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This paper presents a sliding window estimation method for simul-
taneous localization and mapping (SLAM) based on the prediction
error method (PEM). The estimation problem considers landmarks as
parameters while treating dynamics using state space models. The gra-
dient needed for parameter estimation is computed recursively using
an extended kalman filter. Results from experiments and simulations
with a monocular camera and inertial sensors are presented and com-
pared to batch PEM and nonlinear least-squares SLAM estimators.
The presented method maintains good accuracy, and its parametriza-
tion is well-suited for online implementation, as it scales better with

the size of the problem than batch methods.
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[. INTRODUCTION

The work in this paper introduces the use of the pre-
diction error method (PEM), see, e.g., [18], as well as its
extension to sliding window (SW) as a way to utilize the
particular structure of problems encountered in simul-
taneous localization and mapping (SLAM). The aim in
SLAM is to estimate a moving platform’s position and
orientation while simultaneously mapping the observed
environment [1], [7]. A strong trend in SLAM algorithm
research is (incremental) batch optimization, which usu-
ally solves some form of nonlinear least squares (NLS)
problem, see for example [4], [12], [20], [23], [24], [28],
[31],[32], [34], [35]- Due to the problem’s nature, where
both the platform’s motion and the environment are
considered unknown parameters, solvers are computa-
tionally expensive, typically quadratic in the length of
the motion parameters; see, e.g., [27]. Throughout the
years, many methods were devised aiming at reducing
this computational cost. Some of them are utilizing the
sparsity of the involved matrices during the calculation
in order to use sparse solvers, see, e.g., [10], [11], [20],
while others aim at dimensionality reduction of the origi-
nal problem by solving for only motion parameters while
the map is implicit [14], [32] (leading to GraphSLAM),
or vice versa by submaps [35]. One issue with the spar-
sity of the SLAM problem is that it will vary with the
problem instance, i.e., the actual environment and the
motion. Other methods are utilizing the particular struc-
ture of the SLAM problem and aiming at decoupling of
the mapping and localization parts, e.g., [26], [27], [29],
[33]. These kinds of methods utilizes the intrinsic prop-
erty of the problem independently of the actual problem
instance. Note also that the decoupling must be done in
such a way that the correlation between landmarks and
the motion is preserved, as it is an inherent property of
the SLAM posterior distributions.

The main idea adopted in this work is to model the
whole system, i.e., the moving platform and the envi-
ronment, as a parameterized dynamic model. The envi-
ronment is represented with discrete points (also called
landmarks), which are considered to be the parameters
of the system, while the motion of the platform is mod-
eled as a dynamic system. The motivation behind this
formulation is that the solution to the problem can be
split into two parts, the first part where the landmarks
are estimated, and the second part where the motion is
estimated. The motion states estimate is here used as a
predictor of the system output while utilizing the time
series properties through filter solutions. Worth noting is
that this property also allows for the gradient of the pre-
dictor w.r.t. parameters to be calculated recursively (for
a particular choice of the predictor) so that no numer-
ical gradients are necessary. This approach differs from
both the standard extended Kalman filter (EKF)-SLAM
approach, see, e.g., [7], where both the platform’s mo-
tion and the landmarks are considered as dynamic states,
and the NLS approaches, where everything is considered
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as (static) parameters. This division into two parts leads
to computation complexity reduction in the following
sense:

® The landmark estimation is an optimization problem
that is smaller (in the number of estimated parame-
ters) than the standard NLS problem.

® The motion estimation becomes the prediction prob-
lem, which is smaller than the usual EKF-SLAM prob-
lem since the number of states is constant, i.e., only the
motion states are used.

In summary, the optimization problem will scale with
the number of parameters (landmarks), while the pre-
dictor part will scale with the measurement batch length
(time steps). Unlike the approach in [33], the solution
proposed here circumvents the need to transform the ab-
solute measurements, i.e., from the platform to the land-
marks, to the relative measurements, i.e., between the
landmarks. This transformation assumes that range and
bearing to the landmarks are measured, and would not
work with the original (visual/bearing only) measure-
ments.

The PEM-SLAM batch approach was described in
[26], and the extension is to consider an SW adapta-
tion that might enable an efficient online implementa-
tion, see e.g., [6], [25]. Online versions of PEM are quite
unusual, see, for example, [19], [30], perhaps as excita-
tion and convergence are much harder to obtain and
prove. Since the window is just a shorter batch, the SW-
PEM-SLAM will consequently be more computation-
ally efficient than SW-NLS-SLLAM (given the same win-
dow length). This will be shown in an empirical way with
Monte Carlo (MC) simulations. The adaptation of PEM-
SLAM to an SW is the main contribution of this paper.
This adaption is primarily aiming for potential online ap-
plications of PEM-SLAM as an estimation method.

The outline of the paper is as follows: In Section II,
a brief description of PEM and the model structure
is given; In Section III, the expansion of the PEM
to the Sliding Window approach is described; In Sec-
tion IV, the computation complexity of the suggested ap-
proach is analyzed; In Section V, the example dynamic
and measurements models that are used for evaluation
are presented. In Section VI, MC simulation results as
well as real data experiments are presented and com-
pared to (SW-)NLS-SLAM, and some empirical compu-
tation complexity comparison to (SW-)NLS-SLLAM; Sec-
tion VII ends the paper with conclusions and directions
for future work.

[I. THE PREDICTION ERROR METHOD

Assume that measurements, {y,}i\; 1» from a dynamic
system are available. Suppose also that a model of this
system is parametrised with some unknown parameters,
©® = {0}, and that we want to estimate these using
PEM. For that purpose we can use a (quite general) sys-

tem description of a discrete-time nonlinear state space
model as

(1a)
(1b)

In this system, the state dynamics is modeled with
the function f;(-), u, is a known input, w; is an unknown
system noise, the measurement-to-state relation is rep-
resented with function /,(-) and ¢, is the measurement
noise. The one-step ahead measurement predictor, i.e.,
predicted measurements at time ¢ given all the informa-
tion until time ¢ —1, is obtained by plugging the predicted
state £,,_1 into (1b) giving y,,_1(®) = hy(%;,—1, ©). The
predictor can, for example, be implemented as an EKF.
PEM estimation of ® is then done by minimizing the
sum of the squared norms of the prediction errors, de-
fined as

xt+1 = ﬁ(x[7 ul7 Wy, ®)’

yt = ht(xt, @) + et.

0= arg(z)nin V(0), (2)

and where we have defined V(@) as

N
V©)= T Y L0 Sua©). )
t=1

L can be any positive function and y;,_;(®) is defined
above. Usually, £ is a standard 2-norm,i.e., £(-) = %H 113,
leading to the standard (possibly nonlinear) least-
squares method. Note that robust norms, such as Huber,
can account for spurious data association, see, e.g., [4],
but these cases are beyond the scope of this paper.

In this work, we adopt the 2-norm cost function and
(3) becomes a standard NLS problem, and any NLS
method, such as the Levenberg-Marquardt method [16],
[21],can be used to solve it. In this context, it is quite ad-
vantageous if the predictor is an analytical function of
the parameters and if its gradient w.r.t. to parameters is
available. These both qualities simplify and speed up the
iterative optimization procedure compared to using nu-
merical methods for calculating the gradient.

A. System Properties and Choice of Predictor

PEM formulations, such as (3), typically result in pre-
dictors, y;,—1(®), that are nonlinear in the parameters
even for linear Gaussian state space models in (1a). In
[17], a recursive PEM method based on the EKF predic-
tor where parameters are appended to the state vector is
analyzed. It is shown to be globally asymptotically con-
vergent for the general case (and for linear dynamic sys-
tems). This motivates our use of EKF as a predictor in
a similar manner to, e.g., [13], [15]. Another advantage is
its simple implementation and its possibility to explicitly
calculate the gradient of the loss function in (3).

Furthermore, the predictor, y,,—1(®), that will be
used (i.e., pinhole camera projection), see Section V-C,
is a convex function in parameters, see, e.g., [2], which is
a good property for optimization. Another good PEM
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Figure 1. Auto-correlations for the residuals for one landmark and

one dimension over the whole trajectory averaged over 50 MC runs. A
total of 90% limit is also shown with the red dashed line.

property is that, if the true system is in the model set, if
the predictor is stable, and if the innovations are white,
then the parameters will converge to true ones; see [18].
In the case for PEM-SLAM here, the model set is model-
ing the landmarks, which are observed, and consequently
it is covering the true environment. The innovations
from EKF are (approximately) white, see Fig. 1 where
simulation data explained in Section VI-A are used. The
residuals’ auto-correlations, averaged over 50 MC simu-
lations, are shown for one landmark and in one dimen-
sion as an example, but the behavior is very similar for
the rest of the landmarks. This fact further motivates the
choice of EKF as a predictor. Note that residuals may
have heavy-tailed distributions before convergence due
to the initialization procedure and also if outliers are not
removed.

All the above-mentioned facts support the usage of
PEM as a method for solving the SLAM problem. How-
ever, with recursive PEM using EKF, the parameters are
included in the state vector (with zero dynamics). This
is similar to EKF-SLAM, where landmarks are consid-
ered as states, [7]. This resemblance highlights the draw-
backs of straightforwardly applying PEM to standard
EKF-SLAM, which would be severely limited to small
maps. Instead, we devise another kind of PEM adap-
tation, namely SW PEM, which is a main contribution
of this paper, and which will be explained in the next
section.

[ll.  SLIDING WINDOW PEM ESTIMATION

An adaptation of the PEM is done to accommodate
real-time estimation, in a fashion similar to a filter. The
adaptation is an iterative procedure where the problem
defined in (3) is solved iteratively inside an SW of length
K where K < N. The resulting cost function used in
each iteration, , is then (i is increased by one after each

iteration)

i+K

Vi©) =52 2 Iy = Saa(O)I3, (4)
1=i

O = arg(gnin Vi(6;). (4b)

Caution must be taken here when it comes to param-
eter vector ® since not all of the parameters might be
observed in the window. Hence, ®; denotes the subset of
the parameters that are observed in the iteration window
i. Then, a locally weak observability condition is simply
that there are at least as many measurements as parame-
ters in each window and that the resulting observability
rank condition [9] is satisfied. The predictor (EKF) in
each iteration is initiated by the state and covariance es-
timate obtained from the previous iteration for the time
instance t = i + 1 (since this is the first value of the state
and covariance in iteration i + 1).

A. Statistical Approximation for Information Fusion

To obtain a single best estimate of the static param-
eters in ®, we need to fuse different ones from each
window. However, double counting of information is a
potential problem that can lead to overly confident es-
timates. This needs to be addressed when parameters
are estimated in the moving window. For example, it is
very likely that a certain parameter 8 € ®; will be ob-
served and estimated in the window i and i + 1. In order
to handle this (at least approximately), two things are
applied:

® The current best parameter estimate is saved.

® The parameter estimates are fused from from the non-
overlapping windows only.

The motivation for keeping the current best estimate
is that we want to use these in the fusion step, since this
will add most information. Also, the estimates from
the non-overlapping windows are based on different
measurements, which would make them statistically
independent. However, this approach is only an ap-
proximation since the estimates are dependent on the
predictor which, in turn, is dependent on all the past
measurements. This dependency will become weaker
the further apart in time the state estimates are. There-
fore, an assumption is that the estimates from different
windows have limited dependency. This is deemed
acceptable for our purposes. In the explanation of the
fusion principle below, we will omit superindex [ in 6’
as notation for an arbitrary parameter in the parameter
vector for enhanced readability purposes.

The currently best estimate of the parameter, Op, is
calculated based on an information criterion using the

Jacobian J(§) = 22 ,g evaluated with 6 from (4b).
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Algorithm 1 Sliding Window PEM.

Require: %11, Pij1, yi.v, K
Ensure: O, £1.y, Py

fori=1:K—N
1. Set initial state and covariance for the predictor to
X and Py;
2. Solve the minimization problem with V;(®;) as in
(4a)
if ' is new parameter then
3.Set 4! and é} to that estimate
else
4. Save the best estimate of the parameters, Op,
according to (5)
end if
if 9} not updated and «92{. and 0} are estimated in
nonoverlapping windows then
5. Fuse 6} and 6}, according to (6)
end if
6.Save %;; and P;;
end for
A é) = (:)f

The following procedure is used:

é _ 9, 1fTr(Il) < TI'(Ib) (5)
=16, otherwise

where index b denominates the window with the best es-
timate, index i is the current window, and Z = J(0)7J(0)
is the information matrix for the parameter. In this way,
we assure that any new estimate will not override the
currently best one. We also store the information matrix,
7 and the window (start and end time indices) together
with the current best estimate.

Since we want to utilize all the available informa-
tion, and get the overall best estimate, fusion from
non-overlapping windows is performed. This is done
by keeping the fused estimate and the last time index
when the fusion was performed. If the parameter’s best
estimate according to (5) is not updated in the last
window, a check is performed to see if the best estimate
comes from a window that is not overlapping with the
current fused estimate, éf. In that case, they are fused
according to their information representation

éf =(Zs+ Ib)‘l(Iféf + Ibéh), (6a)

If:If+Ib. (6b)
The time index of the fused parameter is then updated
accordingly. It shall also be pointed out that the require-
ment on the nonoverlapping windows is necessary to
guarantee that the fused estimates are independent, i.e.,
estimated with different measurements. The whole ap-
proach is summarized as pseudo-code in Algorithm 1.

IV. COMPUTATION COMPLEXITY ANALYSIS

In this section, qualitative computation complexity
based on the order of magnitude (O-notation) of the
suggested method will be analyzed and compared to
primarily NLS method. NLS is chosen since it is de
facto the standard method and all our numerical re-
sults are compared to it. Also, just as in analysis pre-
sented in [27], the GraphSLAM method will briefly be
mentioned, but no numerical comparison is done. Since
this analysis is very similar to the one in the refer-
ence above, many details will therefore be omitted here,
and the reader is referred to the reference for more
information.

The following assumptions and notation will be used:
Window size will be denoted by K, and the number of
measurements at time ¢ is N;, and consequently the to-
tal number of measurements in the window i is N; =

""K'N; (which is linear in the number of time steps
in the window, K). The total number of the observed
landmarks in the window i is denoted by M;. Define fur-
ther the total number of windows as N, = N — K + 1
and the average number of measurements per window
as N = Y_.N;/N, and the average number of land-
marks per window as M in the same manner. The av-
erage number of landmark measurements per time step
is then N = N/K, and the average number of measure-
ments per landmark (in a given window) is NM = N/M.
We will also assume that the main complexity lies in the
calculation of the Jacobian during the iterative optimiza-
tion procedure, and the analysis will be concentrated on
that kind of calculation, i.e., the computation complex-
ity for one iteration step. Notice also that no consid-
eration is taken to any possible sparse structure of the
Jacobian and its influence on the solution speed, because
that is very much data dependent and will vary between
the problem instances.

A. SW-PEM-SLAM

For the SW-PEM-SLAM, the Jacobian of the loss
function in (4a) contains only the partial derivatives of
the residuals with respect to the landmarks. Since there
are, in average, N measurements per landmark, the
total number of operations is proportional to N¥ M, i.e.,
O(N). The Jacobian is calculated during the predictor
(EKF) run, which has execution complexity propor-
tional to the window length, K, times the complexity
of the measurement update, which is in average pro-
portional to the number of measurements updates. This
number will be the average number of measurements
per time step times the number of time steps, N¥K, so
the complexity is O(N), the same as for the Jacobian. All
this together gives that the total computation complex-
ity for calculating the Jacobian in the window will be
O(N). We see that it scales linearly with the size of the
window.
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B. SW-NLS-SLAM

SW-NLS-SLAM stacks both the landmarks and plat-
form’s motion parameters in the parameter vector,
which leads to a Jacobian consisting of the partial deriva-
tives of the residuals with respect to both the landmarks
and the motion parameters. In our case, there are both
acceleration and angular rates motion parameters of size
proportional to K in addition to the landmark measure-
ment residuals. The full analysis of NLS-SLAM is done
in [27] for the whole batch, and the corresponding result
for a window is O(K? + NK + N + K). Here, we see that
the dominating complexity scales quadratically in win-
dow size.

C. GraphSLAM

In the GraphSLAM approach, the Jacobian matrix
consists of derivatives for positions and rotations with
respect to each other, giving a symmetric matrix with
dimension proportional to K2. The analysis of the com-
plexity for GraphSLAM is done in [27], showing that, on
average, the complexity will be O(NMK).

The complexity comparison between SW-PEM-
SLAM and SW-NLS-SLAM is illustrated empirically in
Section VI.

V. MOTION AND MEASUREMENT MODELS

In this section, the dynamic and sensor measure-
ments models used for estimation in the visual/inartial
SLAM problem are introduced. The used sensors are
monocular cameras and 6-DOF inertial sensors, i.e., gy-
roscopes and accelerometers. The camera and inertial
sensors are rigidly coupled to the platform in this setup.

The inertial sensors are here treated as inputs to a
dynamic system in order to keep the size of the state
as small as possible. Also, a minimal 3D point landmark
parametrization is used and its measurement function is
given by the pinhole projection model.

Throughout the paper, we will use following frames
of reference:

e World frame —global frame for expressing platform’s
and landmarks’ position,

e Navigation frame—same as World frame but trans-
lated to platform’s position,

® Body frame—frame rigidly attached to the platform’s
body, same origin as Navigation frame but rotated
with the body,

e Camera frame —frame rigidly attached to the camera.
In general, this can be different than the Body frame,
but in this work, we assume that the Camera and Body
frames are the same.

All these frames are Cartesian and locally defined.
This implies that platforms’ and landmarks’ position are
only estimated locally in the arbitrary chosen World

frame. This is customary approach in SLAM since initial
position of the platform is usually unknown.

A. State Dynamics

The gyroscope signals, considered as inputs, are de-
noted u® = [u?, u;), uy T where the subscript refers to
each axis of the body frame. Similarly, the accelerome-
ter signals are denoted u® = [u2, u;, u?]r. Both of these
are measured in the body frame. A discretized dynamic
model, where the states are three-dimensional position,
velocity, and rotation, [pl, v}, qI']", in the navigation
frame, is then

T?
Pis1 = pi + T + T‘RT(%)(M? +& 4w, (7a)
Uyl = U + TsRT(qt)(”? + gb +wy), (7b)
7‘; w w
qr+1 = €Xp gsw(”t +wy) )qr, (7¢)

where 7; denotes the sampling interval, R(g;) is a rota-
tion matrix parametrization of the unit quaternion g, =
[4°, 4}, 4%, ¢’17, which describes the rotation from navi-
gation to body frame is defined as (for each column)

[(@°)* + (@) — (¢)* — (&*)*]
R.1(q) = 2(¢'¢* — 4°¢°)
2(¢'¢* + 4°¢*) |
2(¢'? + 4°¢) }
Ra(g) = | (@°) — (@) + (¢*) — ()
2(¢*q® — 4°q") |
2(q4'q® — 4°9%) l
R.3(q) = 2(¢*q + 4°q") :
L (@) — (@) — (@) + (¢°)*

The gravity expressed in the body frame is g =
R(g:)g", where g" = [0, 0, —g]” is the local gravity vec-
tor expressed in the navigation frame, with g ~ 9.82, and
exp(-) denotes here the matrix exponential. The noise
terms are assumed Gaussian and independent,

[(w)". ()] = we ~ N (0, diag (Qa, Q) = N (0, Q).

For any vector a = [ay,ay,a;]" € R’ the skew-
symmetric matrix defined as

0 —a, —a, -—a,

_lac O a; —a
s@=|e o5 . ©)

a; a, —a. 0

is used to parametrize the quaternion dynamics in (7c).
It is also worth noticing that, in this case, the dynamics
of the system are independent of the landmarks (param-
eters 0), which simplifies the recursive calculation of the
Jacobian.
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B. Camera Measurements

The monocular camera is modeled here as a standard
pinhole camera, see, cf. [8]. The camera is assumed to be
calibrated for its intrinsic parameters (calibration matrix
and lens distortion) prior to usage. This enables the us-
age of the camera as a projective map in Euclidean space,
P: R® — R? by premultiplying the lens undistorted pixel
coordinates with the camera calibration matrix. The pro-
jection P is defined as

PX.Y. Z]) = [£.2]" = [x.y]"

(10)
where the Z-coordinate is assumed to be positive and
non-zero. A normalized camera measurement, y, =
[, yt]T, of a single landmark, 6 = [0, 6, 0,], at time ¢
is then

yi =P R(g:)(©O — pr)) + e, (11)

which relates the three-dimensional position and orien-
tation of the camera to the three-dimensional location
of the point. The measurement noise is assumed 1.i.d.
Gaussian, ¢, = [¢}, ¢/]T ~ N (0, R).

Equation (11) defines a measurement of one land-
mark at time z. In order to relate all the measurements to
a correct landmark, correspondence variables are used.
At time ¢, correspondence variables C, = {c/ }]Nél C
{1, ..., M}, encode the measurement-landmark assign-
ment, y] < ¢ . As defined before, N; is the number of
measurements and M is the number of all landmarks.
This gives that all observed landmarks at time ¢ are de-
fined as a set M, = {#% }]'7';1, where ¢/ = [ if a measure-
ment j corresponds to a landmark /. The stacked mea-
surement equation, for all observed landmarks at time ¢,
is then

1 1x
X, ) etl
Yz] P (R(q,)(@cr - Pt)) ety
L= : +1 . (12)
N, N Nix
3“’ P(R(g)(6%" — pr)) E’N,y
y he (xe,My) ‘t,—'
e e

where /™ ~ N (0, Rcam )- Ream is a diagonal matrix since
all the measurements are assumed to be mutual indepen-
dent. Note that ©; in (4a) consists of union of the land-
marks observed in the window i,i.e., ®; = ;;K M;.Note
that number of elements in ®; is M.

Solving the correspondence problem in order to find
C, (also known as data association) is outside the scope
for this work and is thus assumed solved.

C. Predictor

The nonlinear predictor needed in PEM is realized
with an EKF in our case, since it allows for explicit cal-
culation of the gradient of the loss function in (3). The
time update from the EKF produces a predicted state

estimate at time ¢ given all the measurements up to time
t — 1, %;—1. This prediction together with the measure-
ment model in (11) can be used to obtain the predicted
measurement needed for the PEM loss function, namely
Yi-1(0) = h(£-1(©), ©) (£-1(©) emphasizes the
predicted state’s dependency on the parameters). The
gradient of the PEM loss function (4a) w.r.t. parameters
©, needed in the solution procedure, is defined as

3 1 XL X
767 (©) =55 D 55y — hu(R1(©), O)l;

X
=N th(®)Trt(®), (13)
=1
where
r(®) =y — h(£-1(0), ©) (14a)
1(©) = % _ _8h,(x, ®) ox 3 h:(x, ©) .
90 ax 090 00 |\ce (@)
(14b)

The EKEF can calculate the explicit value in (13) dur-
ing the recursive state and measurement updates. This
implies that the computational cost for the gradient is
(proportionally) linear in the batch length, and conse-
quently scales better than the NLS, which has (propor-
tionally) quadratic cost, [27]. All the details about how
the EKF calculations are done are omitted here, and the
reader is referred to [26] instead. With the residual r,(®)
and the Jacobian J,(®) accessible, any NLS solver can be
used to estimate the parameter values. In this particular
case, a Levenberg-Marquardt solver is used [16], [21].

VI.  RESULTS

The performance of the method is evaluated with
MC simulations on the synthetic data, as well as with the
real data. We have chosen to evaluate the methods on
platforms’ and landmarks’ positions only. This is due to
a lack of ground truth for rotations in the case of real
data. All the setup and results are described in the sub-
sections below.

A. Synthetic Data

1) Setup: The simulated trajectory consists of 205
camera measurements at 4 Hz and 2050 acceleration and
angular rate measurements at 40 Hz, which gives the
total trajectory duration time of 1.24 s. This setup is il-
lustrated in Fig. 2. All simulation examples are based
on 50 MC simulations, where the noise on the acceler-
ations, angular rates, and camera measurements is var-
ied for each MC run, and it was sampled from the Gaus-
sian distribution with zero mean and standard deviations
s = 107m/s?, 0, = 107*°s7 !, and o = 10~*m.
As previously explained, the correspondence between
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Figure 2. Synthetic environment setup used in MC experiments.
(a) Simulated trajectory used in MC simulations with projection on
XY -plane for a clearer view (it has constant altitude, i.e., Z = 0). (b)
Simulated landmarks used in MC simulations with projections on all
planes for a clearer view.

measurement and landmarks was known; however, all
landmarks were not observed in each camera frame.

2) MC Simulations—Whole batch: The results for
the whole batch of data (i.e., “infinite horizon”) for both
PEM-SLAM and NLS-SLAM are shown in Fig. 3 for the
trajectory and the landmarks, respectively.

3) MC Simulations—SW: For the SW approach, 50
MC simulations are done for each of the horizon lengths
chosen from {10, 15, 20, 25, 30}. The results, in the form
of total position RMSE for the trajectory and some land-
marks, for each SW-PEM-SLAM and SW-NLS-SLAM
have quite similar and comparable performance, al-
though SW-PEM-SLAM has better RMSE in total for
both trajectory and landmarks, just as in the case for the
whole batch, see Fig. 4. It is also noticeable that the to-
tal error is varying with the horizon length, but not con-
sistently for the SW-PEM-SLAM. It is not necessarily
smaller everywhere for the longer horizons, except at
the end of the trajectory. SW-NLS-SLAM is more con-
sistent in this regard, at least for the trajectory. Both of
the methods are showing this behavior for the landmark

(a) 03 Position RMSE (PEM-SLAM and NLS-SLAM)

0 10 20 30 40 50 60
Time [s]

(b) Landmark RMSE (PEM-SLAM and NLS-SLAM)

0 5 10 15 20 25 30
Landmark Number

Figure 3. RMS errors for the trajectory and landmarks based on 50
MC simulations for both PEM-SLAM (blue) and NLS-SLAM (red).
(a) RMS error for the trajectory estimated with PEM-SLAM (blue)
and NLS-SLAM (red) based on 50 MC simulations. (b) RMS error for
all the landmarks estimated with PEM-SLAM (blue) and NLS-SLAM
(red) for each coordinate based on 50 MC simulations.

position error, i.e., it is not monotonously decreasing
with the horizon length for some landmarks, but the gen-
eral trend is that most landmarks have smaller error for
the longer horizon.

B. Real Data

1) Yamaha Rmax: The first real dataset comes from
the flight trials performed at Revingehed, Sweden, where
a remotely piloted helicopter Yamaha Rmax, see Fig. 5,
was flown, [S]. The helicopter was equipped with all
the utilized sensors (i.e., IMU and camera). The ground
truth (based on GPS) flight trajectory in XY -plane is
shown in Fig. 6.

For the validation of the methods, only the hori-
zon length of five images was used, since a short hori-
zon would give a short delay time, which is a realis-
tic assumption for the real-time application. The error
between estimated trajectory and GPS- based one for
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Figure 4. Total RMS errors for the trajectory and seven landmarks
for each window length based on 50 MC simulations for SW-PEM-
SLAM (solid line) and SW-NLS-SLAM (dashed line). (a) Total RMS
error for the trajectory estimated with SW-PEM-SLAM (solid) and
SW-NLS-SLAM (dashed) for each window length based on 50 MC
simulations. (b) Total RMS error for six landmarks estimated with SW-
PEM-SLAM (solid) and SW-NLS-SLAM (dashed) for each window
length based on 50 MC simulations.

Figure 5. Remotely piloted helicopter Yamaha Rmax used in the
experiments.

GPS trajectory
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Figure 6. Real data trajectory in XY -plane based on GPS (ground
truth).

both SW-PEM-SLAM and SW-NLS-SLAM methods is
shown in Fig. 7. Even here, both methods have simi-
lar performance for, at least, the X- and Y -coordinates.
For the Z-coordinate (or altitude), a much larger er-
ror is present. This is a consequence of the inherent vi-
sual/inertial SLAM problem property, where it is hard
to estimate both distance to landmarks and own local-
ization due to imperfect inertial data. These errors and
biases are, in general, not completely removed by the es-
timation. This can only be done if the inertial data are
perfect, which is never the case; see also [22] for fur-
ther discussion. This behavior is also visible in the sim-
ulated data for the Z-coordinate, see, e.g., Fig. 3. In or-
der to remedy this behavior, another kind of stabilizing
measurement, like barometric pressure measurements,
could be used. Unfortunately, these kinds of measure-
ments were not available. Interestingly, the error is ac-
tually decreasing at the end of the trajectory estimated

Position errors for SW-PEM-SLAM and SW-NLS-SLAM

90

920

10 20 30 40 50 60 70 80 90
Time [s]

Figure 7. Error between estimated and GPS trajectory for all coordi-
nates for the real data and both SW-PEM-SLAM (blue) and SW-NLS-
SLAM (red).
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Figure 8. Error between estimated and GPS trajectory for all coor-
dinates for the real data for the whole batch. PEM-SLAM (blue) and
NLS-SLAM (red).

by SW-PEM (after 65 seconds approximately). For com-
parison, the estimate for the whole batch is shown in
Fig. 8. Here, the performance is even more similar, and
the error in the Z-coordinate is not as prominent (al-
though still larger than X - and Y-coordinates). This is
most probably due to the both better loopclosure as well
as utilization of the whole data batch instead of only a
limited window. Evaluation of map estimation is done by
projecting landmarks in an image where they are not ob-
served and comparing these to their measurements from
another image where they are observed. This is depicted
in Fig. 9. It can be seen that the performance of both
methods is quite similar, and that batch estimation has
slightly better performance, which is expected.

2) EuRoC: Publicly available datasets from EuRoC
MAV [3] have been used in order to evaluate the (SW-)
PEM-SLAM performance on another dataset and see
how it compares to others’ results on the same data.
Two out of eleven datasets from EuRoC MAV have
been tested. For this dataset, we only show the total
RMS error for the whole trajectory and summing all axes
as done in [23]. For the SW-PEM-SLAM and dataset
MH_01, the RMSE was 0.20 m, and for the PEM-SLAM
it was 0.16 m. A horizon of length 20 was used. For the
dataset, MH_03 SW-PEM-SLLAM had RMSE of 0.32 m
with the horizon of length 20. To get the similar perfor-
mance as for the other dataset, a horizon needed to be
32 long, and the RMSE was 0.21 m in that case. PEM-
SLAM had a RMSE of 0.12 m. Compared with the re-
sults in, e.g., [23], where RMSE for MH_01 and MH_03
was about 0.07 m, both the SW-PEM-SLAM and PEM-
SLAM solutions are in the same order of magnitude. It
is worth noting that RMSE in [23] was calculated for
keyframes only, while RMSE for SW-PEM-SLAM and
PEM-SLAM was for the whole trajectory.

(a) Measurement of a landmark #27 in frame 276 (b) Measurement of a landmark #38 in frame 276

Figure 9. Comparison between measured and reprojected landmarks
for the real data and for the SW approach and the whole batch. PEM-
SLAM (o) and NLS-SLAM (+) for both SW and batch reprojections.
Landmarks are not measured in the images where they are reprojected.
(a) Measurement of landmark #27 from image 276. (b) Measurement
of landmark #38 from image 276. (c) Reprojection of landmark #27 in
image 260 (SW). (d) Reprojection of landmark #38 in image 260 (SW).
(e) Reprojection of landmark #27 in image 260 (batch). (f) Reprojec-
tion of landmark #38 in image 260 (batch).

C. Execution Time Evaluation

The relative execution time as a function of the hori-
zon length for the SW-PEM-SLAM and the SW-NLS-
SLAM are compared. It can be seen in Fig. 10 that the
increase for SW-PEM has a linear trend, while for SW-
NLS, the trend seems to be quadratic (or at least pro-
portionally quadratic). The plots are produced with the

SW-PEM-SLAM (blue) and SW-NLS-SLAM (red)

45 1

35 8

Relative Execution Time [-]
w

1 1 . .
10 15 20 25 30

Window Length [-]

Figure 10. Relative execution time as a function of the horizon length
for the SW-PEM-SLAM (blue) and the SW-NLS-SLAM (red).
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simulated data averaged over 50 MC runs. Since the es-
timation accuracy is comparable between the methods,
the linear execution time increase for the SW-PEM is
a great advantage over SW-NLS when it comes to real-
time performance and is one of the main motivations for
the choice of SW-PEM-SLAM.

VII.  CONCLUSIONS AND FUTURE WORK

In this paper, it is presented how a system identifica-
tion method, PEM, can be applied to an SLAM problem.
This is done by considering the map, here modeled as
three-dimensional pointlandmarks, as parameters in the
system to be identified, and the motion of the platform
observing the landmarks with a monocular camera as dy-
namic states of the system. Estimation is done in an SW
fashion as well as for the whole batch of data. The SW
estimation is more appropriate for the real-time adap-
tation of the estimator, while the whole batch is an of-
fline method. The main advantage of the PEM approach
compared to the NLS is the separation between the land-
marks and the state estimation, which allows for compu-
tation complexity reduction, especially when the horizon
length increases. The estimation performance of the SW-
PEM-SLAM (and PEM-SLAM, i.e.,for the whole batch)
is evaluated with MC simulations on both inertial/visual
synthetic and real datasets, and compared to SW-NLS-
SLAM (and NLS-SLAM) showing comparable perfor-
mance.

In the continuation of this work, some possible al-
ternative parametrizations of the predictor might be ex-
plored, for example, innovation form as in [18]. Also, fur-
ther development toward better implementation will be
pursued.
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