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This paper describes a continuous-time state-process, discrete-

time observation, Interacting Multiple Model (IMM) tracking al-

gorithm, and its applications to financial market modeling and as-

set allocation. The system state is modeled as a continuous-time,

affine-Gaussian stochastic dynamical process driven by a white pro-

cess noise, as well as by structural changes modeled by a finite-

state, continuous-time, Markov process. The system generally as-

sumes multiple models with different state space dimensions, and

an affine-Gaussian state jump whenever a model transition occurs.

The underlying problem is a standard filtering problem for estimat-

ing the system state based on a sequence of discrete-time, linear-

Gaussian observations of partial system states. To demonstrate the

new method, we apply the IMM algorithm to financial market mod-

eling for dynamic asset allocation. The resulting performance shows

the potential applicability of the proposed method.
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1. INTRODUCTION

In this paper, we are generally concerned with finan-

cial market modeling and asset allocation problems, and

specifically, with the possibility of applying Interacting

Multiple Model (IMM) methods (which were developed

as algorithms for tracking maneuvering targets [1] in

1980s, and since then, have been refined in many direc-

tions [3]) to financial market modeling. This paper ex-

pands the continuous-time IMM extrapolation algorithm

introduced in [14] (which used a typical maneuvering

target tracking example with stop-and-go target behav-

ior as an illustration) to a full IMM tracking algorithm

definition, and shows how the algorithm can be used to

model financial market behaviors, as a continuous-time

stochastic dynamical system with discrete-time observa-

tions, in which the system structure switches between

multiple models.

Since the time when the IMM approach to tracking

maneuvering targets was first published ([4, 5, 21]), the

IMM methods have been widely used to make track-

ing algorithms adaptive to a wide range of target ma-

neuvering and other abrupt structural changes in tar-

get motion dynamics. In fact, the IMM methods are

one of the most studied subjects in target tracking, as

documented in [3—7]. As a target tracking algorithm,

each model used in an IMM algorithm typically rep-

resents a standard target behavior such as an almost-

constant-velocity (called “nearly-constant-velocity” in

[1]) model, and an almost-constant-rate turn model, or

alternatively, multiple models may represent different

levels of white process noises in the target dynamics so

as to expand the range of tracking (filtering) bandwidth

adaptively ([22]).

In a typical IMMimplementation, bothmodel switch-

ing and state transition are allowed to happen only on

prescribed discrete time steps. Indeed, almost all the

IMM literature starts with a discrete-time target dynam-

ics formalism. As mentioned in [7], a few exceptions

include [8, 24] in which the target dynamics are de-

scribed by stochastic differential equations driven by

Poisson processes (to model inter-model switching) as

well as Wiener processes (to model intra-model dif-

fusion). Those models are known as continuous-time

Markov jump processes [2]. In contrast, the mathemat-

ical model used in this paper (first introduced in [14])

is expressed by a continuous-time Markov process on

a hybrid state space explicitly through a semi-group

of state transition operator and its infinitesimal genera-

tor. Like the model described in [9], our model allows

switching across spaces with different dimensions, and

as in [7, 10], our model allows the system state to jump

whenever a model switching happens. These flexibil-

ities have motivated us to explore the possibilities of

applications to modeling of financial markets that ex-

hibit similar behavior. As expressed in [17], our general

motivation is to explore possibilities of applications of
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engineering techniques to social and economic system

analysis.

Recently, switching models have been proposed to

analyze financial markets, as described in [18—20]. The

application of IMM methods for such modeling is very

natural and apparently straightforward. The use of the

continuous time IMM may be appropriate because, for

example, the stock prices change almost constantly

during the day but many people only pay attention to

the closing prices (when other detailed data also become

unavailable). The multiple model approach, as shown

in [18—20], typically uses two models, i.e., bull (up)

and bear (down) models. The continuous-time IMM

algorithm shown in this paper allows us to switch

among the models with different dimensions. For that

reason, we will use three models where the third model,

“steady” model, has different (reduced) dimension, and

test the applicability of our new IMM algorithm to a

more flexible financial market model.

The purpose of this paper is to investigate the ap-

plicability of our continuous time IMM algorithm to

financial market. We will demonstrate its performance

with a popular benchmark equity market index (S&P

500 futures) on different time scales. While we believe

this model applies to general market dynamics, its over-

all effectiveness is subject to additional future research

and validation.

In the next section, Section 2, we will define a

continuous-time jump Markov linear/affine system as a

Markovian process on a hybrid state space, expressed as

a formal direct sum of Euclidean spaces with generally

different dimensions. We then define a filtering prob-

lem, a solution to which is given in Section 3, where

an IMM algorithm, with continuous time extrapolation

and discrete time updating, will be described. Section

4 shows a simple three-model financial market model

with an IMM extrapolation algorithm. Numerical exam-

ples of financial market modeling and asset allocation

analysis will be presented in Section 5, followed by the

conclusions in Section 6.

The preliminary version of this paper was presented

at the 18th International Conference on Information

Fusion [23].1 We have refined the conference paper

and added derivations of the approximation-less calcu-

lation of the model probability and the first and second

moments of the state probability distribution for each

model for the extrapolation step, a major technical con-

tribution of the paper outlined in [8, 14].

2. JUMP MARKOV MODEL

ConsiderM models, each of which is represented by

a vector-matrix triple (Am,bm,Bm) that defines an Itô’s

linear or affine stochastic differential equation as dxt =

(Amxt+ bm)dt+Bmdwt, m 2 f1, : : : ,Mg, which defines a
continuous-time stochastic process xt on a Euclidean

1This conference paper received Fusion 2015 Jean-Pierre Le Cadre

Best Paper Award.

space Em, with a vector-valued, unit-intensity Wiener

process wt, on an appropriate time interval. Thus, within

a model m, the state xt is a Gaussian stochastic process

such that each sample is continuous (no jump).

We assume that model transition is expressed by a

continuous-time, f1, : : : ,Mg-valued, time-homogeneous
Markov process (mt)t2[t0,1) with transition probability

Ph(m
0 jm) def= Probfmt+h =m0 jmt =mg

=

8>><>>:
cmm0h+ o(h) if m0 6=m

1¡
MX
m0=1
m0 6=m

cmm0h+ o(h) otherwise
(1)

for each (m,m0) 2 f1, : : : ,Mg2, h > 0, and t 2 [t0,1),
with constants cmm0 ¸ 0 for m0 6=m, cmm =¡

PM
m0=1,m0 6=m

¢ cmm0 < 0, and a fixed initial time t0. We assume each
model transition is accompanied by an affine-Gaussian

jump. Namely, when a model transition from m to m0

happens at time t, the target state jumps from limh#0 xt¡h
in Em to

2 xt = limh#0 xt+h that is a generalized Gaussian
random vector with mean vector Fm

0
m limh#0 xt¡h+ g

m0
m

and a positive semi-definite covariance matrix Vm
0

m ,

where Fm
0

m , g
m0
m , and V

m0
m are a vector and matrices with

appropriate dimensions. We use the convention that

Fmm = I (the identity matrix), g
m
m = 0 (the zero vector),

and Vmm = 0 (the zero matrix) for each m, thus prevent-

ing any jump within the same model.

A more precise mathematical model can be ex-

pressed as a continuous-time, time-homogeneous

Markov process (xt,mt)t2[t0,1) on a hybrid state space
3

E
def
=
SM
m=1Em£fmg that is a formal direct-sum of Eu-

clidean spaces Em with generally different dimensions,

with a transition probability

Probfxt+h1+h2 2 dx0,mt+h1+h2 =m0 j xt = x,mt =mg

= Ph1+h2 (m
0 jm)

Z
Em

Z
Em0
G(dx0;¢Fm0(h2)x00

+¢gm0(h2),¢Vm0(h2))G(dx00;Fm
0

m x
000+gm

0
m ,V

m0
m )

G(dx000;¢Fm(h1)x+¢gm(h1),¢Vm(h1)) + o(h1 + h2)
(2)

for each (m,m0) 2 f1, : : : ,Mg2, each x 2 Em, each t 2
[t0,1), and h1,h2 > 0, where,4 for each m and h¸ 0,
¢Fm(h)

def
= eAmh, ¢gm(h)

def
=
R h
0
eAm¿bmd¿ , and ¢Vm(h)

def
=R h

0
eAm¿Qme

ATm¿d¿ with Qm = BmB
T
m. G(¢; »̄,V) is the sym-

bol for the generic generalized Gaussian distribution

with mean vector »̄ and a positive semi-definite covari-

ance matrix V, of compatible dimensions, defined by its

2We assume the right-continuity to eliminate any ambiguity.
3Since E = Rn £f1, : : : ,Mg if Em = Rn for all m 2 f1, : : : ,Mg, our
choice of the state space provides a proper extension to the usual

models used for multiple-model formulations, with R= (¡1,1).
4By XT we mean the transpose of a vector or a matrix X.
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characteristic function asZ
e
p¡1³T»G(d»; »̄,V) = exp

³p
¡1»̄T³ ¡ 1

2
³TV³

´
(3)

for each vector ³ with the dimension determined by the

parameter pair (»̄,V).

The discrete time observations, y1,y2,y3, : : :, are

modeled as
yk =Hmtk k

xtk + ´k (4)

for each k = 1,2,3, : : :, with the time sequence, t1, t2,

t3, : : :, such that t0 · tk < tk+1 for each k, with obser-
vation matrices, (Hmk)

M
m=1, k = 1,2,3, : : :, of appropriate

dimensions,5 and with zero-mean independent Gaus-

sian vectors ´1,´2,´3, : : :, with covariance matrices
6 Rk =

E(´k´Tk ). The independent initial condition at the initial
time t0 is given as,

Probfxt0 2 dx,mt0 =mg= pm0G(dx; x̄m0,V̄m0) (5)

with an initial model probability pm0, mean vector x̄m0,

and positive definite covariance matrix V̄m0, for each

model m 2 1, : : : ,M.
Then the filtering problem defined by eqns. (1) to (5)

is the problem of characterizing the a posteriori prob-

ability distribution, expressed by p̂mk = Probfmtk =m j
y1, : : : ,ykg and Probfxtk 2 dxtk jmtk =m,y1, : : : ,ykg for

each m 2 f1, : : : ,Mg, and k = 1,2,3, : : :. It would be ex-
tremely difficult (if not impossible) to express

Probfxtk 2 dxtk jmtk =m,y1, : : : ,ykg in any analytical

(closed) form because of the infinitly many possibili-

ties of how the system jumps occur, in any given in-

terval [tk¡1, tk]. However, as shown in the next section,
the continuous-time evolution of the model probabil-

ity p̂mk, and the first and the second moments of the

posterior state probability distribution, Probfxtk 2 dxtk j
mtk =m,y1, : : : ,ykg, given model m, i.e., x̂mk = E(xtk j
mtk =m,y1, : : : ,yk) and V̂mk = E(xtk x

T
tk
jmtk =m,y1, : : : ,yk)

¡x̂mkx̂Tmk, can be analytically derived from eqns. (1) to

(5), by a single vector homogeneous linear differential

equation, as shown in the next section, Section 3.

Instead of modeling the continuous model switch-

ing by a stochastic differential equation driven by a

Poisson process and a Wiener process, as formulated

in [2, 8, 24], we have introduced a continuous-time

Markov process on a hybrid space
SM
m=1Em£fmg,

rather than E = Rn£f1, : : : ,Mg, explicitly by a tran-
sition probability defined by (1) and (2), thereby ex-

tending the general continuous-time IMM models de-

scribed in [7, 24, 25]. Moreover, we explicitly model

any jump between the state spaces Em and Em0 with gen-

erally different dimensions, by a general affine jump,

x0m0 = F
m0
m xm+ g

m0
m +(V

m0
m )

1=2»m
0

m , from model m to m0,
with zero-mean unit-variance Gaussian random vector

5Such that Hmk 2 Rdk£dim(Em) for every m 2 f1, : : : ,Mg where dk is the
dimension of yk , for every k.
6E is the symbol for the conditional and unconditional mathematical
expectation operators.

»m
0

m to represent uncertainty in the jump. By doing so,

we avoid the bias issues addressed in [26], which arise

when state spaces with different dimensions are handled

by adding artificial zero state components and applying

the standard IMM mixing algorithm mechanically.

3. IMM ALGORITHM

First we consider the extrapolation step, generally

following [14]. To do so, we define a semi-group of

linear functionals Th on the space C of all the real-valued
bounded continuous functions Á on the hybrid space E

by, ThÁ(x,m) = E(Á(xt+h,mt+h) j xt = x,mt =m) for each
(x,m) 2 E, t 2 [t0,1) and h¸ 0. Since (xt,mt) is a time-
homogeneous Markov process, the definition does not

depend on t. Then the infinitesimal generator A of Th
can be defined as

AÁ(x,m)
= lim

h#0
h¡1(ThÁ(x,m)¡Á(x,m))

=
@

@x
Á(x,m)(Amx+ bm) +

1

2
trace

μ
@2

@x2
Á(x,m)Qm

¶

+

MX
m0=1

cmm0

Z
Em0
Á(x0,m0)G(dx0;Fm0m x+ g

m0
m ,V

m0
m )

(6)

More precisely, when the limit limh#0 h
¡1(ThÁ¡Á)

exists in the sup-norm of C, we say the functional Á
belongs to the domain of A, i.e., Á 2Dom(A), and the
last expression of eqn. (6) is uniquely implied7 by eqns.

(1) and (2). Then, for any Á 2Dom(A), we have [11]
E(Á(xt+h,mt+h) j (xt,mt))

= Á(xt,mt) +E

ÃZ t+h

t

AÁ(xt,mt)d¿ j (xt,mt)
!
(7)

With the (unconditional) expectation of both sides of

(7), under a regularity condition that allows us to inter-

change the state-space expectation and the time-integral,

we have

E(Á(xt+h,mt+h)) = E(Á(xt,mt)) +
Z t+h

t

E(AÁ(xt,mt))d¿
(8)

or (d=dt)E(Á(xt,mt)) = E(AÁ(xt,mt)).
Let us define p̄mk(t) = Probfmt =m j y1, : : : ,ykg,

x̄mk(t) = E(xt jmt =m,y1, : : : ,yk)p̄mk(t), and S̄mk(t) =

E(xtxTt jmt =m,y1, : : : ,yk)p̄mk(t), for each m 2 f1, : : : ,Mg.
Then it follows from (1), (2), and (8), that, for each

t 2 [tk, tk+1], with C defined as the M £M matrix whose

(i,j) element is cij defined in (1),

[p̄1k(t) : : : p̄Mk(t)] = [p̂1k : : : p̂Mk]exp(C(t¡ tk)) (9)

7See Appendix A for the derivation of (6) from (1) and (2).
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d

dt
x̄mk(t) = Amx̄mk(t) + bmp̄mk(t)

+

MX
m0=1

cm0m(F
m
m0 x̄m0k(t)+ g

m
m0 p̄m0k(t))

(10)

and

d

dt
S̄mk(t) = AmS̄mk(t) + S̄mk(t)A

T
m+ bmx̄mk(t)

T

+ x̄mk(t)b
T
m+Qmp̄mk(t)

+

MX
m0=1

cm0m(F
m
m0 S̄m0k(t)(F

m
m0 )

T

+Fmm0 x̄m0k(t)(g
m
m0)

T+ gmm0 x̄m0k(t)
T(Fmm0 )

T

+(gmm0(g
m
m0)

T+Vm
0

m )p̄m0k(t)) (11)

The initial conditions for (10) and (11) are given as

x̄mk(tk) = x̂mkp̂mk and S̄mk(tk) = (V̂mk + x̂mkx̂
T
mk)p̂mk. Eqn.

(9) is a well-known formula, while the derivation of

eqns. (10) and (11) are given in Appendix B.

For each t 2 [tk, tk+1], let ¥t = (p̄mk(t), x̄mk(t),

S̄mk(t))
M
m=1 and let ' be the function that arranges all the

elements in ¥t into a vector in the N-dimensional Eu-

clidean space,8 with N =
PM
m=1(1+dim(Em) +dim(Em)

¢ (dim(Em)+1)=2). Then, since all the equations (9) to
(11) are linear ordinary differential equations, we have

'(¥t) = exp(D(t¡ t0))'(¥t0) (12)

for any (t, t0) such that tk · t0 · t· tk+1, where D is an

N £N matrix uniquely defined by eqns. (9) to (11), and
can be calculated by any one of the known effective

numerical methods.

Furthermore, if we assume p̄mk(t)> 0 for any m 2
f1, : : : ,Mg and t 2 [tk, tk+1], it follows from (9) to (11)

that

d

dt
Ṽmk(t) = AmṼmk(t)+ Ṽmk(t)A

T
m+Qmp̄mk(t)

+

MX
m0=1

cm0m(F
m
m0 Ṽm0(t)(F

m
m0 )

T

+ p̄m0k(t)(V
m
m0 +¢

m
m0(t)¢

m
m0(t)

T)) (13)

with

Ṽmk(t)
def
=E

Ãμ
xt¡

x̄mk(t)

p̄mk(t)

¶μ
xt¡

x̄mk(t)

p̄mk(t)

¶T
¯̄̄̄
¯mt =m,y1, : : : ,yk

!
p̄mk(t) (14)

8We only need the values for the upper triangle elements for each

symmetric matrix S̄km(t).

and

¢mm0(t)
def
= p̄mk(t)

¡1x̄mk(t)¡ p̄m0k(t)¡1Fmm0 x̄m0k(t)

¡ gmm0 = x̄mk(t)¡ (Fmm0 x̄m0k(t) + gmm0) (15)

We should note that, in (13) to (15), we have Vmm = 0

and ¢mm = 0, for each m.

The IMM update step, which precedes each ex-

trapolation step described above, is performed by the

standard IMM update formula. Namely, for each m 2
f1, : : : ,Mg, assuming p̄m(k¡1)(tk)> 0, we have

x̂mk =
x̄m(k¡1)(tk)
p̄m(k¡1)(tk)

+Kmk

Ã
yk ¡Hmk

x̄m(k¡1)(tk)
p̄m(k¡1)(tk)

!
(16)

V̂mk = (I¡KmkHmk)V̄mk (17)

where

V̄mk =
S̄m(k¡1)(tk)
p̄m(k¡1)(tk)

¡
Ã
x̄m(k¡1)(tk)
p̄m(k¡1)(tk)

!Ã
x̄m(k¡1)(tk)
p̄m(k¡1)(tk)

!T
(18)

and
Kmk = V̄mkH

T
mkS¡1mk (19)

with

Smk =HmkV̄mkHTmk +Rk (20)

p̂mk =

Ã
MX
m0=1

Lm0k

!¡1
Lmk (21)

and

Lmk =
p̄m(k¡1)(tk)p
det(2¼Smk)

exp

0@¡1
2

°°°°°yk ¡ x̄m(k¡1)(tk)p̄m(k¡1)(tk)

°°°°°
2

S¡1
mk

1A
(22)

The matrix Hmk in eqns. (16)—(20) is the observation

matrix and Rk is the covariance matrix of the observation

noise ´k, both used to define the measurement equation

(4).

A critical step to develop a very simple solution

in the form of the linear ordinary differential eqn. (12) is

our use of the particular form of the first and the second

moments, x̄mk(t) and S̄mk(t), rather than a usual choice of

conditionalmean and covariance,E(xt jmt,y1, : : : ,yk) and
E(xtxTt jmt,y1, : : : ,yk)¡E(xt jmt,y1, : : : ,yk)E(xt jmt,y1,
: : : ,yk)

T. To the best of our knowledge, this fact was

shown in [8] for the first time, and expanded to a general

multiple-model, affine-Gaussian dynamics and jumps

in [14].

4. A SIMPLE FINANCIAL MARKET MODEL

As mentioned earlier, we will model the finan-

cial market dynamics with a simple multiple-model

switching system, as in [18—20]. We use three models

(i.e., M = 3), (i) “up” (“bull”), (ii) “steady,” and (iii)

“down” (“bear”) models. Generally, we use “u” to rep-
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resent the “price” in an appropriate sense, and “v” to

represent its time derivative. The three models are de-

fined as follows:

(i) Up (Bull) Model (m= 1) is based on a bi-

ased Ornstein-Uhlenbeck process, defined by the affine

stochastic differential equation,½
dut = vtdt

dvt =¡¯1(vt¡ v̄1)dt+
p
q1dwt

(23)

with unit-intensity Wiener process wt, and three strictly

positive parameters, (v̄1,¯1,q1).

(ii) Steady Model (m= 2) is a one-dimensional sta-

tionary stochastic process defined by

dut =¡¯0(ut¡ ū0)dt+
p
q0dw

0
t (24)

with unit-intensity Wiener process w0t, and three strictly
positive parameters, (ū0,¯0,q0).

(iii) Down (Bear) Model (m= 3) is another biased

Ornstein-Uhlenbeck process defined by½
dut = vtdt

dvt =¡¯1(vt+ v̄1)dt+
p
q1dw

00
t

(25)

also with unit-intensity Wiener process w00t . We can have
a different set of parameters but will use the same set

of parameters of Model 1 for simplicity.

Thus we have

A1 = A3 =

·
0 1

0 ¡¯1

¸
, b1 =

·
0

¯1v̄1

¸
=¡b3,

B1 = B3 =

·
0
p
q1

¸
, Q1 =Q3 =

·
0 0

0 q1

¸
,

A2 = [¡¯0], b2 = [¯0ū0], B2 = [pq0], and Q2 = [q2] with
E1 = E3 = (¡1,1)2 and E2 = (¡1,1). With symme-
try assumption, the transition probabilities of eqn. (1)

are defined by

C =

264 ¡c1 c1 0

c2=2 ¡c2 c2=2

0 c1 ¡c1

375 (26)

with two parameters, c1 > 0 and c2 > 0. F
2
1 = F

2
3 =

[1 0], g21 = g
2
3 = V

2
1 = V

3
1 = [0],

F12 = F
1
3 =

·
1

0

¸
, g12 =

·
0

v̄1

¸
=¡g13, and

V12 = V
1
3 =

·
0 0

0 ¾̄21

¸
, with q1 = 2¯1¾

2
1 :

Then we can write eqn. (12) explicitly as

d

dt
¥(t) =

264D11 0 0

D21 D22 0

D31 D32 D33

375¥(t) (27)

with ¥(t) = [p̄1k(t) p̄2k(t) p̄3k(t) x̄k(t)
T S̃k(t)

T]T, where

x̄k(t) = [x̄1k(t)
T x̄2k(t)

T x̄3k(t)
T]T, S̃k(t) = [S̃1k(t)

T S̃2k(t)
T

S̃3k(t)
T]T (with the vector representations S̃k and S̃mk for

the matrices S̄k and S̄mk), D11 = C
T,

D21 =

26666664

0 0 0

¯1v̄1 c2v̄1=2 0

0 ¯0ū0 0

0 0 0

0 ¡c2v̄1=2 ¡¯1v̄1

37777775 , D22 =

26666664

¡c1 1 c2=2 0 0

0 ¡¯1¡ c1 0 0 0

c1 0 ¡¯0¡ c2 c1 0

0 0 c2=2 ¡c1 1

0 0 0 0 ¡¯1¡ c1

37777775 ,

D31 =

2666666666664

0 0 0

0 0 0

q1 c2(v̄
2
1 + ¾̄

2
v )=2 0

0 q0 0

0 0 0

0 0 0

0 c2(v̄
2
1 + ¾̄

2
v )=2 q1

3777777777775
, D32 =

2666666666664

0 0 0 0 0

¯1v̄1 0 c2v̄1=2 0 0

0 2¯1v̄1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 ¡c2v̄1=2 ¯2v̄2 0

0 0 0 0 2¯2v̄2

3777777777775
, and

D33 =

2666666666664

¡c1 2 0 c2=2 0 0 0

0 ¡¯1¡ c1 1 0 0 0 0

0 0 ¡2¯1¡ c1 0 0 0 0

c1 0 0 ¡c2=2 c1 0 0

0 0 0 c2=2 ¡c1 2 0

0 0 0 0 0 ¡¯1¡ c1 1

0 0 0 0 0 0 ¡2¯1¡ c1

3777777777775
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Fig. 1. Monthly S&P index form 1980 to 2014

Using the first measurement at time t1 = t0, the ini-

tial condition is given as x̄11(t1) = [y1 v̄1]
Tp10, x̄21(t1) =

[y1]p20, x̄31(t1) = [y1 ¡ v̄1]Tp30, S̄11(t1) = diag(R1, ¾̄2v1 )
¢p10 + x̄11(t1)x̄11(t1)T=p10, S̄21(t1) = R1p20 + x̄21(t1)2=p20,
and S̄31(t1) = diag(R1, ¾̄

2
v1
)p30 + x̄31(t1)x̄31(t1)

T=p30, with

the initial model probabilities (pm0)
3
m=1.

The measurement matrices are given by H1k =H3k =

[1 0] and H2k = [1], for all k = 1,2,3, : : :.

5. APPLYING IMM TO FINANCIAL MODELING FOR
ASSET ALLOCATION

There are two main approaches to analyze financial

markets for investment and portfolio management. Fun-

damental analysis considers economic factors to make

subjective judgments on the qualitative relationship be-

tween portfolio and market returns, whereas technical

analysis uses quantitative historical data to predict fu-

ture price movement. In this paper, we use the technical

analysis approach where we apply the IMM model de-

scribed in the previous section to model the dynamics

of the equity market based on historical data.

Specifically, we focused on modeling the Standard

& Poor’s 500 (S&P 500) index as well as how to dy-

namically allocate the asset to invest in the index futures

according to the model prediction. S&P 500 index is an

American stock index based on the combined capital-

ization of 500 large companies in the US. It is one of

the most widely followed benchmarks for the US and

the world economy. Figure 1 shows the S&P monthly

historical data from 1980 to 2014.

To test the algorithm, we randomly selected one

daily, one weekly, and one monthly data sets, each with

100 data points to evaluate the performance on differ-

ent time scales accordingly. In order to assess the mar-

ket condition, the closing prices were used as the mea-

surements and the three dynamic models: “up (bull),”

“steady,” and “down (bear)” as described in the pre-

vious section were used to model the S&P dynam-

ics. In each test, the resulting estimated probabilities of

the three models from the IMM algorithm were used

to make the asset allocation decisions. The parame-

ters were set, without any significant adjustments, as9:

(pm0)
3
m=1 = (0:3, 0:5, 0:2), c1 = c2 = 1=3 day

¡1, ¯0 =
¯1 = ¯2 = 2 day

¡1, ¾0 = $20, ¾1 = ¾2 = 2$=day, ū0 =
$1100, and v̄1 =¡v̄2 = 4$=day.
Traditional investment strategies usually apply heur-

istic rules or numerical indicators obtained from the his-

torical data to determine the market trends. For exam-

ple, stochastic oscillator (SO) or relative strength index

(RSI) are well-known financial momentum indicators

for contrarian investing [16]. These indicators are de-

signed to determine the market conditions such as a po-

tential top (resistance) or a bottom (support). A contrar-

ian investor buys and sells against the market sentiment

during a specific time based on the indicators. In that

sense, one could consider the IMM algorithm devel-

oped in this paper and the resulting model probabilities

as another momentum indicator. This new indicator at-

tempts to determine the potential market overbought or

oversold conditions. For example, when the “up” model

probability is the highest one among the three and is

above a certain threshold, it may indicate an overbought

condition, and when the “down” model probability is

9$ represents S&P index (as a virtual unit).
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Fig. 2. S&P Daily Data–100 Days

Fig. 3. IMM Model Probabilities–S&P Daily Data

the highest one and is above a certain threshold, it may

indicate an oversold condition.

With the IMM indicator, we dynamically allocate

the asset and make trading decisions accordingly. For

example, a simple strategy is to short (sell) the S&P

futures10 when the “up” probability is the highest one

(overbought) and to long (buy) when the “down” prob-

ability is the highest one. We may also want to close

10S&P futures is one of the most liquid futures markets in the world.

One can long or short the futures contracts as long as there is a counter

party who is willing to take the opposite side.

our positions and sit on the sideline when the market

is uncertain (“steady” mode probability is the highest).

However, while this “contrarian” approach could lead to

higher gain than usual, it may have the opposite effect

when the market is in a strong trending mode. To miti-

gate this risk, when the IMM “up” or “down” probabil-

ities are in extreme values (say, > 0:95) which indicates

a potential strong trend, the decision rule mentioned

above will be reversed to follow the market directions.

With the above simple asset allocation rules based on

the IMM indicator, we conduct simulation and test their

performances on the three randomly selected S&P data
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Fig. 4. IMM-DAA Trading Decisions and Daily Returns

Fig. 5. Equity Curves–Buy-and-Hold vs. DAA

sets. We also compare its performance with the naïve

buy-and-hold policy. Note that in the simulation, we

use historical end-of-the-day S&P settlement prices to

emulate the filled-prices of the transactions. We assume

no transaction cost and no slippage.

I. Daily Data

Figure 2 shows a randomly selected set of daily

S&P closing prices and returns over a 100-day period.

The daily returns represent the daily equity percentage

changes of the buy-and-hold strategy. Figure 3 shows

the probability trajectories of the three models estimated

by the IMM algorithm. In Figure 3, the model proba-

bilities are shown by the blue line for the bull model

(m= 1), the green line for the steady model (m= 2),

and the red line for the bear model (m= 3).

The corresponding trading decisions of the IMM

dynamic asset allocation (IMM-DAA) strategy and its

daily returns are shown in Figure 4. In the figure,

decision “1” represents a long position, “¡1” represents
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Fig. 6. S&P Weekly Data

Fig. 7. Trading Performance–Weekly Data
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Fig. 8. S&P Monthly Data

a short position, and “0” represents no position. Figure

5 compares the equity curve over the 100-day period

for the DAA strategy and the buy-and-hold (BH) pol-

icy. In the results, we assume no transaction costs or

slippage.11 As seen from the figure, DAA performs sig-

nificantly better than the BH strategy with only a few

trading actions–a total of around 20 over the 100-day

period. At the end of the 100-day period, the cumu-

lative return for BH is under 6% while DAA’s return

is almost 14%. Note that the maximum drawdown12 of

the BH policy is approximately 7% while the maximum

drawdown of the DAA is only about 5%.

In Figure 3, after the jump from the lower dimen-

sional model to a higher dimensional model, the model

probability history may have some apperance of the

“bias,” which may be a result of a slight mismatch of

the mean g12 or g
3
2 with the real data.

II. Weekly and Monthly Data

Figures 6—9 show the results corresponding to the

weekly and monthly data. Note that the decision rules

based on the IMM indicators are exactly the same for

the three data sets. Since we use the continuous-time

system model, we do not have to adjust the system dy-

namics parameters in response to the sampling intervals,

tk+1¡ tk. Based on the Markov property, the standard de-

11For S&P futures trading, given the liquidity and market size, the

transaction cost is minimum. For example, with a standard e-mini

S&P futures contract (» $100k), the average transaction cost is less
than 0.005% (< $5) of the contract size. Given that in the 100 trading

periods, there were about 20 transactions, the difference is negligible

(» 0:1%).
12Drawdown is defined as the peak-to-trough decline during a spe-

cific period of an investment. A drawdown is usually quoted as the

percentage between the peak and the trough [16].

viation of the process noise (volatility) is proportional

to the square root of the time difference between two

subsequent observations.

As shown in the figures, DAA either performs better

than or close to BH with significantly lower drawdown.

For example, Figure 7 shows that while BH loses about

31% of the equity over the 100 weeks period with a

maximum drawdown of about 54%, DAA only loses

11% with a maximum drawdown of 43% over the same

time period. Similarly, over a 100-month period, Figure

9 shows that while BH earns about 26% of the equity

with a maximum drawdown of about 54%, DAA earns a

slightly less return of 21% over the same period but with

a significantly smaller drawdown of only 24%. Note

that the randomly selected 100-month period includes

the 2007—2008 credit crisis where prolonged market

ups and downs exist for many months. While it is true

that the rate of return and Sharpe ratio for BH are

slightly better than that of DAA for this monthly time

period, the maximum drawdown for BH is almost 230%

higher than DAA which itself could be catastrophic.

This demonstrates another potential benefit of applying

the proposed DAA approach.

Table 1 summarizes the performance results for

the three randomly selected data sets. In the table,

an industry-standard performance indicator called the

“Sharpe ratio”13 is also presented for performance com-

parison. Higher Sharpe ratio indicates a better risk-

adjusted return. It is clear from the table that the IMM

based DAA (IMM-DAA) is an effective and promising

asset allocation method.

13The Sharpe ratio is a measure for calculating risk-adjusted return.

It is the average return earned in excess of the risk-free rate over the

return volatility (standard deviation).
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Fig. 9. Trading Performance–Monthly Data

6. CONCLUSIONS

In this paper, we presented a continuous-time, dis-

crete-observation, Interacting Multiple Model (IMM) al-

gorithm, based on the continuous-time IMM extrapola-

tion developed in [14], and applied it to financial mar-

ket dynamic modeling. We modeled the system by a

continuous-time, jump Markov process and estimated

the system state based on a sequence of discrete-time,

linear-Gaussian observations. We utilized a rather naïve

switching process with multiple linear stochastic system

models to represent the S&P market dynamics model.

The resulting IMM model probabilities serve as mo-

mentum indicators to make the dynamic asset allocation

decisions (DAA). We tested the resulting IMM-DAA

strategy on several randomly selected S&P data sets of

various time scales. The results showed that the newly

developed IMM indicator and the corresponding asset

allocation strategy may have a potential to significantly

TABLE 1

Performance Comparison

Rate of Maximum

Return Drawdown Sharpe Ratio

Daily–BH 5.95% 7.88% 0.878

Daily–DAA ¡13.86% 5.40% 2.307

Weekly–BH ¡31:26% 54.14% ¡0:615
Weekly–DAA ¡10:88% 42.60% ¡0:134
Monthly–BH ¡26.08% 53.54% 0.192

Monthly–DAA ¡21.00% 23.62% 0.160

outperform the baseline naïve buy-and-hold policy with

lower risk.

The goal of this paper is to demonstrate the poten-

tial of the new continuous-time IMM algorithm when

applied to financial market analysis and asset alloca-

tion problems. To demonstrate the effectiveness of the

application of the new IMM algorithm to general finan-

cial market problems requires additional testing of large

APPLYING INTERACTING MULTIPLE MODEL TO FINANCIAL ASSET ALLOCATION 105



amounts of real data and comparison with other meth-

ods proposed in the past, which is beyond the scope

of this paper. Furthermore, in financial market mod-

eling, consideration of non-Gaussian disturbance may

be of significant interest. As seen in Sections 2 and 3,

the development of our continuous-time IMM algorithm

depends crucially on the Gaussian assumptions. A non-

Gaussian extension of the proposed approach is there-

fore an interesting immediate sequel of the research of

this paper.

Beyond several obvious refinements to the presented

modeling approach, e.g., choosing the number of mod-

els, adjusting the intra and inter multiple model sys-

tem parameters, adding “rate of model change” to the

model probability itself, a potential future research di-

rection to extend the promising preliminary work is to

combine the technical approach described in this pa-

per with a fundamental approach where both qualitative

and quantitative information is utilized. Particularly, we

should explore the highly relevant and emerging data

fusion paradigm such as Bayesian networks and social

networks for financial modeling and portfolio risk man-

agement.

APPENDIX A: CALCULATION OF INFINITESIMAL
GENERATOR

For given Á 2 C, it follows from (2) and the defini-

tion of the operator Th that

Th1+h2Á(x,m) =
MX
m0=1

Ph1+h2 (m
0 jm)

Z
Em0
Á(x0,m0)

¢©m0m (dx0;x,h1,h2)+ o(h1 + h2)
(28)

for any h1,h2 > 0, each m 2 f1, : : : ,Mg and x 2 Em,
where ©m

0
m (¢;x,h1,h2) is the convolution of the three gen-

eralized Gaussian distributions in (2). Substituting (1)

into (28), we have

Th1+h2Á(x,m)

=

MX
m0=1
m0 6=m

cmm0(h1 + h2)

£
Z
Em0
Á(x0,m0)©m

0
m (dx

0;x,h1,h2)

+

0B@1¡ MX
m0=1
m0 6=m

cmm0(h1 + h2)

1CA
£
Z
Em

Á(x0,m)©mm(dx
0;x,h1,h2)+ o(h1 + h2)

(29)

Hence, we have, for h > 0,

h¡1(ThÁ(x,m)¡Á(x,m))

=

MX
m0=1

cmm0

Z
Em0
Á(x0,m0)Gm0 (dx0;Fm

0
m x+ g

m0
m ,V

m0
m )

+ h¡1
μZ

Em

Á(x0,m)Gm(dx0;eAmhx+ bm,¢Vm(h))¡Á(x,m)
¶

+ o(h) (30)

It is well known (e.g., cf. [11]) that the second term

of the right hand side converges to (@=@x)Á(x,m)(Amx+

bm) +
1
2
trace((@2=@x2)Á(x,m)Qm), and (5) follows.

For a fixed pair (h1,h2), eqn. (2) implies the model

transition from m to m0 happens at most one time in the
time interval [t, t+h1 + h2] at time t+h1. Usual IMM

practice (e.g., cf. [4] or [6]) is to let h1 = 0 and use

a time interval h= h2 that is equal to the sensor re-

visit time, and to use a Gaussian approximation.14 In

[14], a multiple-model extrapolation algorithm where

two or more model transitions are possible within a

given extrapolation time interval was developed analyt-

ically without sub-dividing the extrapolation interval,

which inevitably involves Gaussian approximation for

each subinterval. Instead, the extrapolation algorithm

developed in [14] and described in Appendix B pre-

serves exact moment calculations by (8) and (10). At

the end of the extrapolation interval, however, we need

a Gaussian approximation to apply the IMM updating

step, as seen in Section 3.

APPENDIX B: MOMENT CALCULATIONS

For a fixed m 2 f1, : : : ,Mg and a fixed i 2 f1, : : : ,
dim(Em)g, define Á by Á(x,m0) = xi if m0 =m, 0 oth-
erwise. Then substituting this Á into eqn. (5), we have

AÁ(xt,mt) = ±mtm(Amxt+bm)i+ cmtm(Fmmt xt+ gmmt )i (31)
for each t. Taking expectation of (31) leads to

E(AÁ(xt,mt))

=

MX
m0=1

E(AÁ(xt,mt) jmt =m0)Probfmt =m0g

=

MX
m0=1

pt(m
0)E(±m0m(Amxt + bm)i

+ cm0m(F
m
m0xt+ g

m
m0 )i jmt =m0)

= pt(m)(Amx̄(t jm) + bm)i+
MX
m0=1

pt(m
0)cm0m(F

m
m0 x̄(t jm0) + gmm0 )i

= (Amx̄(t;m) + bmpt(m))i +

MX
m0=1

cm0m(F
m
m0 x̄(t;m

0)+ gmm0pt(m
0))i

(32)

14In the IMM literature, this Gaussian approximation is often referred

to as mixing, which is also characterized as interacting among multiple

models.
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from which eqn. (10) follows, with pt(m
0) = Probfmt =

m0g, x(t jm0) = E(xt jmt =m0) and x(t;m0) = x(t jm0)
£pt(m0), for every m0 2 f1, : : : ,Mg.
The ordinary differential equation (11) for the non-

centric second moments, S(t;m) = S(t jm)pt(m) with
S(t jm) = E(xtxTt jmt =m), can be obtained in a similar
way, using Á defined as, for a fixed m 2 f1, : : : ,Mg and
a pair (i,j) such that (i,j) 2 f1, : : : ,dim(Em)g2, Á(x,m0) =
xixj if m

0 =m, zero otherwise.
In order to obtain eqn. (13), we should first note

S(t;m) = V(t;m) + x̄(t;m)x̄(t;m)Tpt(m)
¡1, which implies

_S(t;m) = _V(t;m)¡ x̄(t;m)x̄(t;m)Tpt(m)¡2 _pt(m)
+ ( _̄x(t;m)x̄(t;m)T+ x̄(t;m) _̄x(t;m)T)pt(m)

¡1

(33)

with _S(t;m) = (d=dt)S(t;m), _V(t;m) = (d=dt)V(t;m),
_̄x(t;m) = (d=dt) _̄x(t;m), and _pt(m) = (d=dt)pt(m) =

PM
m0=1

pt(m
0)cm0m. Then, eqn. (13) is obtained by substituting

eqns. (10), (11) and (15) into (33).

We should note that in order to derive the first and

the second moments through eqns. (10) and (11), to

be precise, we need one highly technical step, because,

for example, Á(x,m) = xi if m=m
0, 0 otherwise, does

not define a bounded functional Á on
SM
m=1Em£fmg.

To justify the use of eqns. (6) to (8), we may need to

consider a series of stopped processes, each bounded by

a compact set f(x,m) j kxk · kg for each integer k, and
to apply Dynkin’s lemma to obtain the desired result as

a limit, as is done in [12] and [13].
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