
ISIF

A semi-annual archival publication of the International Society of Information Fusion

www.isif.org

Journal of Advances in Information Fusion

24JAIF

Regular Papers  Page

June 2024    Volume 19    Number 1    ISSN 1557-6418

A Single-Pass Noise Covariance Estimation Algorithm in Nonswitching Multiple-Model Adaptive Kalman 
Filters for Nonstationary Systems.................................................................................................................... 3
Hee-Seung Kim, University of Connecticut, Storrs, CT, USA
Adam Bienkowski, University of Connecticut, Storrs, CT, USA
Lingyi Zhang, University of Connecticut, Storrs, CT, USA
Krishna R. Pattipati, University of Connecticut, Storrs, CT, USA

Unbiased and Consistent Electro-Optical Camera Angular Measurements With Cross-Correlated  
Errors and Their Fusion......................................................................................................... ............. 20
J. K. Y. Goh, DSO National Laboratories, Singapore
Y. Bar-Shalom, University of Connecticut, Storrs, CT, USA
R. Yang, DSO National Laboratories, Singapore

Sliding Window Estimation Based on PEM for Visual/Inertial SLAM................................ ................... 34
Zoran Sjanic, Linköping University, Linköping, Sweden
Martin A. Skoglund, Linköping University, Linköping, Sweden

Data Association With Camera Parameters Estimation for Object Tracking From Drones.......................... 45
Zijiao Tian, University of Connecticut, Storrs, CT, USA
Yaakov Bar-Shalom, University of Connecticut, Storrs, CT, USA
Rong Yang, DSO National Laboratories, Singapore
Hong’an Jack Huang, DSO National Laboratories, Singapore
Gee Wah Ng, DSO National Laboratories, Singapore



JOURNAL OF ADVANCES IN INFORMATION FUSION: June 2024
Editor-In-Chief	 Paolo Braca	 NATO Science & Technology Organization, Centre for  
			   Maritime Research and Experimentation, Italy;
			   +39 0187 527 461; paolo.braca@cmre.nato.int
	 Associate	 Gustaf Hendeby	 Linköping University, Sweden; +46 (0)13 28 58 15;
			   gustaf.hendeby@liu.se
Administrative Editor	 David W. Krout	 University of Washington, USA; +1 206-616-2589; 
			   dkrout@apl.washington.edu

EDITORS FOR TECHNICAL AREAS 

Tracking	 Florian Meyer	� University of California at San Diego,  
USA, +1 858-246-5016; flmeyer@ucsd.edu

	 Associate	 Erik Leitinger	� Graz University of Technology, Graz, Austria;  
+43 316-873-4339; erik.leitinger@tugraz.at

Detection	 Ruixin Niu	 Virginia Commonwealth University, Richmond, Virginia, 
			   USA; +1 804-828-0030; rniu@vcu.edu
Fusion Applications	 Ramona Georgescu	 United Technologies Research Center, East Hartford,  
			   Connecticut, USA; +1 860-610-7890; georgera@utrc.utc.com
Image Fusion	 Ting Yuan	 Mercedes Benz R&D North America, USA; 
			   +1 669-224-0443; dr.ting.yuan@ieee.org
High-Level Fusion	 Lauro Snidaro	 Università degli Studi di Udine, Udine, Italy; 
			   +39 0432 558444; lauro.snidaro@uniud.it
Fusion Architectures and 	 Marcus Baum	 Karlsruhe Institute of Technology (KIT), Germany; 
Management Issues		  +49-721-608-46797; marcus.baum@kit.edu 

Classification, Learning, Data Mining		    

Bayesian and Other Reasoning 	 Anne-Laure Jousselme	 CS Group, France; +33 (0)7 72-41-03-55; 	
Methods		  anne-laure.jousselme@csgroup.eu
				  

Manuscripts are submitted at http://jaif.msubmit.net. If in doubt about the proper editorial area of a contribution, submit it 
under the unknown area.

INTERNATIONAL SOCIETY OF INFORMATION FUSION

Uwe Hanebeck, President	 Anne-Laure Jousselme, Vice President Membership	
Felix Govaers, President-elect	 Darin Dunham, Vice President Working Groups	
Simon Maskell, Secretary	 Felix Govaers, Vice President Social Media	
Kathryn Laskey, Treasurer	 Paolo Braca, JAIF EIC
Dale Blair, Vice President Publications	 Anne-Laure Jousselme, Perspectives EIC
David W. Krout, Vice President Communications	 Stefano Coraluppi, VP Awards
Lance Kaplan, Vice President Conferences

Journal of Advances in Information Fusion (ISSN 1557-6418) is published semi-annually by the International Society of Information 
Fusion. The responsibility for the contents rests upon the authors and not upon ISIF, the Society, or its members. ISIF is a California  
Nonprofit Public Benefit Corporation at P.O. Box 4631, Mountain View, California 94040. Copyright and Reprint Permissions: 
Abstracting is permitted with credit to the source. For all other copying, reprint, or republication permissions, contact the Administrative 
Editor. Copyright© 2024 ISIF, Inc.

INTERNATIONAL SOCIETY OF INFORMATION FUSION

The International Society of Information Fusion (ISIF) is the premier professional society and global information 
resource for multidisciplinary approaches for theoretical and applied INFORMATION FUSION technologies. 
Technical areas of interest include target tracking, detection theory, applications for information fusion methods, 
image fusion, fusion systems architectures and management issues, classification, learning, data mining, 
Bayesian and reasoning methods.



A Single-Pass Noise Covariance
Estimation Algorithm in
Nonswitching Multiple-Model
Adaptive Kalman Filters for
Nonstationary Systems

HEE-SEUNG KIM
ADAM BIENKOWSKI
LINGYI ZHANG
KRISHNA R. PATTIPATI

This paper presents a single-pass stochastic gradient descent

(SGD) algorithm for estimating unknown noise covariances. The pro-

posed algorithm is designed for nonswitchingmultiple-model adaptive

Kalman filters, where the noise covariances can occasionally jump up

or down by an unknown magnitude. Compared to our previous batch

estimation or multipass decision-directed estimation methods, the

proposed algorithm has the advantage of reading measurement data

exactly once, leading to a significant improvement in computational

efficiency and practicality. Moreover, the algorithm achieves an

acceptable level of root mean square error (RMSE) in state estimates,

making it suitable for real-time industrial applications. The proposed

algorithm utilizes recursive fading memory estimates of the sam-

ple cross-correlations of the innovations and employs the root mean

square propagation (RMSprop) accelerated SGDalgorithm.The com-

bination of these techniques enables the algorithm to achieve high

accuracy in estimating the unknown noise covariances while maintain-

ing superior computational efficiency over iterative batch methods.
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The paper presents a comparative evaluation of the proposed method

on several test cases, which demonstrate its effectiveness in terms

of computational efficiency and estimation accuracy. Overall, the

proposed algorithm offers a promising approach for real-time noise

covariance estimation in multiple-model adaptive Kalman filters.

I. INTRODUCTION

The Kalman filter (KF) [13] is a widely used algo-
rithm that provides an optimal minimum mean square
error (MMSE) estimate for discrete-time linear dynamic
systems under the Gaussian assumption, provided that
the mean and covariance are known. When the noises
entering a system are non-Gaussian but still have known
first and second moments, i.e., mean and covariance, the
KF remains the best linear state estimator due to its abil-
ity to efficiently incorporate prior knowledge of the sys-
tem dynamics and noise statistics. As a consequence of
numerous research studies, the KF has gained significant
interest and attention inmany industrial applications, in-
cluding fault diagnosis, robotics, signal processing, navi-
gation, and target tracking, to name a few [2], [3]. How-
ever, in many real-world circumstances, the statistics of
noise processes are either completely unknown or par-
tially known.

In order to estimate unknown noise covariance pa-
rameters,Zhang et al. [32] derived the necessary and suf-
ficient conditions for their identifiability, and then pro-
posed an iterative batch optimization algorithm that en-
sures uncorrelated innovations. The rank of a matrix
formed from the cross-correlations of the weighted sum
of innovations, where the weights are the coefficients of
the minimal polynomial of any closed-loop filter matrix,
optimal or suboptimal, is required for the noise covari-
ance identifiability. The innovation sequence of an op-
timal KF under the Gaussian assumption is orthogonal,
indicating that the innovations are strictly white and in-
dependent of each other [3].Zhang et al. [32] formulated
an objective function using normalized temporal cross-
correlations of the innovations based on this attribute
to determine the optimal gain and subsequently the in-
novation (preresidual) and postresidual covariances, the
measurement noise covariance and the process noise
covariance.

We presented an improved method for estimating
noise covariances, employing a sequential mini-batch
stochastic gradient descent (SGD) algorithm that re-
quires multiple passes through the data. Moreover, we
showed a technique to detect changes in noise covari-
ances when applying this estimation method to nonsta-
tionary systems [17]. To avoid multiple passes through
the data required by the batch and multipass algo-
rithms, we propose herein a single-pass real-time adap-
tive Kalman filtering approach designed for nonsta-
tionary systems. The proposed method is suitable for

JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 19, NO. 1 JUNE 2024 3



scenarios in which process and measurement noise
covariances occasionally fluctuate by an unknown mag-
nitude and the system behavior is associated with one of
a finite number of known models.

A. Prior Work

The relationship between the covariance of the state
estimation error and the innovations in any suboptimal
filter is the key to process and measurement noise co-
variance estimation. This relationship serves as a funda-
mental building block for correlation-based approaches.
Pioneering contributions using this approach weremade
by [5], [21], [24], [25].

In linear state space models, Sarkka and Nummen-
maa [26] presented a variational Bayesian approach for
the joint recursive estimate of the dynamic state and
measurement noise parameters. The method is imple-
mented by forming separable variance approximations
to the joint posterior distribution of state and noise pa-
rameters at each time step.This approach,however,does
not take variations in process noise into consideration.
Because of their mode-seeking behavior, the variational
algorithms often converge to local minima and typi-
cally need tuning parameters to converge to the correct
parameters.

Our sequential mini-batch estimation method [17]
enhanced the computational efficiency and accuracy of
the batch estimation algorithm in [32] by applying dy-
namic convergence thresholds and adaptive step size
rules.To update the filter gain,we used sequential fading
memory mini-batch estimates of the innovation correla-
tions. For nonstationary systems, a change-point detec-
tion algorithm described in [15] was used for determin-
ing the time points of abrupt changes in unknown noise
covariances based on the innovation sequence.

In the multiple-model adaptive estimation method
proposed herein, the system is assumed to obey one of
a finite number of models, and each model has its own
nonswitching dynamics [3]. The overall estimate of the
system state is obtained by taking a convex combina-
tion of the estimates from multiple parallel filters. The
weights used in the convex combination correspond to
the posterior model probabilities.

The following are the limits of previous research [17]
on noise covariance estimation in nonstationary systems.
First, the previous methods are computationally expen-
sive because they require multiple passes through the
observation data and are not suitable for online stream-
ing data applications. Second, since the sequential esti-
mation method is used for samples between two con-
secutive change points, the accuracy of the decision-
directed noise covariance estimation method is reliant
on the accuracy of the change-point detection algorithm.
Third, the previous methods assumed that the structure
of the dynamic model was known. In this paper,we relax
this assumption and propose a streaming algorithm that
extends the method to multiple-model settings.

B. Contribution and Organization of the Paper

We present a single-pass sequential mini-batch noise
covariance estimation algorithm suitable for streaming
data as an extension of the work in [17], [18] for nonsta-
tionary and nonswitching multiple-model systems. Our
proposed method enables the estimation of the mea-
surement and process noise covariances without the use
of a change-point detection algorithm. We enhance the
computational efficiency of the method via a single-pass
through the observation data. The only caveat is that
jumps are assumed to occur occasionally, and after the
filter has reached a steady state, that is, the jumps are in-
frequent. However, small variations in the noise covari-
ances are allowed in between jumps. More significantly,
the structure of the dynamic model is unknown, but is
assumed to belong to one of a finite number of known
models.

We validate the proposed method on several non-
stationary and multiple-model system test cases. In ad-
dition, we derive noise covariance identifiability condi-
tions in terms of prefit residual (innovation) correlations
as in [32], as well as postfit residual correlations and out-
put correlations; the latter was used in the covariance
estimation algorithm in [25]. We also prove the conver-
gence of the iterative algorithm for process noise covari-
ance, which was not established in our prior work.

The paper is organized as follows: In Section 2, we
provide an overview of the multiple-model KF. Then,
in Section 3, we discuss the identifiability conditions in
terms of prefit and postfit residuals and outputs for esti-
mating the unknown noise covariances in each individ-
ual model. Section 4 provides approaches for obtaining
the unknown covariance parameters in amultiple-model
system using the sequential mini-batch SGDmethod, in-
cluding the fading memory filter-based correlation es-
timation, and the SGD update of the Kalman gain. In
Section 5, numerical results1 show the evidence that our
method can track unknown noise covariances in non-
stationary systems, as well as systems exhibiting dynam-
ics from a finite number of known models, and that the
single-pass algorithm is computationally efficient.Lastly,
we conclude the paper and discuss potential avenues for
future work in Section 6.

II. PLANT AND MEASUREMENT MODEL FOR THE
MULTIPLE-MODEL KF

The multiple-model approach assumes that the sys-
tem obeys one of a finite number of fixed models. For-
mally, the approach assumes that the linear discrete-time
stochastic dynamic system can assume one of J models,
j = 1, 2, ..., J, given by

x(k+ 1) = F jx(k) + � jv j(k), (1)

1Numerical results suggest that the occasional jump assumption may
be relaxed in practice.
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z(k) = H jx(k) + w j(k), (2)

where x(k) is the nx-dimensional state vector, z(k) is the
nz-dimensional measurement vector, and j is the candi-
date model. Here F j and H j are the nx × nx state tran-
sition matrix and the nz × nx measurement matrix of
the system, respectively, and � j is the noise gain ma-
trix. We assume that the process noise v j(k) and the
measurement noise w j(k) processes are the sequences
of zero-mean white Gaussian noises with unknown pro-
cess noise covarianceQj(k) and unknownmeasurement
noise covariance Rj(k), respectively. Note that the ini-
tial state error and the two noise processes are assumed
to be mutually independent. We assume that Qj(k) and
Rj(k) are piecewise constants such that the filter reaches
a steady state between any two jumps and that the jump
is of an unknown magnitude.

GivenQj(k) andRj(k), themultiple-model adaptive
KF involves the consecutive processes of prediction and
update given by [3], [12], [13], [20], [27]

x̂ j(k+ 1|k)=F jx̂ j(k|k), (3)

ν j(k+ 1)=z(k+ 1) −H jx̂ j(k+ 1|k), (4)

x̂ j(k+ 1|k+ 1)= x̂ j(k+ 1|k)+W j(k+1)ν j(k+1), (5)

Pj(k+ 1|k)=F jP j(k|k)F j′ + � jQj(k)� j′, (6)

Sj(k+ 1)=H jPj(k+ 1|k)H j′ + Rj(k), (7)

W j(k+ 1)=Pj(k+ 1|k)H j′Sj(k+ 1)−1, (8)

Pj(k+ 1|k+ 1) = (Inx−W j(k+ 1)H j)Pj(k+1|k)
(Inx −W j(k+ 1)H j)′ +W j(k+ 1)Rj(k)W j(k+ 1)′,

(9)

� j(k)= 1√|2πSj(k)| exp(−
1
2
ν j(k)′Sj(k)−1ν j(k)), (10)

pj(k)= � j(k)pj(k− 1)∑J
l=1 �l (k)pl (k− 1)

. (11)

The KF predicts the next state estimate at time index
(k + 1), given the observations up to time index k in
(3) and the concomitant predicted state estimation error
covariance in (6), using model-specific system dynamics,
the updated state error covariance Pj(k|k) at time in-
dex k and the process noise covariance,Qj(k). The up-
dated state estimate at time (k + 1) in (5) incorporates
themeasurement at time (k+1) via theKalman gainma-
trix in (8), which depends on the innovation covariance

Sj(k + 1) (which in turn depends on the measurement
noise covariance Rj(k) and the predicted state error co-
variance Pj(k + 1|k)). The updated state error covari-
ance Pj(k + 1|k + 1) is computed via (9). This corre-
sponds to Joseph form in [3], [8], which guarantees that
the updated state covariance matrix will remain positive
definite.

The mode likelihood function � j(k) is computed via
(10), which depends on the innovation sequence ν j(k)
and innovation covariance Sj(k). In (10), | · | is the deter-
minant, and the determinant of any scalar value times a
matrix is equal to the determinant of the matrix times
the scalar raised to the dimension of the matrix. This
means that |2πSj(k)| =(2π )nz |Sj(k)| for a multidimen-
sional random variable. Note that nz here is the dimen-
sion of the measurement (or innovation) vector. The
mode probability pj(k) corresponding to each candidate
model at time index k is computed via (11). Without
loss of generality,we assume the initial mode probability
pj(0) = 1/J.

III. NECESSARY AND SUFFICIENT CONDITIONS FOR
THE IDENTIFIABILITY OF UNKNOWN
COVARIANCES

We derive the necessary and sufficient conditions to
estimate the unknown covariance matrices in terms of
prefit residual (innovation) correlations,as well as postfit
residual correlations and output correlations. Note that
the identifiability conditions of the multiple-model ap-
proach depend on each candidate model since the cor-
responding KFs are noninteracting.

A. Innovation-Based Identifiability Conditions

Consider model j. Assume that Qj and Rj are un-
known but are piecewise constants such that the filter
reaches the steady state before any jump to a new value
(in practice, they can vary in between jumps as demon-
strated in illustrative examples). Let us define the coeffi-
cients of themth orderminimal polynomial of the closed-
loop filter matrix F̄ j,

∑m
i=0 a

j
i (F̄

j)m−i = 0, a j0 = 1. Now,
consider the innovations corresponding to a stable, sub-
optimal closed-loop filter matrix F̄ j = F j(Inx −W jH j)
given by [29], [32]

ν j(k) = H j(F̄ j)mx̃ j(k−m|k−m−1)+H j
m−1∑
�=0

{
(F̄ j)m−1−�

× [
� jv j(k−m+�)−F jW jw j(k−m+�)

]}+w j(k),

(12)

where x̃ j(k−m|k−m−1) = x j(k−m)−x̂ j(k−m|k−m−
1) is the predicted error at time (k − m). Given the in-
novation sequence (12), a weighted sum of innovations,
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ξ j(k), is obtained as follows:

ξ j(k) =
m∑
i=0

a ji ν
j(k− i)

=
m∑
l=1

Bj
l v

j(k− l)+
m∑
l=0

Gj
lw

j(k− l). (13)

It is easy to see that ξ j(k) is the sum of two moving
average processes driven by the process noise and mea-
surement noise, respectively [29], [32]. Here, Bj

l and G
j
l

are given by

Bj
l =H j

( l−1∑
i=0

a ji (F̄
j)l−i−1

)
� j, (14)

Gj
l =

[
a jl Inz−H j

( l−1∑
i=0

a ji (F̄
j)l−i−1

)
F jW j

]
,Gj

0=Inz .

(15)

Then, if we define the cross-covariance between ξ j(k)
and ξ j(k− �) as Lj

�, we obtain

Lj
� = E

[
ξ j(k)ξ j(k− �)′

]
=

m∑
i=�+1

Bj
i Q

j(Bj
i−�

)′ +
m∑
i=�

Gj
i R(G

j
i−�

)′. (16)

The noise covariance matrices Qj = [qi�] of dimension
nv × nv and Rj = [ri�] of dimension nz × nz are positive
definite and symmetric. By converting noise covariance
matrices and theLj

� matrices as vectors as in Zhang et al.
[32], they are related to the noise covariance identifiabil-
ity matrix I j as in (17).

I j
[
vec(Qj)
vec(Rj)

]
=

⎡
⎢⎢⎢⎢⎣
Lj

0
Lj

1
...
Lj
m

⎤
⎥⎥⎥⎥⎦ . (17)

As shown in [32], if matrix I j has full column rank, then
the unknown noise covariance matrices,Qj and Rj, are
uniquely identifiable. WhenW j is optimal, Lj

� are mul-
tiples of the innovation covariance Sj, where the scaling
factor involves the minimal polynomial coefficients. For
an optimal filter, it is easy to show that

Lj
� =

( m−l∑
i=0

a ji a
j
i+l

)
Sj; l = 0, 1, 2, ...,m. (18)

B. Postfit Residual-Based Identifiability Conditions

Let us define μ j(k) as the postfit residual sequence
of the KF. This sequence is related to the innovation

sequence ν j(k),k = 1, 2, ...,N via

μ j(k)=z(k)−H jx̂ j(k|k)=[Inz−H jW j(k)]ν j(k). (19)

We can rewrite (19) as

μ j(k) =H j(F̃ j)mej(k−m|k−m)+
{
H j

m−1∑
p=0

(F̃ j)p

× [
(Inx −W jH j)� jv j(k−p−1)−W jw j(k−p)

]}
+w j(k); k ≥ m, (20)

where e j(k+ 1|k+ 1) = F̃ e j(k|k)+ (Inx −WH)�v(k)−
Ww(k+ 1) is the postfit error at time (k+ 1). Note that
F̃ j = (Inx − W jH j)F j and F̄ j = F j(Inx − W jH j) are
similar because F̃ j = (F j)−1F̄ jF j.

Given the postfit residual sequence (20), let ζ j(k) be
a weighted sum of postfit residuals (see Appendix A) as,

ζ j(k) =
m∑
i=0

a jiμ
j(k− i)

=
m∑
l=1

B̃lv
j(k− l) +

m∑
l=0

G̃lw
j(k− l), (21)

where B̃l
j and G̃l

j are given by

B̃ j
l = (Inz −H jW j)Bj

l , (22)

G̃ j
l = (Inz −H jW j)Gj

l . (23)

Note that ζ j(k) = (Inz −H jW j)ξ j(k). Identifiability
conditions in terms of postfit residual correlations simi-
lar to (17) ensue because (Inz −H jW j) is invertible.

C. Output Correlations-Based Identifiability Conditions

The identifiability conditions using output correla-
tions can be derived by using outputs only for stable
open-loop systems or by using postfit residuals when the
state estimation error is stabilizable when the open-loop
system is unstable or marginally stable (e.g., a constant
velocity target model). We will use the latter approach
here.

Given (3) and (4), we can rewrite (5), the updated
state estimate at time k, as

x̂ j(k|k)=F jx̂ j(k− 1|k− 1)+W j[z(k) −H jF jx̂ j(k−1|k−1)]

= F̃ j x̂ j(k− 1|k− 1)+W jz(k). (24)

We can write (19), the postfit residual sequence, as

μ j(k)= −H j(F̃ j)mx̂ j(k−m|k−m)

−H j
m−1∑
�=0

(F̃ j)m−1−�W jw j(k−m+� + 1)+z(k).

(25)
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Given the postfit residual sequence (25), a weighted
sum of postfit residual based on the output correlations,
ϑ j(k), can be obtained as

ϑ j(k)=
m∑
i=0

a jiμ
j(k− i)

=
m∑
i=0

a ji
{ −H jF̃m−ix̂ j(k−m|k−m)

−H j
m−1−i∑
p=0

(F̃ j)pW jz(k− p) + z(k− i)
}

=
m∑
l=1

B̂lv
j(k− l) +

m∑
l=0

Ĝlw
j(k− l)

=
m∑
l=0

Ĝlz(k− l). (26)

Here, the cross-covariance of ϑ j(k) is the same as the
cross-covariance of

∑m
l=0 Ĝlz(k− l). Identifiability con-

ditions in terms of output correlations similar to (17) are
obtained.

IV. ESTIMATING UNKNOWN FILTER PARAMETERS

A. Recursive Fading Memory-Based Innovation
Correlation Estimation

We compute the sample correlation matrix Ĉ j,k
seq(i) at

sample k for model j and time lag i as a weighted com-
bination of the correlation matrix Ĉ j,k−1

seq (i) at the previ-
ous sample (k − 1) for model j and time lag i, and the
samples of innovations ν j(k − i) and ν j(k). The tuning
parameter λ, a positive constant between 0 and 1, is the
weight associated with the previous sample correlation
matrix. The recursive nature of the proposed algorithm
makes it amenable to estimate slowly varyingQj and Rj

in nonstationary systems.
The currentM sample correlation matrices at time k

are used as the initial values for the next pairs of samples
for recursive computation. Let us define the number of
samples as N. The recursive expressions for the correla-
tion matrices Ĉ j,k

seq(i) are

Ĉ j,k
seq(i) = (1 − λ)ν j(k− i)ν j(k)′ + λĈ j,k−1

seq (i), (27)

Ĉ j,0
seq(i) = 0; i = 0, 1, ...,M − 1; k = M, ...,N. (28)

B. Objective Function and the Gradient

The ensemble cross-correlations of a steady-state
suboptimal KF are related to the closed-loop filter ma-
trix F̄ j = F j(Inx −W jH j), the matrix F j, the measure-

ment matrix H j, the steady-state predicted covariance
matrix P̄ j, filter gainW j, and the innovation covariance,
Cj(0) via [5], [21]

Cj(i) = E[ν j(k)ν j(k− i)′]

= H j(F̄ j)i−1F j[P̄ j(H j)′ −W jCj(0)]. (29)

The objective function � j, formulated in [32], involves
minimization of the sum of normalized Cj(i) with re-
spect to the corresponding diagonal elements of Cj(0)
for i > 0. The objective function is dimensionless and
is zero when the filter gain is optimal and the innova-
tion sequence is decorrelated. Formally, we can define
the decorrelating objective function � j to be minimized
with respect toW j as

� j =1
2
tr

{M−1∑
i=1

[
diag(Cj(0))

]− 1
2Cj(i)′

× [
diag(Cj(0))

]−1
Cj(i)

[
diag(Cj(0))

]− 1
2

}
, (30)

where diag(Cj) denotes the Hadamard product of an
identity matrix with Cj. We can rewrite the objective
function by substituting (29) into (30) as

� j = 1
2
tr

{M−1∑
i=1

φ j(i)X jϕ j(X j)′
}
, (31)

where

φ j(i) = [H j(F̄ j)i−1F j]′ϕ j[H j(F̄ j)i−1F j], (32)

X j = P̄ j(H j)′ −W jCj(0), (33)

ϕ j = [diag(Cj(0))]−1. (34)

The gradient of objective function ∇W� j can be com-
puted as [32]

∇W� j =−
M−1∑
i=1

[H j(F̄ j)i−1F j]′ϕ jC j(i)ϕ jC j(0)−(F j)′ZjF jX j

−
i−2∑
l=0

[Cj(l + 1)ϕ jC j(i)′ϕ jH j(F̄ j)i−l−2]′. (35)

The Zj term in (35) is computed by the Lyapunov
equation.

Zj = (F̄ j)′ZjF̄ j + 1
2

M−1∑
i=1

(H j(F̄ j)i−1F j)′ϕ jC j(i)ϕ jH j

+ [(H j(F̄ j)i−1F j)′ϕ jC j(i)ϕ jH j]′. (36)
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In computing the objective function and the gradient,we
replace Cj(i) by their sample estimates, Ĉ j,k

seq(i) in (27).
Evidently, the covariance estimation is a stochastic opti-
mization problem because the cost function and the gra-
dient depend on the realized sample paths.

C. Updating Filter Gain Sequentially

Let B be the mini-batch size and let K = N/B be the
number ofmini-batches (we assume thatN is divisible by
B for simplicity).While the mini-batch gradient descent
sequentially updates theM sample covariance matrices
at every sample, we update the KF gain W j when the
sample index k is divisible by the size of the mini-batch
B using the gradient of the objective function at sample
k. Sequential mini-batch gradient descent allows more
opportunities to converge to a better local minimum by
frequent updates of the gain than the batch algorithm
and is much less noisy than a single sample stochastic
gradient algorithm [17]. Let r denote the updating index,
starting with r = 0. The generic form of gain update is

(W j)r+1 = (W j)r − (α j)r(∇W� j)r. (37)

The incremental gradient algorithm in (37) can be sped
up by adaptively selecting the step size (α j)r.Our results
in [17] showed that Adam [19] and RMSProp [30] have
the best accuracy and rapid convergence among all the
accelerated SGD algorithms (e.g., bold driver [4], con-
stant, subgradient [7], and Adadelta [31]) studied. Here,
we show the performance results of our algorithm us-
ing the RMSProp update. RMSProp keeps track of the
moving average of the squared incremental gradients for
each gain element by adapting the step size element-
wise.

τ
j
r,i� = γ jτ

j
r−1,i� + (1 − γ j)[(∇W� j)ri�]

2, (38)

(α j
i�)

r = (α j)0√
τ
j
r,i� + ε

; τ
j
0 = 0; (α j)0 = c

K
, (39)

where c > 0 is a constant and K is the number of mini-
batches. Here, γ = 0.9 is the default value and ε = 10−8

to prevent division by zero. When N is unknown, as in
streaming data, K is absorbed into the constant c. This
is not a restriction, as mini-batch size B is all we need to
implement the SGD algorithm.

D. Estimation of Process and Measurement Noise
Covariances

Assuming that the necessary and sufficient condi-
tions for the identifiability of covariances are satisfied
for each model [32], here we explore the noise covari-
ance estimation using a single-pass SGD algorithm and
validate it with three illustrative examples.Unlike the al-
gorithm in [32], this algorithm is applicable to nonsta-
tionary and multiple-model systems.

From the joint covariance of the innovation sequence
ν j(k) and the postfit residual sequenceμ j(k) in (19), and
the Schur determinant identity [6], [11], one can show
that at the steady state (assuming constant gain,W j and
constantQj andRj over large enough time intervals such
that the filter achieves steady state)[32]

Gj = E[μ j(k)μ j(k)′] = Rj(Sj)−1Rj, (40)

where Sj is the steady-state innovation covariance. Be-
cause (40) can be interpreted as a simultaneous di-
agonalization problem in linear algebra [11] or as a
continuous-time algebraic Riccati equation, the mea-
surement covariance Rj can be estimated by solving the
simultaneous diagonalization problem via Cholesky de-
composition and eigen decomposition, or by solving a
continuous-time Riccati equation as in [1], [32].

Given the estimated Rj, we can compute the process
noise covariance Qj and the steady-state updated state
covariance Pj. This requires an iterative process because
Qj and Pj are coupled in the general case [32]. Let t and
l denote the iteration indices starting with t = 0 and l =
0, and using an initial (Qj)0 = W jSjW j′ (exact solution
in theWiener process case [32]),we initialize the steady-
state updated covariance matrixPj as the solution of the
Lyapunov equation in (41)

(Pj)0 =F̃ j(Pj)0(F̃ j)′+W jRj(W j)′

+ (Inx−W jH j)� j(Qj)t (� j)′(Inx−W jH j)′, (41)

where F̃ j = (Inx −W jH j)F j.We iteratively update Pj as
in (42) until convergence

(Pj )l+1=
[(
F j(Pj )l (F j )′ + � j(Qj )t (� j )′

)−1
+ (H j )′(Rj )−1H j

]−1
.

(42)

Given the converged Pj,Qj will be updated in the t-loop
until the estimate ofQj converges. Proof of convergence
is included in Appendix B.

(Qj)t+1 = (� j)†
[(
Pj +W jSj(W j)′ − F jPj(F j)′

)t+1
](
(� j)′

)†
.

(43)

V. NUMERICAL EXAMPLES

Our prior study explored the effects of varying the
batch sizes and the number of observation samples for
accurately estimating the unknown variance parameters
in nonstationary systems [18]. Here, jumps in the esti-
mated noise covariance for the one that is not changing
may be due to the changes in the other one (for exam-
ple, an estimate of Rmay jump when R is static butQ is
changing or vice versa). This is because the Kalman gain
W = PH ′(HPH ′ +R)−1 is impacted by bothQ (through
P) and R.

In this section, we explore the problem of tracking
the position and velocity of an aircraft in an air traffic
control (ATC) system (see Section 5.1). We also con-
sider a three-state system for estimating the unknown
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Q and R (see Section 5.2). For comparison with the al-
gorithms in the literature, we also compare the estima-
tion performance with noise covariance estimation algo-
rithms in stationary systems (see Section 5.3). Finally,we
explore a multiple-model scenario with a set of single-
pass adaptive KFs for each mode. The multiple-model
method estimates the noise covariance parameters in
parallel, and then selects the probable model by the con-
comitant mode probability (see Section 5.4). Additional
application examples may be found in [16].

In the data generation process, the system is assumed
to have nonstationary noise covariance matrices.We de-
fine subgroups where each subgroup has a subset of ob-
servation samples duringwhich the noise covariances re-
main constant.The noise covariances abruptly change by
an unknown magnitude when one subgroup of samples
ends and another starts.

Note that we present the performance of the pro-
posed method using a single model (J = 1) in Sec-
tions 5.1–5.3, and then consider the multiple-model case
(J = 2) in Section 5.4. In the estimation procedure, we
set the number of burn-in samples Nb = 50, and the
number of lags M = 5. All computational simulations
were run on a computer with an Intel Core i7-8665Upro-
cessor and 16 GB of RAM.

A. A Nonlinear ATC Scenario

Weconsider anATC scenario used in [3].The ground
truth is a target moving with a constant speed of 250 m/s
with an initial state specified in Cartesian coordinates.
The sampling interval is T = 1 second. A total of 500
measurement samples were collected (500 seconds of
data). The target starts a left turn of 2◦/s for 30 seconds
at k = 100, then continues straight for 70 seconds (until
k= 200), at which time it turns right with 1◦/s for 45 sec-
onds (until k = 245), then left with 1◦/s for 90 seconds
(until k= 335), then right with 1◦/s for 45 seconds (until
k = 380), then continues straight for 120 seconds (until
k = 500).

The target position measurements are generated
starting from k = 0, and they are in polar coordinates
(range r and azimuth θ) by a radar located at [ξ0, η0] =
[−104, 0], with

r =
√
(ξ − ξ0)2 + (η − η0)2, (44)

θ = tan−1(
η − η0

ξ − ξ0
), (45)

F=

⎡
⎢⎢⎢⎢⎢⎣

1 sin�̂(k)T
�̂(k)

0 − 1− cos�̂(k)T
�̂(k)

f�,1(k)
0 cos�̂(k)T 0 −sin�̂(k)T f�,2(k)
0 1− cos�̂(k)T

�̂(k)
1 sin�̂(k)T

�̂(k)
f�,3(k)

0 sin�̂(k)T 0 cos�̂(k)T f�,4(k)
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎣
f�,1(k)
f�,2(k)
f�,3(k)
f�,4(k)

⎤
⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

cos�̂(k)T 2 ˆ̇ξ (k)
�̂(k)

− sin�̂(k)T ˆ̇ξ (k)
(�̂(k))2

− sin�̂(k)T 2 ˆ̇η(k)
�̂(k)

− (−1+ cos�̂(k)T ) ˆ̇η(k)
(�̂(k))2

−(sin �̂(k)T )T ˆ̇ξ (k)−(cos �̂(k)T )T ˆ̇η(k)
sin�̂(k)T 2 ˆ̇ξ (k)

�̂(k)
− (1− cos�̂(k)T ) ˆ̇ξ (k)

(�̂(k))2
+ cos�̂(k)T 2 ˆ̇η(k)

�̂(k)
− sin�̂(k)T ˆ̇η(k)

(�̂(k))2

(cos �̂(k)T )T ˆ̇ξ (k) − (sin �̂(k)T )T ˆ̇η(k)

⎤
⎥⎥⎥⎥⎦.

(47)

with additive white Gaussian noise with covariance R =
diag([2500m2, (1◦)2]).Note that the noise is added to the
Cartesian converted measurements, and the true values
of Q and R are used for the methods which do not esti-
mateQ and R. For this example, we used a KF based on
a second order linear kinematic model (WNA)with pro-
cess noise of standard deviation 1m/s2 described in (46).

F =

⎡
⎢⎢⎣
1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

⎤
⎥⎥⎦ ,H =

[
1 0 0 0
0 0 1 0

]
, � =

⎡
⎢⎢⎣
T 2/2 0
T 0
0 T 2/2
0 T

⎤
⎥⎥⎦ .

(46)
An interacting multiple-model (IMM) estimator

with one WNA (a constant velocity model with process
noise standard deviation 1 m/s2) for the uniform mo-
tion (UM) and a nearly coordinated turn (CT) model
described in (47) and (48) are used. The process noise
standard deviations used in the CT model were 3 m/s2

and 0.1◦/s2 for the UM and turn rate of the state,
respectively.

H=
[
1 0 0 0 0
0 0 1 0 0

]
, �=

⎡
⎢⎢⎢⎢⎣
T 2/2 0 0
T 0 0
0 T 2/2 0
0 T 0
0 0 T

⎤
⎥⎥⎥⎥⎦ . (48)

The mode transition probability matrix π in (49) is
used for IMM estimator.

π =
[
0.95 0.05
0.10 0.90

]
, (49)

Fig. 1a shows the averaged tracking results of target
motion over 100 Monte Carlo (MC) runs by KF, IMM,
and the proposed method. For the single-pass SGD es-
timation algorithm, we considered two models using ei-
ther the UM or the CT model. The proposed approach
can track the target close to its true trajectory when com-
pared to both KF and IMM. For the statistical analy-
sis, we consider the trajectory of the single-pass SGD
method with three-σ boundaries as shown in Fig. 1b.
We calculate the upper and lower limits by three stan-
dard deviations (three-σ ) from themean computed over
100 MC runs. The estimates based on the CT model
(even the UM model as well) are within these bound-
aries, which indicates that the estimates are close to the
mean values. This may suggest that adapting the covari-
ance of noise processes may overcome a lack of knowl-
edge of the dynamics of the target to a certain extent.
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Figure 1. Averaged tracking results of ATC motion scenario.

As shown in Fig. 2a, the proposed approach based
on the CT model (even the UM model as well) has
the peak root mean square (RMS) position error of
about 200 m in the scenario considered. The proposed
method reduces the RMS position error by a factor of
nine when compared to a KF and by a factor of four

when compared to an IMM estimator when the aircraft
is maneuvering. The proposed approach shows an ac-
ceptable RMS error of velocity estimation, as shown in
Fig. 2b. The proposed approach can also track the tar-
get velocity close to its true value as shown in Fig. 2c
and 2d.

Figure 2. Comparison of optimization algorithms for ATC motion estimation (100 MC runs).
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Table I
Single-Pass SGD Estimation When BothQ and R Change Continuously (100 Runs; RMSProp Update)

Subgroup R Q P̄11 P̄22 P̄33 W11 W21 W31
index Truth Mean RMSE Truth Mean RMSE Truth Mean RMSE Truth Mean RMSE Truth Mean RMSE Truth Mean RMSE Truth Mean RMSE Truth Mean RMSE
1st 0.06 0.07 0.01 0.36 0.35 0.03 0.38 0.37 0.06 1.46 1.39 0.22 3.36 3.20 0.50 1.21 1.18 0.11 2.37 2.28 0.14 3.60 3.45 0.20
2nd 0.04 0.04 0.20 0.21 0.22 0.23 0.82 0.86 1.90 1.97 1.15 1.22 2.25 2.32 3.41 3.51
3rd 0.06 0.05 0.25 0.27 0.27 0.30 1.02 1.13 2.35 2.60 1.03 1.16 2.02 2.24 3.07 3.40
4th 0.10 0.10 0.46 0.46 0.49 0.50 1.86 1.89 4.28 4.36 1.07 1.10 2.09 2.16 3.18 3.32
5th 0.12 0.12 0.56 0.57 0.61 0.61 2.29 2.32 5.28 5.35 1.10 1.09 2.15 2.15 3.27 3.32

B. Scenario Where Process and Measurement Noise
Covariances Change Continuously

In this scenario, we consider a three-state system us-
ing 50 000 samples where both Q and R change contin-
uously as in the example used in [25]. The system, which
has a well-conditioned observable matrix, is assumed to
be as follows:

F =
⎡
⎣0.1 0 0.1

0 0.2 0
0 0 0.3

⎤
⎦ , H = [

0.1 0.2 0
]
, � =

⎡
⎣1
2
3

⎤
⎦ .

(50)
The true values of Q and R are generated by first

starting with piecewise constant variance values for the
five subgroups of samples as Q = [0.36, 0.20, 0.25, 0.46,
0.56], and R= [0.06, 0.04, 0.06, 0.10, 0.12] with the values
changing every 10 000 samples. The Gaussian-weighted
moving average algorithm with a window size of 10,000
samples is applied to the piecewise constant noise co-
variances to generate smoothed continuous values.

As shown in Table I, the proposed algorithm can
track the noise covariance parameters accurately when
both Q and R change continuously. Because the noise
covariance is changing continuously, the table values are
provided only in the middle of the subgroups.

Fig. 3 shows the trajectory of noise parameters when
both Q and R change continuously. Our sequential al-
gorithm can track Q and R correctly with a smoothing
weight of 0.7, and the KF is consistent when evaluated
with respect to the normalized innovation squared (NIS)
metric, as shown in Fig. 3c.

C. Comparison of Noise Covariance Estimation
Algorithms on Stationary and Nonstationary Systems

Since most noise covariance estimation algorithms
assume constant Q and R, in this scenario, we consider
a stationary system as in the example used in [10] with
10 000 samples. We compare our single pass, multiple
pass, and batch estimation algorithms with the noise co-
variance estimation algorithms based on the Bayesian
method, the covariancematchingmethods (CMMs),cor-
relation methods, and the maximum likelihood methods
(MLMs). The system is assumed to be as follows:

F =
[
0.9 0

−0.3 0.8

]
, H =

[
1 0
0 1

]
, � =

[
1 0
0 1

]
. (51)

The indirect correlation method (ICM) [21], [22] re-
lies on examining the autocovariance function (ACF)
of the innovations of a linear estimator. The weighted
correlation method (WCM) [5] is based on an analysis
of the innovation sequence in the linear estimator, and
the direct correlation method (DCM) [25] estimates the
noise covariances of the innovation sequence of a sta-
ble linear estimator. In this scenario, we set an initial
gainW 0 = 0.8I2 for ICM, WCM, and DCM algorithms.
The input–output correlationmethod (IOCM) [14] is de-
signed for the linear Gaussian models by a minimiza-
tion of the measurement prediction error related to an
input–output model. The measurement matrix H is the
identity matrix as required by IOCM algorithm, and the
initial condition for estimating the coefficient matrices
B0 = O2.

The measurement average correlation method
(MACM) [33] is based on an analysis of the covariance

Figure 3. Trajectory of noise parameters when Q and R change continuously.
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Figure 4. Comparison of covariance estimation algorithms in stationary systems (100 MC Runs; 10 000 samples).

sequences of measurement estimate error. Two initial
weight matrices M1

wgt = I4 and M2
wgt = I6 are given in

this scenario. The measurement difference correlation
method (MDCM) [9] directly derives the measurement
estimate from other measurements without requiring
state estimation.However, instead of weighting multiple
measurements as MACM does, this method predicts
the measurement through forward-in-time propagation
of the measurement. Here, the number of measure-
ment predictions for MDCM is set to 1. The MLM [28]
relies on maximizing the likelihood function directly
associated with the state space models via numerical
optimization. The CMM [23] is designed for a linear
time-varying (LTV) models with time-varying noise
covariances, employing the filtering and predictive steps
of a linear estimator.We set the initial noise covariances
Q0 = I2 and R0 = I2 for the CMM and the single-pass
SGD Kalman filter (SKF) algorithms. The batch and

multipass versions of our approach (BKF and MKF)
are also included for comparison purposes.

Table II shows the performance comparison of our
proposed method (shown highlighted) with other algo-
rithms for estimating noise covariancesQ and R for this
system averaged over 100 MC simulation runs.

Fig. 4 shows the box plots of the estimates for the
various covariance estimation algorithms. Each method
shows the estimates of noise covariances, with the red
central mark being the median, the edges of the box
being the (blue) 25th and (black) 75th percentiles, and
the red crosses corresponding to the not considered out-
liers. Note that the batch and multipass methods esti-
mate the parameters as well as any other method, while
the single-pass SGD method estimates the noise covari-
ances reasonably well; indeed, all filters are consistent
as measured by the averaged NIS for this stationary
system.
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Table II
Estimates of Noise CovariancesQ and R in Stationary Systems (100 MC Runs; 10 000 Samples)

Q11
( Truth = 2 )

Q22
( Truth = 1 )

R11
( Truth = 3 )

R22
( Truth = 2 )

Method Mean Variance Mean Variance Mean Variance Mean Variance

ICM 1.98 1.04E-02 1.00 4.72E-03 3.02 7.84E-03 2.00 4.69E-03
IOCM 1.99 4.20E-03 1.01 2.71E-03 3.01 4.68E-03 2.00 3.59E-03
WCM 1.98 1.04E-02 1.00 4.72E-03 3.02 7.84E-03 2.00 4.69E-03
MACM 1.98 1.86E-02 1.00 7.22E-03 3.01 1.49E-02 2.01 5.68E-03
DCM 1.98 9.22E-03 1.00 4.14E-03 3.02 7.26E-03 2.00 4.34E-03
MDCM 1.97 1.57E-02 1.00 6.92E-03 3.02 9.81E-03 2.00 5.51E-03
MLM 1.99 4.26E-03 1.01 2.37E-03 3.01 4.16E-03 1.99 3.23E-03
CMM 1.87 7.56E-04 1.25 3.05E-04 2.73 1.27E-02 1.57 4.80E-03
BKF 1.94 4.19E-03 0.95 2.95E-03 3.07 4.54E-03 2.04 3.55E-03
MKF 2.00 6.48E-03 1.01 5.00E-03 2.97 2.56E-02 2.00 1.39E-02
SKF 2.00 3.72E-02 1.04 1.89E-02 2.95 7.09E-02 1.99 4.01E-02

Fig. 5 shows the trajectories of noise parameters in
nonstationary systems.As discussed in [18], the batch es-
timationmethod is not well-suited for nonstationary sys-
tems due to its assumption of constant noise covariances
and the need for the availability of the entire observa-
tion sequence to compute both the objective function

and the gradient.For this example, a change-point detec-
tion algorithm [15] is not applied to the multipass SGD
method because noise covariances change continuously.
The single-pass SGD method is consistent as measured
by averaged NIS (not shown) and can estimate the noise
covariances correctly for online streaming data.

Figure 5. Trajectories of noise parameters in nonstationary systems (100 MC Runs; 10 000 samples).
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D. Application to Multiple-Model Cases

We investigate a situation involving an unknownmo-
tion model, utilizing a multiple-model approach.Within
this algorithm, two KFs are utilized to estimate the noise
covariance parameters, each tuned to a distinct model.
The mode probabilities are integral to determining the
active model. It is important to highlight that we re-
gard a model as valid if its mode probability exceeds
0.66, employing the corresponding state estimate in such
instances. When mode probabilities fall between 0.33
and 0.66, we combine the state estimates proportionally
based on their respective posterior probabilities.

1. ScenarioWhen Process andMeasurement Noise Co-
variances Vary: For the multiple-model approach, we
apply our proposed algorithm to the system used in [24].
Here, we assume that the observation samples are gen-
erated by Model 2, as in (53). Model 1 is assumed to be

F 1 =
[

1 1
−0.1 0.1

]
, H1 = [

1 0
]
, �1 =

[
1
0.4

]
. (52)

Model 2 is

F 2 =
[
0.8 1

−0.4 0

]
, H2 = [

1 0
]
, �2 =

[
1
0.5

]
. (53)

Fig. 6 shows the trajectory of estimated parameters
with 50 000 measurements, and the noise parameters
change every 10,000 samples. Here, the piecewise con-
stant functions with five subgroups for trueQ and R are
generated based on Q=[0.04, 0.64, 0.25, 1.00, 0.09], and
R = [0.42, 0.81, 0.49, 0.16, 0.64]. The mode probability of
the second model is higher than the first model as ex-
pected. We find that the single-pass multiple-model ap-
proach can trackQ and R accurately.

2. Scenario When Measurement Noise Covariance
Changes Continuously: We consider a scenario used
in [26] with two dynamic models using 4000 measure-
ment samples in which the measurement noise covari-
ance changes continuously and compare our algorithm
with the variational Bayesian method and the IMM ap-
proach.

Model 1:

F 1 =
⎡
⎣1 0 0
0 1 0.1
0 −0.002 1

⎤
⎦ ,H1 = [

1 1 0
]
, �1 =

⎡
⎣0.1
0.1
0.1

⎤
⎦ .

(54)
Model 2:

F 2=
⎡
⎣ 0.99 0 0
0.001 1 0.1
0 0 1

⎤
⎦ ,H2=[

1 1 0
]
, �2=

⎡
⎣0.01
0.05
0.1

⎤
⎦ .

(55)
In our data generation process, we model the mea-

surement noise variance,R(k), as a continuous function
in the range between 0.2 and 1 when the sampling inter-
val, h, is 0.1 seconds, as follows:

R(k) =
{
0.2 + 0.4(1 + tanh(0.1h(k− 1000))),k ≤ 1500
0.2 + 0.4(1 + tanh(0.1h(2000 − k))),otherwise.

(56)

Table III shows the RMSE of estimated R over 100
MC runs by the multiple-model approach.The multiple-
model method estimates the noise covariance parame-
ters in parallel, and then finds the probable model using
the concomitant mode probability. Note that the mea-
surements are generated using Model 1, as in (54). The
variational bayesian adaptive kalman filter (VB-AKF)
algorithm provides the best estimate when the hyper pa-
rameter ρ = 1 − exp(−4), but the RMSE value is quite
sensitive to the selection of ρ. When the computation
time needed for tuning the hypre parameter ρ is con-
sidered, our algorithm is superior to VB-AKF in RMSE
and computational efficiency. For estimating R by the
IMM filter with a multiple-model approach, each model
used 111 noise models that changed uniformly between
0.1 and 1.2. The IMM filter with a large number of mod-
els (111 noise models) shows a 10% lower RMSE than
our proposed method, but the IMM filter is very expen-
sive computationally by as much as a factor of 197. Even
IMM filter with 64 noise models shows slightly worse
RMSE than our proposed method, but our method has
better computational efficiency by a factor of 66 over the
IMM.

Figure 6. Estimated trajectories of Q and R based on the multiple-model approach.
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Table III
RMSE of Estimated R Using the Multiple-model Approach (100 MC Runs; 4000 Samples)

Method by MM Computation time (sec) RMSE Description

VB-AKF 85 0.1624 ρ = 1 − exp(−3)
86 0.1178 ρ = 1 − exp(−4)
85 0.1506 ρ = 1 − exp(−5)

IMM 9038 0.1009 64 noise models
26 941 0.0836 111 noise models

Single-pass SGD 137 0.0922 RMSProp update,
Batch size = 16,

Smoothing weight = 0.7

Fig. 7 shows the averaged estimated trajectory of R
over 100 MC runs by VB-AKF (for ρ = 1 − exp(−4)),
IMM (for 111 noise models) and our single-pass SGD
(for RMSProp update with a mini-batch size of 16) in
themultiple-model scenario.For estimating the noise co-
variance parameters, all optimization methods can track
R correctly, but VB-AKF requires knowledge of the
heuristic factor ρ, and the computation cost of IMM is
substantially high.Here, the estimated trajectory ofR by
the single-pass algorithm was smoothed by a smoothing
weight of 0.7.

Figure 7. Trajectory of estimated R by multiple-model approach
(100 MC runs).

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a single-pass SGD al-
gorithm that estimates the noise covariance in adaptive
KFswith streaming data.Compared to the batchmethod
or multipass sequential algorithm, our proposed stream-
ing method is an order of magnitude faster, while still
achieving acceptable root mean square error (RMSE) of
the state estimates. This algorithm is suitable for nonsta-
tionary systems where noise covariances vary slowly and
can occasionally exhibit abrupt changes, as well as for

multiple models. The efficiency of the algorithm comes
from the recursive fading memory estimation of sample
cross-correlations of the innovations, along with an ac-
celerated SGDalgorithms and single-pass computations.
Our proposed method has been evaluated on several
test cases to demonstrate its computational efficiency,ac-
curacy, and filter consistency when compared to extant
approaches.

In the future, a number of research avenues can be
pursued, including (1) estimatingQ andR using one-step
lag smoothed residuals; (2) automatic model selection
from a library of dynamic models for model adaptation;
(3) use of (16) directly in a stochastic gradient algorithm,
while ensuring the positive definiteness ofR and positive
semi-definiteness ofQ (although preliminary results are
not promising); (4) use of maximum likelihood criterion
instead of the normalized time correlations of innova-
tions; and (5) explore the utility of the covariance esti-
mation algorithm as an alternative to IMMs.

APPENDIX A. PROOF OF POSTFIT RESIDUAL-BASED
IDENTIFIABILITY CONDITIONS

Let us assume the postfit error e j(k|k) = x(k) −
x̂ j(k|k). Note that F̃ j = (Inx − W jH j)F j and F̄ j =
F j(Inx − W jH j) are similar because F̃ j = (F j)−1F̄ jF j

given by [29], [32].

μ j(k)=H j(F̃ j)mej(k−m|k−m)+
{
H j

m−1∑
�=0

(F̃ j)m−1−�

× [
(Inx −W jH j)� jv j(k−m+�)−W j

× w j(k−m+�+1)
]}+w j(k)

=H j(F̃ j)mej(k−m|k−m)+
{
H j

m−1∑
p=0

(F̃ j)p

× [
(Inx −W jH j)� jv j(k−p−1)−W jw j(k−p)

]}
+ w j(k);k ≥ m. (57)
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The process ζ j(k), the weighted sum of postfit residual,
can be obtained as

ζ j(k)=
m∑
i=0

a jiμ
j(k− i)

=
m∑
i=0

a ji
{
H j(F̃ j)m−ie j(k−m|k−m)

+H j
m−1−i∑
p=0

(F̃ j)p
[
(Inx −W jH j)� jv j(k−i−p−1)

−W jw j(k−i−p)
]+w j(k− i)

}
. (58)

Let l = i+ p+ 1 and use the minimal polynomial

ζ j(k)=
m∑
i=0

a ji
{
H j

m∑
l=i+1

(F̃ j)l−i−1[(Inx −W jH j)

× � jv j(k−l)−W jw j(k−l+1)
]+w j(k− i)

}

=H j
m∑
l=1

l−1∑
i=0

a ji (F̃
j)l−i−1(Inz −W jH j)� jv j(k− l)

− H j
m−1∑
l=0

l∑
i=0

a ji (F̃
j)l−iW jw j(k−l)+

m∑
l=0

a jlw
j(k−l)

=
m∑
l=1

B̃ j
l v

j(k− l) +
m∑
l=0

G̃ j
lw

j(k− l), (59)

where B̃l
j and G̃l

j are given by

B̃l
j = H j

(
l−1∑
i=0

a ji (F̃
j)l−i−1

)
(Inz −W jH j)� j

= (Inz −H jW j)

(
l−1∑
i=0

a ji (F̄
j)l−i−1

)
� j

= (Inz −H jW j)Bj
l . (60)

G̃l
j = −H j

(
l∑

i=0

a ji F̃
l−i

)
W j + a jl Inz

= −(Inz−H jW j)H j(
l∑

i=0

a ji (F̄
j)l−i−1F jW j+a jl Inz

= −(Inz−H jW j)H j

(
l−1∑
i=0

a ji (F̄
j)l−i−1

)
F jW j

− a jl (Inz −H jW j)H j(F̄ j)−1F jW j + a jl Inz

= −(Inz−H jW j)H j

(
l−1∑
i=0

a ji (F̄
j)l−i−1

)
F jW j

− a jl H
jW j + a jl Inz

= −(Inz−H jW j)H j

(
l−1∑
i=0

a ji (F̄
j)l−i−1

)
F jW j

+ a jl (Inz −H jW j)

= (Inz−H jW j)Gj
l . (61)

APPENDIX B. PROOF OF CONVERGENCE OF THE
ITERATIVE ALGORITHM FOR Q

Since the predicted error covariance is related to the
updated error covariance via P̄ j = Pj +W jSj(W j)′, we
have

Pj = F jP j(F j)′ + � jQj(� j)′ −W jSj(W j)′. (62)

Since the Kalman gain is related to the updated error
covariance viaW j = Pj(H j)′(Rj)−1, the first iteration of
the updated state error covariance, Pj

1 , can be obtained
by solving the Riccati equation as

Pj
1 = F jP j

1 (F
j)′ + � jQj

1(�
j)′ −W jSj(W j)′

= F jP j
1 (F

j)′ + � jQj
1(�

j)′

− Pj
1 (H

j)′(Rj)−1S(Rj)−1H jPj
1

= F jP j
1 (F

j)′ + � jQj
1(�

j)′ − Pj
1 (H

j)′(Gj)−1H jPj
1 .

(63)

With this solution, W jSj(W j)′ ≥ Pj
1 (H

j)′(Gj)−1H jPj
1

because otherwise Pj
1 ≤ 0 at the initial iteration (Recall

� jQj
1(�

j)′ = W jSj(W j)′ at the initial iteration). Given
� jQj

2(�
j)′ = Pj

1 −F jP j
1 (F

j)′ −W jSj(W j)′ ≥ � jQj
1(�

j)′,
we have the second iteration of the updated state error
covariance,Pj

2 , as

Pj
2 = F jP j

2 (F
j)′ + � jQj

2(�
j)′ − Pj

2 (H
j)′(Gj)−1H jPj

2

= F jP j
2 (F

j)′ + Pj
1 − F jP j

1 (F
j)′ −W jSj(W j)′

− Pj
2 (H

j)′(Gj)−1H jPj
2 . (64)

Evidently,

δPj = Pj
1 − Pj

2

= F jδPj(F j)′ + � jQj
1(�

j)′ − Pj
1 + F jP j

1 (F
j)′

−W jSj(W j)′ − Pj
1 (H

j)′(Gj)−1H jPj
1

+ Pj
2 (H

j)′(Gj)−1H jPj
2

= F jδPj(F j)′+Pj
2 (H

j)′(Gj)−1H jPj
2−W jSj(W j)′

≤ 0. (65)

As the iterations proceed, Pj
n(H j)′(Gj)−1H jPj

n −
W jSj(W j)′ → 0, and Pj monotonically approaches Pj∗

from below.
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Unbiased and Consistent
Electro-Optical Camera
Angular Measurements With
Cross-Correlated Errors and
Their Fusion

J. K. Y. GOH
Y. BAR-SHALOM
R. YANG

Electro-optical (EO) camera systems are commonly used in

target detection and tracking applications. Such camera systems

typically comprise a suite of sensors, such as narrow/wide field of view

(FOV) cameras, that provide target-originated angular measurements.

To estimate the position of a point target in Cartesian space, existing

techniques in literature employ the non-linear measurement mapping

from the focal-plane array (FPA) to azimuth and elevation space. A

common assumption made in using this conversion is that azimuth and

elevation measurement errors have the same standard deviation, are

uncorrelated, and are uniform across the camera’s FOV. This paper

presents an approach to derive the azimuth and elevation statistics,

including the cross-correlation of their errors. This approach converts

the raw target measurements and their covariance in the image space

(FPA) to the angular space for subsequent use in Cartesian state

filtering. This conversion has been validated to be unbiased and

consistent, and results show that the line-of-sight (LOS) angle error

variances and their correlations are in fact variable, with magnitudes

dependent on the target’s location in the FPA. The correct LOS angle

covariance matrices should be used in Cartesian state estimation and

fusion rather than the assumed constant angle variances and uncor-

related errors between the azimuth and elevation. We demonstrate a

multi-sensor fusion case where the LOS angle covariance matrices of
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our proposed approach are used to derive the final composite target

position estimate and its corresponding error covariances. The com-

posite estimates produced from our proposed approach are proven to

be statistically efficient. Compared to the use of the uncorrelated and

constant LOS angle covariances, there is significant improvement to

the error modeling of the fused Cartesian position covariance.

I. INTRODUCTION

The use of electro-optical (EO) camera sensors in
target detection and tracking applications has garnered
much attention and intensive research in recent years.
Their wide range of applications include the deployment
of ground-based camera systems for aerial surveillance
[12], camera sensors on-board aircraft and unmanned
aerial platforms for ground target tracking [1], [6], or
even for self-navigation and collision avoidance in the
case of unmanned platforms [8], [9]. The many opera-
tional advantages of using camera sensors include their
covertness due to them being passive, high accuracy of
the angular measurements provided down to milliradi-
ans, and high data rate up to 30 Hz [7].

In video tracking, a sequence of images captures a
moving target across time frames in the camera’s field
of view (FOV). Image processing algorithms are applied
to each image to extract the centroid location of a small
target in the focal-plane array (FPA) [6].For the purpose
of this paper, we focus on the conversion from FPA lo-
cations to 3D line-of-sight (LOS) angles (azimuth and
elevation) in Cartesian coordinates centered at the cam-
era. The target position and velocity can be estimated
from these angular (azimuth/elevation) measurements
derived from a series of coordinate transformations.Ad-
ditional information is usually necessary (e.g., range or
additional cameras) for the target state to be completely
observable.

To track a target’s position and velocity in Cartesian
space, typical systems pass the angular (azimuth/
elevation) measurements derived from the camera(s)
and their covariances to a tracking filter. A common as-
sumption made in the literature when using these mea-
surements in a filter is that the azimuth and elevation
measurement errors share a constant standard deviation,
are uncorrelated, and are uniform across the camera’s
FOV.The above assumptions have been used for camera
system designs that can be broadly classified into three
categories: (i) a single camera sensor on a manoeuvring
platform [1], [7], (ii) a camera suite comprising multiple
(at least two) stationary camera sensors [11], and (iii)
a sensor suite comprising a camera system with other
sensor types such as radars [10]. For the sake of track-
ing filters performing at their best, it is essential that the
measurements they use be unbiased and have correct co-
variances. In the case of the multisensor suite [10], data
fusion is performed to derive the target’s position and
velocity, based on the combination of range information
provided by other sensor types, such as radar, and the
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highly precise angular information provided by the cam-
era sensors.

Recent works have considered the modeling of cor-
relation in measurement errors for camera sensor mea-
surements, applied to the geolocation of targets. The au-
thors in [6] formulated a camera measurement model as
a nonlinear transformation function converting pixel lo-
cationmeasurements in the image space to a 3Dposition
in Cartesian space, based on the perspective transforma-
tion and including radial and tangential lens distortions.
The covariance of the geolocation error was modeled to
account for errors in pixel coordinates, intrinsic (lens dis-
tortion,skew, focal length) and extrinsic (sensor position,
attitude) camera parameters, and terrain height. Results
show that the geolocation covariance is representative
of the actual error in the geolocation estimate. In addi-
tion, a two-camera setup to reconstruct the 3D position
of the target using triangulation of the rays from corre-
sponding image points in the left and right cameras was
investigated in [4], with the total measurement error of
the reconstructed point calculated using error propaga-
tion theory. The authors in [4] introduced a covariance
to model the effect of the camera’s orientation angle er-
rors and the accuracy in detecting its corresponding im-
age point.

Whilewe recognize these approaches, the present pa-
per’s contributions are specific to camera sensors that
are well calibrated with no radial and tangential distor-
tion, and for tracking applications using angular mea-
surements of point targets for the purpose of accurate
fusion and subsequent filtering. Our approach converts
the raw FPA target measurements and their covariance
to the LOS angular space for subsequent use in fusion
via the Maximum Likelihood approach. This conversion
is shown to be unbiased and includes the variances and
correlations of the measurement errors in azimuth and
elevation that are in fact different at various image space
(FPA) points,withmagnitudes dependent on the target’s
location relative to the camera center.

The rest of the paper is organized as follows:
Section II defines and describes the various coordinate
systems used in this paper. Section III develops the
conversion method from the image space to the global
ENU coordinate space to derive unbiased measure-
ments in azimuth and elevation angles, which are shown
to have cross-correlated and location-dependent errors.
Section IV considers the one-sensor case and presents
a simulation test setup to illustrate the significance of
the cross-correlated measurement errors, and proves the
unbiasedness of the measurements in angular space and
consistency of the derived covariance. Section V consid-
ers a two-sensor camera setup, and uses the proposed
conversion approach to derive the angular error covari-
ance matrices. The composite position measurement de-
rived from the fusion of the cameras’ LOS angles and
their angular error covariances is shown to have covari-
ance that meets the Cramer–Rao lower bound (CRLB).
Lastly, Section VI presents the conclusions.

Figure 1. Display image, FPA image, camera, ENU, and spherical co-
ordinate systems [13].

II. COORDINATE SYSTEMS

The following coordinate systems are used in this
paper [13]:

� Display image coordinate system with xD-yD of the
camera’s display, shown in Fig. 1.

� Image coordinate system with xI-yI of the camera’s
FPA, shown in Fig. 1.

� Camera coordinate system with xC-yC-zC centered at
the camera position, shown in Fig. 1.

� Common coordinate system with x-y-z as east, north,
and up (ENU)with origin at camera,with correspond-
ing spherical coordinate system (Fig. 1) comprising:
– azimuth (a): the clockwise angle in x(E)-y(N) plane
from positive y axis to projection of target LOS onto
this plane.

– elevation (e): the angle from x(E)-y(N) plane to the
target LOS.

The notations used in the paper are listed in Table I.
In practice, the flower image (on the left of Fig. 1) is

shown right side up as in the camera display to corre-
spond to the actual object. It is the resulting image after
undergoing an inversion from the FPA, and the FPA im-
age coordinates are related to the display image coordi-
nates by

xI = h1
(
xD

) =
[
xI

yI

]
=

[
Px − xD

Py − yD

]
,

xI = 0, 1, . . . ,Px − 1, yI = 0, 1, . . . ,Py − 1, (1)

with Px and Py the (even) number of pixels in the xI and
yI coordinates, respectively.
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Table I
Notation

xA [a e]′, the corresponding azimuth and elevation angles of a
point in the common (ENU) coordinate system.

x [x y z]′, a point in the common (ENU) coordinate system.
xC [xC yC zC]′, a point in the camera coordinate system.
xI [xI yI]′, a point in the image coordinate system in pixel units.
xD [xD yD]′, a point in the display image coordinate system in

pixel units.
xS [xS yS zS]′, the camera (sensor) position in ENU

coordinates.
α camera pointing azimuth or yaw (clockwise from N).
ε camera pointing elevation or pitch (up from horizontal).
ρ camera roll, clockwise around the center of the frame (ideally

zero).

Next, considering the xC-zC plane and yC-zC plane
given in Figs. 2 and 3, respectively, we have

tan
(

�x

2

)
=

Px
2

f
and tan

(
�y

2

)
=

Py
2

f
, (2)

i.e.,

f = Px
2tan�x

2

= Py

2tan�y

2

, (3)

where f is the focal length with units of measure pixel
(assumed square); �x and �y are the FOV—angular
spans—in xI and yI, respectively.

By similar triangles, from Fig. 2, one has

Px
2 − xI

f
= xC

zC
⇒ xC = zC

f

(
Px
2

− xI
)

, (4)

Figure 2. Diagram relating camera coordinate system to image coor-
dinate system in xC-zC plane (top-down view so the FPA appears as a
line); OC, OI denote the origins of the camera coordinate system and
image coordinate system, respectively;

⊗
denotes the tail end of a co-

ordinate system axis vector.

Figure 3. Diagram relating camera coordinate system to image coor-
dinate system in yC-zC plane (side view so the FPA appears as a line);
OC,OI denote the origins of the camera coordinate system and image
coordinate system, respectively;

⊗
,
⊙

denote the tail and tip ends of
a coordinate system axis vector, respectively.

and from Fig. 3,

Py
2 − yI

f
= yC

zC
⇒ yC = zC

f

(
Py
2

− yI
)

. (5)

By principle of the pinhole camera model, a point in the
FPA corresponds to the projection of the 3D target point
coordinates (via a line going through OC as shown in
Figs. 2 and 3) onto the image plane, and is the inverted
image point of the target.

We further assume for convenience that

zC = f. (6)

The LOS is then from OC to the point
[
xC, yC, zC

]
with

zC arbitrary since it does not affect the LOS. Then us-
ing appropriate notations, to be defined later, the coor-
dinates of this point in the ENU systemwill be obtained,
and they will yield the LOS angles in the ENU system.

Thus, combining equations (4)–(6), the conversion of
xI to xC is given by

xC = h2
(
xI

) =

⎡
⎢⎢⎣

zC

f

(Px
2 − xI

)
zC

f

(
Py
2 − yI

)
zC

⎤
⎥⎥⎦ =

⎡
⎢⎣

Px
2 − xI

Py
2 − yI

f

⎤
⎥⎦ . (7)

Next, the conversion of xC to x − xS is given by

x − xS = T (α, ε, ρ) xC

= TzC (α)TxC (90◦ − ε)TzC (−ρ)xC, (8)

where α, ε, and ρ refer to the camera’s yaw,pitch and roll
angles, respectively, and we use the following mnemonic
notations for rotations between 3D Cartesian systems

TxC (φ) =
⎡
⎣1 0 0
0 cosφ sinφ

0 − sinφ cosφ

⎤
⎦ (9)
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for rotation around the xC-axis by φ from yC toward zC,
and

TzC (φ) =
⎡
⎣ cosφ sinφ 0

− sinφ cosφ 0
0 0 1

⎤
⎦ , (10)

for rotation around the zC-axis by φ from xC towards
yC. The rotation around the yC-axis is not necessary as
TxC (90◦ − ε) replaces the yC-axis by the zC-axis, so that
the rotation around the zC-axis occurs twice. The com-
bined rotation in (8) is

T (α, ε, ρ) =
⎡
⎣sαsεsρ + cαcρ sαsεcρ − cαsρ sαcε

cαsεsρ − sαcρ cαsεcρ + sαsρ cαcε

−cεsρ −cεcρ sε

⎤
⎦ (11)

where

sα = sinα, sε = sin ε, sρ = sin ρ, (12)

cα = cosα, cε = cos ε, cρ = cos ρ, (13)

For a point x in the commonENUcoordinate system,
the conversion of x − xS to xA is given by

xA =
[
a

e

]
= h3

(
x − xS

)
=

⎡
⎢⎣ tan−1

(
x−xS
y−yS

)
tan−1

(
z−zS√

(x−xS)2+(y−yS)2

)
⎤
⎥⎦ .

(14)

III. CONVERSION METHOD FOR ANGULAR
MEASUREMENT ERRORS

A. Uncorrelated Measurement Error Covariance
Assumption

When tracking targets’ position and velocity in 3D
Cartesian space, angular measurements of the target
with respect to the ENU coordinate system are provided
to the fuser and then to a tracking filter1 for dynamic
state estimation. The derived measurement vector from
a camera sensor at time tk is

xA(tk) = [a(tk) e(tk)]
′ (15)

where a(tk) is the measured (noisy) azimuth from true
North clockwise, and e(tk) is the measured elevation up
from the horizontal, with reference to the camera posi-
tion given by xS. The corresponding measurement error
covariance is typically assumed as having uncorrelated
errors, i.e.,

RA
uncorr = diag(σ 2

a , σ 2
e ) (16)

with σa and σe the measurement error standard devia-
tions of azimuth and elevation, respectively. Practically,
all filtering applications assume a constant measurement
error standard deviation, same in both azimuth and el-
evation (i.e., σa = σe), and with uncorrelated errors be-
tween them.

1See [3] for the various configurations in multisensor tracking.

B. The Measurement Error Covariance Matrix With
Location Dependence and Cross-Correlation

We investigate the validity of the above assump-
tion, whether the variances of the measurement errors
are constant, and if measurement error correlation be-
tween azimuth and elevation is present. We present an
approach to derive the errors of the angular measure-
ments of the target LOS with respect to the ENU co-
ordinate system. This involves calculating the azimuth
and elevation measurements of the target (i.e., x̂A) from
the raw target pixel measurements in the display im-
age space (i.e., x̂D) through the series of transformations
defined in Section II. The corresponding measurement
error covariance matrix with location dependence and
cross-correlated errors in azimuth-elevation space, de-
noted asRA

corr, is derived from the error covariance in the
image space using the linearized transformation func-
tion. The validity of the first-order linearization is ascer-
tained by confirming the unbiasedness of LOS angle er-
rors and its covariance consistency [2], i.e., that the cal-
culated covariancematrix is statistically compatible with
the actual errors.

The target angular measurement x̂A can be obtained
by the global transformation function h(·)

x̂A = h
(
x̂D

) �= h3
[
T (α, ε, ρ) h2

(
h1(x̂D)

)]
, (17)

with h3(·), T (α, ε, ρ), h2(·), and h1(·) defined in (14),
(8), (7), and (1), respectively. Its corresponding co-
variance matrix (including correlations) in azimuth-
elevation space is, based on first-order linearization (see,
e.g., [2]), given by

RA
corr = HPDH ′ = H

[
σ 2
Px

0
0 σ 2

Py

]
H ′, (18)

where σPx and σPy are the measurement error standard
deviations (in pixels) in the xD and yD axes, respectively2,
and H is the global linearized function

H = H3HT(α,ε,ρ)H2H1. (19)

as a composite of the Jacobians of the functions h3(·),
T (α, ε, ρ), h2(·), and h1(·) defined in (14), (8), (7), and
(1), respectively. Specifically,

H3 = ∂xA

∂(x − xS)
=

[
∂a

∂(x−xS)
∂a

∂(y−yS)
∂a

∂(z−zS)
∂e

∂(x−xS)
∂e

∂(y−yS)
∂e

∂(z−zS)

]

=
⎡
⎣ y−ys

r2xy
− x−xs

r2xy
0

− (x−xs )(z−zs )
rxyr2

− (y−ys )(z−zs )
rxyr2

rxy
r2

⎤
⎦ ,

(20)

where

rxy
�=

√
(x− xs)2 + (y− ys)2 (21)

2These are the same as the errors in (inverted image coordinates) xI, yI.
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r �=
√
(x− xs)2 + (y− ys)2 + (z− zs)2, (22)

and

HT(α,ε,ρ) = ∂
(
x − xS

)
∂xC

=

⎡
⎢⎢⎣

∂(x−xS)
dxC

∂(x−xS)
dyC

∂(x−xS)
dzC

∂(y−yS)
dxC

∂(y−yS)
dyC

∂(y−yS)
dzC

∂(z−zS)
dxC

∂(z−zS)
dyC

∂(z−zS)
dzC

⎤
⎥⎥⎦

= T (α, ε, ρ) , (23)

as given in (11), and

H2 = ∂xC

∂xI
=

⎡
⎢⎢⎣

∂xC

∂xI
∂xC

∂yI
∂yC

∂xI
∂yC

∂yI
∂zC

∂xI
∂zC

∂yI

⎤
⎥⎥⎦ =

⎡
⎣−1 0

0 −1
0 0

⎤
⎦ (24)

and

H1 = ∂xI

∂xD
=

[
∂xI

∂xD
∂xI

∂yD
∂yI

∂xD
∂yI

∂yD

]
=

[−1 0
0 −1

]
. (25)

Note the location dependence of the elements of (20).

IV. ONE-SENSOR CASE: SIMULATION RESULTS

Following the conversion (17) and (18), we evaluate
the angular measurement error covariance matrix. Next
we present the scenarios considered to illustrate the lo-
cation dependence and the correlation of the errors at
various points in the FPA, and the tests whether the con-
version method is unbiased and has a consistent covari-
ance [2].

A. Simulation Scenario

We consider a camera positioned at the origin in
global 3D Cartesian space, i.e., xS = [0, 0, 0]′, with the
orientation angles of the camera (α, ε, ρ) = (0, 0, 0).
This is for the sake of illustration; for other orienta-
tions, (23) will differ. The aspect ratio of the camera is
16:9, which is typical of commercial camera sensors. This
translates to a horizontal and vertical FOV of �x = 60◦

and �y = 37.5◦, respectively, and an image with Px =
1920 pixels by Py = 1080 pixels for a 2 megapixel (MP)
camera, and Px = 3840 pixels by Py = 2160 pixels for a
8MP camera. The camera records measurements when
the target is in its FOV with FPA measurement error
standard deviations σPx = σPy = 1 pixel3. This error is
equivalent to angles of 0.031◦ (or 0.541mrad) and 0.016◦

(or 0.279 mrad) on average for a 2MP and 8MP camera,
respectively.

3As shown in [5] using a physics-based model, the optimal measure-
ment extractor for a point target can reach a s.d. of 1

2 pixel.We took a
more conservative approach here.

Figure 4. Azimuth-elevation error ellipse plots with assumed uncor-
related errors (dotted) and actual correlated errors (solid) at each of
the chosen image points (xDi , yDi ), i = 1, . . . , 9, from exhaustive combi-

nation pairs of xDi ∈ {1, Px2 ,Px} and yDi ∈ {1, Py2 ,Py}, for a 2MP camera
(black) and 8MP camera (gray). The locations are according to display
image coordinates in Fig. 1.

B. Significance of Correlation Errors

For the given camera specifications,Fig.4 showsmea-
surement error ellipses in azimuth-elevation that were
generated for each of nine selected points in the im-
age plane spanning left to right of xD axis and top to
bottom of yD axis. The nine selected points of the dis-
play image plane include: (i) top-left (1, 1), (ii) top-

center
(Px
2 , 1

)
, (iii) top-right (Px, 1), (iv) mid-left

(
1, Py

2

)
,

(v) center
(
Px
2 ,

Py
2

)
, (vi) mid-right

(
Px,

Py
2

)
, (vii) bottom-

left (1,Py), (viii) bottom-center
(Px
2 ,Py

)
,and (ix) bottom-

right (Px,Py). A baseline uncorrelated measurement er-
ror circle is also shown (in dotted line) to represent the
uncorrelated error covariance RA

uncorr, with σa = σe =
σPx

�x
Px
, for comparison with the correlated and location-

dependent measurement error ellipses RA
corr (in solid

line) derived from the proposed conversion method. Er-
ror ellipses of the 2MP and 8MP camera are colored
black andgray, respectively.

To determine if the measurement correlation error
is significant, the percentage difference between the ar-
eas of the correlated and uncorrelated error ellipses is

24 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 19, NO. 1 JUNE 2024



Table II
Percentage Difference Between Areas of Correlated Error Ellipses

and Uncorrelated Error Circles at Each of Nine Image Points
(xD, yD) for 2MP and 8MP Camera

MP �
�yD
xD

1 Px
2 Px

2 1 −26.8% 10.0% −26.8%
Py
2 −21.0% 21.6% −21.0%
Py −26.8% 10.0% −26.8%

8 1 −26.8% 10.0% −26.8%
Py
2 −21.0% 21.6% −21.0%
Py −26.8% 10.0% −26.8%

calculated as follows:

d =
π

(√
det (RA

corr) − √
det (RA

uncorr)
)

π
√
det (RA

uncorr)
× 100%, (26)

where det (A) is the determinant of matrix A. A mag-
nitude of |d| ≥ 10% will imply that the correlated mea-
surement error is significant. A positive percentage dif-
ference value implies the error ellipse is larger in area
than the baseline uncorrelated error circle, while a neg-
ative percentage difference value implies the error el-
lipse is smaller in area than the baseline uncorrelated
error circle.Table II shows the percentage difference be-
tween the areas of the correlated and uncorrelated error
ellipses for each of the nine selected image points.

With reference to Fig. 4, the error ellipses of the 8MP
camera (in gray) are 4 times smaller in area than those
of the 2MP camera (in black), due to the larger num-
ber of pixels in the image space for the 8MP camera.
The ellipses’ shapes and orientations of both correlated
and uncorrelated error covariances are similar for both
2MP and 8MP cameras, due to both cameras sharing the
same aspect ratio. From Table II, the percentage differ-
ence values are the same for both cases of the 2MP and
8MP cameras. Given the similarities in observations in
both Fig. 4 and Table II, we can, for simplicity, consider
the results (of both figure and result table) of either cam-
era for subsequent analysis and discussion in the rest of
the paper.

From Table II, since all percentage difference values
have magnitude greater than or equal to 10%, the cor-
relations of azimuth and elevation measurement errors
are considered significant at all nine selected points of
the image.

The most significant differences are at the corner
points of the image, where the correct ellipse (with the
error correlations) is 26.8% smaller in area than the cir-
cles corresponding to the (assumed) uncorrelated errors
at these points. The next most significant difference is at
the center point of the image, with the correct error el-
lipse area 21.6% larger than the (assumed) uncorrelated
error circle at this point. This is followed by the mid-left
and mid-right points of the image, with the correlated
error ellipse 21.0% larger in area than the uncorrelated

error circle at this point. The least significant difference
is at the top-center and bottom-center points of the im-
age,with the correlated error ellipse 10.0% larger in area
than the uncorrelated error circle at these points.

C. Unbiasedness and Covariance Consistency

We next assess whether the proposed conversion
method is unbiased and that the derived covariance ma-
trix RA

corr is consistent.
As the global transformation function h(·) defined

in (17) mapping points in the image space to azimuth-
elevation space is nonlinear, a set ofN = 10 000 random
points with Gaussian noise was generated for each se-
lected image point modeling the probability density dis-
tributions in image space, i.e., for each of nine selected
image points, separate realizations ofN points were gen-
erated according to the distribution

{
xDi,k

}N
k=1 =

{[
xDi,k
yDi,k

]}N

k=1

∼ N
([

xDi
yDi

]
,

[
σ 2
Px

0
0 σ 2

Py

])

i = 1, . . . , 9,
(27)

where k is the index of the Monte–Carlo runs. Each set
of points undergoes the non-linear transformation h(·)
to derive a distribution of points

{
xAi,k

}N
k=1 =

{[
ai,k
ei,k

]}N

k=1
i = 1, . . . , 9 (28)

in azimuth-elevation space corresponding to the ENU
coordinate system.The set (28) is based on FPA random
points specified by (27). The sample mean of the angles’
distribution is

x̄Ai =
[
āAi
ēAi

]
= 1
N

N∑
k=1

xAi,k i = 1, . . . , 9, (29)

and the sample covariance is

R̄A
corr,i = 1

N

N∑
k=1

(
xAi,k − x̄Ai

) (
xAi,k − x̄Ai

)′

i = 1, . . . , 9. (30)

Next, each of the nine selected image points xIi , i =
1, . . . , 9 undergoes the global transformation function
h(·) defined in (17) to obtain the converted angular state
x̂Ai comprising the LOS angles, âAi and êAi .

The ratio of the bias error to the baseline measure-
ment error standard deviation is calculated in the az-
imuth and elevation components separately

ra,i = âAi − āAi
σa,i

and re,i = êAi − ēAi
σe,i

, (31)

where σa,i and σe,i are the square roots of the diagonal
terms of (30). These are N (

0, 1
N

)
distributed (see, e.g.,

[2]), so they have to be in the 95% region:
[
− 2√

N
, 2√

N

]
=
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Table III
Ratio ra of the Bias to the Baseline Measurement Error Standard
Deviation for Azimuth Component of 2MP and 8MP Cameras

MP �
�yD
xD

1 Px
2 Px

2 1 0.0101 − 0.0022 0.0051
Py
2 0.0063 0.0048 − 0.0051
Py 0.0106 − 0.0063 0.0032

8 1 − 0.0004 0.0036 − 0.0022
Py
2 − 0.0106 − 0.0142 0.0116
Py 0.0008 − 0.0066 0.0111

Table IV
Ratio re of the Bias to the Baseline Measurement Error Standard
Deviation for Elevation Component of 2MP and 8MP Cameras

MP �
�yD
xD

1 Px
2 Px

2 1 0.0051 − 0.0147 0.0062
Py
2 − 0.0092 0.0160 0.0038
Py − 0.0009 0.0064 − 0.0013

8 1 0.0025 − 0.0128 0.0054
Py
2 0.0138 − 0.0137 − 0.0060
Py − 0.0048 0.0124 0.0081

[−0.02, 0.02] to confirm the unbiasedness of the pro-
posed conversion method. Tables III and IV show the
results of the ratio for the azimuth (ra) and elevation
(re) components, respectively, for both the 2MP and 8MP
cameras considered. It can be seen that all ratio values
are within the 95% region of ±0.02. Thus, the proposed
conversion method is unbiased.

Lastly, the following covariance consistency test [2]
is used:

κi �
1
N

N∑
k=1

(
xAi,k − x̂Ai

)′ (
R̄A

corr,i

)−1 (
xAi,k − x̂Ai

)

≤ 1
N

χ2
2N(1 − α)

i = 1, . . . , 9, (32)

where χ2
2N(1 − α) is α-tail probability of the chi-square

distribution with 2N degrees of freedom. If satisfied,
these tests confirm the unbiasedness of the conversion
and the correctness of the covariance RA

corr,i, including
the correlation between azimuth and elevation errors,
for each of the nine selected image points [2]. Table V
shows the results of the consistency test values κi for
both the 2MP and 8MP cameras considered. It can be
seen that that all covariance test statistics are below the
1 − α = 95% bound of 1

10 000χ
2
20 000(0.95) = 2.0330.

Thus, the proposed conversion method that yields
location-dependent variances and correlations is unbi-
ased and consistent.

Table V
Test for Covariance Matrix Consistency of 2MP and 8MP Cameras

MP �
�yD
xD

1 Px
2 Px

2 1 2.0002 2.0002 2.0001
Py
2 2.0001 2.0002 2.0001
Py 2.0002 2.0001 2.0000

8 1 2.0000 2.0002 2.0000
Py
2 2.0004 2.0003 2.0002
Py 2.0000 2.0002 2.0003

V. TWO-SENSOR CASE: MULTI-SENSOR FUSION
AND SIMULATION RESULTS

In this section, we derive the composite target po-
sition measurement in 3D Cartesian space, by fusing
LOS, i.e.,2D,target anglemeasurements of a two-camera
setup. This derivation can be divided into two stages:

Stage 1. Apply our proposed conversion method in
Section III-B to derive, for each camera, the target
LOS angle measurements with their corresponding an-
gular error covariances with location-dependent vari-
ances and cross-correlated errors.

Stage 2. The maximum likelihood (ML) estimate of
the 3D composite target position measurement is ob-
tained from fusing4 the LOS angle measurements of the
two cameras using a numerical search performed via the
iterated least squares (ILS) technique [2]. The derived
ML estimate is proven to be statistically efficient, and as
such, the covariance matrix from the CRLB can be used
as the measurement error covariance matrix for the re-
sulting composite target 3D position measurement [11]
in subsequent track filtering.

It is envisioned that the more appropriate angular
error covariance of our approach in Stage 1, compared
to an uncorrelated angular error covariance baseline,
would translate to improvements to the final composite
target position measurement and its Cartesian measure-
ment error covariance matrix in Stage 2.

A. Derivation of Composite (Fused) Position
Measurement and Its Corresponding Cartesian
Measurement Error Covariance

Consider 2 camera sensors with known sensor posi-
tions xs j = [xs j , ys j , zs j ]′ , j = 1, 2.

Stage 1. Following the conversion (17), (18), we have
the sensor-specific (s j) LOSmeasurements and their cor-
responding covariances denoted xAs j andRA

s j,corr, j = 1, 2,
respectively.

Stage 2. The LOS measurements to the target from
Stage 1 are fused to obtain a composite position mea-
surement (estimate) x̂F = [

xF, yF, zF
]′ in ENU space

[11].

4This is Type 3 fusion [3] with the two cameras assumed synchronized.
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Themeasurement xAs j from sensor s j relates to the 3D
position according to

xAs j = gs j
(
xF, xs j

) + ws j , j = 1, 2, (33)

where

ws j ∼ N (0,RA
s j,corr) (34)

are the angle measurement noises, and

gs j
(
xF, xs j

) = h3
(
xF − xs j

)
(35)

with xA = xAs j , x = xF and xS = xs j in (14).
The composite position measurement x̂F in ENU

space is obtained by maximizing the likelihood function
of xF (based on xAs1 , x

A
s2 , not shown for simplicity)

�
(
xF

) =
2∏
j=1

p(xAs j |xF), (36)

where

p(xAs j |xF) = |2πRA
s j,corr|−

1
2 ·exp

(
−1
2

[
xAs j − gs j

(
xF, xs j

)]′

(37)(
RA

s j,corr

)−1 [
xAs j − gs j

(
xF, xs j

)] )
.

The ML estimate (the composite measurement) is then

x̂FML = argmax
xF

�
(
xF

)
. (38)

Finding the ML estimate in this case is equivalent to a
nonlinear least squares problem. The numerical search
will be performed via the ILS technique [2].

The ILS estimate after (m+ 1) iterations is

x̂F
(m+1)

ILS = x̂F
(m)

ILS +
[(

G(m)
)′
R−1

corrG
(m)

]−1

(39)

·
(
G(m)

)′
R−1

corr

[
z − g

(
x̂F

(m)

ILS , s
)]

,

with

z = [
xAs1 , x

A
s2

]′
, (40)

s = [xs1 , xs2 ]′ , (41)

g
(
x̂F

(m)

ILS , s
)

= [as1 , es1 , as2 , es2 ], (42)

Rcorr =
[
RA

s1,corr 0
0 RA

s2,corr

]
, (43)

and

G(m) =
∂g

(
x̂F

(m)

ILS , s
)

∂xF

∣∣∣∣∣
xF=x̂F(m)

ILS

, (44)

is the Jacobian matrix of the stacked measurement vec-
tor evaluated at the ILS estimate from the previous iter-
ation. The Jacobian matrix is given by

G =
[
Gs1
Gs2

]
, (45)

withGs j = H3, j = 1, 2 as in (20).
To perform the numerical search via ILS, an initial

estimate x̂F
(0)

ILS is required. The initial Cartesian position
is solved using the LOSmeasurements as1 , as2 , and ae1 of
the first iteration, and the known sensor positions xs1 and
xs2 as follows:

xF
(0)

ILS = xs1 +
(
yF

(0)

ILS − ys1
)
tan as1 , (46)

yF
(0)

ILS = (xs2 − xs1 ) + (ys1 tan as1 − ys2 tan as2 )
tan as1 − tan as2

, (47)

zF
(0)

ILS = zs1 + tan es1

∣∣∣∣ (xs1 − xs2 ) cos as2 + (ys1 − ys2 ) sin as2
sin(as1 − as2 )

∣∣∣∣ .
(48)

For the error covariance, the CRLB provides a lower
bound on the estimation error obtainable from an unbi-
ased estimator

E
[
(xF − x̂F)(xF − x̂F)′

] ≥ J−1, (49)

where J is the Fisher InformationMatrix (FIM),xF is the
true value to be estimated,and x̂F is the estimate [2], [11].
The FIM is given by

J = E
{[
�xF ln�

(
xF

)] [
�xF ln�

(
xF

)]′ }∣∣
xF=xFtrue.

(50)

The gradient of the log-likelihood function is

�xFλλλ(x
F) =

2∑
j=1

G′
s j

(
RA

s j,corr

)−1 (
xAs j − gs j

(
xF, xs j

))
,

(51)

which, when plugged into, (50) gives

J =
2∑
j=1

G′
s j

(
RA

s j,corr

)−1
Gs j

∣∣
xF=xFtrue

(52)

= G′R−1
corrG

∣∣
xF=xFtrue.

B. Simulation Scenario

In the two-sensor setup, we have two cameras s1 and
s2 spaced 1 km apart in global 3D cartesian space, with
sensor positions xs1 = [xs1 , ys1 , zs1 ]′ = [−500 m, 0 m,

0 m]′ and xs2 = [xs2 , ys2 , zs2 ]′ = [500 m, 0 m, 0 m]′. Un-
like the single-sensor case in Section IV-A, we consider
the more realistic non-zero orientation angles of cam-
eras 1 and 2 measuring (αs1 , εs1 , ρs1 ) = (24.5◦, 2.1◦, 4.5◦)
and (αs2 , εs2 , ρs2 ) = (−2.6◦,−3.4◦, 2.8◦), respectively. It
is worth noting that for every nonzero camera orien-
tation, it will map to a reference case of our generic
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Figure 5. 2-camera setup with 16 targets in ENU space.

azimuth-elevation error ellipse characterization results
we derivedwith camera orientation angles of zero values
in Section IV-B. For this experiment, both cameras are
2-MP cameras,with the remaining camera sensor param-
eters and measurement error standard deviations the
same as defined for the 2-MP variation of the one-sensor
case in Section IV-A.

A total of 16 point targets at various ranges and
heights in ENU space were considered. The 2D plot in
Fig. 5 shows the camera sensor locations as crosses, with
Camera 1 and 2 fields-of-view (FOV) in solid and dotted
lines, respectively, and the 16 labeled targets as solid cir-
cles that are all within the FOV of both sensors. For each
target point in ENU space, we plot their corresponding
positions in the display image space of Camera 1 (left)
and Camera 2 (right) in pixel coordinates, as shown in
Fig. 6. The dotted lines segment the image space into
nine general reference regions in which we have previ-
ously characterized its azimuth-elevation error ellipses
in Section IV-A. Based on Fig. 6, the distribution of the
targets in the image spaces of both cameras is sufficiently
comprehensive to cover all scenarios for fusion.

C. Evaluation of the Composite Position Measurements
and Their Error Covariances

We envisaged that the angular error covariance of
our approach used in Stage 1, compared to an uncorre-
lated angular error covariance baseline, would translate

Figure 6. 16 targets in display image space of Camera 1 (left) and
Camera 2 (right).

to improvements of the final composite target position
measurement and its error covariance matrix. As such,
we compared the composite position measurements and
their corresponding Cartesian error covariances derived
using

(i) the location-dependent angular error covariances,
derived from the method described in Section V-A,
versus

(ii) the constant uncorrelated angular error covariance
baseline,

with the following evaluation criteria:

1) 3D position error improvement
2) 3D position algorithm-calculated accuracy
3) Statistical consistency of the estimates.

For each true target location in ENU space based
on Fig. 5, denoted as x̆Fi , i = 1, . . . , 16, we get the cor-
responding positions in display image space of Camera
1 and Camera 2 based on Fig. 6, denoted as x̆Ds1,i and
x̆Ds2,i, i = 1, . . . , 16, respectively, using the conversion

x̆Ds j,i = h−1
1

(
h−1
2

(
T−1
s j

(
αs j , εs j , ρs j

) (
x̆Fi

)))
(53)

with h−1
1 (·), h−1

2 (·) and T−1
s j (·), j = 1, 2 the inverses of

h1(·), h2(·) and T(·) given by (1), (7), and (8), respec-
tively. We assume the corresponding covariances in dis-
play image coordinates are given by

PD
s j,i =

[
σ 2
Px

0
0 σ 2

Py

]
, j = 1, 2, i = 1, . . . , 16 (54)

similar to what was assumed in (18).
We now derive the 3D composite target position es-

timates and their corresponding Cartesian error covari-
ances of the following variations:

Case (i) -
(
x̆Fcorr,i,P

F
corr,i

)
. Following the derivation

steps in Section V-A, Stage 1 is first executed by ap-
plying the conversion equations (17) and (18) with
display image inputs (53) and (54) of the jth camera
across i = 1, . . . , 16 target points. We thus derive the
camera-specific target LOS angles and the correspond-
ing angular error covariances with location dependent
variances and cross-correlated errors for each of the
16 target points, i.e.,

(
x̆As j,i,R

A
s j,corr,i

)
, i = 1, . . . , 16 and

j = 1, 2. Stage 2 is then executed to derive the com-
posite target position estimates (fused measurements)
x̆Fcorr,i obtained from (33) to (48) and the CRLB PF

corr,i

obtained from (52) evaluated at xF = x̆Fcorr,i for the ith
target point, i = 1, . . . , 16.

The covariances are evaluated at the actual (noise-
less) LOS angles (like the CRLB) and will be used to
compare the uncertainties of the proposed and baseline
methods.

Case (ii) -
(
x̆Funcorr,i,P

F
uncorr,i

)
. First, the camera-

specific target LOS angles for each of the i = 1, . . . , 16
target points x̆As j,i were derived following (17), as in
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Table VI
Percentage Difference Between Volumes of the Correlated and

Uncorrelated Variants of the Cartesian Measurement Error Ellipses
at Each of 16 Target Points x̆Fi , i = 1, . . . , 16

Tgt 1 2 3 4 5 6 7 8

Vol diff. (%) −8.9 1.7 8.0 −19.9 −25.0 18.2 7.7 −21.3
Tgt 9 10 11 12 13 14 15 16
Vol diff. (%) −20.4 19.2 25.9 −13.9 −13.5 17.6 27.2 3.7

Case (i). The baseline uncorrelated angular error covari-
ances RA

s j,uncorr,i, i = 1, . . . , 16 and j = 1, 2 follow ac-

cording to (16) with5 σa = σe = σPx
�x
Px
. Similarly, the

composite target position estimates x̆Funcorr,i are obtained
from (33) to (48) and theCRLBPF

uncorr,i is obtained from
(52) evaluated at xF = x̆Funcorr,i for the ith target point,
i = 1, . . . , 16, with the correlated covariances RA

s j,corr,i in
the equations replaced with their uncorrelated counter-
part RA

s j,uncorr,i.
We now compare and evaluate our proposed ap-

proach according to each of the three criteria listed
above.

1) 3D position error improvement: The percentage
difference between the volumes of the correlated and
uncorrelated variants of the Cartesian measurement er-
ror ellipses is calculated by

d =
π

(√
det (PF

corr) − √
det (PF

uncorr)
)

π
√
det (PF

uncorr)
× 100%, (55)

where det (A) is the determinant ofmatrixA, and the re-
sults are tabulated in Table VI for each of the 16 selected
target points. A magnitude of |d| ≥ 10% will imply that
the difference between the correlated and uncorrelated
variants of the Cartesian measurement error ellipses is
significant, and these values are highlighted in bold in
Table VI.

It is observed that the majority of target points have
significant differences in volume between the correlated
and uncorrelated variants of the Cartesianmeasurement
error ellipses, which demonstrates the importance of us-
ing our proposed conversion method for improved error
modeling. Furthermore, our approach can yield up to a
maximum of approximately 27% difference in volume
of the correlated Cartesian measurement error ellipse
relative to the baseline uncorrelated Cartesian measure-
ment error ellipse.

2) 3D position accuracy improvement: At this point,
we generate a set ofN = 1000 randompoints withGaus-
sian noise in the display image space of Cameras 1 and
2 for each selected target point, which models the prob-

5These are the “simplistic” constant measurement accuracies.

ability distributions in the display image space{
xD

(k)

s j,i

}N
k=1

∼ N
(
x̆Ds j,i,R

D
s j,i

)
j = 1, 2, i = 1, . . . , 16.

(56)

Each set of points undergoes the non-linear transforma-
tion h(·) defined in (17) to derive a distribution of points{

xA
(k)

s j,i

}N
k=1

j = 1, 2, i = 1, . . . , 16, (57)

that model the probability distribution in azimuth-
elevation space corresponding to the ENU coordinate
system. For Case (i), the corresponding set of correlated
angular error covariances{

RA(k)

s j,corr,i

}N
k=1

j = 1, 2, i = 1, . . . , 16, (58)

are derived from the transformation (18) based on
the random angular state points specified by (57). For
Case (ii), the corresponding set of baseline uncorrelated
angular error covariances{

RA(k)

s j,uncorr,i

}N
k=1

j = 1, 2, i = 1, . . . , 16, (59)

assume fixed values as specified by (16).
Subsequently,we apply equations (33)–(48) and (52)

to derive the composite target estimates{
x̂F

(k)

corr,i,P
F(k)

corr,i

}N
k=1

i = 1, . . . , 16, (60)

for Case (i). The kth composite position estimate of
the ith target x̂F

(k)

corr,i is based on the fusion of the kth
random angular points, and their respective covariances

from camera sensors s1 and s2,
(
xA

(k)

s1,i
,RA(k)

s1,corr,i

)
and(

xA
(k)

s2,i ,RA(k)

s2,corr,i

)
, specified in (57) and (58). The corre-

sponding kth Cartesian error covariance estimate of the
ith target PF(k)

corr,i follows from (52) evaluated at xF =
x̂F

(k)

corr,i.
In a similar manner, we apply equations (33)–(48)

and (52) to derive the composite target estimates and
their covariances{

x̂F
(k)

uncorr,i,P
F(k)

uncorr,i

}N
k=1

i = 1, . . . , 16 (61)

for Case (ii), based on the random angular point sets
specified by (57) and (59), and with (52) evaluated at
xF = x̂F

(k)

uncorr,i.
We calculate the differences of the true composite

target state with the correlated variant of the composite
position estimate

�xF
(k)

corr,i =
(
x̂F

(k)

corr,i − x̆Fi
)′ (

x̂F
(k)

corr,i − x̆Fi
)

i = 1, . . . , 16,

(62)

and the uncorrelated variant of the composite position
estimate

�xF
(k)

uncorr,i =
(
x̂F

(k)

uncorr,i − x̆Fi
)′ (

x̂F
(k)

uncorr,i − x̆Fi
)

i = 1, . . . , 16,

(63)
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where x̆Fi are the true target locations in ENU space.
Following the above, both correlated and uncorre-

lated variants of the overall root mean square error
(RMSE) across N = 1000 sample runs are calculated
in (64) and (65), respectively

RMSEcorr,i =
√√√√ 1
N

N∑
k=1

�xF(k)

corr,i i = 1, . . . , 16, (64)

RMSEuncorr,i =
√√√√ 1
N

N∑
k=1

�xF(k)

uncorr,i i = 1, . . . , 16.

(65)

Additionally, the percentage difference between the
overall RMSE values of the correlated and uncorrelated
variants of the 3D composite position estimates is calcu-
lated by

RMSE_diff = RMSEcorr − RMSEuncorr

RMSEuncorr
× 100%,

(66)

and the results are tabulated in Table VII for each of the
16 selected target points.

It is observed that our approach using the more ap-
propriate correlated angular error covariance matrices
yields up to a maximum of approximately 0.7% im-
provement in 3Dpositional accuracy relative to the com-
posite position estimate derived from the baseline un-
correlated angular error ellipses. Across all targets, the
3D positional accuracy differences are insignificant. This
is because in both correlated and uncorrelated cases, we
used the same transformation in (17) to convert mea-
surements from the display image space to the azimuth-
elevation space. The azimuth and elevation values for
each point set were thus identical in both cases. As a re-
sult, the triangulation estimates of the two methods are
similar.Although the measurement error covariances in
(58) and (59) differ, their contributions do not signifi-
cantly impact the RMSE.While Table VII showed little
differences, Table VI showed significant differences for
the algorithm-calculated covariances (which are used in
recursive state estimation).

3) Statistical Consistency: To test the statistical con-
sistency of the correlated variant of the composite posi-
tion estimate, the normalized estimation error squared
(NEES) [2] is used, with the CRLB PF

corr,i as the covari-
ance matrix, i.e., the inverse of the FIM in (52) evaluated
at xF = x̆Fcorr,i for the ith target point, i = 1, . . . , 16.Along
with definition (62), we have that

εF
(k)

corr,i =
(
�xF

(k)

corr,i

)′
PF
corr,i

−1
(
�xF

(k)

corr,i

)
∼ χ2

nx , (67)

and thus the chi-squared test statistic

ε̄Fcorr,i =
1
N

N∑
k=1

εF
(k)

corr,i ∼ 1
N

χ2
Nnx , (68)

WithN = 1000,nx = 3 and α = 0.95, the two-tailed 95%
interval is given by

ε̄Fcorr,i ∈ [r1, r2] i = 1, . . . , 16, (69)

where [r1, r2] = [ 1
1000χ

2
3000(0.025),

1
1000χ

2
3000(0.975)

] =
[2.8501, 3.1537].

Similarly, we repeat steps (67)–(69) to test the sta-
tistical consistency of the baseline uncorrelated variant
of the composite position estimate.We still evaluate this
uncorrelated variant of the estimate at the same CRLB
PF
corr,i, and replace definition (62) with (63) to derive

the uncorrelated versions εF
(k)

uncorr,i and ε̄Funcorr,i. Note that
ε̄Funcorr,i shares the same two-tailed 95% test interval as
ε̄Fcorr,i.

Figure 7 shows the plot of the sample average NEES
fromN = 1000 runs of the correlated (red-filled circles)
and uncorrelated (black-filled triangles) variants of the
composite position estimate, using the same appropriate
CRLB as the covariance matrix, for the 16 selected tar-
gets. The dotted lines within the plot indicate the 95%
two-tailed interval calculated as per (69). Since all chi-
squared test statistics across all 16 targets fall within
the 95% two-tailed interval, the composite position esti-
mates derived from both our correlated and the uncor-
related baseline approaches are statistically consistent.

Thus, the benefit of the proposed method of fusion
is in the correctly calculated uncertainty region volumes
presented in Table VI, even though the estimates of the

Table VII
Absolute RMSE Values and Percentage Difference between RMSE Values of the Correlated and Uncorrelated Variants of the Composite 3D

Cartesian Position Estimates Evaluated at Each of 16 True Target Points x̆Fi , i = 1, . . . , 16

Tgt 1 2 3 4 5 6 7 8

RMSE [corr] (m) 1.127 1.191 1.463 1.745 3.534 3.650 4.957 5.945
RMSE [uncorr] (m) 1.131 1.192 1.466 1.758 3.536 3.656 4.968 5.958
RMSE diff. (%) 0.332 0.134 0.209 0.714 0.045 0.179 0.221 0.219
Tgt 9 10 11 12 13 14 15 16
RMSE [corr] (m) 7.495 7.814 9.210 12.136 13.017 13.731 15.285 18.008
RMSE [uncorr] (m) 7.484 7.820 9.209 12.146 13.025 13.720 15.280 18.019
RMSE diff. (%) − 0.150 0.065 − 0.005 0.082 0.058 − 0.076 − 0.031 0.062
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Figure 7. Sample averageNEES for correlated and uncorrelated vari-
ants of the composite position estimate for targets i = 1, . . . , 16.

proposed and baseline approaches are not significantly
different.

VI. CONCLUSIONS

In this paper, we devised an approach to convert
the raw target measurements and their covariance in
the image space of EO cameras to the azimuth and el-
evation angle measurements in the global ENU coor-
dinate system, which is validated to be unbiased, with
FPA-location-dependent variances and cross-correlated
errors. Typical tracking applications usually assume that
azimuth and elevation measurement errors have the
same standard deviation are uncorrelated and uniform
across the camera’s FOV, which is not the case. Sim-
ulations were performed for nine selected points on
the FPA coming from both 2MP and 8MP commer-
cially available camera sensors, with comparisons of the
bias error and correlated covariances to an uncorre-
lated baseline error measure. Results show that cross-
correlated errors are present and significant enough to
be considered. The magnitudes of variances and corre-
lations are dependent on the target’s location with re-
spect to the camera center. In addition, the angular esti-
mate derived from the conversion has been shown to be
unbiased, and the derived covariance matrix with cross-
correlated errors has been shown to be consistent, based
on the statistical tests conducted.

With these findings, we envisioned an unbiased con-
verted angular measurement and a more appropriate
measurement error covariance accounting for cross-
correlated errors should be used as input to the 3D
Cartesian state filtering equations and multisensor fu-
sion for improved tracking performance. To demon-
strate this, we considered a multisensor fusion applica-
tion to derive a composite target position measurement
and its corresponding Cartesian measurement error co-
variance in 3D Cartesian space. This was done for a two-
camera setup, using LOS target angle measurements
with the more appropriate measurement error covari-

ances of our method. Simulations were performed for 16
selected target points in ENU space. Results show that
the composite 3D target position and its corresponding
Cartesian measurement error covariance estimates de-
rived using the LOS angular measurements and angular
measurement error covariance of our approach are sta-
tistically efficient. Compared to the uncorrelated LOS
angular error covariances, our approach in accounting
for location-dependent variances and cross-correlated
errors in the LOS angular error covariances translated to
a significant improvement to the error modeling of the
Cartesian measurement error ellipse, but minimal im-
provement to the 3D Cartesian position accuracy of the
target. Since in filtering the gain depends on the mea-
surement covariance, the proposed approach will yield
superior performance. The impact of using the corre-
lated covariance for the measurements on the filtering
performance is a topic of future research. It is envisaged
that the correct error covariance is crucial in real-world
applications, particularly for tracking in cluttered envi-
ronments or closely spaced targets. Accurate measure-
ment error covariance enhances track-to-measurement
association accuracy. The additional computational cost,
which is not significant, is well worth it.
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Sliding Window Estimation
Based on PEM for
Visual/Inertial SLAM

ZORAN SJANIC
MARTIN A. SKOGLUND

This paper presents a slidingwindow estimationmethod for simul-

taneous localization and mapping (SLAM) based on the prediction

error method (PEM). The estimation problem considers landmarks as

parameters while treating dynamics using state space models. The gra-

dient needed for parameter estimation is computed recursively using

an extended kalman filter. Results from experiments and simulations

with a monocular camera and inertial sensors are presented and com-

pared to batch PEM and nonlinear least-squares SLAM estimators.

The presented method maintains good accuracy, and its parametriza-

tion is well-suited for online implementation, as it scales better with

the size of the problem than batch methods.

I. INTRODUCTION

The work in this paper introduces the use of the pre-
diction error method (PEM), see, e.g., [18], as well as its
extension to sliding window (SW) as a way to utilize the
particular structure of problems encountered in simul-
taneous localization and mapping (SLAM). The aim in
SLAM is to estimate a moving platform’s position and
orientation while simultaneously mapping the observed
environment [1], [7]. A strong trend in SLAM algorithm
research is (incremental) batch optimization,which usu-
ally solves some form of nonlinear least squares (NLS)
problem, see for example [4], [12], [20], [23], [24], [28],
[31], [32], [34], [35]. Due to the problem’s nature, where
both the platform’s motion and the environment are
considered unknown parameters, solvers are computa-
tionally expensive, typically quadratic in the length of
the motion parameters; see, e.g., [27]. Throughout the
years, many methods were devised aiming at reducing
this computational cost. Some of them are utilizing the
sparsity of the involved matrices during the calculation
in order to use sparse solvers, see, e.g., [10], [11], [20],
while others aim at dimensionality reduction of the origi-
nal problemby solving for onlymotion parameters while
the map is implicit [14], [32] (leading to GraphSLAM),
or vice versa by submaps [35]. One issue with the spar-
sity of the SLAM problem is that it will vary with the
problem instance, i.e., the actual environment and the
motion.Other methods are utilizing the particular struc-
ture of the SLAM problem and aiming at decoupling of
the mapping and localization parts, e.g., [26], [27], [29],
[33]. These kinds of methods utilizes the intrinsic prop-
erty of the problem independently of the actual problem
instance. Note also that the decoupling must be done in
such a way that the correlation between landmarks and
the motion is preserved, as it is an inherent property of
the SLAM posterior distributions.

The main idea adopted in this work is to model the
whole system, i.e., the moving platform and the envi-
ronment, as a parameterized dynamic model. The envi-
ronment is represented with discrete points (also called
landmarks), which are considered to be the parameters
of the system, while the motion of the platform is mod-
eled as a dynamic system. The motivation behind this
formulation is that the solution to the problem can be
split into two parts, the first part where the landmarks
are estimated, and the second part where the motion is
estimated. The motion states estimate is here used as a
predictor of the system output while utilizing the time
series properties through filter solutions.Worth noting is
that this property also allows for the gradient of the pre-
dictor w.r.t. parameters to be calculated recursively (for
a particular choice of the predictor) so that no numer-
ical gradients are necessary. This approach differs from
both the standard extendedKalman filter (EKF)-SLAM
approach, see, e.g., [7], where both the platform’s mo-
tion and the landmarks are considered as dynamic states,
and theNLS approaches,where everything is considered

34 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 19, NO. 1 JUNE 2024



as (static) parameters. This division into two parts leads
to computation complexity reduction in the following
sense:

� The landmark estimation is an optimization problem
that is smaller (in the number of estimated parame-
ters) than the standard NLS problem.

� The motion estimation becomes the prediction prob-
lem,which is smaller than the usual EKF-SLAMprob-
lem since the number of states is constant, i.e., only the
motion states are used.

In summary, the optimization problemwill scale with
the number of parameters (landmarks), while the pre-
dictor part will scale with the measurement batch length
(time steps). Unlike the approach in [33], the solution
proposed here circumvents the need to transform the ab-
solute measurements, i.e., from the platform to the land-
marks, to the relative measurements, i.e., between the
landmarks. This transformation assumes that range and
bearing to the landmarks are measured, and would not
work with the original (visual/bearing only) measure-
ments.

The PEM-SLAM batch approach was described in
[26], and the extension is to consider an SW adapta-
tion that might enable an efficient online implementa-
tion, see e.g., [6], [25]. Online versions of PEM are quite
unusual, see, for example, [19], [30], perhaps as excita-
tion and convergence are much harder to obtain and
prove. Since the window is just a shorter batch, the SW-
PEM-SLAM will consequently be more computation-
ally efficient than SW-NLS-SLAM (given the same win-
dow length). This will be shown in an empirical way with
Monte Carlo (MC) simulations.The adaptation of PEM-
SLAM to an SW is the main contribution of this paper.
This adaption is primarily aiming for potential online ap-
plications of PEM-SLAM as an estimation method.

The outline of the paper is as follows: In Section II,
a brief description of PEM and the model structure
is given; In Section III, the expansion of the PEM
to the Sliding Window approach is described; In Sec-
tion IV, the computation complexity of the suggested ap-
proach is analyzed; In Section V, the example dynamic
and measurements models that are used for evaluation
are presented. In Section VI, MC simulation results as
well as real data experiments are presented and com-
pared to (SW-)NLS-SLAM, and some empirical compu-
tation complexity comparison to (SW-)NLS-SLAM;Sec-
tion VII ends the paper with conclusions and directions
for future work.

II. THE PREDICTION ERROR METHOD

Assume that measurements, {yt}Nt=1, from a dynamic
system are available. Suppose also that a model of this
system is parametrised with some unknown parameters,
� = {θ l}Ll=1, and that we want to estimate these using
PEM. For that purpose we can use a (quite general) sys-

tem description of a discrete-time nonlinear state space
model as

xt+1 = ft (xt,ut ,wt,�), (1a)

yt = ht (xt,�) + et . (1b)

In this system, the state dynamics is modeled with
the function ft (·), ut is a known input,wt is an unknown
system noise, the measurement-to-state relation is rep-
resented with function ht (·) and et is the measurement
noise. The one-step ahead measurement predictor, i.e.,
predicted measurements at time t given all the informa-
tion until time t−1, is obtained by plugging the predicted
state x̂t|t−1 into (1b) giving ŷt|t−1(�) = ht (x̂t|t−1,�). The
predictor can, for example, be implemented as an EKF.
PEM estimation of � is then done by minimizing the
sum of the squared norms of the prediction errors, de-
fined as

�̂ = argmin
�

V (�), (2)

and where we have definedV (�) as

V (�) = 1
N

N∑
t=1

L(yt − ŷt|t−1(�)). (3)

L can be any positive function and ŷt|t−1(�) is defined
above.Usually,L is a standard 2-norm, i.e.,L(·) = 1

2‖·‖22,
leading to the standard (possibly nonlinear) least-
squares method. Note that robust norms, such as Huber,
can account for spurious data association, see, e.g., [4],
but these cases are beyond the scope of this paper.

In this work, we adopt the 2-norm cost function and
(3) becomes a standard NLS problem, and any NLS
method, such as the Levenberg–Marquardt method [16],
[21], can be used to solve it. In this context, it is quite ad-
vantageous if the predictor is an analytical function of
the parameters and if its gradient w.r.t. to parameters is
available. These both qualities simplify and speed up the
iterative optimization procedure compared to using nu-
merical methods for calculating the gradient.

A. System Properties and Choice of Predictor

PEM formulations, such as (3), typically result in pre-
dictors, ŷt|t−1(�), that are nonlinear in the parameters
even for linear Gaussian state space models in (1a). In
[17], a recursive PEMmethod based on the EKF predic-
tor where parameters are appended to the state vector is
analyzed. It is shown to be globally asymptotically con-
vergent for the general case (and for linear dynamic sys-
tems). This motivates our use of EKF as a predictor in
a similar manner to, e.g., [13], [15].Another advantage is
its simple implementation and its possibility to explicitly
calculate the gradient of the loss function in (3).

Furthermore, the predictor, ŷt|t−1(�), that will be
used (i.e., pinhole camera projection), see Section V-C,
is a convex function in parameters, see, e.g., [2], which is
a good property for optimization. Another good PEM
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Figure 1. Auto-correlations for the residuals for one landmark and
one dimension over the whole trajectory averaged over 50MC runs.A
total of 90% limit is also shown with the red dashed line.

property is that, if the true system is in the model set, if
the predictor is stable, and if the innovations are white,
then the parameters will converge to true ones; see [18].
In the case for PEM-SLAMhere, themodel set is model-
ing the landmarks,which are observed,and consequently
it is covering the true environment. The innovations
from EKF are (approximately) white, see Fig. 1 where
simulation data explained in Section VI-A are used.The
residuals’ auto-correlations, averaged over 50 MC simu-
lations, are shown for one landmark and in one dimen-
sion as an example, but the behavior is very similar for
the rest of the landmarks. This fact further motivates the
choice of EKF as a predictor. Note that residuals may
have heavy-tailed distributions before convergence due
to the initialization procedure and also if outliers are not
removed.

All the above-mentioned facts support the usage of
PEM as a method for solving the SLAM problem.How-
ever, with recursive PEM using EKF, the parameters are
included in the state vector (with zero dynamics). This
is similar to EKF-SLAM, where landmarks are consid-
ered as states, [7]. This resemblance highlights the draw-
backs of straightforwardly applying PEM to standard
EKF-SLAM, which would be severely limited to small
maps. Instead, we devise another kind of PEM adap-
tation, namely SW PEM, which is a main contribution
of this paper, and which will be explained in the next
section.

III. SLIDING WINDOW PEM ESTIMATION

An adaptation of the PEM is done to accommodate
real-time estimation, in a fashion similar to a filter. The
adaptation is an iterative procedure where the problem
defined in (3) is solved iteratively inside an SW of length
K where K ≤ N. The resulting cost function used in
each iteration, i, is then (i is increased by one after each

iteration)

Vi(�i) = 1
2K

i+K∑
t=i

‖yt − ŷt|t−1(�i)‖22, (4a)

�̂i = argmin
�i

Vi(�i). (4b)

Caution must be taken here when it comes to param-
eter vector � since not all of the parameters might be
observed in the window.Hence,�i denotes the subset of
the parameters that are observed in the iterationwindow
i. Then, a locally weak observability condition is simply
that there are at least as manymeasurements as parame-
ters in each window and that the resulting observability
rank condition [9] is satisfied. The predictor (EKF) in
each iteration is initiated by the state and covariance es-
timate obtained from the previous iteration for the time
instance t = i+ 1 (since this is the first value of the state
and covariance in iteration i+ 1).

A. Statistical Approximation for Information Fusion

To obtain a single best estimate of the static param-
eters in �, we need to fuse different ones from each
window. However, double counting of information is a
potential problem that can lead to overly confident es-
timates. This needs to be addressed when parameters
are estimated in the moving window. For example, it is
very likely that a certain parameter θ l ∈ �i will be ob-
served and estimated in the window i and i+ 1. In order
to handle this (at least approximately), two things are
applied:

� The current best parameter estimate is saved.
� The parameter estimates are fused from from the non-
overlapping windows only.

The motivation for keeping the current best estimate
is that we want to use these in the fusion step, since this
will add most information. Also, the estimates from
the non-overlapping windows are based on different
measurements, which would make them statistically
independent. However, this approach is only an ap-
proximation since the estimates are dependent on the
predictor which, in turn, is dependent on all the past
measurements. This dependency will become weaker
the further apart in time the state estimates are. There-
fore, an assumption is that the estimates from different
windows have limited dependency. This is deemed
acceptable for our purposes. In the explanation of the
fusion principle below, we will omit superindex l in θ l

as notation for an arbitrary parameter in the parameter
vector for enhanced readability purposes.

The currently best estimate of the parameter, θ̂b, is
calculated based on an information criterion using the
Jacobian J(θ̂ ) = ∂V (�)

∂θ

∣∣
θ=θ̂

evaluated with θ̂ from (4b).
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Algorithm 1 Sliding Window PEM.

Require: x̂1|1,P1|1, y1:N ,K
Ensure: �̂, x̂1:N ,P1:N

for i = 1 : K −N
1. Set initial state and covariance for the predictor to
x̂i|i and Pi|i

2. Solve the minimization problem withVi(�i) as in
(4a)

if θ̂ l is new parameter then
3. Set θ̂ lb and θ̂ lf to that estimate

else
4. Save the best estimate of the parameters, �̂b,
according to (5)

end if
if θ̂ lb not updated and θ̂ lf and θ̂ lb are estimated in
nonoverlapping windows then
5. Fuse θ̂ lf and θ̂ lb according to (6)

end if
6. Save x̂i|i and Pi|i

end for
7. �̂ := �̂ f

The following procedure is used:

θ̂b =
{
θ̂i if Tr(Ii ) < Tr(Ib).
θ̂b otherwise

(5)

where index b denominates the windowwith the best es-
timate, index i is the current window, and I = J(θ̂ )TJ(θ̂ )
is the information matrix for the parameter. In this way,
we assure that any new estimate will not override the
currently best one.We also store the information matrix,
Ib and the window (start and end time indices) together
with the current best estimate.

Since we want to utilize all the available informa-
tion, and get the overall best estimate, fusion from
non-overlapping windows is performed. This is done
by keeping the fused estimate and the last time index
when the fusion was performed. If the parameter’s best
estimate according to (5) is not updated in the last
window, a check is performed to see if the best estimate
comes from a window that is not overlapping with the
current fused estimate, θ̂ f . In that case, they are fused
according to their information representation

θ̂ f = (I f + Ib)−1(I f θ̂ f + Ibθ̂b), (6a)

I f = I f + Ib. (6b)

The time index of the fused parameter is then updated
accordingly. It shall also be pointed out that the require-
ment on the nonoverlapping windows is necessary to
guarantee that the fused estimates are independent, i.e.,
estimated with different measurements. The whole ap-
proach is summarized as pseudo-code in Algorithm 1.

IV. COMPUTATION COMPLEXITY ANALYSIS

In this section, qualitative computation complexity
based on the order of magnitude (O-notation) of the
suggested method will be analyzed and compared to
primarily NLS method. NLS is chosen since it is de
facto the standard method and all our numerical re-
sults are compared to it. Also, just as in analysis pre-
sented in [27], the GraphSLAM method will briefly be
mentioned, but no numerical comparison is done. Since
this analysis is very similar to the one in the refer-
ence above, many details will therefore be omitted here,
and the reader is referred to the reference for more
information.

The following assumptions and notation will be used:
Window size will be denoted by K, and the number of
measurements at time t is Nt , and consequently the to-
tal number of measurements in the window i is Ni =∑i+K

t=i Nt (which is linear in the number of time steps
in the window, K). The total number of the observed
landmarks in the window i is denoted byMi. Define fur-
ther the total number of windows as Nw = N − K + 1
and the average number of measurements per window
as N̄ = ∑

i Ni/Nw and the average number of land-
marks per window as M̄ in the same manner. The av-
erage number of landmark measurements per time step
is then N̄K = N̄/K, and the average number of measure-
ments per landmark (in a given window) is N̄M = N̄/M̄.
We will also assume that the main complexity lies in the
calculation of the Jacobian during the iterative optimiza-
tion procedure, and the analysis will be concentrated on
that kind of calculation, i.e., the computation complex-
ity for one iteration step. Notice also that no consid-
eration is taken to any possible sparse structure of the
Jacobian and its influence on the solution speed,because
that is very much data dependent and will vary between
the problem instances.

A. SW-PEM-SLAM

For the SW-PEM-SLAM, the Jacobian of the loss
function in (4a) contains only the partial derivatives of
the residuals with respect to the landmarks. Since there
are, in average, N̄M measurements per landmark, the
total number of operations is proportional to N̄MM̄, i.e.,
O(N̄). The Jacobian is calculated during the predictor
(EKF) run, which has execution complexity propor-
tional to the window length, K, times the complexity
of the measurement update, which is in average pro-
portional to the number of measurements updates. This
number will be the average number of measurements
per time step times the number of time steps, N̄KK, so
the complexity isO(N̄), the same as for the Jacobian.All
this together gives that the total computation complex-
ity for calculating the Jacobian in the window will be
O(N̄). We see that it scales linearly with the size of the
window.
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B. SW-NLS-SLAM

SW-NLS-SLAM stacks both the landmarks and plat-
form’s motion parameters in the parameter vector,
which leads to a Jacobian consisting of the partial deriva-
tives of the residuals with respect to both the landmarks
and the motion parameters. In our case, there are both
acceleration and angular ratesmotion parameters of size
proportional to K in addition to the landmark measure-
ment residuals. The full analysis of NLS-SLAM is done
in [27] for the whole batch, and the corresponding result
for a window isO(K2 + N̄K+ N̄+K).Here, we see that
the dominating complexity scales quadratically in win-
dow size.

C. GraphSLAM

In the GraphSLAM approach, the Jacobian matrix
consists of derivatives for positions and rotations with
respect to each other, giving a symmetric matrix with
dimension proportional to K2. The analysis of the com-
plexity for GraphSLAM is done in [27], showing that, on
average, the complexity will be O(N̄MK).

The complexity comparison between SW-PEM-
SLAM and SW-NLS-SLAM is illustrated empirically in
Section VI.

V. MOTION AND MEASUREMENT MODELS

In this section, the dynamic and sensor measure-
ments models used for estimation in the visual/inartial
SLAM problem are introduced. The used sensors are
monocular cameras and 6-DOF inertial sensors, i.e., gy-
roscopes and accelerometers. The camera and inertial
sensors are rigidly coupled to the platform in this setup.

The inertial sensors are here treated as inputs to a
dynamic system in order to keep the size of the state
as small as possible. Also, a minimal 3D point landmark
parametrization is used and its measurement function is
given by the pinhole projection model.

Throughout the paper, we will use following frames
of reference:

� World frame—global frame for expressing platform’s
and landmarks’ position,

� Navigation frame—same as World frame but trans-
lated to platform’s position,

� Body frame—frame rigidly attached to the platform’s
body, same origin as Navigation frame but rotated
with the body,

� Camera frame—frame rigidly attached to the camera.
In general, this can be different than the Body frame,
but in this work,we assume that the Camera andBody
frames are the same.

All these frames are Cartesian and locally defined.
This implies that platforms’ and landmarks’ position are
only estimated locally in the arbitrary chosen World

frame. This is customary approach in SLAM since initial
position of the platform is usually unknown.

A. State Dynamics

The gyroscope signals, considered as inputs, are de-
noted uω = [uω

x ,u
ω
y ,uω

z ]
T , where the subscript refers to

each axis of the body frame. Similarly, the accelerome-
ter signals are denoted ua = [ua

x,u
a
y,u

a
z]
T . Both of these

are measured in the body frame. A discretized dynamic
model, where the states are three-dimensional position,
velocity, and rotation, [pTt , vTt ,qTt ]

T , in the navigation
frame, is then

pt+1 = pt + Tsvt + T 2
s

2
RT (qt )(ua

t + gb + wa
t ), (7a)

vt+1 = vt + TsRT (qt )(ua
t + gb + wa

t ), (7b)

qt+1 = exp
(
Ts
2
Sω(uω

t + wω
t )

)
qt, (7c)

where Ts denotes the sampling interval, R(qt ) is a rota-
tion matrix parametrization of the unit quaternion qt =
[q0t ,q

1
t ,q

2
t ,q

3
t ]
T , which describes the rotation from navi-

gation to body frame is defined as (for each column)

R:,1(q) =
⎡
⎣(q0)2 + (q1)2 − (q2)2 − (q3)2

2(q1q2 − q0q3)
2(q1q3 + q0q2)

⎤
⎦

R:,2(q) =
⎡
⎣ 2(q1q2 + q0q3)
(q0)2 − (q1)2 + (q2)2 − (q3)2

2(q2q3 − q0q1)

⎤
⎦

R:,3(q) =
⎡
⎣ 2(q1q3 − q0q2)

2(q2q3 + q0q1)
(q0)2 − (q1)2 − (q2)2 + (q3)2

⎤
⎦.

The gravity expressed in the body frame is gb =
R(qt )gn, where gn = [0, 0,−g]T is the local gravity vec-
tor expressed in the navigation frame,with g≈ 9.82, and
exp(·) denotes here the matrix exponential. The noise
terms are assumed Gaussian and independent,

[(
wa
t

)T
,
(
wω
t

)T ]T = wt ∼ N (0,diag (Qa,Qω)) = N (0,Q) .

For any vector a = [ax, ay, az]T ∈ R
3, the skew-

symmetric matrix defined as

Sω(a) =

⎡
⎢⎢⎣
0 −ax −ay −az
ax 0 az −ay
ay −az 0 ax
az ay −ax 0

⎤
⎥⎥⎦ (9)

is used to parametrize the quaternion dynamics in (7c).
It is also worth noticing that, in this case, the dynamics
of the system are independent of the landmarks (param-
eters θ), which simplifies the recursive calculation of the
Jacobian.
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B. Camera Measurements

Themonocular camera is modeled here as a standard
pinhole camera, see, cf. [8]. The camera is assumed to be
calibrated for its intrinsic parameters (calibrationmatrix
and lens distortion) prior to usage. This enables the us-
age of the camera as a projectivemap inEuclidean space,
P : R

3 → R
2 by premultiplying the lens undistorted pixel

coordinates with the camera calibrationmatrix.The pro-
jection P is defined as

P ([X,Y,Z]) = [
X
Z , YZ

]T = [xt, yt]T (10)

where the Z-coordinate is assumed to be positive and
non-zero. A normalized camera measurement, yt =
[xt, yt ]T , of a single landmark, θ = [θx, θy, θz], at time t
is then

yt = P (R(qt )(θ − pt )) + et , (11)

which relates the three-dimensional position and orien-
tation of the camera to the three-dimensional location
of the point. The measurement noise is assumed i.i.d.
Gaussian, et = [ex

t , e
y
t ]
T ∼ N (0,R).

Equation (11) defines a measurement of one land-
mark at time t. In order to relate all themeasurements to
a correct landmark, correspondence variables are used.
At time t, correspondence variables Ct = {c jt }Nt

j=1 ⊆
{1, . . . ,M}, encode the measurement-landmark assign-
ment, y jt ↔ θ c

j
t . As defined before, Nt is the number of

measurements and M is the number of all landmarks.
This gives that all observed landmarks at time t are de-
fined as a set Mt = {θ c jt }Nt

j=1, where c
j
t = l if a measure-

ment j corresponds to a landmark l. The stacked mea-
surement equation, for all observed landmarks at time t,
is then⎡

⎢⎢⎢⎢⎢⎣

x1t
y1t
...

xNt
t

yNt
t

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
ycamt

=

⎡
⎢⎢⎣

P
(
R(qt )(θ c

1
t − pt )

)
...

P
(
R(qt )

(
θ c

Nt
t − pt

))
⎤
⎥⎥⎦

︸ ︷︷ ︸
ht (xt ,Mt )

+

⎡
⎢⎢⎢⎢⎢⎢⎣

e1x
t

e1y
t
...

eNtx
t

eNty
t

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
ecamt

, (12)

where ecamt ∼ N (0,Rcam).Rcam is a diagonalmatrix since
all themeasurements are assumed to bemutual indepen-
dent. Note that �i in (4a) consists of union of the land-
marks observed in the window i, i.e.,�i =

⋃i+K
t=i Mt .Note

that number of elements in �i isMi.
Solving the correspondence problem in order to find

Ct (also known as data association) is outside the scope
for this work and is thus assumed solved.

C. Predictor

The nonlinear predictor needed in PEM is realized
with an EKF in our case, since it allows for explicit cal-
culation of the gradient of the loss function in (3). The
time update from the EKF produces a predicted state

estimate at time t given all the measurements up to time
t − 1, x̂t|t−1. This prediction together with the measure-
ment model in (11) can be used to obtain the predicted
measurement needed for the PEM loss function, namely
ŷt|t−1(�) = ht (x̂t|t−1(�),�) (x̂t|t−1(�) emphasizes the
predicted state’s dependency on the parameters). The
gradient of the PEM loss function (4a) w.r.t. parameters
�, needed in the solution procedure, is defined as

∂

∂�
V (�) = 1

2N

N∑
t=1

∂

∂�
‖yt − ht (x̂t|t−1(�),�)‖22

= 1
N

N∑
t=1

Jt (�)T rt (�), (13)

where

rt (�) = yt − ht (x̂t|t−1(�),�) (14a)

Jt (�) = ∂rt
∂�

= −∂ht (x,�)
∂x

∂x
∂�

− ∂ht (x,�)
∂�

∣∣∣∣
x=x̂t|t−1(�)

.

(14b)

The EKF can calculate the explicit value in (13) dur-
ing the recursive state and measurement updates. This
implies that the computational cost for the gradient is
(proportionally) linear in the batch length, and conse-
quently scales better than the NLS, which has (propor-
tionally) quadratic cost, [27]. All the details about how
the EKF calculations are done are omitted here, and the
reader is referred to [26] instead.With the residual rt (�)
and the Jacobian Jt (�) accessible, any NLS solver can be
used to estimate the parameter values. In this particular
case, a Levenberg–Marquardt solver is used [16], [21].

VI. RESULTS

The performance of the method is evaluated with
MC simulations on the synthetic data, as well as with the
real data. We have chosen to evaluate the methods on
platforms’ and landmarks’ positions only. This is due to
a lack of ground truth for rotations in the case of real
data. All the setup and results are described in the sub-
sections below.

A. Synthetic Data

1) Setup: The simulated trajectory consists of 205
camerameasurements at 4Hz and 2050 acceleration and
angular rate measurements at 40 Hz, which gives the
total trajectory duration time of 1.24 s. This setup is il-
lustrated in Fig. 2. All simulation examples are based
on 50 MC simulations, where the noise on the acceler-
ations, angular rates, and camera measurements is var-
ied for each MC run, and it was sampled from the Gaus-
sian distributionwith zeromean and standard deviations
σa = 10−3m/s2, σω = 10−4 ◦ s−1, and σcam = 10−4 m.
As previously explained, the correspondence between
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(b)

(a)

Figure 2. Synthetic environment setup used in MC experiments.
(a) Simulated trajectory used in MC simulations with projection on
XY -plane for a clearer view (it has constant altitude, i.e., Z = 0). (b)
Simulated landmarks used in MC simulations with projections on all
planes for a clearer view.

measurement and landmarks was known; however, all
landmarks were not observed in each camera frame.

2) MC Simulations—Whole batch: The results for
the whole batch of data (i.e., “infinite horizon”) for both
PEM-SLAM and NLS-SLAM are shown in Fig. 3 for the
trajectory and the landmarks, respectively.

3) MC Simulations—SW: For the SW approach, 50
MC simulations are done for each of the horizon lengths
chosen from {10, 15, 20, 25, 30}. The results, in the form
of total positionRMSE for the trajectory and some land-
marks, for each SW-PEM-SLAM and SW-NLS-SLAM
have quite similar and comparable performance, al-
though SW-PEM-SLAM has better RMSE in total for
both trajectory and landmarks, just as in the case for the
whole batch, see Fig. 4. It is also noticeable that the to-
tal error is varying with the horizon length, but not con-
sistently for the SW-PEM-SLAM. It is not necessarily
smaller everywhere for the longer horizons, except at
the end of the trajectory. SW-NLS-SLAM is more con-
sistent in this regard, at least for the trajectory. Both of
the methods are showing this behavior for the landmark

(a)

(b)

Figure 3. RMS errors for the trajectory and landmarks based on 50
MC simulations for both PEM-SLAM (blue) and NLS-SLAM (red).
(a) RMS error for the trajectory estimated with PEM-SLAM (blue)
and NLS-SLAM (red) based on 50 MC simulations. (b) RMS error for
all the landmarks estimated with PEM-SLAM (blue) and NLS-SLAM
(red) for each coordinate based on 50 MC simulations.

position error, i.e., it is not monotonously decreasing
with the horizon length for some landmarks,but the gen-
eral trend is that most landmarks have smaller error for
the longer horizon.

B. Real Data

1) Yamaha Rmax: The first real dataset comes from
the flight trials performed atRevingehed,Sweden,where
a remotely piloted helicopter Yamaha Rmax, see Fig. 5,
was flown, [5]. The helicopter was equipped with all
the utilized sensors (i.e., IMU and camera). The ground
truth (based on GPS) flight trajectory in XY -plane is
shown in Fig. 6.

For the validation of the methods, only the hori-
zon length of five images was used, since a short hori-
zon would give a short delay time, which is a realis-
tic assumption for the real-time application. The error
between estimated trajectory and GPS- based one for
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(a)

(b)

Figure 4. Total RMS errors for the trajectory and seven landmarks
for each window length based on 50 MC simulations for SW-PEM-
SLAM (solid line) and SW-NLS-SLAM (dashed line). (a) Total RMS
error for the trajectory estimated with SW-PEM-SLAM (solid) and
SW-NLS-SLAM (dashed) for each window length based on 50 MC
simulations. (b) Total RMS error for six landmarks estimated with SW-
PEM-SLAM (solid) and SW-NLS-SLAM (dashed) for each window
length based on 50 MC simulations.

Figure 5. Remotely piloted helicopter Yamaha Rmax used in the
experiments.

Figure 6. Real data trajectory in XY -plane based on GPS (ground
truth).

both SW-PEM-SLAM and SW-NLS-SLAM methods is
shown in Fig. 7. Even here, both methods have simi-
lar performance for, at least, the X - and Y -coordinates.
For the Z-coordinate (or altitude), a much larger er-
ror is present. This is a consequence of the inherent vi-
sual/inertial SLAM problem property, where it is hard
to estimate both distance to landmarks and own local-
ization due to imperfect inertial data. These errors and
biases are, in general, not completely removed by the es-
timation. This can only be done if the inertial data are
perfect, which is never the case; see also [22] for fur-
ther discussion. This behavior is also visible in the sim-
ulated data for the Z-coordinate, see, e.g., Fig. 3. In or-
der to remedy this behavior, another kind of stabilizing
measurement, like barometric pressure measurements,
could be used. Unfortunately, these kinds of measure-
ments were not available. Interestingly, the error is ac-
tually decreasing at the end of the trajectory estimated

Figure 7. Error between estimated and GPS trajectory for all coordi-
nates for the real data and both SW-PEM-SLAM (blue) and SW-NLS-
SLAM (red).
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Figure 8. Error between estimated and GPS trajectory for all coor-
dinates for the real data for the whole batch. PEM-SLAM (blue) and
NLS-SLAM (red).

by SW-PEM (after 65 seconds approximately). For com-
parison, the estimate for the whole batch is shown in
Fig. 8. Here, the performance is even more similar, and
the error in the Z-coordinate is not as prominent (al-
though still larger than X - and Y -coordinates). This is
most probably due to the both better loopclosure as well
as utilization of the whole data batch instead of only a
limitedwindow.Evaluation ofmap estimation is done by
projecting landmarks in an image where they are not ob-
served and comparing these to their measurements from
another image where they are observed. This is depicted
in Fig. 9. It can be seen that the performance of both
methods is quite similar, and that batch estimation has
slightly better performance, which is expected.

2) EuRoC: Publicly available datasets from EuRoC
MAV [3] have been used in order to evaluate the (SW-)
PEM-SLAM performance on another dataset and see
how it compares to others’ results on the same data.
Two out of eleven datasets from EuRoC MAV have
been tested. For this dataset, we only show the total
RMSerror for thewhole trajectory and summing all axes
as done in [23]. For the SW-PEM-SLAM and dataset
MH_01, the RMSEwas 0.20 m, and for the PEM-SLAM
it was 0.16 m. A horizon of length 20 was used. For the
dataset, MH_03 SW-PEM-SLAM had RMSE of 0.32 m
with the horizon of length 20. To get the similar perfor-
mance as for the other dataset, a horizon needed to be
32 long, and the RMSE was 0.21 m in that case. PEM-
SLAM had a RMSE of 0.12 m. Compared with the re-
sults in, e.g., [23], where RMSE for MH_01 and MH_03
was about 0.07 m, both the SW-PEM-SLAM and PEM-
SLAM solutions are in the same order of magnitude. It
is worth noting that RMSE in [23] was calculated for
keyframes only, while RMSE for SW-PEM-SLAM and
PEM-SLAM was for the whole trajectory.

(a) (b)

(c) (d)

(e) (f)

Figure 9. Comparison betweenmeasured and reprojected landmarks
for the real data and for the SW approach and the whole batch. PEM-
SLAM (◦) and NLS-SLAM (+) for both SW and batch reprojections.
Landmarks are notmeasured in the imageswhere they are reprojected.
(a) Measurement of landmark #27 from image 276. (b) Measurement
of landmark #38 from image 276. (c) Reprojection of landmark #27 in
image 260 (SW). (d) Reprojection of landmark #38 in image 260 (SW).
(e) Reprojection of landmark #27 in image 260 (batch). (f) Reprojec-
tion of landmark #38 in image 260 (batch).

C. Execution Time Evaluation

The relative execution time as a function of the hori-
zon length for the SW-PEM-SLAM and the SW-NLS-
SLAM are compared. It can be seen in Fig. 10 that the
increase for SW-PEM has a linear trend, while for SW-
NLS, the trend seems to be quadratic (or at least pro-
portionally quadratic). The plots are produced with the

Figure 10. Relative execution time as a function of the horizon length
for the SW-PEM-SLAM (blue) and the SW-NLS-SLAM (red).
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simulated data averaged over 50 MC runs. Since the es-
timation accuracy is comparable between the methods,
the linear execution time increase for the SW-PEM is
a great advantage over SW-NLS when it comes to real-
time performance and is one of the main motivations for
the choice of SW-PEM-SLAM.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, it is presented how a system identifica-
tionmethod,PEM,can be applied to an SLAMproblem.
This is done by considering the map, here modeled as
three-dimensional pointlandmarks, as parameters in the
system to be identified, and the motion of the platform
observing the landmarkswith amonocular camera as dy-
namic states of the system. Estimation is done in an SW
fashion as well as for the whole batch of data. The SW
estimation is more appropriate for the real-time adap-
tation of the estimator, while the whole batch is an of-
fline method.The main advantage of the PEM approach
compared to theNLS is the separation between the land-
marks and the state estimation,which allows for compu-
tation complexity reduction,especially when the horizon
length increases.The estimation performance of the SW-
PEM-SLAM(andPEM-SLAM,i.e., for thewhole batch)
is evaluated with MC simulations on both inertial/visual
synthetic and real datasets, and compared to SW-NLS-
SLAM (and NLS-SLAM) showing comparable perfor-
mance.

In the continuation of this work, some possible al-
ternative parametrizations of the predictor might be ex-
plored, for example, innovation form as in [18].Also, fur-
ther development toward better implementation will be
pursued.
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Data Association With Camera
Parameters Estimation for
Object Tracking From Drones
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This paper considers the problem of inaccurate measurement-to-

track association (M2TA) and poor tracking caused by camera motion

changes in drone-captured video. The camera often changes its field of

view to track targets; however, the sudden change leads to inaccurate

M2TA and degrades tracking performance. Previous work estimated

the 3D camera motion parameter vector (zoom ratio, panning, and

tilting) and associated measurements and tracks only between two

consecutive frames. This paper extends the camera motion parameter

to 4D by including rolling and sequentially associates (forward)

measurements to tracks over the entire data. The estimated camera

parameters improve the predicted measurements and achieve better

M2TA. Results on real data illustrate the benefits of the proposed

method (association with 4D camera parameters estimation) that

yields better associations and improves tracking accuracy compared

to the state-of-the-art gating method based on inflated covariances.

I. INTRODUCTION

Unmanned aerial systems (UAS), equipped with
cameras, are extensively used to capture images and
videos for tracking systems.These systems are crucial for
surveillance applications. For example, UAS can be em-
ployed to monitor borders to detect illegal crossings or
smuggling activities, as well as to observe traffic flow to
identify and respond to accidents. These cameras often
adjust their field of view (FoV) to keep up with moving
targets [12], [16]–[18], [24].However, changes in pointing
and/or in image scale make the target data association
and tracking from drones more challenging than tradi-
tional data association and object tracking. The camera
movements, such as pan (yaw), tilt (pitch), zoom, and
platform roll, are not available to the data association
and tracking algorithms and can degrade the reliability
of the video tracks [7], [15], [19].

Camera vibrations or movements will introduce
instability into video images, posing challenges in video
image stabilization and registration. Most methods ad-
dress this problem by compensating cameramotion with
camera motion estimation. Typically, camera motion es-
timation is classified into two categories: intensity-based
motion estimation and feature-basedmotion estimation.
The intensity-based motion estimation (such as using
image grayscale [14], phase correlation [10], pixel-based
correlation [11]) is based on pixel intensities between
consecutive frames, while the feature-based motion
estimation (such as edges and corners [6]) is based on
extracting and matching features across consecutive
frames. Some advanced video stabilization techniques
combine both approaches in [28].

In [23], it was shown that the tilt, pan, and roll angle
errors of the camera can affect the navigational parame-
ters in autonomous vehicles.Allebosch et al. [1] compen-
sated camera motion by estimating panning and tilting
with different models. A reversible jump Markov chain
Monte Carlo method was employed for estimating cam-
era parameters consisting of angles and positions in [8].
Our previous work [25] assumes that the camera motion
parameters are described by zoom ratio, panning, and
tilting of the focal-plane array. The 3D camera param-
eter vector is directly solved by the MLE3 (maximum
likelihood estimation in 3D) approach via linear least
squares (LLS). However, this does not account for UAS
camera rolling.Moreover, it was tested only between two
consecutive frames and was not applied to the entire du-
ration of the data [25].Thus, it could not provide an eval-
uation of the tracking accuracy during an entire video
sequence.

In this work, the goal is to develop an approach for
accurate tracking in the presence of camera panning,
tilting, zooming, and rolling for drone-captured video.
Targets are detected by a state-of-the-art object detec-
tion algorithm—You Only Look Once (YOLO) [20],
which provides bounding boxes (BBs). To track accu-
rately, the camera has the capability to adjust its view,
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and the UAS can change its velocity and altitude. This
is accomplished visually by a human operator. The atti-
tude is operator-controlled but not quantified to be us-
able for the algorithm. The camera motion parameters,
unknown to the operator or the tracker, are represented
by a 4D vector including zoom ratio, panning, tilting,
and rolling. These parameters are estimated using the
MLE4 (maximum likelihood estimation in 4D) via the
iterated least squares (ILS)method in each frame.Based
on the estimated camera parameters, one associates the
measurement-track pairs, and then corrected state pre-
dictions are calculated.These corrected state predictions
play an important role in the filtering step (Kalman
filter), resulting in more accurate state updates. Com-
pared with the conventional measurement-to-track as-
sociation (M2TA), the validation gating method, which
relies on inflated measurement covariance for associ-
ation, the proposed algorithm has superior robustness
and performance. If there are unexpected target state
changes due to camera movements, the measurements
may not be correctly associated with their tracks by the
gatingmethod. In contrast,ourmethod has enhanced ro-
bustness by integrating camera motion parameter esti-
mation into the association and tracking process. This
integration allows our algorithm to maintain accurate
tracking even in the presence of abrupt camera motion
changes, which would typically challenge the conven-
tional gating method.

The contributions of this paper are as follows: Firstly,
it extends the camera motion parameter vector from 3D
to 4D, enhancing its capability not only for zoom, pan,
and tilt, but also for roll movements. The 3D parameters
are estimated using MLE3, while the 4D parameters
are estimated using MLE4. The latter is shown to have
smaller errors in tracking results compared to 3D pa-
rameter vector estimation. Additionally, the proposed
method can handle scenarios with both a large and small
number of targets with different assignment methods. It
adapts effectively to diverse tracking environments.

The rest of the paper is structured as follows:
Section II introduces the target detection by YOLO,
presents the baseline Gating Method with Inflated Co-
variance (GMIC) method, and outlines the overall sys-
tem flow. Section III presents the estimation of the cam-
era motion parameters consisting of both the 3D vector
and the 4D vector. Section IV presents the proposed ap-
proach that integrates camera parameters into the asso-
ciation process. Section V shows the real data results and
discusses them. Section VI draws the conclusions.

II. PROBLEM FORMULATION

This section first introduces the target position de-
tection from YOLO in each frame. Then the baseline
M2TAmethod is briefly presented,which is used to com-
pare with the proposed method. The tracking system
flow chart is later shown in this section. After target
detection by YOLO, the association is combined with

camera parameter estimates to yield better target state
predictions.

A. YOLO: Target Detection

A review of deep learning applied to computer vi-
sion for target detection can be found in [29]. One of
the most popular algorithms is YOLO [20]. YOLO inte-
grates feature extraction, object localization, BB regres-
sion, and classification in a monolithic network. It maps
from image pixels to BB coordinates and class probabili-
ties.The basic idea is dividing the input image into a grid,
and each grid cell is responsible for predicting the object.
It uses a single-stage architecture to make predictions
for multiple objects, making it faster and more efficient
than traditional object detection algorithms. YOLO v3
[21], applied on a per frame basis, is an incremental im-
provement overYOLO in detection andBBaccuracy for
smaller targets. Besides, its efficiency in processing time
makes it widely used in real-time object detection.

In this paper, the targets are detected by YOLO v3 in
each frame and the measurements are the target’s posi-
tions, specifically, the top left corner of the BB.Although
it can identify multiple objects from a video frame and
label them with corresponding class probabilities, we fo-
cus on people and their 2D position information.

B. Gating Method With Inflated Covariance (GMIC)

The traditional state-of-the-art M2TA method—
validation gate method—assumes that the target mo-
tion can be utilized to predict the “measurement associa-
tion regions” [3], [4], [27]. It eliminates unlikelymeasure-
ments that need to be considered for association with a
track [22], [26]. The gating method is based on inflated
covariances. The camera parameter changes create bias
in the estimation. Instead of estimating the bias, this ap-
proach increases the measurement noise standard devi-
ations to “cover” the bias implicitly. For the association,
the association gate is enlarged by an inflated measure-
ment error variance so that shiftedmeasurements can be
associated with their tracks.

Consider a set of measurements zi(k) at time (frame
index) k, i = 1, 2, . . . ,Nm(k), where Nm(k) is the num-
ber of measurements at time k, and a set of predicted
measurements ẑ j(k|k− 1) at time k, j = 1, 2, . . . ,Nt (k),
where Nt (k) is the number of tracks for which a pre-
diction at time k is available. The difference between
each actual and predicted measurement (the filter inno-
vation) is defined as

ñi j(k) = zi(k) − ẑ j(k|k− 1). (1)

A gate is formed about the predicted measurement, and
all actual measurements (observations) that fall within
the gate are considered for track updates. Define a gate
threshold γ such that association is allowed if the norm
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Figure 1. Flow chart of the tracking system.

of the residual falls within the gate

d2i j(k) = ñ′
i j(k)Sj(k)

−1ñi j(k) ≤ γ , (2)

where d2ji is also known as the squared Mahalanobis dis-
tance between track j and measurement i and Sj(k) is
the corresponding innovation covariance. Once the po-
tential measurements are chosen based on (2), they are
associated to tracks using the Auction method. In this
process, each track “bids” for the measurements, and the
goal is to find the highest “bid” track and then assign the
measurement to the track. The details can be found in
[4].

In target tracking, the assigned measurements are in-
corporated into the updated track state estimates dur-
ing the filtering step. However, it is important to note
that gating, while a commonly used heuristic method, is
not infallible.Due to sudden camera movements such as
panning, zooming, tilting, or rolling, the validation gates
may lead to incorrect M2TA and poor tracking perfor-
mance, even in the presence of inflated gates.

C. System Flow for Assignment With Camera Parameter
Estimation

The overall system is illustrated in the flow chart in
Fig. 1. It outlines several key steps, including data col-
lection, target detection, a novel approach to associa-
tion that incorporates camera parameter estimation, and
filtering. Compared with the previous gating method,
the main difference is that we integrate camera param-
eter estimation into the association process. This mit-
igates the effects of sudden camera movements, thus
yielding more accurate M2TA and better state predic-
tion. The proposed algorithm sequentially estimates the
camera state and the target states at each time step,
which is similar to the simultaneous localization and
mapping (SLAM) [5].However, SLAM typically focuses
on building a map in a static environment, while our
problem focuses on tracking targets whose locations in

Figure 2. Camera has pan, tilt, and roll movements.

the FoV change due to camera parameter variation. Be-
sides, our approach has to be implementable in real time
with modest computing requirements; adding moving
targets as in SLAM would significantly increase these
requirements.

As shown in Fig. 2, the camera mounted on drone
gimbals can be controlled by servo driver modules.
When it comes to recording of image frames, the less vi-
bration and camera shake the better. However, sudden
camera movements are inevitable in practical scenarios.
Specifically, we investigate the several camera motion
parameters:

1. Pan (Yaw): A yaw motion describes the left and
right (horizontal) movement of the camera.

2. Tilt (Pitch): An up and down (vertical) movement
of the camera.

3.Roll:A roll motion is a rotation around the camera
axis direction. The roll comes from “banking” when the
UAS turns.

It should be pointed out that the commands for the
above are given usually by a human operator, but they
are not measured or available to the data association or
tracking algorithms.

Additionally, the camera’s field of view can be ad-
justed by zooming in or out.Although zoom is not a cam-
era position movement, one can change its focal length
to change image size. These camera motion parameters
are crucial for the quality of tracking and will be esti-
mated in the subsequent section.

III. CAMERA MOTION PARAMETERS ESTIMATION

This section presents the formulation and estimation
of the camera parameters using 3D and 4D vectors when
the camera has sudden motion change. The corrected
target position prediction conditioned on the parameter
vector estimates is also given.

A. 3D Camera Parameters Estimation (MLE3)

The 3D camera parameter vector consisting of the
zoom ratio φ(k), camera panning (horizontal motion)
xc(k), and tilting (vertical motion) yc(k) is given by

ζ(k) =
⎡
⎣ φ(k)
xc(k)
yc(k)

⎤
⎦ . (3)
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The camera parameter vector (3) [or (5) below] is as-
sumed an unknown constant for each k, which is the
model for the least squares [2] (LS) algorithm. No dy-
namics are assumed across time since the goal was sim-
plicity. Using a dynamic model for the camera motion
(and a Kalman filter to estimate it) is possible, but it
would increase the computation complexity, and since
the LS worked very well, there was no need to increase
the complexity.

Assume there is a set of measurements zi(k) at time
k, i = 1, 2, . . . ,Nm, and a set of predicted measurements
ẑ j(k|k − 1) at time k, j = 1, 2, . . . ,Nt . The corrected
prediction (denoted by hat and superscript “κ”) condi-
tioned on the 3D parameter vector is1

ẑκ
j [k|k− 1, ζ(k)] =

[
x̂ j(k|k− 1)φ(k) + xc(k)
ŷ j(k|k− 1)φ(k) + yc(k)

]
, (4)

where x̂ and ŷ are the predicted position of the tar-
get. The 3D camera parameter vector without rolling is
solved by MLE (designated as MLE3) via LLS. The de-
tails are shown, for completeness, in Appendix A (based
on [25]).

B. 4D Camera Parameter Estimation (MLE4)

The 4D camera parameter vector including the
rolling ρ(k) is denoted as

ξ(k) =

⎡
⎢⎢⎣

ρ(k)
φ(k)
xc(k)
yc(k)

⎤
⎥⎥⎦ , (5)

where φ is the zoom ratio, which can be expressed as the
ratio of focal length f (k) at different time as follows2:

φ(k) = f (k)
f (k− 1)

. (6)

Then, the corrected prediction conditioned on the 4D
camera parameter vector is given by

ẑκ
j [k|k− 1, ξ(k)] =[
[x̂ j(k|k− 1) cos ρ(k) + ŷ j(k|k− 1) sin ρ(k)]φ(k) + xc(k)
[ŷ j(k|k− 1) cos ρ(k) − x̂ j(k|k− 1) sin ρ(k)]φ(k) + yc(k)

]
.

(7)

Define i( j) as the index of the measurement as-
sociated with track j. The measured target position is
denoted by

zi( j)(k) =[
h1[x̂i( j)(k|k− 1), ŷi( j)(k|k− 1), ξ(k)] + ni( j),1(k)
h2[ŷi( j)(k|k− 1), x̂i( j)(k|k− 1), ξ(k)] + ni( j),2(k)

]
,

(8)

1Note that (4) is written with the yet to be estimated camera parame-
ters.
2The focal lengths are unknown and not observable (unless the sizes
of the targets are known and the noises are much smaller). However,
the ratio (6) can be estimated together with the association.

with

h1 = [x̂i( j)(k|k− 1) cos ρ(k)

+ ŷi( j)(k|k− 1) sin ρ(k)]φ(k) + xc(k), (9)

h2 = [ŷi( j)(k|k− 1) cos ρ(k)

− x̂i( j)(k|k− 1) sin ρ(k)]φ(k) + yc(k), (10)

where ni( j),�(k), � = 1, 2 are mutually independent zero-
mean white Gaussian residuals with variance σ 2. The
4D camera parameters are estimated by the MLE4 al-
gorithm via ILS estimator [2]. The ILS recursion is as
follows:Using a first order series expansion about ξ̂, one
has

zi( j)(k) =
[
h1[x̂i( j)(k|k− 1), ŷi( j)(k|k− 1), ξ̂(k)]
h2[ŷi( j)(k|k− 1), x̂i( j)(k|k− 1), ξ̂(k))]

]
(11)

+
[
J1(ξ̂(k) − ξ̂(k+ 1)) + ni( j),1(k)
J2(ξ̂(k) − ξ̂(k+ 1)) + ni( j),2(k)

]
. (12)

We can define the following matrices:

hi( j) = [h1 h2]′ (2 × 1), (13)

h =

⎡
⎢⎢⎢⎣
h1
h2
...
hN

⎤
⎥⎥⎥⎦ (2N × 1), (14)

�i( j) =
[
σ 2 0
0 σ 2

]
(2 × 2), (15)

R = diag[�1 . . . �N] (2N × 2N), (16)

zi( j) = [xi( j) yi( j)]
′ (2 × 1), (17)

z =

⎡
⎢⎢⎢⎣
z1
z2
...
zN

⎤
⎥⎥⎥⎦ (2N × 1), (18)

where N is the number of M2TA pairings, and i( j) =
1, . . . ,N. The Jacobian matrix J is given by

J = [H1 H2 . . . HN]′ (2N × 4), (19)

where

H j =
[

∂h1
∂ρ

∂h1
∂φ

∂h1
∂xc

∂h1
∂yc

∂h2
∂ρ

∂h2
∂φ

∂h2
∂xc

∂h2
∂yc

]
(2 × 4). (20)

The partial derivatives are shown in Appendix B.
Finally, the updated ILS estimates ξ̂(k+ 1) (4× 1) is

then obtained as

ξ̂(k+ 1) = ξ̂(k)+ (J′(k)R−1J(k))−1J′(k)R−1[z(k)− h(ξ̂(k))].
(21)
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IV. ASSOCIATION WITH CAMERA PARAMETER
ESTIMATION

This section first introduces the target motion model.
Next, the association with estimation methods in terms
of the number of M2TA pairs is presented. The filtering
step using the Kalman filter is also provided.

A. Dynamic Models

There aremultiple targets in the observed frame, and
they are assumed to move with a nearly constant veloc-
ity (NCV). The target motion model is characterized by
a continuous white-noise acceleration (CWNA) model
[2]. The state vector consisting of position and velocity
in the camera image is

x(k) = [x(k) y(k) ẋ(k) ẏ(k)]′. (22)

For sampling interval T , the state and measurement
equations are

x(k+ 1) = Fx(k) + v(k), (23)

z(k) = Hx(k) + w(k), (24)

where

F =

⎡
⎢⎢⎣
1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , (25)

H =
[
1 0 0 0
0 1 0 0

]
. (26)

Themeasurements consist of the state’s position compo-
nents. For the above,v(k) is the zero mean white process
noise sequence with covariance

Q(k) =

⎡
⎢⎢⎢⎣

T 3

3 0 T 2

2 0
0 T 3

3 0 T 2

2
T 2

2 0 T 0
0 T 2

2 0 T

⎤
⎥⎥⎥⎦q, (27)

where q is the process noise power spectral density
(assumed the same in x and y) and w(k) is the zero
mean white measurement noise sequence with covari-
ance R(k) = diag[σ 2 σ 2].

B. Association With Estimation

The association should be done between the follow-
ing:

1. Tracks represented by corrected predictions
ẑκ
j [k|k− 1, ζ(k)], j = 0, 1, . . . ,Nt (with ζ or ξ to be esti-

mated),3 where the index j = 0 represents the “dummy
tracks” to which the unassociatedmeasurements belong.

2. Measurements zi(k), i = 0, 1, . . . ,Nm, where the
index i = 0 represents the “dummy measurements” to
which the unassociated tracks belong.

The cost of assigning zi(k) to ẑκ
j [k|k − 1, ζ(k)] is the

negative log-likelihood function [2] (scalar normalized
squared distance)4

c[i, j,k, ζ(k)] = ||zi(k) − ẑκ
j (k|k− 1)||2. (28)

Initial candidate measurement-to-track pairs are based
on the GMIC method. There are two different associa-
tion methods in terms of the number of measurement-
to-track pairs:

Method A: When the number of pairs is small, the
first iteration estimates camera parameters is based on
the first set of measurement-to-track pairs. Then it cor-
rects the predictions. The second iteration of the assign-
ment is based on other pairs ofmeasurements and tracks.
The iteration is stopped until all combinations are ex-
hausted. Finally, we choose the assignment that yields
the lowest cost along with its estimated parameters.

This method can find the optimal measurement-to-
track pairs, but requires a global minimization (exhaus-
tive) search of all the combinations of measurements
and tracks. It requires O(n!) operations, where n is the
number of the measurement-to-track pairs. Due to this
complexity, it is practical only for a limited number of
pairs. Typically this is feasible for n < 6.

Method B: To enhance computational efficiency for
n ≥ 6, the estimation is combined with the 2D assign-
ment algorithm, specifically the Auction or Hungarian
method5 [9]. The procedure is as follows: The 2D assign-
ment algorithm first finds the assignment of measure-
ments to tracks that minimizes the total cost. Then the
camera parameter vector is estimated based on this as-
signment, the predictions are corrected, and the target
state is updated. This method requires O(n3) running
time,making it efficient for a large number of tracks and
measurements.

To combine the above methods, when the number of
pairs is small (n! ≤ n3, for n < 6), the first estimation
method with global search is utilized. Otherwise, when
dealing with a large number of pairs, the estimation with
the 2D assignment algorithm is preferred to ensure com-
putational efficiency.

3The camera parameter estimation for ζ(3D) or ξ(4D) is the same ex-
cept for their dimensions, so we use the notation ζ in Section IV.
4We assume the innovation covariances are all diagonal and equal, thus
we can omit them.
5This article focuses on the camera estimation rather than the assign-
ment algorithms. The chosen assignment algorithms are simple for
real-time implementation, but one can also use other 2D assignment
algorithms.
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Table I
The Algorithms Considered in the Paper

Acronym Algorithm

GMIC Gating method with inflated covariances
MLE3 [25] ML estimator for 3D camera parameter vector via LLS
MLE4 ML estimator for 4D camera parameter vector via ILS

C. Predictions

After association and camera parameter estima-
tion, the assigned measurements are corrected and used
to obtain the updated track state estimates during
the filtering stage. The improved (position) prediction
ẑκ
j [k|k − 1, ζ̂(k)] is used for the target state update in

the Kalman filter. Thus, the updated state estimate x̂ for
target j and the updated covariance are given by6

x̂ j(k|k) = x̂κ
j [k|k− 1, ζ̂(k)] + K(k)ν j(k), (29)

P j(k|k) = P j(k|k− 1) − K(k)S(k)K′(k), (30)

where the filter gainK(k) and innovation covariance are

K(k) = P j(k|k− 1)H′(k)S−1(k), (31)

S(k) = H(k)P j(k|k− 1)H′(k) + R(k), (32)

the measurement residual (innovation) is

ν j(k) = z j(k) − ẑκ
j [k|k− 1, ζ̂(k)]. (33)

Since the proposedmethod (2D assignment with camera
parameter estimation) will be shown to provide a more
accurate prediction, the tracking results will be better
than the validation GMIC method when the camera is
panning, tilting, zooming or rolling.

V. REAL DATA RESULTS

Two types of real scenarios are considered: with a
small number of targets (using exhaustive search) and
with a large number of targets (using Hungarian assign-
ment algorithm). MLE4 is compared with MLE3 and
GMIC, see Table I.

A. Initialization

The initial candidate associations for bothMLE3 and
MLE4 are based on GMIC. GMIC merges the nearby
YOLO measurements when there is a one-pixel differ-
ence. If the merging distance is large, GMIC will make
wrong associations, especially for tracks lacking mea-
surements. To get a better association, we only focus
on the confirmed tracks, and remove the inactive tracks
(for example, previous tracks that moved out of FoV).

6The prediction x̂κ
j [k|k − 1, ζ̂(k)] has position components ẑκ

j [k|k −
1, ζ̂(k)], and its velocity components are unchanged from x̂ j(k|k− 1).
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Figure 3. HTX scenario: Average track residual errors for GMIC,
MLE3, and MLE4 are 9.04, 2.94, and 2.48, respectively.

The new tracks are initialized such that the first estimate
x̂ j(k|k) equals the observed measurements and veloc-
ity zero (one point initialization), and the initial position
standard deviation (s.d.) is 0.3b (px) in each component
and the initial velocity s.d. is 3b (px/s) where b is the BB
width.

For the ILS search of MLE4, the initial 4D camera
parameter vector is set as [0 1 0 0]′ in equation (5).
Based on the 2D assignment algorithm, the optimal 4D
parameter vector is estimated by the ILS algorithm (see,
e,g., [2]).

B. Small Number of Targets—HTX Video, Assignment
With Exhaustive Search

In this section, we examine the scenario considered
in [25] with a small number of targets.7 The UAS only
changes its position at a fixed altitude during record-
ing. The sampling frequency is 30 Hz (30 frames/s). The
frame has a size of 1920× 1080 px. The width of the BBs
is around 15 px and the height of the BBs is around 42 px.
The average velocity of the BBs is around 23 px/s. Thus,
we choose the process noise power spectral density as8

q = 16 (px2/s3) and the measurement noise covariance
matrix as R = diag[9 9] (px2).

The performance of tracking accuracy is evaluated
by the average track residual errors—average track resid-
ual errors (ATRE) at each frame, as follows:

e(k) = 1
Nt (k)

Nt (k)∑
j=1

√
x̃(k)2i( j) + ỹ(k)2i( j). (34)

where x̃ and ỹ are innovation (residual) errors (the dif-
ference between the corrected predicted positions and

7https://github.com/zijiaoTian58/HTX_Dataset.
8The root mean square (RMS) change in the velocity over a sampling
interval T is

√
qT , which for T = 1/30 s, yields 0.7 px/s.
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Figure 4. HTX scenario: tracking results at frame 236 based on (a) the
GMIC method and (b) the proposed method (MLE4). Blue bounding
boxes are the actualmeasurements,and the red bounding boxes are the
tracking results. (a) Tracking based on theGMICmethod. (b) Tracking
based on MLE4.

the measured position based on the most recent assign-
ment) of each target.

The position residual errors of the GMIC (gat-
ing) versus MLE3 are illustrated in Fig. 3. The camera
adjusts its FoV to track targets, resulting in camera
motion changes around frames 70 and 150–300. Our
proposed MLE3 (assignment with exhaustive search)
yields much smaller position residual errors than GMIC
without camera motion parameters estimation. The
ATRE for GMIC and MLE3, MLE4 are 9.04, 2.94, and
2.48, respectively. MLE4 has ATRE about 73% smaller
than the GMIC method. The results demonstrate the
robustness of the proposed methods. MLE3 and MLE4
have the ability to maintain tracking accuracy even in
dynamic camera scenarios, while GMIC’s reliance on
validation gates can lead to incorrect association and
degraded tracking in the presence of sudden camera
movements.

Figure 4 shows the tracking results (GMIC versus
MLE4) at frame 236. The blue BBs represent actual
measurements, and redBBs indicate tracking results.For
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Figure 5. VDD scenario 1: Average track residual errors for GMIC,
MLE3, and MLE4 are 6.93, 2.77, and 2.72, respectively.

MLE4, the red BBs for all targets almost cover the blue
BBs, whereas for GMIC, the red BBs have large devia-
tions from the blue BBs.This indicates that the proposed
MLE4 performs better tracking than the GMIC when
the camera has motion change at frame 236.

C. Large Number of Targets—VDD Video, Assignment
With Hungarian

Two scenarios with multiple targets from VisDrone
Dataset (VDD)[30]9 are considered. The sampling fre-
quency is 15 Hz (15 frames/s), and the frame has a size
of 1344 × 756 px. The UAS can change its position and
altitude and thus result in more complex camera motion
change.

For Scenario 1 (VDD #0000088_00290), there are
more than 60 targets in one frame. The average size
(width and height) of the BBs is around [35 80] px. The
average velocity of the BBs is around [5 45] px/s. The
process noise power spectral density is chosen as10 q =
49 (px2/s3) and the measurement noise covariance ma-
trix as R = diag[9 9] (px2).

As shown in Fig. 5, the position residual errors of
the GMIC method are significantly larger compared to
those obtained with MLE3 method and MLE4 method
(assignment with Hungarian), especially when the cam-
era is panning or tilting during frames 80–140 and 250–
270. The average track residual errors during the whole
frames for GMIC, MLE3 and MLE4 are 6.93, 2.77, and
2.72, respectively. The tracking results (GMIC versus
MLE4) at frame 105 are shown in Fig. 6.

For Scenario 2 (VDD #0000099_02109), the average
size (width and height) of the BBs is around [20 50] px.
The average velocity of the BBs is around [4 40] px/s.

9https://github.com/VisDrone/VisDrone-Dataset.
10The RMS change in the velocity over a sampling interval T is

√
qT ,

which for T = 1/15 s, yields 1.8 px/s.
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Figure 6. VDD scenario 1: tracking results at frame 105 based on (a)
theGMICmethod and (b) the proposedmethod (MLE4). (a) Tracking
based on the GMIC method. (b) Tracking based on MLE4.

Thus, we choose the process noise power spectral den-
sity as11 q = 16 (px2/s3) and the measurement noise co-
variance matrix as R = diag[9 9] (px2).

Similarly, our proposedmethods (MLE3 andMLE4)
show smaller position residual errors than the GMIC
method (ATRE = 6.47, 2.31, 2.12), as seen in Fig. 7, es-
pecially around frame 600. Note that the MLE4 out-
performs MLE3. This is because the camera increases
its altitude during frames 500–650 and has slight roll.
The tracking results at frame 570 are shown in Fig. 8,
revealing that MLE4 significantly surpasses GMIC in
tracking accuracy.

Next, we evaluate in detail the tracking quality for
Scenario 2. There are two metrics to evaluate the track-
ing performance: the number of track breaks and the
number of track swaps. As shown in Table II, the pro-
posed MLE methods outperform the GMIC method,
yielding fewer track breaks and track swaps. Fig. 9 shows
the track swaps and track breaks when the camera has

11This corresponds to an RMS change in the velocity over T = 1/15 s
of 1 px/s.
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Figure 7. VDD scenario 2: Average track residuals errors for GMIC,
MLE3, and MLE4 are 6.47, 2.31, and 2.12, respectively.

abrupt movements. Track breaks refer to interruptions
in the continuous tracking of a target. Track swaps re-
fer to the instances where the identity of a track is mis-
takenly switched between two different targets. The top
three figures show that there are track IDs mistakenly
swapped by the GMIC method, whereas the bottom fig-
ures show no track swaps by the MLE4. Due to the ob-
struction of buildings (yellow pavilion), track 13 from
the top figures is broken, while MLE4 continues track
13 without track breakage or swap.

VI. CONCLUSIONS

In this paper, we carried out M2TAwith camera mo-
tion parameters estimation for drone-captured video to
reduce the effect of sudden cameramovement.The cam-
era parameter vector is extended from 3D (pan, tilt, and
zoom) to 4D (pan, tilt, zoom,and roll).Based on the esti-
mation, the proposed approach not only yields improved
M2TA pairings but also can provide better state estima-
tion in the update step. The real data results show that
the proposed approach (MLE4 and MLE3) can reduce
the effects of sudden camera movement.MLE4 is better
thanMLE3.The robustness has been confirmed by using
the algorithm in diverse situations with good results.The
tracking accuracy and tracking quality are much better
than the GMIC (gating) method.

Table II
Tracking Quality for Scenario 2

# Track Breaks # Track Swaps

GMIC 5 5
MLE3 3 1
MLE4 2 1
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Figure 8. VDD scenario 2: tracking results at frame 570 based on (a)
theGMICmethod and (b) the proposedmethod (MLE4). (a) Tracking
based on the GMIC method. (b) Tracking based on MLE4.

Figure 9. Track breaks and track swaps. Top figures: Tracks 9, 12, and
13 are mistakenly swapped by the GMIC method from frame 560 to
frame 575 when the camera has abrupt movements. Bottom figures:
There are no track swaps by the MLE4.

APPENDIX A

The LLS method is used to solve for ζ̂ directly in the
MLE3 method. For an assignment with {i↔ j}Ni=1 (N is
the number of M2TA pairings), the cost based on (4) is
expressed as

c[i, j(i),k, ζ(k)] = ||zi(k) − ẑκ
j(i)(k|k− 1)||2 (35)

= [xi(k) − x̂ j(i)(k|k− 1)φ(k) − xc(k)]2

+ [yi(k) − ŷ j(i)(k|k− 1)φ(k) − yc(k)]2 (36)

where j(i) denotes the track paired with measurement
i.12 Define the following stacked matrices:

H = [H1 . . .HN]
′
, (37)

v = [v1 . . . vN]
′
, (38)

R = diag[�1 . . . �N], (39)

where

H j =
[
x̂ j 1 0
ŷ j 0 1

]
, (40)

v j =
[
xi( j) − x̂ j
yi( j) − ŷ j

]
, (41)

� j =
[
σ 2 0
0 σ 2

]
, (42)

with the estimate of the innovation variance (for statis-
tical significance, to be discussed later) is

σ̂ 2 = 1
2N − nζ

(Hζ̂ − v)
′
(Hζ̂ − v), (43)

where i( j) in (41) is the index of the measurement asso-
ciated with track j, j = 1, . . . ,N and nζ is the number of
camera parameters.

Then the LLS problem for pairs i( j), j is given by

argmin
ζ

N∑
j=1

(H jζ − v j)
′�−1

j (H jζ − v j), (44)

or, without the summation (with the stacked matrices)

argmin
ζ

(Hζ − v)
′
R−1(Hζ − v), (45)

Finally, ζ̂ is obtained by minimizing the quadratic error
(44),

ζ̂ = (H
′
R−1H)−1H

′
R−1v =

⎛
⎝ N∑

j=1

H
′
jH j

⎞
⎠

−1

H
′
v, (46)

with its covariance matrix given by

Pζ̂ = (H
′
R−1H)−1 =

⎛
⎝ N∑

j=1

H
′
j�−1

j H j

⎞
⎠

−1

. (47)

12The pairing notations i( j) and j(i) are equivalent.
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APPENDIX B

The partial derivatives equation (20) in Section III.B
are as follows:
∂h1
∂ρ

= (−x̂i( j)(k|k− 1) sin ρ(k) + ŷi( j)(k|k− 1) cos ρ(k))φ(k),

(48)
∂h1
∂φ

= x̂i( j)(k|k− 1) cos ρ(k) + ŷi( j)(k|k− 1) sin ρ(k),

(49)
∂h1
∂xc

= 1, (50)

∂h1
∂yc

= 0, (51)

∂h2
∂ρ

= (−ŷi( j)(k|k− 1) sin ρ(k) − x̂i( j)(k|k− 1) cos ρ(k))φ(k),

(52)
∂h2
∂φ

= (ŷi( j)(k|k− 1) cos ρ(k) − x̂i( j)(k|k− 1) sin ρ(k)),

(53)
∂h2
∂xc

= 0, (54)

∂h2
∂yc

= 1. (55)
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