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Bearing-only passive sensors have the advantage of being non-

detectable, but they come with target state observability limitations.

A new approach, the unscented Gauss-Helmert filter that fuses out-

of-sequence acoustic measurements (OOSM-A) and electro-optic

(EO) measurements (OOSM-AE), has been developed recently to

fuse non-delayed and delayed measurements from two heteroge-

neous passive sensors on a single platform to overcome these ob-

servability issues. In this paper, we extend the OOSM-AE ap-

proach to use interacting multiple models (IMM) to improve tar-

get tracking accuracy when tracking maneuvering targets. The ma-

neuvers considered are circular motion and S-turns. The resulting

IMMOOSM-AE handles the delayed acoustic measurements as out-

of-sequence measurements. Scenarios are simulated and tested with

both IMMOOSM-AE and OOSM-AE and results are presented.
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I. INTRODUCTION

There are operational merits to using passive sen-

sors. Passive sensors are usually covert and non-

detectable. However, range information is usually not

available from these sensors. It then becomes challeng-

ing to initiate and track a target from a single pas-

sive sensor. This is known as the bearing-only track-

ing (BOT) or target motion analysis (TMA) which has

been well studied in the literature [1] [7] [11]. On a

single platform, the rate of change of the measurement

must not be too small for the target to be observable.

In addition, the platform must be able to outmaneuver

the target. This means that the sensor platform must be

moving with at least one degree of motion greater than

the target [8]. For example, if the target is stationary,

the sensor platform must be moving. If the target is

moving at constant velocity, the sensor platform must

be accelerating or performing a turn. It has been shown

recently that a passive sensor can estimate the state of

a target doing a coordinated turn without observer ma-

neuver under a set of assumptions [9].

It is also possible to use a multiple passive sensor

configuration to triangulate targets to provide better

position estimates. The shortcoming to this approach

is that it requires the sensors to communicate with

each other (or to a fusion center) over a large baseline

for good position estimation. It is costly to deploy

such a sensor configuration over a large area without

using radio communication. And if radio is used for

communication, then the covert advantage can be lost.

Therefore, there is great advantage to have passive

sensors co-located on a single stationary platform and

yet be able to initiate and track maneuvering targets.

The problem of target tracking in the presence of

propagation delay has been studied recently. A num-

ber of approaches have been proposed, such as using a

particle filter with a successive approximation approach

(SAA) [13] [14] and the Unscented Gauss-Helmert Fil-

ter (UGHF) [18]. These approaches exploit the propaga-

tion delay to provide better estimates of the target state,

and have better performance than a naive filter that ig-

nores this phenomenon. The UGHF has been extended

to use an interacting multiple model (IMM) estimator

[6] [12] to track maneuvering targets [19]. However,

these approaches still suffer from the same constraints

as traditional BOT problems, i.e. the sensor platform

must outmaneuver the target and the rate of change of

measurement must not be too small.

A new approach, OOSM-AE, has been proposed

in [17] to fuse measurements from two heterogeneous

passive sensors on a single platform, one with negligible

delay (such as EO or ESM sensor) and one with finite

propagation delay (such as an acoustic sensor). The

OOSM-AE handles the acoustic measurements as out-

of-sequence measurements (OOSM) [2] [3] as they will

arrive later than the EO measurements. The OOSM-

AE has been demonstrated to improve observability and
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TABLE I

List of Acronyms

Acronyms Definition

AE Acoustic and EO/ESM fusion

BOT Bearing-only tracking

CT-H Coordinated turn model with high process noise

CT-L Coordinated turn model with low process noise

CV-L Constant velocity model with low process noise

EO Electro-optical (sensor)

ESM Electronic support measures

IMM Interacting multiple model (estimation)

IMMOOSM-AE Extension of OOSM-AE that uses IMM

OOSM Out-of-sequence measurement

OOSM-AE OOSM algorithm which fuses acoustic and EO

measurements

SAA Successive approximation algorithm

TMA Target motion analysis

UGHF Unscented Gauss-Helmert filter

allows the sensor platform to be stationary as long as

there is a sufficient rate of change in the measurements.

This work enables greater operational flexibility as the

platform no longer needs to be outmaneuvering the

target in order to initiate and track the target. The main

contribution of this paper is how to account properly for

the time delay in one of the sensors and take advantage

of this delay when tracking a maneuvering target using

two sensors on a single non-maneuvering platform.

The aim of this paper is to extend the OOSM-

AE fusion approach by combining it with interacting

multiple model (IMM) estimation. The IMMOOSM-

AE estimator captures target maneuvers by using ad-

ditional motion models by calculating their likelihoods.

Three motion models are used in the present work in

IMMOOSM-AE: a low process noise nearly constant

velocity model (CV-L), a high process noise coordi-

nated turn model (CT-H) and a low process noise nearly

coordinated turn model (CT-L).

Table I presents the lists of acronyms used in this

paper.

Section II formulates the problem and defines the

target state, measurement models and transition mod-

els. In Section III, the track initiation algorithm, which

provides a starting track state and covariance for the

filter, is described. In Section IV, the tracking filter is

presented and the individual steps, such as IMM mix-

ing, model based prediction, retrodiction and update,

are described. In Section V, the two test scenarios (cir-

cular motion and connected S-turns) are presented and

the results for IMMOOSM-AE and OOSM-AE (with

three different levels of process noise) are provided. In

Section VI, the conclusions are presented.

II. PROBLEM FORMULATION

Both the EO passive sensor, s1, and the acoustic

passive sensor, s2, are assumed to be co-located on

a stationary platform at xs = [xs,ys]0. For simplicity,
xs = ys = 0 in this paper.

The target state for the EO sensor is

xE(ts1k ) = [x(t
s1
k ) y(ts1k ) _x(ts1k ) _y(ts1k ) !(ts1k )]

0 (1)

where ts1k is time at which the k
th EO signal is received

by the EO sensor; x, y, _x, _y denote the position and

velocity of the target and ! denotes the turn rate. We

assume that the delay in propagation for EO signal is

negligible, i.e. ts1k = t
e1
k , where t

e1
k is the time at which

the signal is emitted from the target.

The measurement model for the EO sensor is1

z(ts1k ) = tan
¡1
·
x(ts1k )¡ xs
y(ts1k )¡ ys

¸
+ws1 (t

s1
k ) (2)

where ws1 is the zero mean white Gaussian measurement

noise, with variance ¾2s1 .

The transition model for the EO sensor is

xE(ts1k ) = f
¤[xE(ts1k¡1), t

s1
k , t

s1
k¡1]+ v

¤(ts1k , t
s1
k¡1) (3)

where f(¢) is the transition function, v is the process
noise, and ¤ stands for the different motion models given
later in (30) and (33).

The acoustic sensor detects the target with a propa-

gation delay. The target state for the acoustic sensor is

xA(te2j ) = [x(t
e2
j ) y(te2j ) _x(te2j ) _y(te2j ) !(te2j ) te2j ]

0

(4)

where te2j is time at which the jth acoustic signal is

emitted by the target. Note that the acoustic target state

includes the emission time te2j .

The time delay the acoustic sensor detects the target

state with is denoted by ±j,`. The relationship between

the target acoustic emission time te2j and the sensor

receive time ts2` is

te2j = t
s2
` ¡ ±j,` (5)

where the delay is given by

±j,` =
rj,`

cp
(6)

with rj,` the range from the target at te2j to the sensor2

at ts2` , and c
p is the propagation speed of sound in the

medium (air or water).

The measurement model for the acoustic sensor is

z(ts2j ) = tan
¡1
"
x(te2j )¡ xs
y(te2j )¡ ys

#
+ws2 (t

e2
j ) (7)

where ws2 is a zero-mean white Gaussian measurement

noise with variance ¾2s2 .

An illustration of the emission and reception times

is given in Fig. 1.

Due to the propagation delay described in (5), the

state transition model is implicit (see (8)) and a Gauss-

Helmert model is required to represent the implicit state

transition. The Gauss-Helmert model has been shown to

be equivalent to the Markov model used in a Kalman

1The present work assumes perfect data association.
2The sensor can move, but we considered a stationary sensor since

this is the most difficult situation for passive tracking.
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Fig. 1. Illustration of emission time and reception time

filter in [16]. However, there is no explicit formula

obtainable for a retrodicted (or predicted) state from

a current state. The Gauss-Helmert transition model is

used for performing retrodiction and state update with

the OOSM in Section IV-B.1 and the transition model

is, instead of (3), of the following implicit form

g¤[xA(te2j ),x
E(ts1k )] + v

¤(te2j , t
s1
k ) = 06 (8)

where xE(ts1k ) is the latest track state, x
A(te2j ) is the state

at the time at which the acoustic signal is emitted, g(¢) is
the Gauss-Helmert transition function, v is the process

noise, 06 is the 6-dimensional zero vector and
¤ stands

for the different motion models used in the IMMOOSM-

AE given later in (55) and (69). Note that the xE state

has dimension 5 while the xA state has dimension 6.

The track is maintained in the 5-dimensional xE state

while the 6-dimensional xA state is only used during

retrodiction and OOSM innovation calculation using

UGHF.

III. TRACK INITIATION

Given an initial batch of EO and acoustic bearing-

only measurements from a single stationary platform,

z= [z(ts1) : : : z(t
s
n)]

0 s 2 fs1,s2g (9)

we want to initiate a track at time tsn. We define the initial

track state, x, at time tsn (the end of the initialization

batch)

x= [x(tsn) y(tsn) _x(tsn) _y(tsn)]
0 (10)

We assume that the target is moving at a constant ve-

locity during the initialization batch.3 The relationship

between x and z is

z= h(x) +w (11)

3Other motion models can be used.

where component k of h is

hk(x, t
s
k) =

8>>><>>>:
tan¡1

·
x+ _x(tsk ¡ tsn)¡ xs
y+ _y(tsk ¡ tsn)¡ ys

¸
if s= s1

tan¡1
"
x+ _x(tsk ¡ tsn¡ ±j,k)¡ xs
y+ _y(tsk ¡ tsn¡ ±j,k)¡ ys

#
if s= s2

(12)

where ±j,k is the time delay (6) for the acoustic signals

and w is the batch measurement noise.

We assume w is zero mean Gaussian, with uncorre-
lated components. The covariance of w (assuming for

simplicity that ¾s1 = ¾s2 = ¾b) is

R= ¾2bIn (13)

where In is the n£n identity matrix.
The estimate of the state x can be obtained using

the maximum likelihood (ML) approach by solving the

following nonlinear least squares problem [4]

x̂= argmin
x
f[z¡h(x)]0R¡1[z¡h(x)]g (14)

The Jacobian matrix of h(¢), required for solving the
above,

H(x) = (rxh[x]0)0 (15)

can be obtained by performing numerical partial differ-

entiation on h(¢) with respect to each component of x
as in [17].

The track initiation algorithm is described in Table II

where `max is the maximum number of iterations before

it terminates and dthreshold is the threshold value for the

step size below which it terminates.

IV. THE TRACKING FILTER

The inputs to the dynamic state estimator are the EO

and acoustic measurements. The EO measurements ar-

rive instantaneously, while the acoustic measurements

arrive with a propagation delay. The estimator up-

dates the state at the EO measurement times and treats

the acoustic measurements as out-of-sequence measure-
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Fig. 2. Overview of IMMOOSM-AE estimator

ments (OOSM). An overview of a single cycle of the

estimator is shown in Fig. 2.

The IMM incorporates 3 motion models: CV-L

(nearly constant velocity, with low process noise–white

noise acceleration), CT-H and CT-L (nearly coordinated

turn with high and low noise). Model 1 is CV-L, model

2 is CT-H and model 3 is CT-L. The purpose of the

CV-L is to capture the constant velocity motion. Like-

wise, the purpose of the CT-L is to capture the ongoing

coordinated turn maneuvers. The purpose of the CT-H

model is to facilitate the abrupt change from CV-L to

CT-L and vice versa (turn onset and termination). The

turn rate, !, must be allowed to switch from zero (during

constant velocity) to a non-zero value (during coordi-

nated turn) in a short time. Using only CV-L and CT-L

with low process noise in the turn rate will not enable

the estimator to follow this change quickly.

A. EO Measurements

This section describes how the EO measurements

are handled in the IMM estimator.

1) IMM Mixing:
In IMM estimation, a mode probability, ¹ik, is cal-

culated for each motion model i at time k. The IMM

TABLE II

Track Initiation

1) Compute initial estimate x̂0 based on EO bearing measurement at

tsn and a moderate range and zero velocity.

2) Initialize `= 0.

3) While ` < `max or jdj> dthreshold
a) P` = [H(x̂`)0R¡1H(x̂`)]¡1 (16)

b) d= P`[H(x̂`)0]¡1R¡1[z¡h(x̂`)] (17)

c) x̂`+1 = x̂`+d (18)

4) Assign x̂` and P` as the initiated track state and covariance.

estimation is able to capture the motion model change

by dynamically adjusting ¹i according to the filter up-

date. For example, a target can move with nearly con-

stant velocity and subsequently perform a coordinated

turn. Then, ¹1 for CV-L model will become the highest

among the different motion models during its constant

velocity motion at the start and, subsequently, ¹3 for

the CT-L model will become highest during the turn-

ing motion. The evolution of the mode probabilities, ¹i,

depends on the transition probability matrix ¦.

The transition probability matrix, ¦, used in the

present work is a generalization of the discretized

continuous-time Markov chain transition probability

matrix from Eq. (2.6.6-15) in [5].

¦(T) =
1

¸

264¸2 +¸3 +¸1e
¡¸T ®[¸1¡¸1e¡¸T] (1¡®)[¸1¡¸1e¡¸T]

¯[¸2¡¸2e¡¸T] ¸1 +¸3 +¸2e
¡¸T (1¡¯)[¸2¡¸2e¡¸T]

°[¸3¡¸3e¡¸T] (1¡ °)[¸3¡¸3e¡¸T] ¸1 +¸2 +¸3e
¡¸T

375 (19)

where, with ¸m, m= 1,2,3, the transition probability

rates (their inverses are the expected sojourn times in

the corresponding states of the Markov chain),

¸=

3X
n=1

¸n (20)

T = jts1k ¡ ts1k¡1j (21)

for EO IMM mixing (the prediction time interval) or

T = jte2j ¡ ts1k j (22)

for acoustic OOSM mode probability update,4 and ®, ¯

and ° are normalizing factors which are introduced to

keep the sum of the row elements of ¦ to be unity.5

4This is the difference between the time stamp of the acoustic mea-

surement and the time for which the state update is performed (the

retrodiction interval, see (39) in the sequel). See Fig. 1 for the time

notations.
5The 2-dimensional Markov chain transition matrix is rigorously de-

rived in Papoulis [15] from the continuous-time chain with appropri-

ate transition rates. The 3-dimensional continuous-time Markov chain

does not have an explicit transition matrix, so this is the generalization

of the 2-dimensional Markov chain transition matrix to 3 dimensions

by adding another transition rate.
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In IMMOOSM-AE, ¦ is a 3£ 3 matrix, since three
motion models are used: CV-L, CT-H, and CT-L. The

CV model assumes the turn rate to be zero while the

two CT models include the turn rate. Thus, unbiased

mixing must be done [20]. The weighted sum of the

probabilities corresponding to turning (¹2,¹3) from the

two CT models are transferred to the modified state and

covariance for the CV model for the purpose of mixing.

This ensures that the resulting elements corresponding

to turn rate (!̂2, !̂3) in the two CT models are unbiased

after mixing. The modification is done according to [20]

as follows:

x̂E1M =

·
x̂E1c

!̂2¹2j1 + !̂
3¹3j1

¸
(23)

PE1M =

·
PE1c 0

0 PE2! ¹2j1 +P
E3
! ¹3j1

¸
(24)

where x̂E1c and PE1c are the blocks common to both

CV and CT models, i.e. corresponding to the x, y,
_x and _y states and ¹2j1, ¹3j1 are the IMM mixing

probabilities [4].

TABLE III

IMM Mixing

¹i(t
s1
k
j ts1
k¡1) =

mX
n=1

¦ni¹
n(t
s1
k¡1) (25)

¹nji(ts1
k¡1) =

¦ni¹
n(t
s1
k¡1)

¹i(t
s1
k
j ts1
k¡1)

(26)

x̂E0i(t
s1
k¡1) =

mX
n=1

x̂En(t
s1
k¡1)¹

nji(ts1
k¡1) (27)

PE0i(t
s1
k¡1) =

mX
n=1

¹nji(ts1
k¡1)[P

En(t
s1
k¡1)

+ (x̂En(t
s1
k¡1)¡ x̂E0i(t

s1
k¡1)) (28)

(x̂En(t
s1
k¡1)¡ x̂E0i(t

s1
k¡1))

0] (29)

The IMM mixing uses the mixing probability (26)

based on the transition probability matrix, ¦, and com-

putes the initial estimate x̂E0ik¡1 and covariance P
E0i
k¡1 ac-

cording to (27) and (28), respectively, where i corre-

sponds to each model. The IMM mixing steps are given

in Table. III, and the mixed estimates and covariances

from tk¡1 are used as initial condition for the mode-
matched filters at time tk in Section IV-A.2.

2) Prediction and Update using UKF:
The unscented Kalman filter (UKF) is used to pre-

dict and update the state for each mode with the EO

measurements.

The transition model, fCV, and process noise, QCV,
for the CV model6 are given below.

fCV[xE(ts1k¡1),Tk,k¡1]

=

26666664

1 0 Tk,k¡1 0 0

0 1 0 Tk,k¡1 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

37777775x
E(ts1k¡1) (30)

E[vCV(¢)vCV(¢)0]
=QCV(ts1k ¡ ts1k¡1)

=

2666666666666664

T3k,k¡1
3

0
T2k,k¡1
2

0 0

0
T3k,k¡1
3

0
T2k,k¡1
2

0

T2k,k¡1
2

0 Tk,k¡1 0 0

0
T2k,k¡1
2

0 Tk,k¡1 0

0 0 0 0 0

3777777777777775
q

(31)

where
Tk,k¡1 = t

s1
k ¡ ts1k¡1 (32)

where q is the process noise power spectral density

(PSD) that affects the x, y, _x and _y states. The physical

dimension of q is acceleration2/frequency.

The transition model, fCT, and process noise, QCT,

for the CT model are given below.

fCT[xE(ts1k¡1),Tk,k¡1] =

2666666666664

1 0
sin[!(ts1k¡1)Tk,k¡1]

!(ts1k¡1)
¡1¡ cos[!(t

s1
k¡1)Tk,k¡1]

!(ts1k¡1)
0

0 1
1¡ cos[!(ts1k¡1)Tk,k¡1]

!(ts1k¡1)
sin[!(ts1k¡1)Tk,k¡1]

!(ts1k¡1)
0

0 0 cos[!(ts1k¡1)Tk,k¡1] ¡sin[!(ts1k¡1)Tk,k¡1] 0

0 0 sin[!(ts1k¡1)Tk,k¡1] cos[!(ts1k¡1)Tk,k¡1] 0

0 0 0 0 1

3777777777775
xE(ts1k¡1) (33)

6This is actually a white noise acceleration (WNA) model.
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TABLE IV

The UKF steps

1) Generate the preliminary sigma points and weights based on the

initial estimate x̂E0i(t
s1
k¡1) and covariance P

E0i(t
s1
k¡1) [10]; i

denotes the mode.

2) Predict the preliminary sigma points using transition model, f.

3) Compute predicted x̂Ei(t
s1
k
j ts1
k¡1) and P

Ei(t
s1
k
j ts1
k¡1) based on

propagated sigma points and weights.

4) Add the model process noise Q¤ to PEi(ts1
k
j ts1
k¡1) where Q

CV and

QCT are given in (31) and (34).

5) Recalculate the sigma points to account for the added process

noise covariance.

6) Compute the predicted ẑi(t
s1
k
j ts1
k¡1) based on the propagated

sigma points and weight using the measurement model.

7) Calculate the innovation covariance SEi(t
s1
k
).

8) Use the sensor measurement z(t
s1
k
) to obtain the innovation

ºEi(t
s1
k
), the updated state x̂Ei(t

s1
k
), and covariance PEi(t

s1
k
).

E[vCT(¢)vCT(¢)0]
=QCT(ts1k ¡ ts1k¡1)

=QCV(ts1k ¡ ts1k¡1)+

26666664

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 Tk,k¡1

37777775q!
(34)

where
Tk,k¡1 = t

s1
k ¡ ts1k¡1 (35)

where q! is the process noise PSD that affects the !

state (angular rate). The physical dimension of q! is

(angular acceleration)2/frequency

The UKF prediction and update are performed for

each model as described in Table IV.

3) Mode Probability Update and State Estimate/
Covariance Combination:
With the mode-conditioned innovation, ºEi(ts1k ), and

its covariance, SEi(ts1k ), the mode probabilities, ¹
i(ts1k ),

are updated as

¹i(ts1k ) =
¹i(ts1k j ts1k¡1)N (ºEi(ts1k );0,SEi(ts1k ))Pm
n=1¹

n(ts1k j ts1k¡1)N (ºEn(ts1k );0,SEn(ts1k ))
(36)

where N (ºEi(ts1k );0,SEi(ts1k )) is the model likelihood

function based on the latest measurement.

The combined state estimate, x̂E(ts1k ), and covariance,
PE(ts1k ), are obtained as

x̂E(ts1k ) =

mX
n=1

¹n(ts1k )x̂
En(ts1k ) (37)

PE(ts1k ) =

mX
n=1

¹n(ts1k )[P
En(ts1k )

+ (x̂En(ts1k )¡ x̂E(ts1k ))(x̂En(ts1k )¡ x̂E(ts1k ))0]
(38)

B. Acoustic Measurements

This section describes how the acoustic measure-

ments are handled in the IMM estimator. Acoustic mea-

surements arrive later than the EO measurement due to

the slower propagation of sound, i.e. they are OOSM

and they are incorporated into the IMM according to

the procedure described in Sec. 2.6.6 of [5]. The cur-

rent state estimate must be retrodicted back in time to

the time of acoustic signal emission before the update.

This is handled by the Unscented Gauss-Helmert Filter

(UGHF) retrodiction and the update with the OOSM is

then carried out as described in the sequel.

1) Retrodiction and OOSM innovation calculation
using UGHF:
The process noise is not taken into consideration in

the state for algorithm C7 (see Sec 2.6.3 of [5]).8 The

Gauss-Helmert model (GHM) is thus replaced by

g¤[x̂A(te2j j ts1k ), x̂E(ts1k )] = 06 (39)

where x̂A(te2j j ts1k ) is the (6-dimensional) retrodicted

state, which also includes the emission time, required

for the measurement update and x̂E(ts1k ) is the latest (5-
dimensional) track state estimate.

The Markov model used in a Kalman filter relies

on an explicit form of the state transition model. In

contrast, the GHM is for situations where there is only

an implicit transition model and it uses the Gauss-

Newton algorithm to obtain the retrodicted state by

solving (39). The Gauss-Newton iteration with index

p is

[x̂A(te2j j ts1k )]p

= [x̂A(te2j j ts1k )]p¡1¡A¡1g¤[[x̂A(te2j j ts1k )]p¡1, x̂E(ts1k )]
(40)

where A is the Jacobian matrix

A=
@g¤[[x̂A(te2j j ts1k )]p, x̂E(ts1k )]

@[x̂A(te2j j ts1k )]p
(41)

and [¢]p indicates the estimated value in the pth iteration.
The algorithm is terminated when p= 1000 or

j[x̂A(te2j j ts1k )]p¡ [x̂A(te2j j ts1k )]p¡1j
j[x̂A(te2j j ts1k )]p¡1j

< 0:1 (42)

The GHM for CV and CT can be found in Ap-

pendix A and Appendix B respectively. The starting

point for the Gauss-Newton algorithm, [x̂A(te2j j ts1k )]0, is
computed by assuming the initial emission time

[te2j ]
0 = ts1k ¡

q
x(ts1k )

2 + y(ts1k )
2

cp
: (43)

7This is the simplest retrodiction algorithm, which does not take into

account the process noise.
8This is one of the algorithms presented in [5], chosen for the present

work.

TRACKING A MANEUVERING TARGET USING TWO HETEROGENEOUS PASSIVE SENSORS 115



TABLE V

Retrodiction and Update with OOSM in UGHF

1) Generate sigma points and weights based on x̂Ei(t
s1
k
) and PEi(t

s1
k
);

i denotes the mode.

2) Retrodict sigma points with the transition model, g, using the

Gauss-Newton algorithm.

3) Compute x̂Ai(t
e2
j
j ts1
k
) and PAi(t

e2
j
j ts1
k
) based on propagated

sigma points and weights.

4) Compute the retrodicted measurement ẑi(t
e2
j
j ts1
k
) based on the

propagated sigma points and weights using the measurement

model.

5) Calculate innovation covariance SAi(t
s1
k
, t
e2
j
).

6) Use the sensor measurement z(t
s2
j
) to obtain innovation

ºAi(t
s1
k
, t
e2
j
), the updated state x̂Ei(t

s1
k
, t
e2
j
) and the updated

covariance PEi(t
s1
k
, t
e2
j
).

With the initial emission time [te2j ]
0, the remaining ele-

ments in the initial [x̂A(te2j j ts1k )]0 can be computed from
x̂E(ts1k ) using the standard CV and CT transition model,
f, given in (30) and (33), respectively.

The UGHF retrodiction and its update with the

OOSM are done for each model as described in Table V.

2) Mode probability and state update with the OOSM
and state/covariance combination:
The mode probability update with the acoustic mea-

surements is described here. The transition probability

matrix ¦(T) from (19), with Tj,k = jte2j ¡ ts1k j, is used for
the mode probability update with the OOSM as

¹i(ts1k , t
e2
j )

=
1

c

"
mX
n=1

N (ºAn(ts1k , te2j );0,SAn(ts1k , te2j ))¦in
#
¹i(ts1k )

(44)

where ¹i(ts1k , t
e2
j ) is the updated mode probability at t

s1
k

using the OOSM from te2j .

c=

mX
`=1

mX
n=1

N (ºAn(ts1k , te2j );0,SAn(ts1k , te2j ))¦`n¹`(ts1k ) (45)

The state and covariance combination is done fol-

lowing the update as follows:

x̂E(ts1k , t
e2
j ) =

mX
n=1

¹n(ts1k , t
e2
j )x̂

En(ts1k , t
e2
j ) (46)

PE(ts1k , t
e2
j ) =

mX
n=1

¹n(ts1k , t
e2
j )[P

En(ts1k , t
e2
j )

+ (x̂En(ts1k , t
e2
j )¡ x̂E(ts1k , te2j ))

(x̂En(ts1k , t
e2
j )¡ x̂E(ts1k , te2j ))0] (47)

V. SCENARIOS AND RESULTS

Two scenarios are generated and tested by

IMMOOSM-AE and OOSM-AE. Three variants of

OOSM-AE with different levels of process noise are

Fig. 3. U-turn scenario

Fig. 4. S-turn scenario

tested. In the U-turn scenario, the target starts at

(¡2500,1300) and travels east at 70 m/s for 35 s. Then,
it makes a right 3 deg/s turn for 60 s (acceleration of

3.7 m/s2). Finally, it travels west at 70 m/s for 35 s. An

illustration is given in Fig. 3. In the S-turn scenario, the

target starts at (¡3000,1350) and travels east at 70 m/s
for 80 s. Next, it makes a right 4.5 deg/s turn for 35 s

(acceleration of 5.5 m/s2). Next, it travels west-south-

west at 70 m/s for 45 s. Next, it makes a left 3 deg/s

turn for 30 s (acceleration of 3.7 m/s2). Finally, it travels

south-south-east at 70 m/s for 50 s. This is illustrated in

Fig. 4.

For OOSM-AE which consists of a single CV model

using Eq. (1.5.2-5) from [5], the process noise PSD for

the single-model (compromise) filter is chosen as

q= a2ave¿ (48)

with aave = 1:4 m/s
2 (compromise between exact CV

motion and turn which has a= 3:5 m/s2) and ¿ = 1 s,

one obtains q= 2 m2=s3; ¿ is defined as the time interval
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over which the acceleration is assumed to be approxi-

mately constant. The scenarios are tested by three vari-

ants of OOSM-AE: OOSM-AE-Q1 with q1 = 2 m
2=s3,

OOSM-AE-Q2 with q2 = 4 m
2=s3 (which corresponds

to a= 2 m/s2) and OOSM-AE-Q3 with q3 = 9 m
2=s3

(which corresponds to a= 3 m/s2).

IMMOOSM-AE consists of 3 models: CV-L, CT-

H and CT-L. For the CT-H and the CT-L model, the

process noise PSD is obtained using the formula (1.5.3-

5) from [5] (modified for turn rate increments)

q! =

μ
¢!

¿

¶2
¿ =

(¢!)2

¿
(49)

With ¢! = 1 deg/s and ¿ = 1 s, one obtains qH! =

1 deg2=s3 for the CT-H model. With ¢! = 0:1 deg/s

and ¿ = 1 s, one has qL! = 0:01 deg
2=s3 for the CT-L

model. For the CV-L model, the process noise PSD is

chosen using acceleration a=¢!v where v = 70 m/s

and ¢! = 0:1 deg/s. This yields

a=¢!v = 0:1 deg/s ¢70 m/s = 0:1¼
180

¢70 = 0:12 m/s2
(50)

Using (48) and (50), the PSD for CV-L is taken as

q= 1:5 ¢ 10¡2 m2=s3.
The exponential sojourn time distribution parameter

for the computing the transition probability are set to be

¸1 = ¸3 = 10
¡2 s¡1 and ¸2 = 0:2 s

¡1. The normalizing
factors for the transition probability matrix (19) are set

as follows: ®= 0:9, ¯ = 0:5 and ° = 0:1.

For both of the scenarios, the sensor is stationary at

the origin. Both the EO and acoustic sensor have mea-

surement error with ¾b = 1 deg. The sampling period for

the EO sensor is 1 s, while the sampling period for the

acoustic sensor is 2 s. The propagation speed of sound,

cp, is 344 m/s.

The first 20 s of measurements data are used for

track initiation assuming exact CV motion. Subse-

quently, OOSM-AE-Q1, OOSM-AE-Q2, OOSM-AE-

Q3 and IMMOOSM-AE are used to track the target.

100 Monte Carlo runs are generated and the aver-

age root-mean-square error (RMSE) for position and

velocity are presented in Tables VI and VII. The aver-

age position RMSE
p

k(N) at time k from N Monte Carlo

runs, is calculated as follows

RMSE
p

k(N) =

vuut 1

N

NX
n=1

kx̂pk (n)¡ xpgk k2 (51)

where x̂
p
k(n) is the position state estimate at time k for

run n, x
pg
k is the position ground truth9 at time k. The

velocity RMSE
v

k(N) is calculated in the same manner, by

replacing x̂
p
k(n) and x

pg
k with the velocity state estimate

x̂vk(n) and velocity ground truth x
vg
k respectively.

9The ground truth is not noisy in the example considered, it only

exhibits maneuvers that have to be modeled as process noise by the

tracker. It should be pointed out that white process noise is needed

for the state to be a Markov process in order to estimate it recursively.

TABLE VI

Average RMSEp (in m) for each scenario and 95% confidence

region for the true RMSEp

U-turn scenario S-turn scenario

OOSM-AE-Q1 217.8 [191.3, 252.7] 539.2 [473.6, 625.5]

OOSM-AE-Q2 208.1 [182.8, 241.4] 476.0 [418.1, 552.2]

OOSM-AE-Q3 182.8 [160.6, 212.1] 416.6 [365.9, 483.3]

IMMOOSM-AE 84.6 [74.3, 98.1] 188.3 [165.4, 218.4]

TABLE VII

Average RMSEv (in m/s) for each scenario and 95% confidence

region for the true RMSEv

U-turn scenario S-turn scenario

OOSM-AE-Q1 30.6 [26.9, 35.5] 30.8 [27.1, 35.7]

OOSM-AE-Q2 28.7 [25.2, 33.3] 28.6 [25.1, 33.2]

OOSM-AE-Q3 26.3 [23.1, 30.5] 27.0 [23.7, 31.3]

IMMOOSM-AE 11.3 [9.9, 13.1] 11.9 [10.5, 13.8]

TABLE VIII

Track loss for the S-turn scenario

No. of lost tracks

OOSM-AE-Q1 87

OOSM-AE-Q2 76

OOSM-AE-Q3 57

IMMOOSM-AE 1

The 95% confidence region for the true position

RMSE given the average RMSE(N) is, according to

Appendix C, given by the following interval.

RMSE

RMSE(N)

2
"μ

1

N
Â2N(97:5%)

¶¡1=2
,

μ
1

N
Â2N(2:5%)

¶¡1=2#
(52)

which for N = 100 becomes

RMSE 2 [0:88RMSE(N),1:16RMSE(N)] (53)

The above is used for the average over all time steps, i.e.,

RMSE
p
(N) =

PK
k=1RMSE

p

k(N)

K
(54)

with K being the total number of time steps. The 95%

confidence region for the average velocity RMSE is

obtained in the same manner. These 95% confidence

regions are presented in Tables VI and VII for position

and velocity, respectively.

Clearly, the IMM estimation shows its value versus

any single-model based filter, no matter what the latter’s

choice of process noise PSD.

The track is defined to be lost when the distance

between the track position estimate and the ground

truth becomes greater than 1500 m for more than 10 s

consecutively. There are no lost tracks for the U-turn

scenario for all four trackers. The number of lost tracks

for the S-turn scenario are presented in Table VIII. It can
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Fig. 5. OOSM-AE-Q1 (top left), OOSM-AE-Q2 (top right), OOSM-AE-Q3 (bottom left) and IMMOOSM-AE (bottom right) single run

result for the U-turn scenario

Fig. 6. Average position RMSE (left) and average velocity RMSE (right) for the U-turn scenario. The dashed lines around the

IMMOOSM-AE curve represent the variability (2¾) of its performance.

be observed that the IMM filter is able to track the target

without very little lost tracks, while the single-models

filter suffer from significant lost tracks. The number of

lost tracks is observed to be higher for the lower process

noise single-model filter.

For a single run of the U-turn scenario, the esti-

mated trajectories with OOSM-AE-Q1, OOSM-AE-Q2,

OOSM-AE-Q3 and IMMOOSM-AE are shown in Fig 5.

Again, no single-model filter performs even close to the

IMM. It can be observed that the higher process noise
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Fig. 7. OOSM-AE-Q1 (top left), OOSM-AE-Q2 (top right), OOSM-AE-Q3 (bottom left) and IMMOOSM-AE (bottom right) single run

result for the S-turn scenario

Fig. 8. Average position RMSE (left) and average velocity RMSE (right) for the S-turn scenario. The dashed lines around the

IMMOOSM-AE curve represent the variability (2¾) of its performance.

single-model filter, OOSM-AE-Q3, is able to track the

maneuvering target better than its lower process noise

counterparts.

The position and velocity RMSE from 100 Monte

Carlos runs for the U-turn scenario for OOSM-AE-

Q1, OOSM-AE-Q2, OOSM-AE-Q3 and IMMOOSM-

TRACKING A MANEUVERING TARGET USING TWO HETEROGENEOUS PASSIVE SENSORS 119



AE are shown in Fig. 6. The dashed lines indicate the

95% confidence region for RMSE for IMMOOSM-AE.

It can be seen that the variability of the performance

of the IMMOOSM-AE is much smaller than the differ-

ence between it and the performance of the OOSM-AE

filters. The maneuvering interval is shown as a thicker

line on the time axis.

For a single run of the S-turn scenario, the esti-

mated trajectories with OOSM-AE-Q1, OOSM-AE-Q2,

OOSM-AE-Q3 and IMMOOSM-AE are shown in Fig

7. It can be observed in this particular run that none of

the single-model filters are able to cope with the first

sharp turn (4.5 deg/s). On the other hand, the IMM fil-

ter is able to track the maneuvering targets through both

turns.

The position and velocity RMSE from 100 Monte

Carlos runs for the S-turn scenario for OOSM-AE-

Q1, OOSM-AE-Q2, OOSM-AE-Q3 and IMMOOSM-

AE are shown in Fig. 8. The dashed lines indicate the

95% confidence region for RMSE for IMMOOSM-AE.

The maneuvering intervals are shown as thicker lines

on the time axis.

VI. CONCLUSIONS

The IMMOOSM-AE estimator is capable of track-

ing a maneuvering target by fusing the measurements

from an EO (or ESM) sensor and the delayed measure-

ments from an acoustic sensor when both are on the

same stationary platform. As demonstrated in the test

scenarios, the estimation accuracy in terms of RMSE

is improved significantly over the single-model based

OOSM-AE.

APPENDIX A GHM FOR CV

The GHM transition model, gCV, for the CVmodel is

gCV[x̂A(te2j j ts1k ), x̂E(ts1k )]
= [gCV1 (¢) gCV2 (¢) gCV3 (¢) gCV4 (¢) gCV5 (¢) gCV6 (¢)]0

(55)

where
gCV1 = x(te2j )¡ x(ts1k )¡ _x(ts1k )Tj,k (56)

gCV2 = y(te2j )¡ y(ts1k )¡ _y(ts1k )Tj,k (57)

gCV3 = _x(te2j )¡ _x(ts1k ) (58)

gCV4 = _y(te2j )¡ _y(ts1k ) (59)

gCV5 = 0 (60)

gCV6 = te2j +
rj,`

cp
¡ ts2` (61)

and
Tj,k = t

e2
j ¡ ts1k < 0 (62)

rj,` =
q
[x(te2j )¡ xs(ts2` )]2 + [y(te2j )¡ ys(ts2` )]2

=
q
x(te2j )

2 + y(te2j )
2 (63)

The Jacobian matrix, ACV, for the CV model is

ACV =

266666666666666664

1 0 0 0 0
@gCV1
@te2j

0 1 0 0 0
@gCV2
@te2j

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

@gCV6
@x(te2j )

@gCV6
@y(te2j )

0 0 0 1

377777777777777775
(64)

where
@gCV1
@te2j

=¡ _x(ts1k ) (65)

@gCV2
@te2j

=¡ _y(ts1k ) (66)

@gCV6
@x(t

e2
j )

=
[[x(t

e2
j j ts1k )]p¡ xs(ts2` )]

cp
q
[[x(t

e2
j j ts1k )]p¡ xs(ts2` )]2 + [[y(te2j j ts1k )]p¡ ys(ts2` )]2

=
[x(t

e2
j j ts1k )]p

cp
q
[[x(t

e2
j j ts1k )]p]2 + [[y(te2j j ts1k )]p]2

(67)

@gCV6
@y(t

e2
j )

=
[[y(t

e2
j j ts1k )]p¡ ys(ts2` )]

cp
q
[[x(t

e2
j j ts1k )]p¡ xs(ts2` )]2 + [[y(te2j j ts1k )]p¡ ys(ts2` )]2

=
[y(t

e2
j j ts1k )]p

cp
q
[[x(t

e2
j j ts1k )]p]2 + [[y(te2j j ts1k )]p]2

(68)

APPENDIX B GHM FOR CT

The GHM transition model, gCT, for the CT model is

gCT[x̂A(te2j j ts1k ), x̂E(ts1k )]
= [gCT1 (¢) gCT2 (¢) gCT3 (¢) gCT4 (¢) gCT5 (¢) gCT6 (¢)]0

(69)

where

gCT1 = x(te2j )¡ x(ts1k )¡
sin[!(ts1k )Tj,k]

!(ts1k )
_x(ts1k )

+
1¡ cos[!(ts1k )Tj,k]

!(ts1k )
_y(ts1k ) (70)

gCT2 = y(te2j )¡ y(ts1k )¡
1¡ cos[!(ts1k )Tj,k]

!(ts1k )
_x(ts1k )

¡ sin[!(t
s1
k )Tj,k]

!(ts1k )
_y(ts1k ) (71)
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gCT3 = _x(te2j )¡ cos[!(ts1k )Tj,k] _x(ts1k )
+ sin[!(ts1k )Tj,k] _y(t

s1
k ) (72)

gCT4 = _y(te2j )¡ sin[!(ts1k )Tj,k] _x(ts1k )
¡ cos[!(ts1k )Tj,k] _y(ts1k ) (73)

gCT5 = !(te2j )¡!(ts1k ) (74)

gCT6 = te2j +
rj,`

cp
¡ ts2` (75)

and

Tj,k = t
e2
j ¡ ts1k < 0 (76)

rj,` =
q
x(te2j )

2 + y(te2j )
2 (77)

The Jacobian matrix, ACT, for the CT model is

ACT =

26666666666666666666664

1 0 0 0 0
@gCT1
@te2j

0 1 0 0 0
@gCT2
@te2j

0 0 1 0 0
@gCT3
@te2j

0 0 0 1 0
@gCT4
@te2j

0 0 0 0 1 0

@gCT6
@x(te2j )

@gCT6
@y(te2j )

0 0 0 1

37777777777777777777775

(78)

where

@gCT1
@te2j

=¡ _x(ts1k )cos[!(ts1k )[Tj,k]p]+ _y(ts1k )sin[!(ts1k )[Tj,k]p]
(79)

@gCT2
@te2j

=¡ _x(ts1k ) sin[!(ts1k )[Tj,k]p]¡ _y(ts1k )cos[!(ts1k )[Tj,k]p]
(80)

@gCT3
@te2j

= !(ts1k ) _x(t
s1
k )sin[!(t

s1
k )[Tj,k]

p]

+!(ts1k ) _y(t
s1
k )cos[!(t

s1
k )[Tj,k]

p] (81)

@gCT4
@te2j

=¡!(ts1k ) _x(ts1k )cos[!(ts1k )[Tj,k]p]

+!(ts1k ) _x(t
s1
k ) sin[!(t

s1
k )[Tj,k]

p] (82)

@gCT6
@x(t

e2
j )

=
[[x(t

e2
j j ts1k )]p¡ xs(ts2` )]

cp
q
[[x(t

e2
j j ts1k )]p¡ xs(ts2` )]2 + [[y(te2j j ts1k )]p¡ ys(ts2` )]2

=
[x(t

e2
j j ts1k )]p

cp
q
[[x(t

e2
j j ts1k )]p]2 + [[y(te2j j ts1k )]p]2

(83)

@gCT6
@y(t

e2
j )

=
[[y(t

e2
j j ts1k )]p¡ ys(ts2` )]

cp
q
[[x(t

e2
j j ts1k )]p¡ xs(ts2` )]2 + [[y(te2j j ts1k )]p¡ ys(ts2` )]2

=
[y(t

e2
j j ts1k )]p

cp
q
[[x(t

e2
j j ts1k )]p]2 + [[y(te2j j ts1k )]p]2

(84)

and

[Tj,k]
p = [te2j ]

p¡ ts1k (85)

APPENDIX C CONFIDENCE REGION FOR TRUE
RMSE

The position or velocity error, given by x̂¡ xg,
is assumed to follow a zero-mean Gaussian distri-

bution with unknown variance, RMSE2. N indepen-

dent Monte Carlo observations are taken of this error,

x̂(n)¡ xg, n= 1, : : : ,N. The maximum likelihood esti-

mator, RMSE
2
(N), of RMSE2 is thus given by

RMSE
2
(N) =

1

N

NX
n=1

(x̂(n)¡ xg)2 (86)

The square RMSE
2
(N) follows a scaled chi-squared dis-

tribution with N degrees of freedom, i.e. RMSE
2
(N)»

(RMSE2=N)Â2N . Note that the position and velocity er-

rors are 2-dimensional. However, the x and y errors

are correlated, so the number of degrees of freedom

is somewhere between N and 2N. To be conservative,

N is chosen, which will give a larger confidence region

in the sequel.

The 95% probability interval for the ratio

RMSE
2
(N)=RMSE2 for N = 100 is given below.

RMSE
2
(N)

RMSE2
2
·μ

1

100

¶
Â2N(2:5%),

μ
1

100

¶
Â2N(97:5%)

¸
= [0:74,1:3] (87)

The 95% confidence region for RMSE2 given

RMSE
2
(N) is thus

RMSE2

RMSE
2
(N)

2 [(0:74)¡1, (1:3)¡1] = [0:77,1:35] (88)

Therefore, the 95% confidence region for RMSE

given RMSE(N) is

RMSE

RMSE(N)
2
hp
0:77,

p
1:35

i
= [0:88,1:16] (89)

i.e.,

RMSE 2 [0:88RMSE(N),1:16RMSE(N)] (90)
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