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This paper presents a single-pass stochastic gradient descent

(SGD) algorithm for estimating unknown noise covariances. The pro-

posed algorithm is designed for nonswitchingmultiple-model adaptive

Kalman filters, where the noise covariances can occasionally jump up

or down by an unknown magnitude. Compared to our previous batch

estimation or multipass decision-directed estimation methods, the

proposed algorithm has the advantage of reading measurement data

exactly once, leading to a significant improvement in computational

efficiency and practicality. Moreover, the algorithm achieves an

acceptable level of root mean square error (RMSE) in state estimates,

making it suitable for real-time industrial applications. The proposed

algorithm utilizes recursive fading memory estimates of the sam-

ple cross-correlations of the innovations and employs the root mean

square propagation (RMSprop) accelerated SGDalgorithm.The com-

bination of these techniques enables the algorithm to achieve high

accuracy in estimating the unknown noise covariances while maintain-

ing superior computational efficiency over iterative batch methods.
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The paper presents a comparative evaluation of the proposed method

on several test cases, which demonstrate its effectiveness in terms

of computational efficiency and estimation accuracy. Overall, the

proposed algorithm offers a promising approach for real-time noise

covariance estimation in multiple-model adaptive Kalman filters.

I. INTRODUCTION

The Kalman filter (KF) [13] is a widely used algo-
rithm that provides an optimal minimum mean square
error (MMSE) estimate for discrete-time linear dynamic
systems under the Gaussian assumption, provided that
the mean and covariance are known. When the noises
entering a system are non-Gaussian but still have known
first and second moments, i.e., mean and covariance, the
KF remains the best linear state estimator due to its abil-
ity to efficiently incorporate prior knowledge of the sys-
tem dynamics and noise statistics. As a consequence of
numerous research studies, the KF has gained significant
interest and attention inmany industrial applications, in-
cluding fault diagnosis, robotics, signal processing, navi-
gation, and target tracking, to name a few [2], [3]. How-
ever, in many real-world circumstances, the statistics of
noise processes are either completely unknown or par-
tially known.

In order to estimate unknown noise covariance pa-
rameters,Zhang et al. [32] derived the necessary and suf-
ficient conditions for their identifiability, and then pro-
posed an iterative batch optimization algorithm that en-
sures uncorrelated innovations. The rank of a matrix
formed from the cross-correlations of the weighted sum
of innovations, where the weights are the coefficients of
the minimal polynomial of any closed-loop filter matrix,
optimal or suboptimal, is required for the noise covari-
ance identifiability. The innovation sequence of an op-
timal KF under the Gaussian assumption is orthogonal,
indicating that the innovations are strictly white and in-
dependent of each other [3].Zhang et al. [32] formulated
an objective function using normalized temporal cross-
correlations of the innovations based on this attribute
to determine the optimal gain and subsequently the in-
novation (preresidual) and postresidual covariances, the
measurement noise covariance and the process noise
covariance.

We presented an improved method for estimating
noise covariances, employing a sequential mini-batch
stochastic gradient descent (SGD) algorithm that re-
quires multiple passes through the data. Moreover, we
showed a technique to detect changes in noise covari-
ances when applying this estimation method to nonsta-
tionary systems [17]. To avoid multiple passes through
the data required by the batch and multipass algo-
rithms, we propose herein a single-pass real-time adap-
tive Kalman filtering approach designed for nonsta-
tionary systems. The proposed method is suitable for
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scenarios in which process and measurement noise
covariances occasionally fluctuate by an unknown mag-
nitude and the system behavior is associated with one of
a finite number of known models.

A. Prior Work

The relationship between the covariance of the state
estimation error and the innovations in any suboptimal
filter is the key to process and measurement noise co-
variance estimation. This relationship serves as a funda-
mental building block for correlation-based approaches.
Pioneering contributions using this approach weremade
by [5], [21], [24], [25].

In linear state space models, Sarkka and Nummen-
maa [26] presented a variational Bayesian approach for
the joint recursive estimate of the dynamic state and
measurement noise parameters. The method is imple-
mented by forming separable variance approximations
to the joint posterior distribution of state and noise pa-
rameters at each time step.This approach,however,does
not take variations in process noise into consideration.
Because of their mode-seeking behavior, the variational
algorithms often converge to local minima and typi-
cally need tuning parameters to converge to the correct
parameters.

Our sequential mini-batch estimation method [17]
enhanced the computational efficiency and accuracy of
the batch estimation algorithm in [32] by applying dy-
namic convergence thresholds and adaptive step size
rules.To update the filter gain,we used sequential fading
memory mini-batch estimates of the innovation correla-
tions. For nonstationary systems, a change-point detec-
tion algorithm described in [15] was used for determin-
ing the time points of abrupt changes in unknown noise
covariances based on the innovation sequence.

In the multiple-model adaptive estimation method
proposed herein, the system is assumed to obey one of
a finite number of models, and each model has its own
nonswitching dynamics [3]. The overall estimate of the
system state is obtained by taking a convex combina-
tion of the estimates from multiple parallel filters. The
weights used in the convex combination correspond to
the posterior model probabilities.

The following are the limits of previous research [17]
on noise covariance estimation in nonstationary systems.
First, the previous methods are computationally expen-
sive because they require multiple passes through the
observation data and are not suitable for online stream-
ing data applications. Second, since the sequential esti-
mation method is used for samples between two con-
secutive change points, the accuracy of the decision-
directed noise covariance estimation method is reliant
on the accuracy of the change-point detection algorithm.
Third, the previous methods assumed that the structure
of the dynamic model was known. In this paper,we relax
this assumption and propose a streaming algorithm that
extends the method to multiple-model settings.

B. Contribution and Organization of the Paper

We present a single-pass sequential mini-batch noise
covariance estimation algorithm suitable for streaming
data as an extension of the work in [17], [18] for nonsta-
tionary and nonswitching multiple-model systems. Our
proposed method enables the estimation of the mea-
surement and process noise covariances without the use
of a change-point detection algorithm. We enhance the
computational efficiency of the method via a single-pass
through the observation data. The only caveat is that
jumps are assumed to occur occasionally, and after the
filter has reached a steady state, that is, the jumps are in-
frequent. However, small variations in the noise covari-
ances are allowed in between jumps. More significantly,
the structure of the dynamic model is unknown, but is
assumed to belong to one of a finite number of known
models.

We validate the proposed method on several non-
stationary and multiple-model system test cases. In ad-
dition, we derive noise covariance identifiability condi-
tions in terms of prefit residual (innovation) correlations
as in [32], as well as postfit residual correlations and out-
put correlations; the latter was used in the covariance
estimation algorithm in [25]. We also prove the conver-
gence of the iterative algorithm for process noise covari-
ance, which was not established in our prior work.

The paper is organized as follows: In Section 2, we
provide an overview of the multiple-model KF. Then,
in Section 3, we discuss the identifiability conditions in
terms of prefit and postfit residuals and outputs for esti-
mating the unknown noise covariances in each individ-
ual model. Section 4 provides approaches for obtaining
the unknown covariance parameters in amultiple-model
system using the sequential mini-batch SGDmethod, in-
cluding the fading memory filter-based correlation es-
timation, and the SGD update of the Kalman gain. In
Section 5, numerical results1 show the evidence that our
method can track unknown noise covariances in non-
stationary systems, as well as systems exhibiting dynam-
ics from a finite number of known models, and that the
single-pass algorithm is computationally efficient.Lastly,
we conclude the paper and discuss potential avenues for
future work in Section 6.

II. PLANT AND MEASUREMENT MODEL FOR THE
MULTIPLE-MODEL KF

The multiple-model approach assumes that the sys-
tem obeys one of a finite number of fixed models. For-
mally, the approach assumes that the linear discrete-time
stochastic dynamic system can assume one of J models,
j = 1, 2, ..., J, given by

x(k+ 1) = F jx(k) + � jv j(k), (1)

1Numerical results suggest that the occasional jump assumption may
be relaxed in practice.
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z(k) = H jx(k) + w j(k), (2)

where x(k) is the nx-dimensional state vector, z(k) is the
nz-dimensional measurement vector, and j is the candi-
date model. Here F j and H j are the nx × nx state tran-
sition matrix and the nz × nx measurement matrix of
the system, respectively, and � j is the noise gain ma-
trix. We assume that the process noise v j(k) and the
measurement noise w j(k) processes are the sequences
of zero-mean white Gaussian noises with unknown pro-
cess noise covarianceQj(k) and unknownmeasurement
noise covariance Rj(k), respectively. Note that the ini-
tial state error and the two noise processes are assumed
to be mutually independent. We assume that Qj(k) and
Rj(k) are piecewise constants such that the filter reaches
a steady state between any two jumps and that the jump
is of an unknown magnitude.

GivenQj(k) andRj(k), themultiple-model adaptive
KF involves the consecutive processes of prediction and
update given by [3], [12], [13], [20], [27]

x̂ j(k+ 1|k)=F jx̂ j(k|k), (3)

ν j(k+ 1)=z(k+ 1) −H jx̂ j(k+ 1|k), (4)

x̂ j(k+ 1|k+ 1)= x̂ j(k+ 1|k)+W j(k+1)ν j(k+1), (5)

Pj(k+ 1|k)=F jP j(k|k)F j′ + � jQj(k)� j′, (6)

Sj(k+ 1)=H jPj(k+ 1|k)H j′ + Rj(k), (7)

W j(k+ 1)=Pj(k+ 1|k)H j′Sj(k+ 1)−1, (8)

Pj(k+ 1|k+ 1) = (Inx−W j(k+ 1)H j)Pj(k+1|k)
(Inx −W j(k+ 1)H j)′ +W j(k+ 1)Rj(k)W j(k+ 1)′,

(9)

� j(k)= 1√|2πSj(k)| exp(−
1
2
ν j(k)′Sj(k)−1ν j(k)), (10)

pj(k)= � j(k)pj(k− 1)∑J
l=1 �l (k)pl (k− 1)

. (11)

The KF predicts the next state estimate at time index
(k + 1), given the observations up to time index k in
(3) and the concomitant predicted state estimation error
covariance in (6), using model-specific system dynamics,
the updated state error covariance Pj(k|k) at time in-
dex k and the process noise covariance,Qj(k). The up-
dated state estimate at time (k + 1) in (5) incorporates
themeasurement at time (k+1) via theKalman gainma-
trix in (8), which depends on the innovation covariance

Sj(k + 1) (which in turn depends on the measurement
noise covariance Rj(k) and the predicted state error co-
variance Pj(k + 1|k)). The updated state error covari-
ance Pj(k + 1|k + 1) is computed via (9). This corre-
sponds to Joseph form in [3], [8], which guarantees that
the updated state covariance matrix will remain positive
definite.

The mode likelihood function � j(k) is computed via
(10), which depends on the innovation sequence ν j(k)
and innovation covariance Sj(k). In (10), | · | is the deter-
minant, and the determinant of any scalar value times a
matrix is equal to the determinant of the matrix times
the scalar raised to the dimension of the matrix. This
means that |2πSj(k)| =(2π )nz |Sj(k)| for a multidimen-
sional random variable. Note that nz here is the dimen-
sion of the measurement (or innovation) vector. The
mode probability pj(k) corresponding to each candidate
model at time index k is computed via (11). Without
loss of generality,we assume the initial mode probability
pj(0) = 1/J.

III. NECESSARY AND SUFFICIENT CONDITIONS FOR
THE IDENTIFIABILITY OF UNKNOWN
COVARIANCES

We derive the necessary and sufficient conditions to
estimate the unknown covariance matrices in terms of
prefit residual (innovation) correlations,as well as postfit
residual correlations and output correlations. Note that
the identifiability conditions of the multiple-model ap-
proach depend on each candidate model since the cor-
responding KFs are noninteracting.

A. Innovation-Based Identifiability Conditions

Consider model j. Assume that Qj and Rj are un-
known but are piecewise constants such that the filter
reaches the steady state before any jump to a new value
(in practice, they can vary in between jumps as demon-
strated in illustrative examples). Let us define the coeffi-
cients of themth orderminimal polynomial of the closed-
loop filter matrix F̄ j,

∑m
i=0 a

j
i (F̄

j)m−i = 0, a j0 = 1. Now,
consider the innovations corresponding to a stable, sub-
optimal closed-loop filter matrix F̄ j = F j(Inx −W jH j)
given by [29], [32]

ν j(k) = H j(F̄ j)mx̃ j(k−m|k−m−1)+H j
m−1∑
�=0

{
(F̄ j)m−1−�

× [
� jv j(k−m+�)−F jW jw j(k−m+�)

]}+w j(k),

(12)

where x̃ j(k−m|k−m−1) = x j(k−m)−x̂ j(k−m|k−m−
1) is the predicted error at time (k − m). Given the in-
novation sequence (12), a weighted sum of innovations,
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ξ j(k), is obtained as follows:

ξ j(k) =
m∑
i=0

a ji ν
j(k− i)

=
m∑
l=1

Bj
l v

j(k− l)+
m∑
l=0

Gj
lw

j(k− l). (13)

It is easy to see that ξ j(k) is the sum of two moving
average processes driven by the process noise and mea-
surement noise, respectively [29], [32]. Here, Bj

l and G
j
l

are given by

Bj
l =H j

( l−1∑
i=0

a ji (F̄
j)l−i−1

)
� j, (14)

Gj
l =

[
a jl Inz−H j

( l−1∑
i=0

a ji (F̄
j)l−i−1

)
F jW j

]
,Gj

0=Inz .

(15)

Then, if we define the cross-covariance between ξ j(k)
and ξ j(k− �) as Lj

�, we obtain

Lj
� = E

[
ξ j(k)ξ j(k− �)′

]
=

m∑
i=�+1

Bj
i Q

j(Bj
i−�

)′ +
m∑
i=�

Gj
i R(G

j
i−�

)′. (16)

The noise covariance matrices Qj = [qi�] of dimension
nv × nv and Rj = [ri�] of dimension nz × nz are positive
definite and symmetric. By converting noise covariance
matrices and theLj

� matrices as vectors as in Zhang et al.
[32], they are related to the noise covariance identifiabil-
ity matrix I j as in (17).

I j
[
vec(Qj)
vec(Rj)

]
=

⎡
⎢⎢⎢⎢⎣
Lj

0
Lj

1
...
Lj
m

⎤
⎥⎥⎥⎥⎦ . (17)

As shown in [32], if matrix I j has full column rank, then
the unknown noise covariance matrices,Qj and Rj, are
uniquely identifiable. WhenW j is optimal, Lj

� are mul-
tiples of the innovation covariance Sj, where the scaling
factor involves the minimal polynomial coefficients. For
an optimal filter, it is easy to show that

Lj
� =

( m−l∑
i=0

a ji a
j
i+l

)
Sj; l = 0, 1, 2, ...,m. (18)

B. Postfit Residual-Based Identifiability Conditions

Let us define μ j(k) as the postfit residual sequence
of the KF. This sequence is related to the innovation

sequence ν j(k),k = 1, 2, ...,N via

μ j(k)=z(k)−H jx̂ j(k|k)=[Inz−H jW j(k)]ν j(k). (19)

We can rewrite (19) as

μ j(k) =H j(F̃ j)mej(k−m|k−m)+
{
H j

m−1∑
p=0

(F̃ j)p

× [
(Inx −W jH j)� jv j(k−p−1)−W jw j(k−p)

]}
+w j(k); k ≥ m, (20)

where e j(k+ 1|k+ 1) = F̃ e j(k|k)+ (Inx −WH)�v(k)−
Ww(k+ 1) is the postfit error at time (k+ 1). Note that
F̃ j = (Inx − W jH j)F j and F̄ j = F j(Inx − W jH j) are
similar because F̃ j = (F j)−1F̄ jF j.

Given the postfit residual sequence (20), let ζ j(k) be
a weighted sum of postfit residuals (see Appendix A) as,

ζ j(k) =
m∑
i=0

a jiμ
j(k− i)

=
m∑
l=1

B̃lv
j(k− l) +

m∑
l=0

G̃lw
j(k− l), (21)

where B̃l
j and G̃l

j are given by

B̃ j
l = (Inz −H jW j)Bj

l , (22)

G̃ j
l = (Inz −H jW j)Gj

l . (23)

Note that ζ j(k) = (Inz −H jW j)ξ j(k). Identifiability
conditions in terms of postfit residual correlations simi-
lar to (17) ensue because (Inz −H jW j) is invertible.

C. Output Correlations-Based Identifiability Conditions

The identifiability conditions using output correla-
tions can be derived by using outputs only for stable
open-loop systems or by using postfit residuals when the
state estimation error is stabilizable when the open-loop
system is unstable or marginally stable (e.g., a constant
velocity target model). We will use the latter approach
here.

Given (3) and (4), we can rewrite (5), the updated
state estimate at time k, as

x̂ j(k|k)=F jx̂ j(k− 1|k− 1)+W j[z(k) −H jF jx̂ j(k−1|k−1)]

= F̃ j x̂ j(k− 1|k− 1)+W jz(k). (24)

We can write (19), the postfit residual sequence, as

μ j(k)= −H j(F̃ j)mx̂ j(k−m|k−m)

−H j
m−1∑
�=0

(F̃ j)m−1−�W jw j(k−m+� + 1)+z(k).

(25)
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Given the postfit residual sequence (25), a weighted
sum of postfit residual based on the output correlations,
ϑ j(k), can be obtained as

ϑ j(k)=
m∑
i=0

a jiμ
j(k− i)

=
m∑
i=0

a ji
{ −H jF̃m−ix̂ j(k−m|k−m)

−H j
m−1−i∑
p=0

(F̃ j)pW jz(k− p) + z(k− i)
}

=
m∑
l=1

B̂lv
j(k− l) +

m∑
l=0

Ĝlw
j(k− l)

=
m∑
l=0

Ĝlz(k− l). (26)

Here, the cross-covariance of ϑ j(k) is the same as the
cross-covariance of

∑m
l=0 Ĝlz(k− l). Identifiability con-

ditions in terms of output correlations similar to (17) are
obtained.

IV. ESTIMATING UNKNOWN FILTER PARAMETERS

A. Recursive Fading Memory-Based Innovation
Correlation Estimation

We compute the sample correlation matrix Ĉ j,k
seq(i) at

sample k for model j and time lag i as a weighted com-
bination of the correlation matrix Ĉ j,k−1

seq (i) at the previ-
ous sample (k − 1) for model j and time lag i, and the
samples of innovations ν j(k − i) and ν j(k). The tuning
parameter λ, a positive constant between 0 and 1, is the
weight associated with the previous sample correlation
matrix. The recursive nature of the proposed algorithm
makes it amenable to estimate slowly varyingQj and Rj

in nonstationary systems.
The currentM sample correlation matrices at time k

are used as the initial values for the next pairs of samples
for recursive computation. Let us define the number of
samples as N. The recursive expressions for the correla-
tion matrices Ĉ j,k

seq(i) are

Ĉ j,k
seq(i) = (1 − λ)ν j(k− i)ν j(k)′ + λĈ j,k−1

seq (i), (27)

Ĉ j,0
seq(i) = 0; i = 0, 1, ...,M − 1; k = M, ...,N. (28)

B. Objective Function and the Gradient

The ensemble cross-correlations of a steady-state
suboptimal KF are related to the closed-loop filter ma-
trix F̄ j = F j(Inx −W jH j), the matrix F j, the measure-

ment matrix H j, the steady-state predicted covariance
matrix P̄ j, filter gainW j, and the innovation covariance,
Cj(0) via [5], [21]

Cj(i) = E[ν j(k)ν j(k− i)′]

= H j(F̄ j)i−1F j[P̄ j(H j)′ −W jCj(0)]. (29)

The objective function � j, formulated in [32], involves
minimization of the sum of normalized Cj(i) with re-
spect to the corresponding diagonal elements of Cj(0)
for i > 0. The objective function is dimensionless and
is zero when the filter gain is optimal and the innova-
tion sequence is decorrelated. Formally, we can define
the decorrelating objective function � j to be minimized
with respect toW j as

� j =1
2
tr

{M−1∑
i=1

[
diag(Cj(0))

]− 1
2Cj(i)′

× [
diag(Cj(0))

]−1
Cj(i)

[
diag(Cj(0))

]− 1
2

}
, (30)

where diag(Cj) denotes the Hadamard product of an
identity matrix with Cj. We can rewrite the objective
function by substituting (29) into (30) as

� j = 1
2
tr

{M−1∑
i=1

φ j(i)X jϕ j(X j)′
}
, (31)

where

φ j(i) = [H j(F̄ j)i−1F j]′ϕ j[H j(F̄ j)i−1F j], (32)

X j = P̄ j(H j)′ −W jCj(0), (33)

ϕ j = [diag(Cj(0))]−1. (34)

The gradient of objective function ∇W� j can be com-
puted as [32]

∇W� j =−
M−1∑
i=1

[H j(F̄ j)i−1F j]′ϕ jC j(i)ϕ jC j(0)−(F j)′ZjF jX j

−
i−2∑
l=0

[Cj(l + 1)ϕ jC j(i)′ϕ jH j(F̄ j)i−l−2]′. (35)

The Zj term in (35) is computed by the Lyapunov
equation.

Zj = (F̄ j)′ZjF̄ j + 1
2

M−1∑
i=1

(H j(F̄ j)i−1F j)′ϕ jC j(i)ϕ jH j

+ [(H j(F̄ j)i−1F j)′ϕ jC j(i)ϕ jH j]′. (36)
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In computing the objective function and the gradient,we
replace Cj(i) by their sample estimates, Ĉ j,k

seq(i) in (27).
Evidently, the covariance estimation is a stochastic opti-
mization problem because the cost function and the gra-
dient depend on the realized sample paths.

C. Updating Filter Gain Sequentially

Let B be the mini-batch size and let K = N/B be the
number ofmini-batches (we assume thatN is divisible by
B for simplicity).While the mini-batch gradient descent
sequentially updates theM sample covariance matrices
at every sample, we update the KF gain W j when the
sample index k is divisible by the size of the mini-batch
B using the gradient of the objective function at sample
k. Sequential mini-batch gradient descent allows more
opportunities to converge to a better local minimum by
frequent updates of the gain than the batch algorithm
and is much less noisy than a single sample stochastic
gradient algorithm [17]. Let r denote the updating index,
starting with r = 0. The generic form of gain update is

(W j)r+1 = (W j)r − (α j)r(∇W� j)r. (37)

The incremental gradient algorithm in (37) can be sped
up by adaptively selecting the step size (α j)r.Our results
in [17] showed that Adam [19] and RMSProp [30] have
the best accuracy and rapid convergence among all the
accelerated SGD algorithms (e.g., bold driver [4], con-
stant, subgradient [7], and Adadelta [31]) studied. Here,
we show the performance results of our algorithm us-
ing the RMSProp update. RMSProp keeps track of the
moving average of the squared incremental gradients for
each gain element by adapting the step size element-
wise.

τ
j
r,i� = γ jτ

j
r−1,i� + (1 − γ j)[(∇W� j)ri�]

2, (38)

(α j
i�)

r = (α j)0√
τ
j
r,i� + ε

; τ
j
0 = 0; (α j)0 = c

K
, (39)

where c > 0 is a constant and K is the number of mini-
batches. Here, γ = 0.9 is the default value and ε = 10−8

to prevent division by zero. When N is unknown, as in
streaming data, K is absorbed into the constant c. This
is not a restriction, as mini-batch size B is all we need to
implement the SGD algorithm.

D. Estimation of Process and Measurement Noise
Covariances

Assuming that the necessary and sufficient condi-
tions for the identifiability of covariances are satisfied
for each model [32], here we explore the noise covari-
ance estimation using a single-pass SGD algorithm and
validate it with three illustrative examples.Unlike the al-
gorithm in [32], this algorithm is applicable to nonsta-
tionary and multiple-model systems.

From the joint covariance of the innovation sequence
ν j(k) and the postfit residual sequenceμ j(k) in (19), and
the Schur determinant identity [6], [11], one can show
that at the steady state (assuming constant gain,W j and
constantQj andRj over large enough time intervals such
that the filter achieves steady state)[32]

Gj = E[μ j(k)μ j(k)′] = Rj(Sj)−1Rj, (40)

where Sj is the steady-state innovation covariance. Be-
cause (40) can be interpreted as a simultaneous di-
agonalization problem in linear algebra [11] or as a
continuous-time algebraic Riccati equation, the mea-
surement covariance Rj can be estimated by solving the
simultaneous diagonalization problem via Cholesky de-
composition and eigen decomposition, or by solving a
continuous-time Riccati equation as in [1], [32].

Given the estimated Rj, we can compute the process
noise covariance Qj and the steady-state updated state
covariance Pj. This requires an iterative process because
Qj and Pj are coupled in the general case [32]. Let t and
l denote the iteration indices starting with t = 0 and l =
0, and using an initial (Qj)0 = W jSjW j′ (exact solution
in theWiener process case [32]),we initialize the steady-
state updated covariance matrixPj as the solution of the
Lyapunov equation in (41)

(Pj)0 =F̃ j(Pj)0(F̃ j)′+W jRj(W j)′

+ (Inx−W jH j)� j(Qj)t (� j)′(Inx−W jH j)′, (41)

where F̃ j = (Inx −W jH j)F j.We iteratively update Pj as
in (42) until convergence

(Pj )l+1=
[(
F j(Pj )l (F j )′ + � j(Qj )t (� j )′

)−1
+ (H j )′(Rj )−1H j

]−1
.

(42)

Given the converged Pj,Qj will be updated in the t-loop
until the estimate ofQj converges. Proof of convergence
is included in Appendix B.

(Qj)t+1 = (� j)†
[(
Pj +W jSj(W j)′ − F jPj(F j)′

)t+1
](
(� j)′

)†
.

(43)

V. NUMERICAL EXAMPLES

Our prior study explored the effects of varying the
batch sizes and the number of observation samples for
accurately estimating the unknown variance parameters
in nonstationary systems [18]. Here, jumps in the esti-
mated noise covariance for the one that is not changing
may be due to the changes in the other one (for exam-
ple, an estimate of Rmay jump when R is static butQ is
changing or vice versa). This is because the Kalman gain
W = PH ′(HPH ′ +R)−1 is impacted by bothQ (through
P) and R.

In this section, we explore the problem of tracking
the position and velocity of an aircraft in an air traffic
control (ATC) system (see Section 5.1). We also con-
sider a three-state system for estimating the unknown
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Q and R (see Section 5.2). For comparison with the al-
gorithms in the literature, we also compare the estima-
tion performance with noise covariance estimation algo-
rithms in stationary systems (see Section 5.3). Finally,we
explore a multiple-model scenario with a set of single-
pass adaptive KFs for each mode. The multiple-model
method estimates the noise covariance parameters in
parallel, and then selects the probable model by the con-
comitant mode probability (see Section 5.4). Additional
application examples may be found in [16].

In the data generation process, the system is assumed
to have nonstationary noise covariance matrices.We de-
fine subgroups where each subgroup has a subset of ob-
servation samples duringwhich the noise covariances re-
main constant.The noise covariances abruptly change by
an unknown magnitude when one subgroup of samples
ends and another starts.

Note that we present the performance of the pro-
posed method using a single model (J = 1) in Sec-
tions 5.1–5.3, and then consider the multiple-model case
(J = 2) in Section 5.4. In the estimation procedure, we
set the number of burn-in samples Nb = 50, and the
number of lags M = 5. All computational simulations
were run on a computer with an Intel Core i7-8665Upro-
cessor and 16 GB of RAM.

A. A Nonlinear ATC Scenario

Weconsider anATC scenario used in [3].The ground
truth is a target moving with a constant speed of 250 m/s
with an initial state specified in Cartesian coordinates.
The sampling interval is T = 1 second. A total of 500
measurement samples were collected (500 seconds of
data). The target starts a left turn of 2◦/s for 30 seconds
at k = 100, then continues straight for 70 seconds (until
k= 200), at which time it turns right with 1◦/s for 45 sec-
onds (until k = 245), then left with 1◦/s for 90 seconds
(until k= 335), then right with 1◦/s for 45 seconds (until
k = 380), then continues straight for 120 seconds (until
k = 500).

The target position measurements are generated
starting from k = 0, and they are in polar coordinates
(range r and azimuth θ) by a radar located at [ξ0, η0] =
[−104, 0], with

r =
√
(ξ − ξ0)2 + (η − η0)2, (44)

θ = tan−1(
η − η0

ξ − ξ0
), (45)

F=

⎡
⎢⎢⎢⎢⎢⎣

1 sin�̂(k)T
�̂(k)

0 − 1− cos�̂(k)T
�̂(k)

f�,1(k)
0 cos�̂(k)T 0 −sin�̂(k)T f�,2(k)
0 1− cos�̂(k)T

�̂(k)
1 sin�̂(k)T

�̂(k)
f�,3(k)

0 sin�̂(k)T 0 cos�̂(k)T f�,4(k)
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎣
f�,1(k)
f�,2(k)
f�,3(k)
f�,4(k)

⎤
⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

cos�̂(k)T 2 ˆ̇ξ (k)
�̂(k)

− sin�̂(k)T ˆ̇ξ (k)
(�̂(k))2

− sin�̂(k)T 2 ˆ̇η(k)
�̂(k)

− (−1+ cos�̂(k)T ) ˆ̇η(k)
(�̂(k))2

−(sin �̂(k)T )T ˆ̇ξ (k)−(cos �̂(k)T )T ˆ̇η(k)
sin�̂(k)T 2 ˆ̇ξ (k)

�̂(k)
− (1− cos�̂(k)T ) ˆ̇ξ (k)

(�̂(k))2
+ cos�̂(k)T 2 ˆ̇η(k)

�̂(k)
− sin�̂(k)T ˆ̇η(k)

(�̂(k))2

(cos �̂(k)T )T ˆ̇ξ (k) − (sin �̂(k)T )T ˆ̇η(k)

⎤
⎥⎥⎥⎥⎦.

(47)

with additive white Gaussian noise with covariance R =
diag([2500m2, (1◦)2]).Note that the noise is added to the
Cartesian converted measurements, and the true values
of Q and R are used for the methods which do not esti-
mateQ and R. For this example, we used a KF based on
a second order linear kinematic model (WNA)with pro-
cess noise of standard deviation 1m/s2 described in (46).

F =

⎡
⎢⎢⎣
1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

⎤
⎥⎥⎦ ,H =

[
1 0 0 0
0 0 1 0

]
, � =

⎡
⎢⎢⎣
T 2/2 0
T 0
0 T 2/2
0 T

⎤
⎥⎥⎦ .

(46)
An interacting multiple-model (IMM) estimator

with one WNA (a constant velocity model with process
noise standard deviation 1 m/s2) for the uniform mo-
tion (UM) and a nearly coordinated turn (CT) model
described in (47) and (48) are used. The process noise
standard deviations used in the CT model were 3 m/s2

and 0.1◦/s2 for the UM and turn rate of the state,
respectively.

H=
[
1 0 0 0 0
0 0 1 0 0

]
, �=

⎡
⎢⎢⎢⎢⎣
T 2/2 0 0
T 0 0
0 T 2/2 0
0 T 0
0 0 T

⎤
⎥⎥⎥⎥⎦ . (48)

The mode transition probability matrix π in (49) is
used for IMM estimator.

π =
[
0.95 0.05
0.10 0.90

]
, (49)

Fig. 1a shows the averaged tracking results of target
motion over 100 Monte Carlo (MC) runs by KF, IMM,
and the proposed method. For the single-pass SGD es-
timation algorithm, we considered two models using ei-
ther the UM or the CT model. The proposed approach
can track the target close to its true trajectory when com-
pared to both KF and IMM. For the statistical analy-
sis, we consider the trajectory of the single-pass SGD
method with three-σ boundaries as shown in Fig. 1b.
We calculate the upper and lower limits by three stan-
dard deviations (three-σ ) from themean computed over
100 MC runs. The estimates based on the CT model
(even the UM model as well) are within these bound-
aries, which indicates that the estimates are close to the
mean values. This may suggest that adapting the covari-
ance of noise processes may overcome a lack of knowl-
edge of the dynamics of the target to a certain extent.
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Figure 1. Averaged tracking results of ATC motion scenario.

As shown in Fig. 2a, the proposed approach based
on the CT model (even the UM model as well) has
the peak root mean square (RMS) position error of
about 200 m in the scenario considered. The proposed
method reduces the RMS position error by a factor of
nine when compared to a KF and by a factor of four

when compared to an IMM estimator when the aircraft
is maneuvering. The proposed approach shows an ac-
ceptable RMS error of velocity estimation, as shown in
Fig. 2b. The proposed approach can also track the tar-
get velocity close to its true value as shown in Fig. 2c
and 2d.

Figure 2. Comparison of optimization algorithms for ATC motion estimation (100 MC runs).
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Table I
Single-Pass SGD Estimation When BothQ and R Change Continuously (100 Runs; RMSProp Update)

Subgroup R Q P̄11 P̄22 P̄33 W11 W21 W31
index Truth Mean RMSE Truth Mean RMSE Truth Mean RMSE Truth Mean RMSE Truth Mean RMSE Truth Mean RMSE Truth Mean RMSE Truth Mean RMSE
1st 0.06 0.07 0.01 0.36 0.35 0.03 0.38 0.37 0.06 1.46 1.39 0.22 3.36 3.20 0.50 1.21 1.18 0.11 2.37 2.28 0.14 3.60 3.45 0.20
2nd 0.04 0.04 0.20 0.21 0.22 0.23 0.82 0.86 1.90 1.97 1.15 1.22 2.25 2.32 3.41 3.51
3rd 0.06 0.05 0.25 0.27 0.27 0.30 1.02 1.13 2.35 2.60 1.03 1.16 2.02 2.24 3.07 3.40
4th 0.10 0.10 0.46 0.46 0.49 0.50 1.86 1.89 4.28 4.36 1.07 1.10 2.09 2.16 3.18 3.32
5th 0.12 0.12 0.56 0.57 0.61 0.61 2.29 2.32 5.28 5.35 1.10 1.09 2.15 2.15 3.27 3.32

B. Scenario Where Process and Measurement Noise
Covariances Change Continuously

In this scenario, we consider a three-state system us-
ing 50 000 samples where both Q and R change contin-
uously as in the example used in [25]. The system, which
has a well-conditioned observable matrix, is assumed to
be as follows:

F =
⎡
⎣0.1 0 0.1

0 0.2 0
0 0 0.3

⎤
⎦ , H = [

0.1 0.2 0
]
, � =

⎡
⎣1
2
3

⎤
⎦ .

(50)
The true values of Q and R are generated by first

starting with piecewise constant variance values for the
five subgroups of samples as Q = [0.36, 0.20, 0.25, 0.46,
0.56], and R= [0.06, 0.04, 0.06, 0.10, 0.12] with the values
changing every 10 000 samples. The Gaussian-weighted
moving average algorithm with a window size of 10,000
samples is applied to the piecewise constant noise co-
variances to generate smoothed continuous values.

As shown in Table I, the proposed algorithm can
track the noise covariance parameters accurately when
both Q and R change continuously. Because the noise
covariance is changing continuously, the table values are
provided only in the middle of the subgroups.

Fig. 3 shows the trajectory of noise parameters when
both Q and R change continuously. Our sequential al-
gorithm can track Q and R correctly with a smoothing
weight of 0.7, and the KF is consistent when evaluated
with respect to the normalized innovation squared (NIS)
metric, as shown in Fig. 3c.

C. Comparison of Noise Covariance Estimation
Algorithms on Stationary and Nonstationary Systems

Since most noise covariance estimation algorithms
assume constant Q and R, in this scenario, we consider
a stationary system as in the example used in [10] with
10 000 samples. We compare our single pass, multiple
pass, and batch estimation algorithms with the noise co-
variance estimation algorithms based on the Bayesian
method, the covariancematchingmethods (CMMs),cor-
relation methods, and the maximum likelihood methods
(MLMs). The system is assumed to be as follows:

F =
[
0.9 0

−0.3 0.8

]
, H =

[
1 0
0 1

]
, � =

[
1 0
0 1

]
. (51)

The indirect correlation method (ICM) [21], [22] re-
lies on examining the autocovariance function (ACF)
of the innovations of a linear estimator. The weighted
correlation method (WCM) [5] is based on an analysis
of the innovation sequence in the linear estimator, and
the direct correlation method (DCM) [25] estimates the
noise covariances of the innovation sequence of a sta-
ble linear estimator. In this scenario, we set an initial
gainW 0 = 0.8I2 for ICM, WCM, and DCM algorithms.
The input–output correlationmethod (IOCM) [14] is de-
signed for the linear Gaussian models by a minimiza-
tion of the measurement prediction error related to an
input–output model. The measurement matrix H is the
identity matrix as required by IOCM algorithm, and the
initial condition for estimating the coefficient matrices
B0 = O2.

The measurement average correlation method
(MACM) [33] is based on an analysis of the covariance

Figure 3. Trajectory of noise parameters when Q and R change continuously.
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Figure 4. Comparison of covariance estimation algorithms in stationary systems (100 MC Runs; 10 000 samples).

sequences of measurement estimate error. Two initial
weight matrices M1

wgt = I4 and M2
wgt = I6 are given in

this scenario. The measurement difference correlation
method (MDCM) [9] directly derives the measurement
estimate from other measurements without requiring
state estimation.However, instead of weighting multiple
measurements as MACM does, this method predicts
the measurement through forward-in-time propagation
of the measurement. Here, the number of measure-
ment predictions for MDCM is set to 1. The MLM [28]
relies on maximizing the likelihood function directly
associated with the state space models via numerical
optimization. The CMM [23] is designed for a linear
time-varying (LTV) models with time-varying noise
covariances, employing the filtering and predictive steps
of a linear estimator.We set the initial noise covariances
Q0 = I2 and R0 = I2 for the CMM and the single-pass
SGD Kalman filter (SKF) algorithms. The batch and

multipass versions of our approach (BKF and MKF)
are also included for comparison purposes.

Table II shows the performance comparison of our
proposed method (shown highlighted) with other algo-
rithms for estimating noise covariancesQ and R for this
system averaged over 100 MC simulation runs.

Fig. 4 shows the box plots of the estimates for the
various covariance estimation algorithms. Each method
shows the estimates of noise covariances, with the red
central mark being the median, the edges of the box
being the (blue) 25th and (black) 75th percentiles, and
the red crosses corresponding to the not considered out-
liers. Note that the batch and multipass methods esti-
mate the parameters as well as any other method, while
the single-pass SGD method estimates the noise covari-
ances reasonably well; indeed, all filters are consistent
as measured by the averaged NIS for this stationary
system.
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Table II
Estimates of Noise CovariancesQ and R in Stationary Systems (100 MC Runs; 10 000 Samples)

Q11
( Truth = 2 )

Q22
( Truth = 1 )

R11
( Truth = 3 )

R22
( Truth = 2 )

Method Mean Variance Mean Variance Mean Variance Mean Variance

ICM 1.98 1.04E-02 1.00 4.72E-03 3.02 7.84E-03 2.00 4.69E-03
IOCM 1.99 4.20E-03 1.01 2.71E-03 3.01 4.68E-03 2.00 3.59E-03
WCM 1.98 1.04E-02 1.00 4.72E-03 3.02 7.84E-03 2.00 4.69E-03
MACM 1.98 1.86E-02 1.00 7.22E-03 3.01 1.49E-02 2.01 5.68E-03
DCM 1.98 9.22E-03 1.00 4.14E-03 3.02 7.26E-03 2.00 4.34E-03
MDCM 1.97 1.57E-02 1.00 6.92E-03 3.02 9.81E-03 2.00 5.51E-03
MLM 1.99 4.26E-03 1.01 2.37E-03 3.01 4.16E-03 1.99 3.23E-03
CMM 1.87 7.56E-04 1.25 3.05E-04 2.73 1.27E-02 1.57 4.80E-03
BKF 1.94 4.19E-03 0.95 2.95E-03 3.07 4.54E-03 2.04 3.55E-03
MKF 2.00 6.48E-03 1.01 5.00E-03 2.97 2.56E-02 2.00 1.39E-02
SKF 2.00 3.72E-02 1.04 1.89E-02 2.95 7.09E-02 1.99 4.01E-02

Fig. 5 shows the trajectories of noise parameters in
nonstationary systems.As discussed in [18], the batch es-
timationmethod is not well-suited for nonstationary sys-
tems due to its assumption of constant noise covariances
and the need for the availability of the entire observa-
tion sequence to compute both the objective function

and the gradient.For this example, a change-point detec-
tion algorithm [15] is not applied to the multipass SGD
method because noise covariances change continuously.
The single-pass SGD method is consistent as measured
by averaged NIS (not shown) and can estimate the noise
covariances correctly for online streaming data.

Figure 5. Trajectories of noise parameters in nonstationary systems (100 MC Runs; 10 000 samples).
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D. Application to Multiple-Model Cases

We investigate a situation involving an unknownmo-
tion model, utilizing a multiple-model approach.Within
this algorithm, two KFs are utilized to estimate the noise
covariance parameters, each tuned to a distinct model.
The mode probabilities are integral to determining the
active model. It is important to highlight that we re-
gard a model as valid if its mode probability exceeds
0.66, employing the corresponding state estimate in such
instances. When mode probabilities fall between 0.33
and 0.66, we combine the state estimates proportionally
based on their respective posterior probabilities.

1. ScenarioWhen Process andMeasurement Noise Co-
variances Vary: For the multiple-model approach, we
apply our proposed algorithm to the system used in [24].
Here, we assume that the observation samples are gen-
erated by Model 2, as in (53). Model 1 is assumed to be

F 1 =
[

1 1
−0.1 0.1

]
, H1 = [

1 0
]
, �1 =

[
1
0.4

]
. (52)

Model 2 is

F 2 =
[
0.8 1

−0.4 0

]
, H2 = [

1 0
]
, �2 =

[
1
0.5

]
. (53)

Fig. 6 shows the trajectory of estimated parameters
with 50 000 measurements, and the noise parameters
change every 10,000 samples. Here, the piecewise con-
stant functions with five subgroups for trueQ and R are
generated based on Q=[0.04, 0.64, 0.25, 1.00, 0.09], and
R = [0.42, 0.81, 0.49, 0.16, 0.64]. The mode probability of
the second model is higher than the first model as ex-
pected. We find that the single-pass multiple-model ap-
proach can trackQ and R accurately.

2. Scenario When Measurement Noise Covariance
Changes Continuously: We consider a scenario used
in [26] with two dynamic models using 4000 measure-
ment samples in which the measurement noise covari-
ance changes continuously and compare our algorithm
with the variational Bayesian method and the IMM ap-
proach.

Model 1:

F 1 =
⎡
⎣1 0 0
0 1 0.1
0 −0.002 1

⎤
⎦ ,H1 = [

1 1 0
]
, �1 =

⎡
⎣0.1
0.1
0.1

⎤
⎦ .

(54)
Model 2:

F 2=
⎡
⎣ 0.99 0 0
0.001 1 0.1
0 0 1

⎤
⎦ ,H2=[

1 1 0
]
, �2=

⎡
⎣0.01
0.05
0.1

⎤
⎦ .

(55)
In our data generation process, we model the mea-

surement noise variance,R(k), as a continuous function
in the range between 0.2 and 1 when the sampling inter-
val, h, is 0.1 seconds, as follows:

R(k) =
{
0.2 + 0.4(1 + tanh(0.1h(k− 1000))),k ≤ 1500
0.2 + 0.4(1 + tanh(0.1h(2000 − k))),otherwise.

(56)

Table III shows the RMSE of estimated R over 100
MC runs by the multiple-model approach.The multiple-
model method estimates the noise covariance parame-
ters in parallel, and then finds the probable model using
the concomitant mode probability. Note that the mea-
surements are generated using Model 1, as in (54). The
variational bayesian adaptive kalman filter (VB-AKF)
algorithm provides the best estimate when the hyper pa-
rameter ρ = 1 − exp(−4), but the RMSE value is quite
sensitive to the selection of ρ. When the computation
time needed for tuning the hypre parameter ρ is con-
sidered, our algorithm is superior to VB-AKF in RMSE
and computational efficiency. For estimating R by the
IMM filter with a multiple-model approach, each model
used 111 noise models that changed uniformly between
0.1 and 1.2. The IMM filter with a large number of mod-
els (111 noise models) shows a 10% lower RMSE than
our proposed method, but the IMM filter is very expen-
sive computationally by as much as a factor of 197. Even
IMM filter with 64 noise models shows slightly worse
RMSE than our proposed method, but our method has
better computational efficiency by a factor of 66 over the
IMM.

Figure 6. Estimated trajectories of Q and R based on the multiple-model approach.
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Table III
RMSE of Estimated R Using the Multiple-model Approach (100 MC Runs; 4000 Samples)

Method by MM Computation time (sec) RMSE Description

VB-AKF 85 0.1624 ρ = 1 − exp(−3)
86 0.1178 ρ = 1 − exp(−4)
85 0.1506 ρ = 1 − exp(−5)

IMM 9038 0.1009 64 noise models
26 941 0.0836 111 noise models

Single-pass SGD 137 0.0922 RMSProp update,
Batch size = 16,

Smoothing weight = 0.7

Fig. 7 shows the averaged estimated trajectory of R
over 100 MC runs by VB-AKF (for ρ = 1 − exp(−4)),
IMM (for 111 noise models) and our single-pass SGD
(for RMSProp update with a mini-batch size of 16) in
themultiple-model scenario.For estimating the noise co-
variance parameters, all optimization methods can track
R correctly, but VB-AKF requires knowledge of the
heuristic factor ρ, and the computation cost of IMM is
substantially high.Here, the estimated trajectory ofR by
the single-pass algorithm was smoothed by a smoothing
weight of 0.7.

Figure 7. Trajectory of estimated R by multiple-model approach
(100 MC runs).

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a single-pass SGD al-
gorithm that estimates the noise covariance in adaptive
KFswith streaming data.Compared to the batchmethod
or multipass sequential algorithm, our proposed stream-
ing method is an order of magnitude faster, while still
achieving acceptable root mean square error (RMSE) of
the state estimates. This algorithm is suitable for nonsta-
tionary systems where noise covariances vary slowly and
can occasionally exhibit abrupt changes, as well as for

multiple models. The efficiency of the algorithm comes
from the recursive fading memory estimation of sample
cross-correlations of the innovations, along with an ac-
celerated SGDalgorithms and single-pass computations.
Our proposed method has been evaluated on several
test cases to demonstrate its computational efficiency,ac-
curacy, and filter consistency when compared to extant
approaches.

In the future, a number of research avenues can be
pursued, including (1) estimatingQ andR using one-step
lag smoothed residuals; (2) automatic model selection
from a library of dynamic models for model adaptation;
(3) use of (16) directly in a stochastic gradient algorithm,
while ensuring the positive definiteness ofR and positive
semi-definiteness ofQ (although preliminary results are
not promising); (4) use of maximum likelihood criterion
instead of the normalized time correlations of innova-
tions; and (5) explore the utility of the covariance esti-
mation algorithm as an alternative to IMMs.

APPENDIX A. PROOF OF POSTFIT RESIDUAL-BASED
IDENTIFIABILITY CONDITIONS

Let us assume the postfit error e j(k|k) = x(k) −
x̂ j(k|k). Note that F̃ j = (Inx − W jH j)F j and F̄ j =
F j(Inx − W jH j) are similar because F̃ j = (F j)−1F̄ jF j

given by [29], [32].

μ j(k)=H j(F̃ j)mej(k−m|k−m)+
{
H j

m−1∑
�=0

(F̃ j)m−1−�

× [
(Inx −W jH j)� jv j(k−m+�)−W j

× w j(k−m+�+1)
]}+w j(k)

=H j(F̃ j)mej(k−m|k−m)+
{
H j

m−1∑
p=0

(F̃ j)p

× [
(Inx −W jH j)� jv j(k−p−1)−W jw j(k−p)

]}
+ w j(k);k ≥ m. (57)
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The process ζ j(k), the weighted sum of postfit residual,
can be obtained as

ζ j(k)=
m∑
i=0

a jiμ
j(k− i)

=
m∑
i=0

a ji
{
H j(F̃ j)m−ie j(k−m|k−m)

+H j
m−1−i∑
p=0

(F̃ j)p
[
(Inx −W jH j)� jv j(k−i−p−1)

−W jw j(k−i−p)
]+w j(k− i)

}
. (58)

Let l = i+ p+ 1 and use the minimal polynomial

ζ j(k)=
m∑
i=0

a ji
{
H j

m∑
l=i+1

(F̃ j)l−i−1[(Inx −W jH j)

× � jv j(k−l)−W jw j(k−l+1)
]+w j(k− i)

}

=H j
m∑
l=1

l−1∑
i=0

a ji (F̃
j)l−i−1(Inz −W jH j)� jv j(k− l)

− H j
m−1∑
l=0

l∑
i=0

a ji (F̃
j)l−iW jw j(k−l)+

m∑
l=0

a jlw
j(k−l)

=
m∑
l=1

B̃ j
l v

j(k− l) +
m∑
l=0

G̃ j
lw

j(k− l), (59)

where B̃l
j and G̃l

j are given by

B̃l
j = H j

(
l−1∑
i=0

a ji (F̃
j)l−i−1

)
(Inz −W jH j)� j

= (Inz −H jW j)

(
l−1∑
i=0

a ji (F̄
j)l−i−1

)
� j

= (Inz −H jW j)Bj
l . (60)

G̃l
j = −H j

(
l∑

i=0

a ji F̃
l−i

)
W j + a jl Inz

= −(Inz−H jW j)H j(
l∑

i=0

a ji (F̄
j)l−i−1F jW j+a jl Inz

= −(Inz−H jW j)H j

(
l−1∑
i=0

a ji (F̄
j)l−i−1

)
F jW j

− a jl (Inz −H jW j)H j(F̄ j)−1F jW j + a jl Inz

= −(Inz−H jW j)H j

(
l−1∑
i=0

a ji (F̄
j)l−i−1

)
F jW j

− a jl H
jW j + a jl Inz

= −(Inz−H jW j)H j

(
l−1∑
i=0

a ji (F̄
j)l−i−1

)
F jW j

+ a jl (Inz −H jW j)

= (Inz−H jW j)Gj
l . (61)

APPENDIX B. PROOF OF CONVERGENCE OF THE
ITERATIVE ALGORITHM FOR Q

Since the predicted error covariance is related to the
updated error covariance via P̄ j = Pj +W jSj(W j)′, we
have

Pj = F jP j(F j)′ + � jQj(� j)′ −W jSj(W j)′. (62)

Since the Kalman gain is related to the updated error
covariance viaW j = Pj(H j)′(Rj)−1, the first iteration of
the updated state error covariance, Pj

1 , can be obtained
by solving the Riccati equation as

Pj
1 = F jP j

1 (F
j)′ + � jQj

1(�
j)′ −W jSj(W j)′

= F jP j
1 (F

j)′ + � jQj
1(�

j)′

− Pj
1 (H

j)′(Rj)−1S(Rj)−1H jPj
1

= F jP j
1 (F

j)′ + � jQj
1(�

j)′ − Pj
1 (H

j)′(Gj)−1H jPj
1 .

(63)

With this solution, W jSj(W j)′ ≥ Pj
1 (H

j)′(Gj)−1H jPj
1

because otherwise Pj
1 ≤ 0 at the initial iteration (Recall

� jQj
1(�

j)′ = W jSj(W j)′ at the initial iteration). Given
� jQj

2(�
j)′ = Pj

1 −F jP j
1 (F

j)′ −W jSj(W j)′ ≥ � jQj
1(�

j)′,
we have the second iteration of the updated state error
covariance,Pj

2 , as

Pj
2 = F jP j

2 (F
j)′ + � jQj

2(�
j)′ − Pj

2 (H
j)′(Gj)−1H jPj

2

= F jP j
2 (F

j)′ + Pj
1 − F jP j

1 (F
j)′ −W jSj(W j)′

− Pj
2 (H

j)′(Gj)−1H jPj
2 . (64)

Evidently,

δPj = Pj
1 − Pj

2

= F jδPj(F j)′ + � jQj
1(�

j)′ − Pj
1 + F jP j

1 (F
j)′

−W jSj(W j)′ − Pj
1 (H

j)′(Gj)−1H jPj
1

+ Pj
2 (H

j)′(Gj)−1H jPj
2

= F jδPj(F j)′+Pj
2 (H

j)′(Gj)−1H jPj
2−W jSj(W j)′

≤ 0. (65)

As the iterations proceed, Pj
n(H j)′(Gj)−1H jPj

n −
W jSj(W j)′ → 0, and Pj monotonically approaches Pj∗

from below.
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