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Electro-optical (EO) camera systems are commonly used in

target detection and tracking applications. Such camera systems

typically comprise a suite of sensors, such as narrow/wide field of view

(FOV) cameras, that provide target-originated angular measurements.

To estimate the position of a point target in Cartesian space, existing

techniques in literature employ the non-linear measurement mapping

from the focal-plane array (FPA) to azimuth and elevation space. A

common assumption made in using this conversion is that azimuth and

elevation measurement errors have the same standard deviation, are

uncorrelated, and are uniform across the camera’s FOV. This paper

presents an approach to derive the azimuth and elevation statistics,

including the cross-correlation of their errors. This approach converts

the raw target measurements and their covariance in the image space

(FPA) to the angular space for subsequent use in Cartesian state

filtering. This conversion has been validated to be unbiased and

consistent, and results show that the line-of-sight (LOS) angle error

variances and their correlations are in fact variable, with magnitudes

dependent on the target’s location in the FPA. The correct LOS angle

covariance matrices should be used in Cartesian state estimation and

fusion rather than the assumed constant angle variances and uncor-

related errors between the azimuth and elevation. We demonstrate a

multi-sensor fusion case where the LOS angle covariance matrices of
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our proposed approach are used to derive the final composite target

position estimate and its corresponding error covariances. The com-

posite estimates produced from our proposed approach are proven to

be statistically efficient. Compared to the use of the uncorrelated and

constant LOS angle covariances, there is significant improvement to

the error modeling of the fused Cartesian position covariance.

I. INTRODUCTION

The use of electro-optical (EO) camera sensors in
target detection and tracking applications has garnered
much attention and intensive research in recent years.
Their wide range of applications include the deployment
of ground-based camera systems for aerial surveillance
[12], camera sensors on-board aircraft and unmanned
aerial platforms for ground target tracking [1], [6], or
even for self-navigation and collision avoidance in the
case of unmanned platforms [8], [9]. The many opera-
tional advantages of using camera sensors include their
covertness due to them being passive, high accuracy of
the angular measurements provided down to milliradi-
ans, and high data rate up to 30 Hz [7].

In video tracking, a sequence of images captures a
moving target across time frames in the camera’s field
of view (FOV). Image processing algorithms are applied
to each image to extract the centroid location of a small
target in the focal-plane array (FPA) [6].For the purpose
of this paper, we focus on the conversion from FPA lo-
cations to 3D line-of-sight (LOS) angles (azimuth and
elevation) in Cartesian coordinates centered at the cam-
era. The target position and velocity can be estimated
from these angular (azimuth/elevation) measurements
derived from a series of coordinate transformations.Ad-
ditional information is usually necessary (e.g., range or
additional cameras) for the target state to be completely
observable.

To track a target’s position and velocity in Cartesian
space, typical systems pass the angular (azimuth/
elevation) measurements derived from the camera(s)
and their covariances to a tracking filter. A common as-
sumption made in the literature when using these mea-
surements in a filter is that the azimuth and elevation
measurement errors share a constant standard deviation,
are uncorrelated, and are uniform across the camera’s
FOV.The above assumptions have been used for camera
system designs that can be broadly classified into three
categories: (i) a single camera sensor on a manoeuvring
platform [1], [7], (ii) a camera suite comprising multiple
(at least two) stationary camera sensors [11], and (iii)
a sensor suite comprising a camera system with other
sensor types such as radars [10]. For the sake of track-
ing filters performing at their best, it is essential that the
measurements they use be unbiased and have correct co-
variances. In the case of the multisensor suite [10], data
fusion is performed to derive the target’s position and
velocity, based on the combination of range information
provided by other sensor types, such as radar, and the
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highly precise angular information provided by the cam-
era sensors.

Recent works have considered the modeling of cor-
relation in measurement errors for camera sensor mea-
surements, applied to the geolocation of targets. The au-
thors in [6] formulated a camera measurement model as
a nonlinear transformation function converting pixel lo-
cationmeasurements in the image space to a 3Dposition
in Cartesian space, based on the perspective transforma-
tion and including radial and tangential lens distortions.
The covariance of the geolocation error was modeled to
account for errors in pixel coordinates, intrinsic (lens dis-
tortion,skew, focal length) and extrinsic (sensor position,
attitude) camera parameters, and terrain height. Results
show that the geolocation covariance is representative
of the actual error in the geolocation estimate. In addi-
tion, a two-camera setup to reconstruct the 3D position
of the target using triangulation of the rays from corre-
sponding image points in the left and right cameras was
investigated in [4], with the total measurement error of
the reconstructed point calculated using error propaga-
tion theory. The authors in [4] introduced a covariance
to model the effect of the camera’s orientation angle er-
rors and the accuracy in detecting its corresponding im-
age point.

Whilewe recognize these approaches, the present pa-
per’s contributions are specific to camera sensors that
are well calibrated with no radial and tangential distor-
tion, and for tracking applications using angular mea-
surements of point targets for the purpose of accurate
fusion and subsequent filtering. Our approach converts
the raw FPA target measurements and their covariance
to the LOS angular space for subsequent use in fusion
via the Maximum Likelihood approach. This conversion
is shown to be unbiased and includes the variances and
correlations of the measurement errors in azimuth and
elevation that are in fact different at various image space
(FPA) points,withmagnitudes dependent on the target’s
location relative to the camera center.

The rest of the paper is organized as follows:
Section II defines and describes the various coordinate
systems used in this paper. Section III develops the
conversion method from the image space to the global
ENU coordinate space to derive unbiased measure-
ments in azimuth and elevation angles, which are shown
to have cross-correlated and location-dependent errors.
Section IV considers the one-sensor case and presents
a simulation test setup to illustrate the significance of
the cross-correlated measurement errors, and proves the
unbiasedness of the measurements in angular space and
consistency of the derived covariance. Section V consid-
ers a two-sensor camera setup, and uses the proposed
conversion approach to derive the angular error covari-
ance matrices. The composite position measurement de-
rived from the fusion of the cameras’ LOS angles and
their angular error covariances is shown to have covari-
ance that meets the Cramer–Rao lower bound (CRLB).
Lastly, Section VI presents the conclusions.

Figure 1. Display image, FPA image, camera, ENU, and spherical co-
ordinate systems [13].

II. COORDINATE SYSTEMS

The following coordinate systems are used in this
paper [13]:

� Display image coordinate system with xD-yD of the
camera’s display, shown in Fig. 1.

� Image coordinate system with xI-yI of the camera’s
FPA, shown in Fig. 1.

� Camera coordinate system with xC-yC-zC centered at
the camera position, shown in Fig. 1.

� Common coordinate system with x-y-z as east, north,
and up (ENU)with origin at camera,with correspond-
ing spherical coordinate system (Fig. 1) comprising:
– azimuth (a): the clockwise angle in x(E)-y(N) plane
from positive y axis to projection of target LOS onto
this plane.

– elevation (e): the angle from x(E)-y(N) plane to the
target LOS.

The notations used in the paper are listed in Table I.
In practice, the flower image (on the left of Fig. 1) is

shown right side up as in the camera display to corre-
spond to the actual object. It is the resulting image after
undergoing an inversion from the FPA, and the FPA im-
age coordinates are related to the display image coordi-
nates by

xI = h1
(
xD

) =
[
xI

yI

]
=

[
Px − xD

Py − yD

]
,

xI = 0, 1, . . . ,Px − 1, yI = 0, 1, . . . ,Py − 1, (1)

with Px and Py the (even) number of pixels in the xI and
yI coordinates, respectively.
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Table I
Notation

xA [a e]′, the corresponding azimuth and elevation angles of a
point in the common (ENU) coordinate system.

x [x y z]′, a point in the common (ENU) coordinate system.
xC [xC yC zC]′, a point in the camera coordinate system.
xI [xI yI]′, a point in the image coordinate system in pixel units.
xD [xD yD]′, a point in the display image coordinate system in

pixel units.
xS [xS yS zS]′, the camera (sensor) position in ENU

coordinates.
α camera pointing azimuth or yaw (clockwise from N).
ε camera pointing elevation or pitch (up from horizontal).
ρ camera roll, clockwise around the center of the frame (ideally

zero).

Next, considering the xC-zC plane and yC-zC plane
given in Figs. 2 and 3, respectively, we have

tan
(

�x

2

)
=

Px
2

f
and tan

(
�y

2

)
=

Py
2

f
, (2)

i.e.,

f = Px
2tan�x

2

= Py

2tan�y

2

, (3)

where f is the focal length with units of measure pixel
(assumed square); �x and �y are the FOV—angular
spans—in xI and yI, respectively.

By similar triangles, from Fig. 2, one has

Px
2 − xI

f
= xC

zC
⇒ xC = zC

f

(
Px
2

− xI
)

, (4)

Figure 2. Diagram relating camera coordinate system to image coor-
dinate system in xC-zC plane (top-down view so the FPA appears as a
line); OC, OI denote the origins of the camera coordinate system and
image coordinate system, respectively;

⊗
denotes the tail end of a co-

ordinate system axis vector.

Figure 3. Diagram relating camera coordinate system to image coor-
dinate system in yC-zC plane (side view so the FPA appears as a line);
OC,OI denote the origins of the camera coordinate system and image
coordinate system, respectively;

⊗
,
⊙

denote the tail and tip ends of
a coordinate system axis vector, respectively.

and from Fig. 3,

Py
2 − yI

f
= yC

zC
⇒ yC = zC

f

(
Py
2

− yI
)

. (5)

By principle of the pinhole camera model, a point in the
FPA corresponds to the projection of the 3D target point
coordinates (via a line going through OC as shown in
Figs. 2 and 3) onto the image plane, and is the inverted
image point of the target.

We further assume for convenience that

zC = f. (6)

The LOS is then from OC to the point
[
xC, yC, zC

]
with

zC arbitrary since it does not affect the LOS. Then us-
ing appropriate notations, to be defined later, the coor-
dinates of this point in the ENU systemwill be obtained,
and they will yield the LOS angles in the ENU system.

Thus, combining equations (4)–(6), the conversion of
xI to xC is given by

xC = h2
(
xI

) =

⎡
⎢⎢⎣

zC

f

(Px
2 − xI

)
zC

f

(
Py
2 − yI

)
zC

⎤
⎥⎥⎦ =

⎡
⎢⎣

Px
2 − xI

Py
2 − yI

f

⎤
⎥⎦ . (7)

Next, the conversion of xC to x − xS is given by

x − xS = T (α, ε, ρ) xC

= TzC (α)TxC (90◦ − ε)TzC (−ρ)xC, (8)

where α, ε, and ρ refer to the camera’s yaw,pitch and roll
angles, respectively, and we use the following mnemonic
notations for rotations between 3D Cartesian systems

TxC (φ) =
⎡
⎣1 0 0
0 cosφ sinφ

0 − sinφ cosφ

⎤
⎦ (9)
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for rotation around the xC-axis by φ from yC toward zC,
and

TzC (φ) =
⎡
⎣ cosφ sinφ 0

− sinφ cosφ 0
0 0 1

⎤
⎦ , (10)

for rotation around the zC-axis by φ from xC towards
yC. The rotation around the yC-axis is not necessary as
TxC (90◦ − ε) replaces the yC-axis by the zC-axis, so that
the rotation around the zC-axis occurs twice. The com-
bined rotation in (8) is

T (α, ε, ρ) =
⎡
⎣sαsεsρ + cαcρ sαsεcρ − cαsρ sαcε

cαsεsρ − sαcρ cαsεcρ + sαsρ cαcε

−cεsρ −cεcρ sε

⎤
⎦ (11)

where

sα = sinα, sε = sin ε, sρ = sin ρ, (12)

cα = cosα, cε = cos ε, cρ = cos ρ, (13)

For a point x in the commonENUcoordinate system,
the conversion of x − xS to xA is given by

xA =
[
a

e

]
= h3

(
x − xS

)
=

⎡
⎢⎣ tan−1

(
x−xS
y−yS

)
tan−1

(
z−zS√

(x−xS)2+(y−yS)2

)
⎤
⎥⎦ .

(14)

III. CONVERSION METHOD FOR ANGULAR
MEASUREMENT ERRORS

A. Uncorrelated Measurement Error Covariance
Assumption

When tracking targets’ position and velocity in 3D
Cartesian space, angular measurements of the target
with respect to the ENU coordinate system are provided
to the fuser and then to a tracking filter1 for dynamic
state estimation. The derived measurement vector from
a camera sensor at time tk is

xA(tk) = [a(tk) e(tk)]
′ (15)

where a(tk) is the measured (noisy) azimuth from true
North clockwise, and e(tk) is the measured elevation up
from the horizontal, with reference to the camera posi-
tion given by xS. The corresponding measurement error
covariance is typically assumed as having uncorrelated
errors, i.e.,

RA
uncorr = diag(σ 2

a , σ 2
e ) (16)

with σa and σe the measurement error standard devia-
tions of azimuth and elevation, respectively. Practically,
all filtering applications assume a constant measurement
error standard deviation, same in both azimuth and el-
evation (i.e., σa = σe), and with uncorrelated errors be-
tween them.

1See [3] for the various configurations in multisensor tracking.

B. The Measurement Error Covariance Matrix With
Location Dependence and Cross-Correlation

We investigate the validity of the above assump-
tion, whether the variances of the measurement errors
are constant, and if measurement error correlation be-
tween azimuth and elevation is present. We present an
approach to derive the errors of the angular measure-
ments of the target LOS with respect to the ENU co-
ordinate system. This involves calculating the azimuth
and elevation measurements of the target (i.e., x̂A) from
the raw target pixel measurements in the display im-
age space (i.e., x̂D) through the series of transformations
defined in Section II. The corresponding measurement
error covariance matrix with location dependence and
cross-correlated errors in azimuth-elevation space, de-
noted asRA

corr, is derived from the error covariance in the
image space using the linearized transformation func-
tion. The validity of the first-order linearization is ascer-
tained by confirming the unbiasedness of LOS angle er-
rors and its covariance consistency [2], i.e., that the cal-
culated covariancematrix is statistically compatible with
the actual errors.

The target angular measurement x̂A can be obtained
by the global transformation function h(·)

x̂A = h
(
x̂D

) �= h3
[
T (α, ε, ρ) h2

(
h1(x̂D)

)]
, (17)

with h3(·), T (α, ε, ρ), h2(·), and h1(·) defined in (14),
(8), (7), and (1), respectively. Its corresponding co-
variance matrix (including correlations) in azimuth-
elevation space is, based on first-order linearization (see,
e.g., [2]), given by

RA
corr = HPDH ′ = H

[
σ 2
Px

0
0 σ 2

Py

]
H ′, (18)

where σPx and σPy are the measurement error standard
deviations (in pixels) in the xD and yD axes, respectively2,
and H is the global linearized function

H = H3HT(α,ε,ρ)H2H1. (19)

as a composite of the Jacobians of the functions h3(·),
T (α, ε, ρ), h2(·), and h1(·) defined in (14), (8), (7), and
(1), respectively. Specifically,

H3 = ∂xA

∂(x − xS)
=

[
∂a

∂(x−xS)
∂a

∂(y−yS)
∂a

∂(z−zS)
∂e

∂(x−xS)
∂e

∂(y−yS)
∂e

∂(z−zS)

]

=
⎡
⎣ y−ys

r2xy
− x−xs

r2xy
0

− (x−xs )(z−zs )
rxyr2

− (y−ys )(z−zs )
rxyr2

rxy
r2

⎤
⎦ ,

(20)

where

rxy
�=

√
(x− xs)2 + (y− ys)2 (21)

2These are the same as the errors in (inverted image coordinates) xI, yI.
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r �=
√
(x− xs)2 + (y− ys)2 + (z− zs)2, (22)

and

HT(α,ε,ρ) = ∂
(
x − xS

)
∂xC

=

⎡
⎢⎢⎣

∂(x−xS)
dxC

∂(x−xS)
dyC

∂(x−xS)
dzC

∂(y−yS)
dxC

∂(y−yS)
dyC

∂(y−yS)
dzC

∂(z−zS)
dxC

∂(z−zS)
dyC

∂(z−zS)
dzC

⎤
⎥⎥⎦

= T (α, ε, ρ) , (23)

as given in (11), and

H2 = ∂xC

∂xI
=

⎡
⎢⎢⎣

∂xC

∂xI
∂xC

∂yI
∂yC

∂xI
∂yC

∂yI
∂zC

∂xI
∂zC

∂yI

⎤
⎥⎥⎦ =

⎡
⎣−1 0

0 −1
0 0

⎤
⎦ (24)

and

H1 = ∂xI

∂xD
=

[
∂xI

∂xD
∂xI

∂yD
∂yI

∂xD
∂yI

∂yD

]
=

[−1 0
0 −1

]
. (25)

Note the location dependence of the elements of (20).

IV. ONE-SENSOR CASE: SIMULATION RESULTS

Following the conversion (17) and (18), we evaluate
the angular measurement error covariance matrix. Next
we present the scenarios considered to illustrate the lo-
cation dependence and the correlation of the errors at
various points in the FPA, and the tests whether the con-
version method is unbiased and has a consistent covari-
ance [2].

A. Simulation Scenario

We consider a camera positioned at the origin in
global 3D Cartesian space, i.e., xS = [0, 0, 0]′, with the
orientation angles of the camera (α, ε, ρ) = (0, 0, 0).
This is for the sake of illustration; for other orienta-
tions, (23) will differ. The aspect ratio of the camera is
16:9, which is typical of commercial camera sensors. This
translates to a horizontal and vertical FOV of �x = 60◦

and �y = 37.5◦, respectively, and an image with Px =
1920 pixels by Py = 1080 pixels for a 2 megapixel (MP)
camera, and Px = 3840 pixels by Py = 2160 pixels for a
8MP camera. The camera records measurements when
the target is in its FOV with FPA measurement error
standard deviations σPx = σPy = 1 pixel3. This error is
equivalent to angles of 0.031◦ (or 0.541mrad) and 0.016◦

(or 0.279 mrad) on average for a 2MP and 8MP camera,
respectively.

3As shown in [5] using a physics-based model, the optimal measure-
ment extractor for a point target can reach a s.d. of 1

2 pixel.We took a
more conservative approach here.

Figure 4. Azimuth-elevation error ellipse plots with assumed uncor-
related errors (dotted) and actual correlated errors (solid) at each of
the chosen image points (xDi , yDi ), i = 1, . . . , 9, from exhaustive combi-

nation pairs of xDi ∈ {1, Px2 ,Px} and yDi ∈ {1, Py2 ,Py}, for a 2MP camera
(black) and 8MP camera (gray). The locations are according to display
image coordinates in Fig. 1.

B. Significance of Correlation Errors

For the given camera specifications,Fig.4 showsmea-
surement error ellipses in azimuth-elevation that were
generated for each of nine selected points in the im-
age plane spanning left to right of xD axis and top to
bottom of yD axis. The nine selected points of the dis-
play image plane include: (i) top-left (1, 1), (ii) top-

center
(Px
2 , 1

)
, (iii) top-right (Px, 1), (iv) mid-left

(
1, Py

2

)
,

(v) center
(
Px
2 ,

Py
2

)
, (vi) mid-right

(
Px,

Py
2

)
, (vii) bottom-

left (1,Py), (viii) bottom-center
(Px
2 ,Py

)
,and (ix) bottom-

right (Px,Py). A baseline uncorrelated measurement er-
ror circle is also shown (in dotted line) to represent the
uncorrelated error covariance RA

uncorr, with σa = σe =
σPx

�x
Px
, for comparison with the correlated and location-

dependent measurement error ellipses RA
corr (in solid

line) derived from the proposed conversion method. Er-
ror ellipses of the 2MP and 8MP camera are colored
black andgray, respectively.

To determine if the measurement correlation error
is significant, the percentage difference between the ar-
eas of the correlated and uncorrelated error ellipses is
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Table II
Percentage Difference Between Areas of Correlated Error Ellipses

and Uncorrelated Error Circles at Each of Nine Image Points
(xD, yD) for 2MP and 8MP Camera

MP �
�yD
xD

1 Px
2 Px

2 1 −26.8% 10.0% −26.8%
Py
2 −21.0% 21.6% −21.0%
Py −26.8% 10.0% −26.8%

8 1 −26.8% 10.0% −26.8%
Py
2 −21.0% 21.6% −21.0%
Py −26.8% 10.0% −26.8%

calculated as follows:

d =
π

(√
det (RA

corr) − √
det (RA

uncorr)
)

π
√
det (RA

uncorr)
× 100%, (26)

where det (A) is the determinant of matrix A. A mag-
nitude of |d| ≥ 10% will imply that the correlated mea-
surement error is significant. A positive percentage dif-
ference value implies the error ellipse is larger in area
than the baseline uncorrelated error circle, while a neg-
ative percentage difference value implies the error el-
lipse is smaller in area than the baseline uncorrelated
error circle.Table II shows the percentage difference be-
tween the areas of the correlated and uncorrelated error
ellipses for each of the nine selected image points.

With reference to Fig. 4, the error ellipses of the 8MP
camera (in gray) are 4 times smaller in area than those
of the 2MP camera (in black), due to the larger num-
ber of pixels in the image space for the 8MP camera.
The ellipses’ shapes and orientations of both correlated
and uncorrelated error covariances are similar for both
2MP and 8MP cameras, due to both cameras sharing the
same aspect ratio. From Table II, the percentage differ-
ence values are the same for both cases of the 2MP and
8MP cameras. Given the similarities in observations in
both Fig. 4 and Table II, we can, for simplicity, consider
the results (of both figure and result table) of either cam-
era for subsequent analysis and discussion in the rest of
the paper.

From Table II, since all percentage difference values
have magnitude greater than or equal to 10%, the cor-
relations of azimuth and elevation measurement errors
are considered significant at all nine selected points of
the image.

The most significant differences are at the corner
points of the image, where the correct ellipse (with the
error correlations) is 26.8% smaller in area than the cir-
cles corresponding to the (assumed) uncorrelated errors
at these points. The next most significant difference is at
the center point of the image, with the correct error el-
lipse area 21.6% larger than the (assumed) uncorrelated
error circle at this point. This is followed by the mid-left
and mid-right points of the image, with the correlated
error ellipse 21.0% larger in area than the uncorrelated

error circle at this point. The least significant difference
is at the top-center and bottom-center points of the im-
age,with the correlated error ellipse 10.0% larger in area
than the uncorrelated error circle at these points.

C. Unbiasedness and Covariance Consistency

We next assess whether the proposed conversion
method is unbiased and that the derived covariance ma-
trix RA

corr is consistent.
As the global transformation function h(·) defined

in (17) mapping points in the image space to azimuth-
elevation space is nonlinear, a set ofN = 10 000 random
points with Gaussian noise was generated for each se-
lected image point modeling the probability density dis-
tributions in image space, i.e., for each of nine selected
image points, separate realizations ofN points were gen-
erated according to the distribution

{
xDi,k

}N
k=1 =

{[
xDi,k
yDi,k

]}N

k=1

∼ N
([

xDi
yDi

]
,

[
σ 2
Px

0
0 σ 2

Py

])

i = 1, . . . , 9,
(27)

where k is the index of the Monte–Carlo runs. Each set
of points undergoes the non-linear transformation h(·)
to derive a distribution of points

{
xAi,k

}N
k=1 =

{[
ai,k
ei,k

]}N

k=1
i = 1, . . . , 9 (28)

in azimuth-elevation space corresponding to the ENU
coordinate system.The set (28) is based on FPA random
points specified by (27). The sample mean of the angles’
distribution is

x̄Ai =
[
āAi
ēAi

]
= 1
N

N∑
k=1

xAi,k i = 1, . . . , 9, (29)

and the sample covariance is

R̄A
corr,i = 1

N

N∑
k=1

(
xAi,k − x̄Ai

) (
xAi,k − x̄Ai

)′

i = 1, . . . , 9. (30)

Next, each of the nine selected image points xIi , i =
1, . . . , 9 undergoes the global transformation function
h(·) defined in (17) to obtain the converted angular state
x̂Ai comprising the LOS angles, âAi and êAi .

The ratio of the bias error to the baseline measure-
ment error standard deviation is calculated in the az-
imuth and elevation components separately

ra,i = âAi − āAi
σa,i

and re,i = êAi − ēAi
σe,i

, (31)

where σa,i and σe,i are the square roots of the diagonal
terms of (30). These are N (

0, 1
N

)
distributed (see, e.g.,

[2]), so they have to be in the 95% region:
[
− 2√

N
, 2√

N

]
=
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Table III
Ratio ra of the Bias to the Baseline Measurement Error Standard
Deviation for Azimuth Component of 2MP and 8MP Cameras

MP �
�yD
xD

1 Px
2 Px

2 1 0.0101 − 0.0022 0.0051
Py
2 0.0063 0.0048 − 0.0051
Py 0.0106 − 0.0063 0.0032

8 1 − 0.0004 0.0036 − 0.0022
Py
2 − 0.0106 − 0.0142 0.0116
Py 0.0008 − 0.0066 0.0111

Table IV
Ratio re of the Bias to the Baseline Measurement Error Standard
Deviation for Elevation Component of 2MP and 8MP Cameras

MP �
�yD
xD

1 Px
2 Px

2 1 0.0051 − 0.0147 0.0062
Py
2 − 0.0092 0.0160 0.0038
Py − 0.0009 0.0064 − 0.0013

8 1 0.0025 − 0.0128 0.0054
Py
2 0.0138 − 0.0137 − 0.0060
Py − 0.0048 0.0124 0.0081

[−0.02, 0.02] to confirm the unbiasedness of the pro-
posed conversion method. Tables III and IV show the
results of the ratio for the azimuth (ra) and elevation
(re) components, respectively, for both the 2MP and 8MP
cameras considered. It can be seen that all ratio values
are within the 95% region of ±0.02. Thus, the proposed
conversion method is unbiased.

Lastly, the following covariance consistency test [2]
is used:

κi �
1
N

N∑
k=1

(
xAi,k − x̂Ai

)′ (
R̄A

corr,i

)−1 (
xAi,k − x̂Ai

)

≤ 1
N

χ2
2N(1 − α)

i = 1, . . . , 9, (32)

where χ2
2N(1 − α) is α-tail probability of the chi-square

distribution with 2N degrees of freedom. If satisfied,
these tests confirm the unbiasedness of the conversion
and the correctness of the covariance RA

corr,i, including
the correlation between azimuth and elevation errors,
for each of the nine selected image points [2]. Table V
shows the results of the consistency test values κi for
both the 2MP and 8MP cameras considered. It can be
seen that that all covariance test statistics are below the
1 − α = 95% bound of 1

10 000χ
2
20 000(0.95) = 2.0330.

Thus, the proposed conversion method that yields
location-dependent variances and correlations is unbi-
ased and consistent.

Table V
Test for Covariance Matrix Consistency of 2MP and 8MP Cameras

MP �
�yD
xD

1 Px
2 Px

2 1 2.0002 2.0002 2.0001
Py
2 2.0001 2.0002 2.0001
Py 2.0002 2.0001 2.0000

8 1 2.0000 2.0002 2.0000
Py
2 2.0004 2.0003 2.0002
Py 2.0000 2.0002 2.0003

V. TWO-SENSOR CASE: MULTI-SENSOR FUSION
AND SIMULATION RESULTS

In this section, we derive the composite target po-
sition measurement in 3D Cartesian space, by fusing
LOS, i.e.,2D,target anglemeasurements of a two-camera
setup. This derivation can be divided into two stages:

Stage 1. Apply our proposed conversion method in
Section III-B to derive, for each camera, the target
LOS angle measurements with their corresponding an-
gular error covariances with location-dependent vari-
ances and cross-correlated errors.

Stage 2. The maximum likelihood (ML) estimate of
the 3D composite target position measurement is ob-
tained from fusing4 the LOS angle measurements of the
two cameras using a numerical search performed via the
iterated least squares (ILS) technique [2]. The derived
ML estimate is proven to be statistically efficient, and as
such, the covariance matrix from the CRLB can be used
as the measurement error covariance matrix for the re-
sulting composite target 3D position measurement [11]
in subsequent track filtering.

It is envisioned that the more appropriate angular
error covariance of our approach in Stage 1, compared
to an uncorrelated angular error covariance baseline,
would translate to improvements to the final composite
target position measurement and its Cartesian measure-
ment error covariance matrix in Stage 2.

A. Derivation of Composite (Fused) Position
Measurement and Its Corresponding Cartesian
Measurement Error Covariance

Consider 2 camera sensors with known sensor posi-
tions xs j = [xs j , ys j , zs j ]′ , j = 1, 2.

Stage 1. Following the conversion (17), (18), we have
the sensor-specific (s j) LOSmeasurements and their cor-
responding covariances denoted xAs j andRA

s j,corr, j = 1, 2,
respectively.

Stage 2. The LOS measurements to the target from
Stage 1 are fused to obtain a composite position mea-
surement (estimate) x̂F = [

xF, yF, zF
]′ in ENU space

[11].

4This is Type 3 fusion [3] with the two cameras assumed synchronized.
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Themeasurement xAs j from sensor s j relates to the 3D
position according to

xAs j = gs j
(
xF, xs j

) + ws j , j = 1, 2, (33)

where

ws j ∼ N (0,RA
s j,corr) (34)

are the angle measurement noises, and

gs j
(
xF, xs j

) = h3
(
xF − xs j

)
(35)

with xA = xAs j , x = xF and xS = xs j in (14).
The composite position measurement x̂F in ENU

space is obtained by maximizing the likelihood function
of xF (based on xAs1 , x

A
s2 , not shown for simplicity)

�
(
xF

) =
2∏
j=1

p(xAs j |xF), (36)

where

p(xAs j |xF) = |2πRA
s j,corr|−

1
2 ·exp

(
−1
2

[
xAs j − gs j

(
xF, xs j

)]′

(37)(
RA

s j,corr

)−1 [
xAs j − gs j

(
xF, xs j

)] )
.

The ML estimate (the composite measurement) is then

x̂FML = argmax
xF

�
(
xF

)
. (38)

Finding the ML estimate in this case is equivalent to a
nonlinear least squares problem. The numerical search
will be performed via the ILS technique [2].

The ILS estimate after (m+ 1) iterations is

x̂F
(m+1)

ILS = x̂F
(m)

ILS +
[(

G(m)
)′
R−1

corrG
(m)

]−1

(39)

·
(
G(m)

)′
R−1

corr

[
z − g

(
x̂F

(m)

ILS , s
)]

,

with

z = [
xAs1 , x

A
s2

]′
, (40)

s = [xs1 , xs2 ]′ , (41)

g
(
x̂F

(m)

ILS , s
)

= [as1 , es1 , as2 , es2 ], (42)

Rcorr =
[
RA

s1,corr 0
0 RA

s2,corr

]
, (43)

and

G(m) =
∂g

(
x̂F

(m)

ILS , s
)

∂xF

∣∣∣∣∣
xF=x̂F(m)

ILS

, (44)

is the Jacobian matrix of the stacked measurement vec-
tor evaluated at the ILS estimate from the previous iter-
ation. The Jacobian matrix is given by

G =
[
Gs1
Gs2

]
, (45)

withGs j = H3, j = 1, 2 as in (20).
To perform the numerical search via ILS, an initial

estimate x̂F
(0)

ILS is required. The initial Cartesian position
is solved using the LOSmeasurements as1 , as2 , and ae1 of
the first iteration, and the known sensor positions xs1 and
xs2 as follows:

xF
(0)

ILS = xs1 +
(
yF

(0)

ILS − ys1
)
tan as1 , (46)

yF
(0)

ILS = (xs2 − xs1 ) + (ys1 tan as1 − ys2 tan as2 )
tan as1 − tan as2

, (47)

zF
(0)

ILS = zs1 + tan es1

∣∣∣∣ (xs1 − xs2 ) cos as2 + (ys1 − ys2 ) sin as2
sin(as1 − as2 )

∣∣∣∣ .
(48)

For the error covariance, the CRLB provides a lower
bound on the estimation error obtainable from an unbi-
ased estimator

E
[
(xF − x̂F)(xF − x̂F)′

] ≥ J−1, (49)

where J is the Fisher InformationMatrix (FIM),xF is the
true value to be estimated,and x̂F is the estimate [2], [11].
The FIM is given by

J = E
{[
�xF ln�

(
xF

)] [
�xF ln�

(
xF

)]′ }∣∣
xF=xFtrue.

(50)

The gradient of the log-likelihood function is

�xFλλλ(x
F) =

2∑
j=1

G′
s j

(
RA

s j,corr

)−1 (
xAs j − gs j

(
xF, xs j

))
,

(51)

which, when plugged into, (50) gives

J =
2∑
j=1

G′
s j

(
RA

s j,corr

)−1
Gs j

∣∣
xF=xFtrue

(52)

= G′R−1
corrG

∣∣
xF=xFtrue.

B. Simulation Scenario

In the two-sensor setup, we have two cameras s1 and
s2 spaced 1 km apart in global 3D cartesian space, with
sensor positions xs1 = [xs1 , ys1 , zs1 ]′ = [−500 m, 0 m,

0 m]′ and xs2 = [xs2 , ys2 , zs2 ]′ = [500 m, 0 m, 0 m]′. Un-
like the single-sensor case in Section IV-A, we consider
the more realistic non-zero orientation angles of cam-
eras 1 and 2 measuring (αs1 , εs1 , ρs1 ) = (24.5◦, 2.1◦, 4.5◦)
and (αs2 , εs2 , ρs2 ) = (−2.6◦,−3.4◦, 2.8◦), respectively. It
is worth noting that for every nonzero camera orien-
tation, it will map to a reference case of our generic
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Figure 5. 2-camera setup with 16 targets in ENU space.

azimuth-elevation error ellipse characterization results
we derivedwith camera orientation angles of zero values
in Section IV-B. For this experiment, both cameras are
2-MP cameras,with the remaining camera sensor param-
eters and measurement error standard deviations the
same as defined for the 2-MP variation of the one-sensor
case in Section IV-A.

A total of 16 point targets at various ranges and
heights in ENU space were considered. The 2D plot in
Fig. 5 shows the camera sensor locations as crosses, with
Camera 1 and 2 fields-of-view (FOV) in solid and dotted
lines, respectively, and the 16 labeled targets as solid cir-
cles that are all within the FOV of both sensors. For each
target point in ENU space, we plot their corresponding
positions in the display image space of Camera 1 (left)
and Camera 2 (right) in pixel coordinates, as shown in
Fig. 6. The dotted lines segment the image space into
nine general reference regions in which we have previ-
ously characterized its azimuth-elevation error ellipses
in Section IV-A. Based on Fig. 6, the distribution of the
targets in the image spaces of both cameras is sufficiently
comprehensive to cover all scenarios for fusion.

C. Evaluation of the Composite Position Measurements
and Their Error Covariances

We envisaged that the angular error covariance of
our approach used in Stage 1, compared to an uncorre-
lated angular error covariance baseline, would translate

Figure 6. 16 targets in display image space of Camera 1 (left) and
Camera 2 (right).

to improvements of the final composite target position
measurement and its error covariance matrix. As such,
we compared the composite position measurements and
their corresponding Cartesian error covariances derived
using

(i) the location-dependent angular error covariances,
derived from the method described in Section V-A,
versus

(ii) the constant uncorrelated angular error covariance
baseline,

with the following evaluation criteria:

1) 3D position error improvement
2) 3D position algorithm-calculated accuracy
3) Statistical consistency of the estimates.

For each true target location in ENU space based
on Fig. 5, denoted as x̆Fi , i = 1, . . . , 16, we get the cor-
responding positions in display image space of Camera
1 and Camera 2 based on Fig. 6, denoted as x̆Ds1,i and
x̆Ds2,i, i = 1, . . . , 16, respectively, using the conversion

x̆Ds j,i = h−1
1

(
h−1
2

(
T−1
s j

(
αs j , εs j , ρs j

) (
x̆Fi

)))
(53)

with h−1
1 (·), h−1

2 (·) and T−1
s j (·), j = 1, 2 the inverses of

h1(·), h2(·) and T(·) given by (1), (7), and (8), respec-
tively. We assume the corresponding covariances in dis-
play image coordinates are given by

PD
s j,i =

[
σ 2
Px

0
0 σ 2

Py

]
, j = 1, 2, i = 1, . . . , 16 (54)

similar to what was assumed in (18).
We now derive the 3D composite target position es-

timates and their corresponding Cartesian error covari-
ances of the following variations:

Case (i) -
(
x̆Fcorr,i,P

F
corr,i

)
. Following the derivation

steps in Section V-A, Stage 1 is first executed by ap-
plying the conversion equations (17) and (18) with
display image inputs (53) and (54) of the jth camera
across i = 1, . . . , 16 target points. We thus derive the
camera-specific target LOS angles and the correspond-
ing angular error covariances with location dependent
variances and cross-correlated errors for each of the
16 target points, i.e.,

(
x̆As j,i,R

A
s j,corr,i

)
, i = 1, . . . , 16 and

j = 1, 2. Stage 2 is then executed to derive the com-
posite target position estimates (fused measurements)
x̆Fcorr,i obtained from (33) to (48) and the CRLB PF

corr,i

obtained from (52) evaluated at xF = x̆Fcorr,i for the ith
target point, i = 1, . . . , 16.

The covariances are evaluated at the actual (noise-
less) LOS angles (like the CRLB) and will be used to
compare the uncertainties of the proposed and baseline
methods.

Case (ii) -
(
x̆Funcorr,i,P

F
uncorr,i

)
. First, the camera-

specific target LOS angles for each of the i = 1, . . . , 16
target points x̆As j,i were derived following (17), as in
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Table VI
Percentage Difference Between Volumes of the Correlated and

Uncorrelated Variants of the Cartesian Measurement Error Ellipses
at Each of 16 Target Points x̆Fi , i = 1, . . . , 16

Tgt 1 2 3 4 5 6 7 8

Vol diff. (%) −8.9 1.7 8.0 −19.9 −25.0 18.2 7.7 −21.3
Tgt 9 10 11 12 13 14 15 16
Vol diff. (%) −20.4 19.2 25.9 −13.9 −13.5 17.6 27.2 3.7

Case (i). The baseline uncorrelated angular error covari-
ances RA

s j,uncorr,i, i = 1, . . . , 16 and j = 1, 2 follow ac-

cording to (16) with5 σa = σe = σPx
�x
Px
. Similarly, the

composite target position estimates x̆Funcorr,i are obtained
from (33) to (48) and theCRLBPF

uncorr,i is obtained from
(52) evaluated at xF = x̆Funcorr,i for the ith target point,
i = 1, . . . , 16, with the correlated covariances RA

s j,corr,i in
the equations replaced with their uncorrelated counter-
part RA

s j,uncorr,i.
We now compare and evaluate our proposed ap-

proach according to each of the three criteria listed
above.

1) 3D position error improvement: The percentage
difference between the volumes of the correlated and
uncorrelated variants of the Cartesian measurement er-
ror ellipses is calculated by

d =
π

(√
det (PF

corr) − √
det (PF

uncorr)
)

π
√
det (PF

uncorr)
× 100%, (55)

where det (A) is the determinant ofmatrixA, and the re-
sults are tabulated in Table VI for each of the 16 selected
target points. A magnitude of |d| ≥ 10% will imply that
the difference between the correlated and uncorrelated
variants of the Cartesian measurement error ellipses is
significant, and these values are highlighted in bold in
Table VI.

It is observed that the majority of target points have
significant differences in volume between the correlated
and uncorrelated variants of the Cartesianmeasurement
error ellipses, which demonstrates the importance of us-
ing our proposed conversion method for improved error
modeling. Furthermore, our approach can yield up to a
maximum of approximately 27% difference in volume
of the correlated Cartesian measurement error ellipse
relative to the baseline uncorrelated Cartesian measure-
ment error ellipse.

2) 3D position accuracy improvement: At this point,
we generate a set ofN = 1000 randompoints withGaus-
sian noise in the display image space of Cameras 1 and
2 for each selected target point, which models the prob-

5These are the “simplistic” constant measurement accuracies.

ability distributions in the display image space{
xD

(k)

s j,i

}N
k=1

∼ N
(
x̆Ds j,i,R

D
s j,i

)
j = 1, 2, i = 1, . . . , 16.

(56)

Each set of points undergoes the non-linear transforma-
tion h(·) defined in (17) to derive a distribution of points{

xA
(k)

s j,i

}N
k=1

j = 1, 2, i = 1, . . . , 16, (57)

that model the probability distribution in azimuth-
elevation space corresponding to the ENU coordinate
system. For Case (i), the corresponding set of correlated
angular error covariances{

RA(k)

s j,corr,i

}N
k=1

j = 1, 2, i = 1, . . . , 16, (58)

are derived from the transformation (18) based on
the random angular state points specified by (57). For
Case (ii), the corresponding set of baseline uncorrelated
angular error covariances{

RA(k)

s j,uncorr,i

}N
k=1

j = 1, 2, i = 1, . . . , 16, (59)

assume fixed values as specified by (16).
Subsequently,we apply equations (33)–(48) and (52)

to derive the composite target estimates{
x̂F

(k)

corr,i,P
F(k)

corr,i

}N
k=1

i = 1, . . . , 16, (60)

for Case (i). The kth composite position estimate of
the ith target x̂F

(k)

corr,i is based on the fusion of the kth
random angular points, and their respective covariances

from camera sensors s1 and s2,
(
xA

(k)

s1,i
,RA(k)

s1,corr,i

)
and(

xA
(k)

s2,i ,RA(k)

s2,corr,i

)
, specified in (57) and (58). The corre-

sponding kth Cartesian error covariance estimate of the
ith target PF(k)

corr,i follows from (52) evaluated at xF =
x̂F

(k)

corr,i.
In a similar manner, we apply equations (33)–(48)

and (52) to derive the composite target estimates and
their covariances{

x̂F
(k)

uncorr,i,P
F(k)

uncorr,i

}N
k=1

i = 1, . . . , 16 (61)

for Case (ii), based on the random angular point sets
specified by (57) and (59), and with (52) evaluated at
xF = x̂F

(k)

uncorr,i.
We calculate the differences of the true composite

target state with the correlated variant of the composite
position estimate

�xF
(k)

corr,i =
(
x̂F

(k)

corr,i − x̆Fi
)′ (

x̂F
(k)

corr,i − x̆Fi
)

i = 1, . . . , 16,

(62)

and the uncorrelated variant of the composite position
estimate

�xF
(k)

uncorr,i =
(
x̂F

(k)

uncorr,i − x̆Fi
)′ (

x̂F
(k)

uncorr,i − x̆Fi
)

i = 1, . . . , 16,

(63)
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where x̆Fi are the true target locations in ENU space.
Following the above, both correlated and uncorre-

lated variants of the overall root mean square error
(RMSE) across N = 1000 sample runs are calculated
in (64) and (65), respectively

RMSEcorr,i =
√√√√ 1
N

N∑
k=1

�xF(k)

corr,i i = 1, . . . , 16, (64)

RMSEuncorr,i =
√√√√ 1
N

N∑
k=1

�xF(k)

uncorr,i i = 1, . . . , 16.

(65)

Additionally, the percentage difference between the
overall RMSE values of the correlated and uncorrelated
variants of the 3D composite position estimates is calcu-
lated by

RMSE_diff = RMSEcorr − RMSEuncorr

RMSEuncorr
× 100%,

(66)

and the results are tabulated in Table VII for each of the
16 selected target points.

It is observed that our approach using the more ap-
propriate correlated angular error covariance matrices
yields up to a maximum of approximately 0.7% im-
provement in 3Dpositional accuracy relative to the com-
posite position estimate derived from the baseline un-
correlated angular error ellipses. Across all targets, the
3D positional accuracy differences are insignificant. This
is because in both correlated and uncorrelated cases, we
used the same transformation in (17) to convert mea-
surements from the display image space to the azimuth-
elevation space. The azimuth and elevation values for
each point set were thus identical in both cases. As a re-
sult, the triangulation estimates of the two methods are
similar.Although the measurement error covariances in
(58) and (59) differ, their contributions do not signifi-
cantly impact the RMSE.While Table VII showed little
differences, Table VI showed significant differences for
the algorithm-calculated covariances (which are used in
recursive state estimation).

3) Statistical Consistency: To test the statistical con-
sistency of the correlated variant of the composite posi-
tion estimate, the normalized estimation error squared
(NEES) [2] is used, with the CRLB PF

corr,i as the covari-
ance matrix, i.e., the inverse of the FIM in (52) evaluated
at xF = x̆Fcorr,i for the ith target point, i = 1, . . . , 16.Along
with definition (62), we have that

εF
(k)

corr,i =
(
�xF

(k)

corr,i

)′
PF
corr,i

−1
(
�xF

(k)

corr,i

)
∼ χ2

nx , (67)

and thus the chi-squared test statistic

ε̄Fcorr,i =
1
N

N∑
k=1

εF
(k)

corr,i ∼ 1
N

χ2
Nnx , (68)

WithN = 1000,nx = 3 and α = 0.95, the two-tailed 95%
interval is given by

ε̄Fcorr,i ∈ [r1, r2] i = 1, . . . , 16, (69)

where [r1, r2] = [ 1
1000χ

2
3000(0.025),

1
1000χ

2
3000(0.975)

] =
[2.8501, 3.1537].

Similarly, we repeat steps (67)–(69) to test the sta-
tistical consistency of the baseline uncorrelated variant
of the composite position estimate.We still evaluate this
uncorrelated variant of the estimate at the same CRLB
PF
corr,i, and replace definition (62) with (63) to derive

the uncorrelated versions εF
(k)

uncorr,i and ε̄Funcorr,i. Note that
ε̄Funcorr,i shares the same two-tailed 95% test interval as
ε̄Fcorr,i.

Figure 7 shows the plot of the sample average NEES
fromN = 1000 runs of the correlated (red-filled circles)
and uncorrelated (black-filled triangles) variants of the
composite position estimate, using the same appropriate
CRLB as the covariance matrix, for the 16 selected tar-
gets. The dotted lines within the plot indicate the 95%
two-tailed interval calculated as per (69). Since all chi-
squared test statistics across all 16 targets fall within
the 95% two-tailed interval, the composite position esti-
mates derived from both our correlated and the uncor-
related baseline approaches are statistically consistent.

Thus, the benefit of the proposed method of fusion
is in the correctly calculated uncertainty region volumes
presented in Table VI, even though the estimates of the

Table VII
Absolute RMSE Values and Percentage Difference between RMSE Values of the Correlated and Uncorrelated Variants of the Composite 3D

Cartesian Position Estimates Evaluated at Each of 16 True Target Points x̆Fi , i = 1, . . . , 16

Tgt 1 2 3 4 5 6 7 8

RMSE [corr] (m) 1.127 1.191 1.463 1.745 3.534 3.650 4.957 5.945
RMSE [uncorr] (m) 1.131 1.192 1.466 1.758 3.536 3.656 4.968 5.958
RMSE diff. (%) 0.332 0.134 0.209 0.714 0.045 0.179 0.221 0.219
Tgt 9 10 11 12 13 14 15 16
RMSE [corr] (m) 7.495 7.814 9.210 12.136 13.017 13.731 15.285 18.008
RMSE [uncorr] (m) 7.484 7.820 9.209 12.146 13.025 13.720 15.280 18.019
RMSE diff. (%) − 0.150 0.065 − 0.005 0.082 0.058 − 0.076 − 0.031 0.062
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Figure 7. Sample averageNEES for correlated and uncorrelated vari-
ants of the composite position estimate for targets i = 1, . . . , 16.

proposed and baseline approaches are not significantly
different.

VI. CONCLUSIONS

In this paper, we devised an approach to convert
the raw target measurements and their covariance in
the image space of EO cameras to the azimuth and el-
evation angle measurements in the global ENU coor-
dinate system, which is validated to be unbiased, with
FPA-location-dependent variances and cross-correlated
errors. Typical tracking applications usually assume that
azimuth and elevation measurement errors have the
same standard deviation are uncorrelated and uniform
across the camera’s FOV, which is not the case. Sim-
ulations were performed for nine selected points on
the FPA coming from both 2MP and 8MP commer-
cially available camera sensors, with comparisons of the
bias error and correlated covariances to an uncorre-
lated baseline error measure. Results show that cross-
correlated errors are present and significant enough to
be considered. The magnitudes of variances and corre-
lations are dependent on the target’s location with re-
spect to the camera center. In addition, the angular esti-
mate derived from the conversion has been shown to be
unbiased, and the derived covariance matrix with cross-
correlated errors has been shown to be consistent, based
on the statistical tests conducted.

With these findings, we envisioned an unbiased con-
verted angular measurement and a more appropriate
measurement error covariance accounting for cross-
correlated errors should be used as input to the 3D
Cartesian state filtering equations and multisensor fu-
sion for improved tracking performance. To demon-
strate this, we considered a multisensor fusion applica-
tion to derive a composite target position measurement
and its corresponding Cartesian measurement error co-
variance in 3D Cartesian space. This was done for a two-
camera setup, using LOS target angle measurements
with the more appropriate measurement error covari-

ances of our method. Simulations were performed for 16
selected target points in ENU space. Results show that
the composite 3D target position and its corresponding
Cartesian measurement error covariance estimates de-
rived using the LOS angular measurements and angular
measurement error covariance of our approach are sta-
tistically efficient. Compared to the uncorrelated LOS
angular error covariances, our approach in accounting
for location-dependent variances and cross-correlated
errors in the LOS angular error covariances translated to
a significant improvement to the error modeling of the
Cartesian measurement error ellipse, but minimal im-
provement to the 3D Cartesian position accuracy of the
target. Since in filtering the gain depends on the mea-
surement covariance, the proposed approach will yield
superior performance. The impact of using the corre-
lated covariance for the measurements on the filtering
performance is a topic of future research. It is envisaged
that the correct error covariance is crucial in real-world
applications, particularly for tracking in cluttered envi-
ronments or closely spaced targets. Accurate measure-
ment error covariance enhances track-to-measurement
association accuracy. The additional computational cost,
which is not significant, is well worth it.
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