT
ZHENGYONG FENG
TEGEGNE SOLOMON ESHETIE
AHMED ENDRIS HASEN

Salient object detection (SOD) remains an important task in com-

puter vision,with applications ranging from image segmentation to au-

tonomous driving. Fully convolutional network-based methods have

made remarkable progress in visual saliency detection over the last

few decades. However, these methods have limitations in accurately

detecting salient objects, particularly in challenging scenes with multi-

ple objects, small objects, or objects with low resolutions. To address

this issue, we proposed a Saliency Fusion Attention U-Net (SalFAU-

Net) model, which incorporates an saliency fusion module into each

decoder block of the attention U-net model to generate saliency prob-

ability maps from each decoder block. SalFAU-Net employs an atten-

tion mechanism to selectively focus on the most informative regions

of an image and suppress nonsalient regions.We train SalFAU-Net on

the DUTS dataset using a binary cross-entropy loss function. We con-

ducted experiments on six popular SOD evaluation datasets to evalu-

ate the effectiveness of the proposedmethod.The experimental results

demonstrate that our method, SalFAU-Net, achieves competitive per-

formance compared to other methods in terms of mean absolute error,

F-measure, S-measure, and E-measure.

I. INTRODUCTION

Salient object detection (SOD), also referred to as
visual saliency detection, is detecting the most notice-
able, unique, and visually distinct objects or regions in
a scene that attract the human eye [3]. The human visual
perception system has an exceptional ability to rapidly
recognize and focus its attention toward visually unique
and prominent objects or regions within scenes [37].This
innate capability has captivated the interest of many re-
searchers in the field of computer vision, where the aim
is to simulate this process based on the psychological and
biological properties of the human visual attention sys-
tem. The goal is to identify prominent objects in images
and videos that hold significant importance and valuable
information.

Given the diverse applications of SOD in various
domains of computer vision, it plays a crucial role as a
preprocessing step in tasks like image segmentation [1],
[7], [12], [31], object detection [4], [35], [33], image cap-
tioning [43], autonomous driving [29], and augmented
reality [8]. Numerous visual saliency detection methods
have been proposed. These methods aim to distinguish
the most unique foreground images from less signifi-
cant backgrounds. While traditional saliency detection
approaches rely on low-level heuristic visual features,
these methods often fail to detect salient objects in
challenging scenes. Recently, deep learning methods,
particularly convolutional neural networks (CNNs),
have exhibited exceptional efficacy across diverse
computer vision tasks, including saliency detection. In
contrast to traditional methods, CNN-based methods
have made remarkable advancements by harnessing
advanced semantic features [16].

Due to the significant impact of representative
features on algorithms performance, it is beneficial to
investigate models that leverage multilevel features and
contextual information to enhance saliency detection.
Furthermore, despite the introduction of end-to-end
models based on fully convolutional networks (FCNs),
there remains significance in incorporating and advanc-
ing conventional FCN models like U-Net [34] and its
variate for the task of saliency detection. One of the
variants of U-Net that is well known for its efficacy in
medical image segmentation is theAttentionU-Net net-
work [28], which selectively focuses on relevant regions
of the input image by integrating attention mechanisms
into its architecture, which improves the model’s ability
to capture intricate patterns and important features.
The attention mechanism facilitates improved perfor-
mance in tasks such as image segmentation. Drawing
on its success in medical image segmentation, this study
explores the application of Attention U-Net for saliency
detection tasks. We added a saliency fusion module
(SFM) to each decoder block of the network. This
module allows us to generate saliency maps effectively,
which we then concatenate with each decoder’s side
output saliency map to get the final saliency map. The

JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 19, NO. 2 DECEMBER 2024 109



attention gate (AG) module in the proposed method
helps the model learn to focus on salient features with
varying sizes and shapes. In this way, SalFAU-Net has
the ability to suppress irrelevant regions from an input
image while emphasizing the features that are most
important for saliency detection. To summarize, the
main contributions of this paper are as follows:

(1)We proposed a Saliency Fusion Attention U-Net
(SalFAU-Net) for the task of visual saliency detection.

(2) SFM is added to each decoder block of the net-
work to generate a saliency map from each decoder, and
these saliency maps are concatenated together to ob-
tain the ultimate visual representation that highlights the
most important areas or objects in an image.

(3) We conducted experiments on six publicly avail-
able challenging SOD datasets, and the results demon-
strate the effectiveness of SalFAU-Net for the task of
visual saliency detection.

II. RELATED WORKS

Generally, saliency detection methods can be classi-
fied into two categories. These are traditional methods
and deep learning-based methods. Traditional methods
are based on low-level heuristic visual features such as
contrast, location, and texture. Most of these methods
are unsupervised or semi-supervised. Examples of tra-
ditional saliency detection methods include those based
on local contrast [22], global contrast [44], background-
ness prior [45], center prior [42], objectness prior [20],
and others. These methods achieved good results in un-
complicated images or scenarios featuring solitary ob-
jects. Nonetheless, these methods failed to detect salient
objects that are in complex scenes, low resolutions, or
sceneswithmultiple salient objects.This limitation arises
from their reliance on low-level features,which prove in-
adequate for addressing the complexities introduced by
such challenging visual contexts.

Recently, deep learning-based methods, particularly
CNNs, have demonstrated remarkable performance
across diverse computer vision tasks, including image
classification [17], semantic image segmentation [24],
and object detection [41]. CNNs have the capability to
learn rich and hierarchical representations of input data
by extracting high-level semantic features. However, in
SOD, both low-level and high-level features are impor-
tant for developing good visual saliency detection mod-
els. The introduction of FCNs [25] has revolutionized
the approach to end-to-end pixel-level saliency detec-
tion. Initially designed for semantic segmentation, FCN
seamlessly combines the tasks of feature extraction and
pixel label prediction in a single network structure com-
posed of down-sampling and upsampling paths. Sub-
sequently, numerous FCN-based visual saliency detec-
tionmodels have been proposed, including deep contrast
learning (DCL) [19], aggregating multilevel convolu-
tional feature frameworks (Amulet) [46], recurrent fully

convolutional networks (RFCN) [39], and deep uncer-
tain convolutional features (UCF) [47]. These advance-
ments have notably enhanced the effectiveness of algo-
rithms designed for visual saliency detection. Nonethe-
less, exploring effective FCN-based models designed for
different purposes is still beneficial. U-Net is one of the
most widely used networks in medical image segmen-
tation [34]. Following the success of U-Net, numerous
network variations have been introduced for different
tasks. One exemplary variant of U-Net is the Attention
U-Net model, which is designed for pancreas image seg-
mentation, has shown impressive results in other tissue
and organ segmentation, benefiting from the AG mod-
ule to focus on relevant and variable size regions in an
image. Most FCN-based saliency models are based on
plainU-Net and have achieved remarkable performance
for saliency detection. In [32], Qin et al. proposed a two-
level nested U-structure by using a residual U-block
(RSU) as a backbone for visual saliency detection.Com-
pared to many other networks that use pretrained net-
works as backbones, U-2-Net’s RSU block increases ar-
chitecture depth without significantly increasing compu-
tational costs while achieving competitive performance.
In [14], Han et al. proposed a modified U-Net network
for saliency detection, utilizing an edged convolution
constraint. This variant effectively integrates features
from multiple layers, reducing information loss and en-
abling pixel-wise saliency map prediction rather than
patch-level prediction, which is common in CNN-based
models.

Although these methods based on plain U-Net
achieved remarkable performance for saliency detec-
tion, their performance can be boosted by incorporat-
ing different techniques into the encoder and decoder
blocks of their architecture. Recently, attention mech-
anisms have shown remarkable results across various
computer vision applications, encompassing saliency de-
tection. In [21], Li et al. proposed a U-shape network
with stacked layers incorporating channel-wise attention
to extract the most important channel features and ef-
fectively utilize these features by integrating a parallel
dilated convolution (PDC) module and a multilevel at-
tention cascaded feedback (MACF) module.

In order to recurrently translate and aggregate the
context features separately with various attenuation fac-
tors, Hu et al. [15] proposed a spatial attenuation con-
text module. After that, the module carefully learned
the weights to adaptively incorporate the collective con-
textual features. In [48], Zhang et al. proposed a novel
approach to visual saliency detection that leverages at-
tention mechanisms for refining saliency maps, incorpo-
rating bi-directional refinement for enhanced accuracy.
The introduction of bi-directional refinement highlights
the focus on comprehensive feature extraction and opti-
mization. In [49], Zhao andWu applied spatial attention
(SA) and channel-wise attention (CA) to distinct aspects
of themodel.Specifically,SAwas employed for low-level
feature maps, while CA was incorporated into context-
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aware pyramid feature maps. This strategic approach
aims to direct the network’s focus toward the most rel-
evant features for the given sample. In [13], Gonget al.
proposed an enhancedU-Netmodel incorporating pyra-
mid feature attention, channel attention, and a pyramid
feature extraction module to improve the performance
of the U-Net backbone network.

In this research, we attempt to explore the applica-
tions of attention U-Net architecture in the realm of vi-
sual saliency detection. We added an SFM to each de-
coder of the network and concatenated their output to
obtain the final saliencymap.TheAGmodule in the pro-
posed method helps the model learn to focus on salient
features with varying sizes and shapes. Thus, SalFAU-
Net adeptly learns the capability to suppress irrelevant
or undesirable regions within an input image while high-
lighting themost crucial and salient features essential for
the task of saliency detection.

III. METHODOLOGY

In this section, we provide a detailed description of
the architecture of our proposed method. This is fol-
lowed by the network supervision, the datasets and eval-
uation metrics used, and the implementation details.

A. Architecture of SalFAU-Net

The proposed SalFAU-Net for visual saliency detec-
tion in this paper mainly consists of four parts: (1) a
five-level encoder block, (2) a four-level decoder block,
(3) an AG module, and (4) an SFM. Figure 1 shows the
architecture of the proposed SalFAU-Net model. Com-
pared with the Attention U-Net model proposed for
pancreas image segmentation [28], we add an SFM to
each decoder of the architecture and finally concatenate
them together to obtain the final saliency map.

1) Encoder Block: Each encoder block consists of
two convolutional layers, each followed by a batch nor-
malization layer and ReLu activation function,which in-
creases the number of feature maps from 3 to 1024.Max
pooling with a stride of 2×2 is applied at the end of ev-
ery block except the last block for downsampling, reduc-
ing the image size from 288×288 to 18×18. The encoder
block progressively reduces the spatial resolution of fea-
ture maps while increasing the number of channels, cap-
turing features at different scales.

2) Decoder Block: The decoder block is responsible
for upsampling and generating salient maps. It consists
of an up-sampling layer followed by two convolutional
layers, batch normalization, and ReLU activation func-
tion. The decoder block is connected to the AG block
through skip connections. Each decoder block reduces
the number of feature maps by two while increasing the
size of the spatial resolutions from 18×18 to 288×288.
The goal is to recover spatial details lost during the
downsampling in the encoder, facilitating precise local-
ization and detection of salient objects.

3) AGModule: AGs have demonstrated remarkable
effectiveness in capturing crucial regions, diminishing
feature responses in irrelevant background areas, and
eliminating the need to crop a region of interest (ROI)
within an image. This is particularly important for the
task of visual saliency detection. The integration of AGs
into the conventional U-Net architecture enhances the
model’s ability to emphasize salient features transmitted
through skip connections. Given a skip connection fea-
ture Fs ∈ RC×H×W , where C is the number of channels,
and H andW are the height and width of F, we first ap-
ply a convolution layer,batch norm,andReLu activation
function to obtain a key feature K, and let Q be the in-
put from the previous layer or the gating signal obtained
by applying a convolution layer followed by a batch

Figure 1. Architecture of our proposed Saliency Fusion Attention U-Net (SalFAU-Net model).
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Figure 2. Diagram of the additive attention gate (AG) module.

normalization and relu activation to the input gate fea-
ture Fg. The attention coefficient α is obtained by apply-
ing a relu function to the element-wise sum of Q and
K. The final attention coefficient valueV is obtained by
feeding a convolution layer, batch normalization, and
sigmoid activation function to the attention coefficient
α.

Finally, the attention coefficient value V and the skip
connection feature map are multiplied element-wise to
produce the final AG output x̂li,c, which is calculated as
equation (3)

qlatt = �
(
σ1

(
WT

q × qli +WT
k ×Ki + bk

)) + b�, (1)

αli = σ2
(
qlatt

(
qli,Ki;�att

))
, (2)

x̂li,c = αli ·Ki,c, (3)

where σ2(xi, c) = 1
1+exp(−xi ,c) represents the sigmoid ac-

tivation function. Thus, AG is defined by a set of pa-
rameter set θatt , which includes linear transformations
Wk ∈ RFl×Fint ,Wq ∈ RFg×Fint , � ∈ RFint×1 and bias terms
b� ∈ R,bk ∈ RFint . The linear transformation can be
computed using channel-wise 1× 1 convolutions for the
input tensors.

4) Saliency Fusion Module: The saliency map fusion
module serves as a pivotal component in generating
saliency probability maps. Similar to the methodology
in [32], our model undertakes a multistage approach.
Initially, it generates four-side output saliency proba-
bility maps, denoted as S(1)side,S(2)side,S(3)side, and
S(4)side, originating from the respective stages decoder1,
decoder2, decoder3, and decoder4. This generation is fa-
cilitated by a 3 × 3 convolution layer, followed by a sig-
moid activation function. Subsequently, the convolution
outputs prior to sigmoid functions of these side-output
saliency maps are upsampled to have the same size as
the input image. The integration of these saliency maps
is accomplished through a concatenation operation, fol-
lowed by a 1 × 1 convolution layer and a sigmoid func-
tion. The result of this fusion process is the final saliency
map Sfuse (depicted in the bottom right of Fig. 1).

Mathematically, the saliency probability maps at
each stage are generated as follows:

S(i)side = σ (Conv(i)(X )), (4)

where i represents the stage (1, 2, 3, or 4), σ denotes the
sigmoid function, Conv(i) is the convolution operation
at stage i, and X is the decoder’s output feature map.
The side outputs are then upsampled and concatenated
to generate the final saliency map Sfuse:

Sfuse = σ (Convfuse(Concat(S(i)side))), (5)

where Concat represents the concatenation operation,
Convfuse is the 1× 1 convolution layer specific to the fu-
sion process, and σ represents the sigmoid function.

B. Network Supervision

Loss functions play a significantly important role in
optimizing a saliency detection model. One of the most
widely employed loss functions for binary classification
problems is the binary cross-entropy (BCE) loss [5].
For visual saliency detection, it measures the dissimilar-
ity between the predicted saliency map and the ground
truth in a binary classification setting.

We use a deep supervision approach similar to that in
[32], which has demonstrated efficacy. Our training loss
is formulated as follows:

L =
M∑
m=1

wm
sidel

m
side + wfuselfuse (6)

The total loss comprises two components. The first
component is the loss associated with the side-output
saliency maps, denoted as lmside, where m represents the
four supervision stages (Sup1, Sup2, Sup3, and Sup4)
shown in Fig. 1. The second component is the loss of
the final fusion-output saliency map, represented by lfuse.
The weights assigned to these loss terms are wm

side and
wfuse, respectively.

We compute the loss for each term l using the con-
ventional BCE to calculate the pixel-level comparison
between the predicted saliency map and the ground
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truth.

l = −
(H,W )∑
(x,y)

[G(x,y) logP(x,y) + (1 − P(x,y)) log(1 − P(x,y))],

(7)

where (H,W) is the height and width of the image, and
(x, y) is the coordinate of a pixel. The ground truth and
predicted saliency probabilitymap’s pixel values are rep-
resented by the symbolsG(x,y) and P(x,y), respectively.
The goal of the training procedure is to reduce the total
loss L of (6).We select the fusion output lfuse as our final
saliency map during the testing process.

IV. EXPERIMENTAL RESULTS

A. Datasets

Training dataset: We train our model using the
DUTS-TR dataset, which is a subset of the DUTS
dataset [38]. DUTS-TR is curated from the training and
validation sets of ImageNetDET [6], and comprises a to-
tal of 10 553 images, each with its corresponding ground
truth. DUTS is the largest and most widely used dataset
for saliency detection. We performed horizontally flip-
ping data augmentation technique, resulting in 21,106
images for training.

Evaluation dataset: We use the following six widely
used saliency detection datasets in order to evaluate the
detection performances of our model.

ECSSD [36]: The ECSSD (Extended Complex
Scene Saliency Dataset) contains semantically signifi-
cant yet structurally complex and challenging images.
This dataset contains 1000 natural images with carefully
annotated ground truth saliency masks.

PASCAL-S [23]: This dataset was collected on eight
subjects with a 3-second viewing time and the utiliza-
tion of the Eyelink eye tracker collected from the PAS-
CAL VOC (Visual Object Classes 2010) [9] validation
dataset. This dataset contains 850 images featuring mul-
tiple salient objects within their scenes, providing a rich
and diverse visual context.

HKU-IS [18]: The HKU-IS dataset is a more chal-
lenging benchmark for visual saliency detection, aimed
at advancing the research and evaluating the perfor-
mance of visual saliency models. This dataset comprises
4447 challenging images, featuring high-quality pixel-
wise annotations with characteristics of either low con-
trast or presence of multiple salient objects.

DUT-OMRON [45]:DUT-OMRON comprises 5168
high-quality nature images meticulously chosen from
more than 140 000 images. These images possess di-
mensions of either 400×x or x×400 pixel dimensions,
where x is less than 400. Notably, each image features
one or more salient objects set against a relatively com-
plex background.

DUTS-TE: DUTS-TE is the test set of the DUTS
dataset, which comprises 5019 test images sourced from

the ImageNet DET test set and the SUN dataset [40].
This dataset contains highly challenging scenarios for
the evaluation of saliency detection models.

SOD [27]: SOD comprises salient object boundaries
derived from theBerkeley SegmentationDataset (BSD)
[26]. It consists of 300 particularly challenging images,
initially intended for image segmentation.

B. Evaluation Metrics

The probability maps that are produced by deep
salient object algorithms often have the same dimen-
sion as the input images. In predicted saliencymaps,each
pixel has a value between 0 and 1 (or [0, 255]). The
ground truths are often binary masks, where each pixel
is either 0 or 1 (or 0 and 255), with 1 denoting the pix-
els of the foreground salient object and 0 denoting the
background.

To comprehensively evaluate the performance of our
model and the quality of the predicted saliency maps
against the actual saliency masks, we used the follow-
ing four evaluating measures: (1) mean absolute error
(MAE) [30], (2) maximal F-measure (maxFβ) [2], (3)
structure measure (Sm) [10], and (4) enhanced align-
mentmeasure (Em) [11].Usingmultiple evaluationmet-
rics is crucial when evaluating an SOD model because
it provides a more comprehensive assessment of the
model’s performance across different aspects.Eachmet-
ric measures a specific quality of the prediction, and no
single metric can fully capture all aspects of model gen-
eralization. The detailed descriptions of these measures
are presented below.

1) F-measure: F-measure comprehensively evaluates
both precision and recall as:

Fβ = (1 + β2)Precision × Recall
β2Precision + Recall

. (8)

Since the rate of recall is not as important as precision,
β2 is empirically set to 0.3 to emphasize precision more.

2) MeanAbsolute Error: MAE,or mean absolute er-
ror, represents the average difference per pixel between
a predicted saliency map and its corresponding ground
truthmask. It is used as ametric to accurately assess false
negative pixels.

MAE = 1
H ×W

H∑
x=1

W∑
y=1

|P(x, y) −G(x, y)|, (9)

where P and G are the probability map of saliency de-
tection and the corresponding ground truth, respectively,
and (H,W) and (x,y) are the (height,width) and the pixel
coordinates. A lower MAE value signifies a high degree
of similarity between the ground truth and the predicted
saliency map.

3) Structure Measure: S-measure (Sm) assesses the
structural similarity between the predicted saliency map
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Table I
Comparison of the Proposed Method and Four Other Methods on DUT-OMRON,DUTS-TE, and ECSSD Datasets, UsingMAE(↓),

F-Measure Fβ (↑), Structure Measure Sm(↑), and E-Measure Em(↑) as Evaluation Metrics

Dataset DUT-OMRON DUTS-TE ECSSD
Metrics MAE Fβ Sm Em MAE Fβ Sm Em MAE Fβ Sm Em

DCL 0.132 0.734 0.758 0.763 0.174 0.771 0.776 0.764 0.078 0.910 0.883 0.888
RFCN 0.110 0.742 0.764 0.778 0.09 0.784 0.794 0.839 0.107 0.890 0.852 0.876
UCF 0.132 0.734 0.758 0.763 0.117 0.771 0.776 0.764 0.078 0.910 0.883 0.888
Amulet 0.098 0.743 0.780 0.784 0.085 0.778 0.802 0.797 0.059 0.912 0.893 0.911
SalFAU-Net 0.080 0.722 0.755 0.811 0.061 0.794 0.809 0.856 0.063 0.895 0.862 0.892

The best values are highlighted in bold.

and the binary ground truth. It quantifies how well the
predicted salient regions align with the actual salient re-
gions in terms of structure, which are essential for real-
world applications. It is defined as the weighted sum of
region-aware Sr and object-aware So structural similar-
ity:

S = (1 − α)Sr+ αSo. (10)

Typically, α is set to 0.5.

4) Enhanced Alignment Measure: Enhanced align-
mentmeasure (Em) incorporates both local pixelmatch-
ing information and image-level statics by combining lo-
cal pixel values and the image-level mean or global aver-
age value in a single term, which allows for a more com-
prehensive evaluation of detection algorithms, ensuring
that the accuracy and quality of the salient regions are
effectively measured.

QFM = 1
h× w

h∑
x=1

w∑
y=1

φFM(x, y), (11)

where h and w are the height and width of the saliency
map, respectively.φFM is enhanced alignment matrix, re-
flecting the correlation between P and G after subtract-
ing their global means, respectively.

C. Implementation Details

The proposed network is implemented using the
PyTorch framework, and training and testing are per-
formed on an NVIDIAGeForce RTX 4070Ti GPUwith

12 GB of video memory. The training dataset consists
of 10,553 images from the DUTS-TR subset of DUTS
[38]. To augment the dataset, each image is horizon-
tally flipped, resulting in a doubled training set with
21,106 images. Prior to feeding the images into the net-
work, they are resized to 320 × 320 and then cropped
to 288 x 288 during training. Model optimization em-
ploys the Adam optimizer with default hyperparame-
ter values (lr = 1e − 3,betas = (0.9, 0.999), eps =
1e − 8,weight_decay = 0). The network is trained for
approximately 500 000 iterations with a batch size of 12
to ensure convergence of the loss. While testing, the in-
put images are first resized to 320 × 320 before being in-
putted into the trained network. The resulting predicted
saliency map is then restored to its original dimensions
through bilinear interpolation.

D. Comparison With Other Methods

In this section, we evaluate the effectiveness of the
proposed model through both qualitative and quanti-
tative analysis. We perform experiments to compare
its performance with that of other models, utilizing
four evaluation metrics, namely, MAE, F-measure, S-
measure, and E-measure.We compare the results of the
proposed method with some FCN-based methods, in-
cluding Amulet [46], DCL [19], RFCN [39], and UCF
[47].

1) Quantitative Comparison: The quantitative re-
sults on the six evaluation datasets using the four eval-
uation metrics are reported in Tables I and II. Based

Table II
Comparison of the Proposed Method and Four Other Methods on HKU-IS, PASCAL-S, and SODDatasets, UsingMAE(↓), F-Measure Fβ (↑),

Structure Measure Sm(↑), and E-measure Em(↑) as Evaluation Metrics

Dataset HKU-IS PASCAL-S SOD
Metrics MAE Fβ Sm Em MAE Fβ Sm Em MAE Fβ Sm Em

DCL 0.074 0.886 0.866 0.891 0.126 0.824 0.803 0.785 0.164 0.798 0.754 0.755
RFCN 0.089 0.893 0.859 0.906 0.132 0.824 0.798 0.807 0.169 0.797 0.732 0.778
UCF 0.074 0.886 0.866 0.891 0.126 0.824 0.803 0.785 0.164 0.798 0.754 0.755
Amulet 0.052 0.895 0.882 0.912 0.098 0.833 0.819 0.827 0.0141 0.802 0.759 0.791
SalFAU-Net 0.044 0.896 0.885 0.927 0.091 0.814 0.801 0.834 0.137 0.798 0.718 0.759

The best values are highlighted in bold.
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Figure 3. MAE values of Amulet, DCL, RFCN, UCF, and the pro-
posed SalFAU-Net model across six evaluation datasets and the av-
erage MAE values of each method across all datasets. A lower MAE
value signifies superior performance.

on the results, it is evident that our proposed method
outperforms the benchmark methods on DUTS-TE and
HKU-IS datasets in all evaluation metrics.On the DUT-
OMRONdataset,ourmodel achieves impressive results,
outperforming othermethodswith the bestMAEvalues.
Furthermore, on the ECSSD dataset, our model demon-
strates competitive performance with the second low-
est MAE value of 0.063, surpassed only by Amulet with
a slightly lower MAE of 0.059. Furthermore, we calcu-
late the averageMAE values for eachmethod across the
six datasets. Impressively,our proposedmethod achieves
the lowest averageMAE value of 0.068, indicating supe-
rior performance compared to other methods. Figure 3
presents the results of the average MAE values of each
method, which clearly demonstrate that our model out-
performs the comparison algorithms based on the aver-
age MAE value.

2) Qualitative Comparison: In addition to quantita-
tive evaluations,we present predicted saliencymaps gen-
erated by the proposed method and the comparison
methods in Fig. 4. The images in the first and second
columns of Fig. 4 represent the original input images
and their corresponding ground truth saliency maps, re-
spectively. The third column showcases the predicted
saliency maps of our proposed method,while the fourth,
fifth, sixth, and seventh columns exhibit the results of the
comparison methods.The first two rows depict scenarios
with multiple salient objects; the third row showcases a
single large salient object; the fourth row contains small
objects; and the fifth and sixth rows depict images with
both small and large salient objects. The last row fea-
tures relatively low-contrast salient objects. As we can
see from Fig. 4, the results demonstrate that SalFAU-
Net generates saliency maps more accurately for differ-
ent challenging scenes, while the comparison methods
generate incomplete or noisy saliency maps.

From the qualitative and quantitative results pre-
sented above, it is evident that our proposed method

yields competitive results in tackling the challenge of vi-
sual saliency detection. These findings also highlight the
crucial role of attention mechanisms in enhancing the
effectiveness of the visual saliency models, as the pro-
posed model places significant emphasis on extracting
highly representative features while effectively eliminat-
ing unwanted or noisy features. This emphasis on atten-
tion mechanisms not only contributes to the competi-
tiveness of our approach but also enhances the overall
performance by prioritizing the extraction of relevant or
salient visual information.

E. Failure Cases

The proposed method demonstrated effective SOD
inmost cases.However, there are some cases where it ex-
hibits limitations. Figure 5 shows some failure cases for
the proposed method. In the first column of Fig. 5, the
presence of the shadow of the person is erroneously de-
tected as a salient object. This is because the presence
of shadows in salient objects may cause a decrease in
the visibility or distinguishability of salient objects,mak-
ing them harder to detect accurately. In the second col-
umn, the reflection of the duck is identified as a salient
object, which is caused by reflections, which can create
distracting image regions, potentially diverting attention
away from the true salient objects. The third and fourth
columns depict situations where the salient objects have
low contrast, causing difficulty for our model in accurate
saliency detection.In the last column,althoughmost part
of the airplane is detected, the model fails to capture its
entirety.

In general, these images are very challenging for
most deep learning models to detect accurately. These
challenges arise due to the sensitivity of deep learning
models to factors such as shadows, reflections, and low
contrasts in salient objects. In the future, we will carry
out further research aiming to address these problems
and develop more accurate saliency detection models.

V. CONCLUSION

In this paper, we proposed SalFAU-Net as an ap-
proach for visual saliency detection tasks. Our method
integrates an SFM into each decoder block of the At-
tention U-Net model, which enables efficient genera-
tion of saliency maps. The use of an AG module in our
method facilitates selective focus on informative regions
and suppression of nonsalient regions within an image.
The comprehensive evaluation across six diverse SOD
datasets, both quantitatively and qualitatively, under-
scores the effectiveness of our proposed method com-
pared to the benchmark methods. SalFAU-Net not only
showcases competitive performance but also highlights
the potential of attention-basedmodels in advancing the
capabilities of saliency detection models.
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Figure 4. Qualitative comparison of the proposed method with four other SOTA methods: (a) original image, (b) GT, (c) Ours, (d) Amulet,
(e) DCL, (f) RFCN, and (g) UCF.

Figure 5. Failure cases of the proposed method.
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themes– look for overall principles, rather than a multitude of point solutions. Serve as the central fo-
cus for coordinating the activities of world-wide information fusion related societies or organizations. 
Serve as a professional liaison to industry, academia, and government.

Disseminate
To propagate the ideas for integrated approaches to information fusion so that others can build on them 
in both industry and academia.

INTERNATIONAL SOCIETY OF INFORMATION FUSION
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contributions in the technical areas of research related to information 
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review https://isif.org/journal.
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The success of JAIF and its value to the research community is 
strongly dependent on the quality of its peer review process. 
Researchers in the technical areas related to information fusion are 
encouraged to register as a reviewer for JAIF at https://jaif.msubmit.
net. Potential reviewers should notify via email the appropriate 
editors of their offer to serve as a reviewer.
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