
Manuscript received December 26, 2023; revised August 21, 2024; re-
leased for publication October 14, 2024

Z. Tian and Y. Bar-Shalom are with the Department of Electrical and
Computer Engineering, University of Connecticut, Storrs, CT 06269,
USA (e-mail: zijiao.tian@uconn.edu; yaakov.bar-shalom@uconn.edu).

R. Yang and H. A. J. Huang are with the DSO National Laboratories,
Singapore 118225 (e-mail: yrong@dso.org.sg; hhongan@dso.org.sg).

G.W.Ng is a staff fromDSONational Laboratories Singapore 118225,
who is on secondment toHomeTeamScience and TechnologyAgency,
Singapore 138507 (e-mail: ng_gee_wah@htx.gov.sg).

1557-6418/2024/$17.00 © 2024 JAIF

Data Association With Camera
Parameters Estimation for
Object Tracking From Drones

ZIJIAO TIAN
YAAKOV BAR-SHALOM
RONG YANG
HONG’AN JACK HUANG
GEE WAH NG

This paper considers the problem of inaccurate measurement-to-

track association (M2TA) and poor tracking caused by camera motion

changes in drone-captured video. The camera often changes its field of

view to track targets; however, the sudden change leads to inaccurate

M2TA and degrades tracking performance. Previous work estimated

the 3D camera motion parameter vector (zoom ratio, panning, and

tilting) and associated measurements and tracks only between two

consecutive frames. This paper extends the camera motion parameter

to 4D by including rolling and sequentially associates (forward)

measurements to tracks over the entire data. The estimated camera

parameters improve the predicted measurements and achieve better

M2TA. Results on real data illustrate the benefits of the proposed

method (association with 4D camera parameters estimation) that

yields better associations and improves tracking accuracy compared

to the state-of-the-art gating method based on inflated covariances.

I. INTRODUCTION

Unmanned aerial systems (UAS), equipped with
cameras, are extensively used to capture images and
videos for tracking systems.These systems are crucial for
surveillance applications. For example, UAS can be em-
ployed to monitor borders to detect illegal crossings or
smuggling activities, as well as to observe traffic flow to
identify and respond to accidents. These cameras often
adjust their field of view (FoV) to keep up with moving
targets [12], [16]–[18], [24].However, changes in pointing
and/or in image scale make the target data association
and tracking from drones more challenging than tradi-
tional data association and object tracking. The camera
movements, such as pan (yaw), tilt (pitch), zoom, and
platform roll, are not available to the data association
and tracking algorithms and can degrade the reliability
of the video tracks [7], [15], [19].

Camera vibrations or movements will introduce
instability into video images, posing challenges in video
image stabilization and registration. Most methods ad-
dress this problem by compensating cameramotion with
camera motion estimation. Typically, camera motion es-
timation is classified into two categories: intensity-based
motion estimation and feature-basedmotion estimation.
The intensity-based motion estimation (such as using
image grayscale [14], phase correlation [10], pixel-based
correlation [11]) is based on pixel intensities between
consecutive frames, while the feature-based motion
estimation (such as edges and corners [6]) is based on
extracting and matching features across consecutive
frames. Some advanced video stabilization techniques
combine both approaches in [28].

In [23], it was shown that the tilt, pan, and roll angle
errors of the camera can affect the navigational parame-
ters in autonomous vehicles.Allebosch et al. [1] compen-
sated camera motion by estimating panning and tilting
with different models. A reversible jump Markov chain
Monte Carlo method was employed for estimating cam-
era parameters consisting of angles and positions in [8].
Our previous work [25] assumes that the camera motion
parameters are described by zoom ratio, panning, and
tilting of the focal-plane array. The 3D camera param-
eter vector is directly solved by the MLE3 (maximum
likelihood estimation in 3D) approach via linear least
squares (LLS). However, this does not account for UAS
camera rolling.Moreover, it was tested only between two
consecutive frames and was not applied to the entire du-
ration of the data [25].Thus, it could not provide an eval-
uation of the tracking accuracy during an entire video
sequence.

In this work, the goal is to develop an approach for
accurate tracking in the presence of camera panning,
tilting, zooming, and rolling for drone-captured video.
Targets are detected by a state-of-the-art object detec-
tion algorithm—You Only Look Once (YOLO) [20],
which provides bounding boxes (BBs). To track accu-
rately, the camera has the capability to adjust its view,
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and the UAS can change its velocity and altitude. This
is accomplished visually by a human operator. The atti-
tude is operator-controlled but not quantified to be us-
able for the algorithm. The camera motion parameters,
unknown to the operator or the tracker, are represented
by a 4D vector including zoom ratio, panning, tilting,
and rolling. These parameters are estimated using the
MLE4 (maximum likelihood estimation in 4D) via the
iterated least squares (ILS)method in each frame.Based
on the estimated camera parameters, one associates the
measurement-track pairs, and then corrected state pre-
dictions are calculated.These corrected state predictions
play an important role in the filtering step (Kalman
filter), resulting in more accurate state updates. Com-
pared with the conventional measurement-to-track as-
sociation (M2TA), the validation gating method, which
relies on inflated measurement covariance for associ-
ation, the proposed algorithm has superior robustness
and performance. If there are unexpected target state
changes due to camera movements, the measurements
may not be correctly associated with their tracks by the
gatingmethod. In contrast,ourmethod has enhanced ro-
bustness by integrating camera motion parameter esti-
mation into the association and tracking process. This
integration allows our algorithm to maintain accurate
tracking even in the presence of abrupt camera motion
changes, which would typically challenge the conven-
tional gating method.

The contributions of this paper are as follows: Firstly,
it extends the camera motion parameter vector from 3D
to 4D, enhancing its capability not only for zoom, pan,
and tilt, but also for roll movements. The 3D parameters
are estimated using MLE3, while the 4D parameters
are estimated using MLE4. The latter is shown to have
smaller errors in tracking results compared to 3D pa-
rameter vector estimation. Additionally, the proposed
method can handle scenarios with both a large and small
number of targets with different assignment methods. It
adapts effectively to diverse tracking environments.

The rest of the paper is structured as follows:
Section II introduces the target detection by YOLO,
presents the baseline Gating Method with Inflated Co-
variance (GMIC) method, and outlines the overall sys-
tem flow. Section III presents the estimation of the cam-
era motion parameters consisting of both the 3D vector
and the 4D vector. Section IV presents the proposed ap-
proach that integrates camera parameters into the asso-
ciation process. Section V shows the real data results and
discusses them. Section VI draws the conclusions.

II. PROBLEM FORMULATION

This section first introduces the target position de-
tection from YOLO in each frame. Then the baseline
M2TAmethod is briefly presented,which is used to com-
pare with the proposed method. The tracking system
flow chart is later shown in this section. After target
detection by YOLO, the association is combined with

camera parameter estimates to yield better target state
predictions.

A. YOLO: Target Detection

A review of deep learning applied to computer vi-
sion for target detection can be found in [29]. One of
the most popular algorithms is YOLO [20]. YOLO inte-
grates feature extraction, object localization, BB regres-
sion, and classification in a monolithic network. It maps
from image pixels to BB coordinates and class probabili-
ties.The basic idea is dividing the input image into a grid,
and each grid cell is responsible for predicting the object.
It uses a single-stage architecture to make predictions
for multiple objects, making it faster and more efficient
than traditional object detection algorithms. YOLO v3
[21], applied on a per frame basis, is an incremental im-
provement overYOLO in detection andBBaccuracy for
smaller targets. Besides, its efficiency in processing time
makes it widely used in real-time object detection.

In this paper, the targets are detected by YOLO v3 in
each frame and the measurements are the target’s posi-
tions, specifically, the top left corner of the BB.Although
it can identify multiple objects from a video frame and
label them with corresponding class probabilities, we fo-
cus on people and their 2D position information.

B. Gating Method With Inflated Covariance (GMIC)

The traditional state-of-the-art M2TA method—
validation gate method—assumes that the target mo-
tion can be utilized to predict the “measurement associa-
tion regions” [3], [4], [27]. It eliminates unlikelymeasure-
ments that need to be considered for association with a
track [22], [26]. The gating method is based on inflated
covariances. The camera parameter changes create bias
in the estimation. Instead of estimating the bias, this ap-
proach increases the measurement noise standard devi-
ations to “cover” the bias implicitly. For the association,
the association gate is enlarged by an inflated measure-
ment error variance so that shiftedmeasurements can be
associated with their tracks.

Consider a set of measurements zi(k) at time (frame
index) k, i = 1, 2, . . . ,Nm(k), where Nm(k) is the num-
ber of measurements at time k, and a set of predicted
measurements ẑ j(k|k− 1) at time k, j = 1, 2, . . . ,Nt (k),
where Nt (k) is the number of tracks for which a pre-
diction at time k is available. The difference between
each actual and predicted measurement (the filter inno-
vation) is defined as

ñi j(k) = zi(k) − ẑ j(k|k− 1). (1)

A gate is formed about the predicted measurement, and
all actual measurements (observations) that fall within
the gate are considered for track updates. Define a gate
threshold γ such that association is allowed if the norm
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Figure 1. Flow chart of the tracking system.

of the residual falls within the gate

d2i j(k) = ñ′
i j(k)Sj(k)

−1ñi j(k) ≤ γ , (2)

where d2ji is also known as the squared Mahalanobis dis-
tance between track j and measurement i and Sj(k) is
the corresponding innovation covariance. Once the po-
tential measurements are chosen based on (2), they are
associated to tracks using the Auction method. In this
process, each track “bids” for the measurements, and the
goal is to find the highest “bid” track and then assign the
measurement to the track. The details can be found in
[4].

In target tracking, the assigned measurements are in-
corporated into the updated track state estimates dur-
ing the filtering step. However, it is important to note
that gating, while a commonly used heuristic method, is
not infallible.Due to sudden camera movements such as
panning, zooming, tilting, or rolling, the validation gates
may lead to incorrect M2TA and poor tracking perfor-
mance, even in the presence of inflated gates.

C. System Flow for Assignment With Camera Parameter
Estimation

The overall system is illustrated in the flow chart in
Fig. 1. It outlines several key steps, including data col-
lection, target detection, a novel approach to associa-
tion that incorporates camera parameter estimation, and
filtering. Compared with the previous gating method,
the main difference is that we integrate camera param-
eter estimation into the association process. This mit-
igates the effects of sudden camera movements, thus
yielding more accurate M2TA and better state predic-
tion. The proposed algorithm sequentially estimates the
camera state and the target states at each time step,
which is similar to the simultaneous localization and
mapping (SLAM) [5].However, SLAM typically focuses
on building a map in a static environment, while our
problem focuses on tracking targets whose locations in

Figure 2. Camera has pan, tilt, and roll movements.

the FoV change due to camera parameter variation. Be-
sides, our approach has to be implementable in real time
with modest computing requirements; adding moving
targets as in SLAM would significantly increase these
requirements.

As shown in Fig. 2, the camera mounted on drone
gimbals can be controlled by servo driver modules.
When it comes to recording of image frames, the less vi-
bration and camera shake the better. However, sudden
camera movements are inevitable in practical scenarios.
Specifically, we investigate the several camera motion
parameters:

1. Pan (Yaw): A yaw motion describes the left and
right (horizontal) movement of the camera.

2. Tilt (Pitch): An up and down (vertical) movement
of the camera.

3.Roll:A roll motion is a rotation around the camera
axis direction. The roll comes from “banking” when the
UAS turns.

It should be pointed out that the commands for the
above are given usually by a human operator, but they
are not measured or available to the data association or
tracking algorithms.

Additionally, the camera’s field of view can be ad-
justed by zooming in or out.Although zoom is not a cam-
era position movement, one can change its focal length
to change image size. These camera motion parameters
are crucial for the quality of tracking and will be esti-
mated in the subsequent section.

III. CAMERA MOTION PARAMETERS ESTIMATION

This section presents the formulation and estimation
of the camera parameters using 3D and 4D vectors when
the camera has sudden motion change. The corrected
target position prediction conditioned on the parameter
vector estimates is also given.

A. 3D Camera Parameters Estimation (MLE3)

The 3D camera parameter vector consisting of the
zoom ratio φ(k), camera panning (horizontal motion)
xc(k), and tilting (vertical motion) yc(k) is given by

ζ(k) =
⎡
⎣ φ(k)
xc(k)
yc(k)

⎤
⎦ . (3)
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The camera parameter vector (3) [or (5) below] is as-
sumed an unknown constant for each k, which is the
model for the least squares [2] (LS) algorithm. No dy-
namics are assumed across time since the goal was sim-
plicity. Using a dynamic model for the camera motion
(and a Kalman filter to estimate it) is possible, but it
would increase the computation complexity, and since
the LS worked very well, there was no need to increase
the complexity.

Assume there is a set of measurements zi(k) at time
k, i = 1, 2, . . . ,Nm, and a set of predicted measurements
ẑ j(k|k − 1) at time k, j = 1, 2, . . . ,Nt . The corrected
prediction (denoted by hat and superscript “κ”) condi-
tioned on the 3D parameter vector is1

ẑκ
j [k|k− 1, ζ(k)] =

[
x̂ j(k|k− 1)φ(k) + xc(k)
ŷ j(k|k− 1)φ(k) + yc(k)

]
, (4)

where x̂ and ŷ are the predicted position of the tar-
get. The 3D camera parameter vector without rolling is
solved by MLE (designated as MLE3) via LLS. The de-
tails are shown, for completeness, in Appendix A (based
on [25]).

B. 4D Camera Parameter Estimation (MLE4)

The 4D camera parameter vector including the
rolling ρ(k) is denoted as

ξ(k) =

⎡
⎢⎢⎣

ρ(k)
φ(k)
xc(k)
yc(k)

⎤
⎥⎥⎦ , (5)

where φ is the zoom ratio, which can be expressed as the
ratio of focal length f (k) at different time as follows2:

φ(k) = f (k)
f (k− 1)

. (6)

Then, the corrected prediction conditioned on the 4D
camera parameter vector is given by

ẑκ
j [k|k− 1, ξ(k)] =[
[x̂ j(k|k− 1) cos ρ(k) + ŷ j(k|k− 1) sin ρ(k)]φ(k) + xc(k)
[ŷ j(k|k− 1) cos ρ(k) − x̂ j(k|k− 1) sin ρ(k)]φ(k) + yc(k)

]
.

(7)

Define i( j) as the index of the measurement as-
sociated with track j. The measured target position is
denoted by

zi( j)(k) =[
h1[x̂i( j)(k|k− 1), ŷi( j)(k|k− 1), ξ(k)] + ni( j),1(k)
h2[ŷi( j)(k|k− 1), x̂i( j)(k|k− 1), ξ(k)] + ni( j),2(k)

]
,

(8)

1Note that (4) is written with the yet to be estimated camera parame-
ters.
2The focal lengths are unknown and not observable (unless the sizes
of the targets are known and the noises are much smaller). However,
the ratio (6) can be estimated together with the association.

with

h1 = [x̂i( j)(k|k− 1) cos ρ(k)

+ ŷi( j)(k|k− 1) sin ρ(k)]φ(k) + xc(k), (9)

h2 = [ŷi( j)(k|k− 1) cos ρ(k)

− x̂i( j)(k|k− 1) sin ρ(k)]φ(k) + yc(k), (10)

where ni( j),�(k), � = 1, 2 are mutually independent zero-
mean white Gaussian residuals with variance σ 2. The
4D camera parameters are estimated by the MLE4 al-
gorithm via ILS estimator [2]. The ILS recursion is as
follows:Using a first order series expansion about ξ̂, one
has

zi( j)(k) =
[
h1[x̂i( j)(k|k− 1), ŷi( j)(k|k− 1), ξ̂(k)]
h2[ŷi( j)(k|k− 1), x̂i( j)(k|k− 1), ξ̂(k))]

]
(11)

+
[
J1(ξ̂(k) − ξ̂(k+ 1)) + ni( j),1(k)
J2(ξ̂(k) − ξ̂(k+ 1)) + ni( j),2(k)

]
. (12)

We can define the following matrices:

hi( j) = [h1 h2]′ (2 × 1), (13)

h =

⎡
⎢⎢⎢⎣
h1
h2
...
hN

⎤
⎥⎥⎥⎦ (2N × 1), (14)

�i( j) =
[
σ 2 0
0 σ 2

]
(2 × 2), (15)

R = diag[�1 . . . �N] (2N × 2N), (16)

zi( j) = [xi( j) yi( j)]
′ (2 × 1), (17)

z =

⎡
⎢⎢⎢⎣
z1
z2
...
zN

⎤
⎥⎥⎥⎦ (2N × 1), (18)

where N is the number of M2TA pairings, and i( j) =
1, . . . ,N. The Jacobian matrix J is given by

J = [H1 H2 . . . HN]′ (2N × 4), (19)

where

H j =
[

∂h1
∂ρ

∂h1
∂φ

∂h1
∂xc

∂h1
∂yc

∂h2
∂ρ

∂h2
∂φ

∂h2
∂xc

∂h2
∂yc

]
(2 × 4). (20)

The partial derivatives are shown in Appendix B.
Finally, the updated ILS estimates ξ̂(k+ 1) (4× 1) is

then obtained as

ξ̂(k+ 1) = ξ̂(k)+ (J′(k)R−1J(k))−1J′(k)R−1[z(k)− h(ξ̂(k))].
(21)
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IV. ASSOCIATION WITH CAMERA PARAMETER
ESTIMATION

This section first introduces the target motion model.
Next, the association with estimation methods in terms
of the number of M2TA pairs is presented. The filtering
step using the Kalman filter is also provided.

A. Dynamic Models

There aremultiple targets in the observed frame, and
they are assumed to move with a nearly constant veloc-
ity (NCV). The target motion model is characterized by
a continuous white-noise acceleration (CWNA) model
[2]. The state vector consisting of position and velocity
in the camera image is

x(k) = [x(k) y(k) ẋ(k) ẏ(k)]′. (22)

For sampling interval T , the state and measurement
equations are

x(k+ 1) = Fx(k) + v(k), (23)

z(k) = Hx(k) + w(k), (24)

where

F =

⎡
⎢⎢⎣
1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , (25)

H =
[
1 0 0 0
0 1 0 0

]
. (26)

Themeasurements consist of the state’s position compo-
nents. For the above,v(k) is the zero mean white process
noise sequence with covariance

Q(k) =

⎡
⎢⎢⎢⎣

T 3

3 0 T 2

2 0
0 T 3

3 0 T 2

2
T 2

2 0 T 0
0 T 2

2 0 T

⎤
⎥⎥⎥⎦q, (27)

where q is the process noise power spectral density
(assumed the same in x and y) and w(k) is the zero
mean white measurement noise sequence with covari-
ance R(k) = diag[σ 2 σ 2].

B. Association With Estimation

The association should be done between the follow-
ing:

1. Tracks represented by corrected predictions
ẑκ
j [k|k− 1, ζ(k)], j = 0, 1, . . . ,Nt (with ζ or ξ to be esti-

mated),3 where the index j = 0 represents the “dummy
tracks” to which the unassociatedmeasurements belong.

2. Measurements zi(k), i = 0, 1, . . . ,Nm, where the
index i = 0 represents the “dummy measurements” to
which the unassociated tracks belong.

The cost of assigning zi(k) to ẑκ
j [k|k − 1, ζ(k)] is the

negative log-likelihood function [2] (scalar normalized
squared distance)4

c[i, j,k, ζ(k)] = ||zi(k) − ẑκ
j (k|k− 1)||2. (28)

Initial candidate measurement-to-track pairs are based
on the GMIC method. There are two different associa-
tion methods in terms of the number of measurement-
to-track pairs:

Method A: When the number of pairs is small, the
first iteration estimates camera parameters is based on
the first set of measurement-to-track pairs. Then it cor-
rects the predictions. The second iteration of the assign-
ment is based on other pairs ofmeasurements and tracks.
The iteration is stopped until all combinations are ex-
hausted. Finally, we choose the assignment that yields
the lowest cost along with its estimated parameters.

This method can find the optimal measurement-to-
track pairs, but requires a global minimization (exhaus-
tive) search of all the combinations of measurements
and tracks. It requires O(n!) operations, where n is the
number of the measurement-to-track pairs. Due to this
complexity, it is practical only for a limited number of
pairs. Typically this is feasible for n < 6.

Method B: To enhance computational efficiency for
n ≥ 6, the estimation is combined with the 2D assign-
ment algorithm, specifically the Auction or Hungarian
method5 [9]. The procedure is as follows: The 2D assign-
ment algorithm first finds the assignment of measure-
ments to tracks that minimizes the total cost. Then the
camera parameter vector is estimated based on this as-
signment, the predictions are corrected, and the target
state is updated. This method requires O(n3) running
time,making it efficient for a large number of tracks and
measurements.

To combine the above methods, when the number of
pairs is small (n! ≤ n3, for n < 6), the first estimation
method with global search is utilized. Otherwise, when
dealing with a large number of pairs, the estimation with
the 2D assignment algorithm is preferred to ensure com-
putational efficiency.

3The camera parameter estimation for ζ(3D) or ξ(4D) is the same ex-
cept for their dimensions, so we use the notation ζ in Section IV.
4We assume the innovation covariances are all diagonal and equal, thus
we can omit them.
5This article focuses on the camera estimation rather than the assign-
ment algorithms. The chosen assignment algorithms are simple for
real-time implementation, but one can also use other 2D assignment
algorithms.
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Table I
The Algorithms Considered in the Paper

Acronym Algorithm

GMIC Gating method with inflated covariances
MLE3 [25] ML estimator for 3D camera parameter vector via LLS
MLE4 ML estimator for 4D camera parameter vector via ILS

C. Predictions

After association and camera parameter estima-
tion, the assigned measurements are corrected and used
to obtain the updated track state estimates during
the filtering stage. The improved (position) prediction
ẑκ
j [k|k − 1, ζ̂(k)] is used for the target state update in

the Kalman filter. Thus, the updated state estimate x̂ for
target j and the updated covariance are given by6

x̂ j(k|k) = x̂κ
j [k|k− 1, ζ̂(k)] + K(k)ν j(k), (29)

P j(k|k) = P j(k|k− 1) − K(k)S(k)K′(k), (30)

where the filter gainK(k) and innovation covariance are

K(k) = P j(k|k− 1)H′(k)S−1(k), (31)

S(k) = H(k)P j(k|k− 1)H′(k) + R(k), (32)

the measurement residual (innovation) is

ν j(k) = z j(k) − ẑκ
j [k|k− 1, ζ̂(k)]. (33)

Since the proposedmethod (2D assignment with camera
parameter estimation) will be shown to provide a more
accurate prediction, the tracking results will be better
than the validation GMIC method when the camera is
panning, tilting, zooming or rolling.

V. REAL DATA RESULTS

Two types of real scenarios are considered: with a
small number of targets (using exhaustive search) and
with a large number of targets (using Hungarian assign-
ment algorithm). MLE4 is compared with MLE3 and
GMIC, see Table I.

A. Initialization

The initial candidate associations for bothMLE3 and
MLE4 are based on GMIC. GMIC merges the nearby
YOLO measurements when there is a one-pixel differ-
ence. If the merging distance is large, GMIC will make
wrong associations, especially for tracks lacking mea-
surements. To get a better association, we only focus
on the confirmed tracks, and remove the inactive tracks
(for example, previous tracks that moved out of FoV).

6The prediction x̂κ
j [k|k − 1, ζ̂(k)] has position components ẑκ

j [k|k −
1, ζ̂(k)], and its velocity components are unchanged from x̂ j(k|k− 1).
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Figure 3. HTX scenario: Average track residual errors for GMIC,
MLE3, and MLE4 are 9.04, 2.94, and 2.48, respectively.

The new tracks are initialized such that the first estimate
x̂ j(k|k) equals the observed measurements and veloc-
ity zero (one point initialization), and the initial position
standard deviation (s.d.) is 0.3b (px) in each component
and the initial velocity s.d. is 3b (px/s) where b is the BB
width.

For the ILS search of MLE4, the initial 4D camera
parameter vector is set as [0 1 0 0]′ in equation (5).
Based on the 2D assignment algorithm, the optimal 4D
parameter vector is estimated by the ILS algorithm (see,
e,g., [2]).

B. Small Number of Targets—HTX Video, Assignment
With Exhaustive Search

In this section, we examine the scenario considered
in [25] with a small number of targets.7 The UAS only
changes its position at a fixed altitude during record-
ing. The sampling frequency is 30 Hz (30 frames/s). The
frame has a size of 1920× 1080 px. The width of the BBs
is around 15 px and the height of the BBs is around 42 px.
The average velocity of the BBs is around 23 px/s. Thus,
we choose the process noise power spectral density as8

q = 16 (px2/s3) and the measurement noise covariance
matrix as R = diag[9 9] (px2).

The performance of tracking accuracy is evaluated
by the average track residual errors—average track resid-
ual errors (ATRE) at each frame, as follows:

e(k) = 1
Nt (k)

Nt (k)∑
j=1

√
x̃(k)2i( j) + ỹ(k)2i( j). (34)

where x̃ and ỹ are innovation (residual) errors (the dif-
ference between the corrected predicted positions and

7https://github.com/zijiaoTian58/HTX_Dataset.
8The root mean square (RMS) change in the velocity over a sampling
interval T is

√
qT , which for T = 1/30 s, yields 0.7 px/s.
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Figure 4. HTX scenario: tracking results at frame 236 based on (a) the
GMIC method and (b) the proposed method (MLE4). Blue bounding
boxes are the actualmeasurements,and the red bounding boxes are the
tracking results. (a) Tracking based on theGMICmethod. (b) Tracking
based on MLE4.

the measured position based on the most recent assign-
ment) of each target.

The position residual errors of the GMIC (gat-
ing) versus MLE3 are illustrated in Fig. 3. The camera
adjusts its FoV to track targets, resulting in camera
motion changes around frames 70 and 150–300. Our
proposed MLE3 (assignment with exhaustive search)
yields much smaller position residual errors than GMIC
without camera motion parameters estimation. The
ATRE for GMIC and MLE3, MLE4 are 9.04, 2.94, and
2.48, respectively. MLE4 has ATRE about 73% smaller
than the GMIC method. The results demonstrate the
robustness of the proposed methods. MLE3 and MLE4
have the ability to maintain tracking accuracy even in
dynamic camera scenarios, while GMIC’s reliance on
validation gates can lead to incorrect association and
degraded tracking in the presence of sudden camera
movements.

Figure 4 shows the tracking results (GMIC versus
MLE4) at frame 236. The blue BBs represent actual
measurements, and redBBs indicate tracking results.For
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Figure 5. VDD scenario 1: Average track residual errors for GMIC,
MLE3, and MLE4 are 6.93, 2.77, and 2.72, respectively.

MLE4, the red BBs for all targets almost cover the blue
BBs, whereas for GMIC, the red BBs have large devia-
tions from the blue BBs.This indicates that the proposed
MLE4 performs better tracking than the GMIC when
the camera has motion change at frame 236.

C. Large Number of Targets—VDD Video, Assignment
With Hungarian

Two scenarios with multiple targets from VisDrone
Dataset (VDD)[30]9 are considered. The sampling fre-
quency is 15 Hz (15 frames/s), and the frame has a size
of 1344 × 756 px. The UAS can change its position and
altitude and thus result in more complex camera motion
change.

For Scenario 1 (VDD #0000088_00290), there are
more than 60 targets in one frame. The average size
(width and height) of the BBs is around [35 80] px. The
average velocity of the BBs is around [5 45] px/s. The
process noise power spectral density is chosen as10 q =
49 (px2/s3) and the measurement noise covariance ma-
trix as R = diag[9 9] (px2).

As shown in Fig. 5, the position residual errors of
the GMIC method are significantly larger compared to
those obtained with MLE3 method and MLE4 method
(assignment with Hungarian), especially when the cam-
era is panning or tilting during frames 80–140 and 250–
270. The average track residual errors during the whole
frames for GMIC, MLE3 and MLE4 are 6.93, 2.77, and
2.72, respectively. The tracking results (GMIC versus
MLE4) at frame 105 are shown in Fig. 6.

For Scenario 2 (VDD #0000099_02109), the average
size (width and height) of the BBs is around [20 50] px.
The average velocity of the BBs is around [4 40] px/s.

9https://github.com/VisDrone/VisDrone-Dataset.
10The RMS change in the velocity over a sampling interval T is

√
qT ,

which for T = 1/15 s, yields 1.8 px/s.
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Figure 6. VDD scenario 1: tracking results at frame 105 based on (a)
theGMICmethod and (b) the proposedmethod (MLE4). (a) Tracking
based on the GMIC method. (b) Tracking based on MLE4.

Thus, we choose the process noise power spectral den-
sity as11 q = 16 (px2/s3) and the measurement noise co-
variance matrix as R = diag[9 9] (px2).

Similarly, our proposedmethods (MLE3 andMLE4)
show smaller position residual errors than the GMIC
method (ATRE = 6.47, 2.31, 2.12), as seen in Fig. 7, es-
pecially around frame 600. Note that the MLE4 out-
performs MLE3. This is because the camera increases
its altitude during frames 500–650 and has slight roll.
The tracking results at frame 570 are shown in Fig. 8,
revealing that MLE4 significantly surpasses GMIC in
tracking accuracy.

Next, we evaluate in detail the tracking quality for
Scenario 2. There are two metrics to evaluate the track-
ing performance: the number of track breaks and the
number of track swaps. As shown in Table II, the pro-
posed MLE methods outperform the GMIC method,
yielding fewer track breaks and track swaps. Fig. 9 shows
the track swaps and track breaks when the camera has

11This corresponds to an RMS change in the velocity over T = 1/15 s
of 1 px/s.
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Figure 7. VDD scenario 2: Average track residuals errors for GMIC,
MLE3, and MLE4 are 6.47, 2.31, and 2.12, respectively.

abrupt movements. Track breaks refer to interruptions
in the continuous tracking of a target. Track swaps re-
fer to the instances where the identity of a track is mis-
takenly switched between two different targets. The top
three figures show that there are track IDs mistakenly
swapped by the GMIC method, whereas the bottom fig-
ures show no track swaps by the MLE4. Due to the ob-
struction of buildings (yellow pavilion), track 13 from
the top figures is broken, while MLE4 continues track
13 without track breakage or swap.

VI. CONCLUSIONS

In this paper, we carried out M2TAwith camera mo-
tion parameters estimation for drone-captured video to
reduce the effect of sudden cameramovement.The cam-
era parameter vector is extended from 3D (pan, tilt, and
zoom) to 4D (pan, tilt, zoom,and roll).Based on the esti-
mation, the proposed approach not only yields improved
M2TA pairings but also can provide better state estima-
tion in the update step. The real data results show that
the proposed approach (MLE4 and MLE3) can reduce
the effects of sudden camera movement.MLE4 is better
thanMLE3.The robustness has been confirmed by using
the algorithm in diverse situations with good results.The
tracking accuracy and tracking quality are much better
than the GMIC (gating) method.

Table II
Tracking Quality for Scenario 2

# Track Breaks # Track Swaps

GMIC 5 5
MLE3 3 1
MLE4 2 1
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Figure 8. VDD scenario 2: tracking results at frame 570 based on (a)
theGMICmethod and (b) the proposedmethod (MLE4). (a) Tracking
based on the GMIC method. (b) Tracking based on MLE4.

Figure 9. Track breaks and track swaps. Top figures: Tracks 9, 12, and
13 are mistakenly swapped by the GMIC method from frame 560 to
frame 575 when the camera has abrupt movements. Bottom figures:
There are no track swaps by the MLE4.

APPENDIX A

The LLS method is used to solve for ζ̂ directly in the
MLE3 method. For an assignment with {i↔ j}Ni=1 (N is
the number of M2TA pairings), the cost based on (4) is
expressed as

c[i, j(i),k, ζ(k)] = ||zi(k) − ẑκ
j(i)(k|k− 1)||2 (35)

= [xi(k) − x̂ j(i)(k|k− 1)φ(k) − xc(k)]2

+ [yi(k) − ŷ j(i)(k|k− 1)φ(k) − yc(k)]2 (36)

where j(i) denotes the track paired with measurement
i.12 Define the following stacked matrices:

H = [H1 . . .HN]
′
, (37)

v = [v1 . . . vN]
′
, (38)

R = diag[�1 . . . �N], (39)

where

H j =
[
x̂ j 1 0
ŷ j 0 1

]
, (40)

v j =
[
xi( j) − x̂ j
yi( j) − ŷ j

]
, (41)

� j =
[
σ 2 0
0 σ 2

]
, (42)

with the estimate of the innovation variance (for statis-
tical significance, to be discussed later) is

σ̂ 2 = 1
2N − nζ

(Hζ̂ − v)
′
(Hζ̂ − v), (43)

where i( j) in (41) is the index of the measurement asso-
ciated with track j, j = 1, . . . ,N and nζ is the number of
camera parameters.

Then the LLS problem for pairs i( j), j is given by

argmin
ζ

N∑
j=1

(H jζ − v j)
′�−1

j (H jζ − v j), (44)

or, without the summation (with the stacked matrices)

argmin
ζ

(Hζ − v)
′
R−1(Hζ − v), (45)

Finally, ζ̂ is obtained by minimizing the quadratic error
(44),

ζ̂ = (H
′
R−1H)−1H

′
R−1v =

⎛
⎝ N∑

j=1

H
′
jH j

⎞
⎠

−1

H
′
v, (46)

with its covariance matrix given by

Pζ̂ = (H
′
R−1H)−1 =

⎛
⎝ N∑

j=1

H
′
j�−1

j H j

⎞
⎠

−1

. (47)

12The pairing notations i( j) and j(i) are equivalent.
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APPENDIX B

The partial derivatives equation (20) in Section III.B
are as follows:
∂h1
∂ρ

= (−x̂i( j)(k|k− 1) sin ρ(k) + ŷi( j)(k|k− 1) cos ρ(k))φ(k),

(48)
∂h1
∂φ

= x̂i( j)(k|k− 1) cos ρ(k) + ŷi( j)(k|k− 1) sin ρ(k),

(49)
∂h1
∂xc

= 1, (50)

∂h1
∂yc

= 0, (51)

∂h2
∂ρ

= (−ŷi( j)(k|k− 1) sin ρ(k) − x̂i( j)(k|k− 1) cos ρ(k))φ(k),

(52)
∂h2
∂φ

= (ŷi( j)(k|k− 1) cos ρ(k) − x̂i( j)(k|k− 1) sin ρ(k)),

(53)
∂h2
∂xc

= 0, (54)

∂h2
∂yc

= 1. (55)
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