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The state estimation plays an important role in analyzing many

real world systems. Such systems can be classified into being linear

or non-linear, and depending on the statistical properties of the

inherent uncertainties as being Gaussian or non-Gaussian. Unlike

linear Gaussian systems, a close form estimator does not exist for

non-linear/non-Gaussian systems. Typical solutions like EKF/UKF

can fail, while Monte Carlo methods even though more accurate, are

computationally expensive. Recently proposed log homotopy based

particle flow filters, also known as Daum-Huang filters (DHF) pro-

vide an alternative way for non-linear, non-Gaussian state estima-

tion. There have been a number of DHF derived, based on solutions

of the homotopy flow equation. The performance of these new fil-

ters depends strongly on the implementation methodology. In this

paper, we study a non-linear system, perturbed by Gaussian and

non-Gaussian noises. We highlight the key factors affecting the DHF

performance, and investigate them individually in detail. We then

make recommendations based on our results. It is shown that a

properly designed DHF can outperform a basic particle filter, with

less execution time.
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I. INTRODUCTION

The Bayesian estimation framework offers an intu-

itive way for the estimation of hidden states of a dy-

namical system based on the observational data. The

Bayesian estimation is carried out recursively, typically

consisting of a prediction and a correction step. A tran-

sition density describes the time evolution of the state

conditioned on the previous values, while a measure-

ment density describes the likelihood of measurements

given the current state. These densities are then used re-

cursively for the evaluation of prior and posterior state

distributions at any given moment of time. The process

is known as recursive Bayesian estimation (RBE) and

arises in many real scenarios. Finite dimensional ana-

lytical solutions to the RBE problem are available only

in few cases, mainly when the system model is linear

Gaussian (Kalman filter) or a finite state Hidden Markov

model (HMM) [1]. Traditional methods for non-linear

state estimation include Extended (EKF) and Unscented

Kalman filter (UKF). However these methods are gen-

erally sub-optimal and their performance degrades with

the increase in the non-linearity, and also when the tran-

sition and measurement densities are non-Gaussian (e.g.

multimodal, exponential).

Particle filters, also known as sequential Monte

Carlo (SMC) methods, provide an alternative way to the

state estimation. The main idea is to represent the poste-

rior density by a weighted set of random samples (par-

ticles), which are then used to form the point estimates,

e.g., mean and variance [2]. The posterior density under

these settings approximately represents the path distri-

bution, i.e., distribution of the state through the time,

conditioned on the measurements. Several version of

particle filters have been proposed in the literature, e.g.,

sampling importance resampling (SIR) filter also known

as bootstrap particle filter [3], auxiliary sampling impor-

tance resampling (ASIR) filter [4], regularized particle

filter (RPF) [5] etc. While particle filters can effectively

deal with the non-linearities and non-Gaussian noises,

they suffer from the so called weight degeneracy and

curse of dimensionality. Weight degeneracy refers to the

fact that after few updates all but one particle have neg-

ligable weights. Weight degeneracy occurs when the tar-

get distribution does not significantly overlap with the

prior distribution. Several solutions have been proposed

to address these problem e.g. re-sampling, the use of

Markov Chain Monte Carlo (MCMC) methods, use of

bridging densities as suggested in [6] and [7]. Bridg-

ing densities are obtained by varying the so called pro-

gression parameter, which corresponds to the gradual

introduction of the measurements. In this manner the

posterior density can be better approximated. On the

other hand, the curse of dimensionality means that to

maintain a certain performance level, the required num-

ber of particles increases exponentially with the increase

in the state dimension, as reported in [8].
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A different approach to non-linear filtering has been

suggested by Daum and Huang in a series of papers

[9]—[15], which is based on the gradual inclusion of

the measurements. The key idea is to model the transi-

tion of particles from the prior to the posterior density

as a physical flow under the influence of an external

force (measurements). Particles are sampled from the

state transition density and a notion of synthetic time

also called the pseudo-time is introduced, in which par-

ticles flow until they reach correct posterior locations.

A stochastic differential equation (SDE) define the flow

of particles in pseudo-time, while the Fokker-Planck

equation (FPE) describes the density evolution. A flow

vector is obtained by solving the FPE under different

assumptions, which is then integrated numerically yield-

ing updated states of particles. The new filter is termed

as homotopy based particle flow filter or simply Daum-

Huang filter (DHF) after the developers. Different flow

solutions have been derived, including the incompress-

ible flow [9], zero diffusion exact flow [10], Coulomb’s

law flow [11] and zero-curvature flow [12] non zero

diffusion flow [13].

DHF implementations have been reported in several

publications. While conceptually being quite intuitive,

DHF performance suffers in practice due to several as-

sumptions, made both in the theory and the implemen-

tation. In this paper we identify key factors affecting the

performance of the DHF. We study each of those fac-

tors in detail and in the light of the results, we suggest

possible improvements in the DHF implementation. We

consider state estimation of a non-linear system under

both Gaussian and non-Gaussian measurement noises.

The effect of different methods on the performance of

DHF is studied individually for both noise cases. We

show that by a careful design, the DHF performance

can be substantially improved over the more traditional

implementations.

The outline of the paper is given as follows: We

present a description of homotopy based particle flow

in section II. We start with the general formulation of

RBE. We then give a derivation of the generic homotopy

based flow equation, which is followed by its specific

solutions. Next, in the section III we present a generic

algorithm for DHF implementation and highlight the

important steps. We describe different possible schemes

that could be employed for each of those steps in the

section IV. Section V starts with the description of the

two models used in the study, followed by the sub-

section on the parameter settings and the simulation

methodology. Results for proposed alternative methods

are described in section VI, which is followed by the

discussion in section VII. Finally the conclusion is given

in section VIII.

II. HOMOTOPY BASED PARTICLE FLOW FILTERS

A. Bayesian recursive estimation

We start with the general formulation of bayesian

recursive estimation for a markovian state space system.

Let xk 2 Rd denote the state vector and zk 2Rm denote
the measurement vector at time k. Also let Zk denote

the set of measurements up to time k including zk, Zk =

fz1,z2, : : : ,zkg. The state space model can be expressed
in the terms of conditional probabilities,

xk+1 » p(xk+1 j xk) (1)

zk+1 » p(zk+1 j xk+1) (2)

p(xk+1 j xk) and p(zk+1 j xk+1) are referred to as the tran-
sition and the measurement/likelihood densities. As-

suming additive process and measurement noises wk and

vk we can write

p(xk+1 j xk) = pwk (xk+1¡Ák(xk)) (3)

p(zk+1 j xk+1) = pvk (zk+1¡Ãk(xk+1)) (4)

where Ák is termed as the process/dynamical model

and Ãk as the measurement model. According to the

Chapman-Kolmogrov equation and the Bayes theorem,

the prior density p(xk+1 j Zk) and the posterior density
p(xk+1 j Zk+1) are recursively defined as,

p(xk+1 j Zk) =
Z
p(xk+1 j xk)p(xk j Zk)dxk (5)

p(xk+1 j Zk+1) =
p(zk+1 j xk+1)p(xk+1 j Zk)

p(zk+1 j Zk)
(6)

where p(xk j Zk) is posterior density at time k. These
are also referred to as the process and measurement

update equations respectively. The conditional density

p(zk+1 j Zk) appears as a normalization constant in the
measurement update formula, and it describes the dis-

tribution of measurement at time k+1, conditioned on

the set of all previous measurements. An exact closed

form solution of (5) and (6) is generally not available

for non-linear systems. Instead, two main approximate

methods are used for the state estimation of such sys-

tems. In a first approach, the linearization of the model

is performed around the current estimate (EKF) or the

so called Sigma-points are propagated through the non-

linear state space (UKF), thereby providing an approxi-

mation to the point estimates e.g. state mean and covari-

ance. Another approach could be to numerically approx-

imate the process and the measurement update equation.

This could be done either by numerically evaluating the

integrals over the discretized state space region [14],

or by employing sequential Monte Carlo methods like

particle filters [2], [3].

B. Derivation of generic homotopy flow equation

Log homotopy based particle flow filters also termed

as the Daum-Huang particle flow filters (or simply the

Daum-Huang filters DHF) as described in [9]—[15],

share the importance sampling step with the SIR particle

filter, but they specifically use the prior distribution of

the state vector p(xk+1 j xk) as the importance density.
The main difference lies in the way measurements are
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incorporated to derive the posterior density. The idea

here is to model the motion of particles from the prior to

the posterior density, in a way analogous to the flow of

physical particles. A log-homotopy function logp(xk,¸)

is defined through the homotopy parameter ¸,

logp(xk+1,¸) = logg(xk+1)+¸ logh(xk+1)¡ logK(¸):
(7)

where g(xk+1) represents the prior p(xk+1 j Zk), h(xk+1)
the likelihood p(zk+1 j xk+1) and ¸ the pseudo-time vary-
ing from 0 to 1. K(¸) is the normalization constant inde-

pendent of xk+1. ¸= 0 sets p(xk+1,¸) equal to the prior

density while with ¸= 1 the transformation is com-

pleted to the normalized posterior density. From now on

we drop the time index k for the sake of convenience. It

is supposed that the flow of particle obeys the Itô SDE,

dx= f(x,¸)d¸+¾(x,¸)dw (8)

where f(x,¸) is the flow vector, w is the M-dimensional

Wiener process with diffusion matrix ¾(x,¸). For a flow

characterized as in (8), the evolution of the density

p(x,¸) w.r.t. the parameter ¸ is given by the Fokker-

Planck equation (also known as Kolmogorov forward

equation),

@p(x,¸)

@¸
=¡

dX
i=1

@

@xi
[fi(x,¸)p(x,¸)]

+
1

2

dX
i=1

dX
j=1

@2

@xi@xj
[Qi,j(x,¸)p(x,¸)] (9)

where Q(x,¸) is the diffusion tensor. This can be written

in short hand notion,

@p(x,¸)

@¸
=¡r¢ (f(x,¸)p(x,¸)) + 1

2
rTQ(x,¸)p(x,¸)r

(10)

where r is the spatial vector differentiation operator.

From (7), the pseudo-time derivative of the density

p(x,¸) can be formulated.

@p(x,¸)

@¸
= p(x,¸)

μ
logh(x)¡ @ logK(¸)

@¸

¶
(11)

By combining equations (10) and (11) we get,

p(x,¸)

μ
logh(x)¡ @ logK(¸)

@¸

¶
=¡r¢ (f(x,¸)p(x,¸)) + 1

2
rTQ(x,¸)p(x,¸)r

(12)

Using the vector calculus identity,

r¢ (ab) = (r¢ a)b+ a ¢ (rb)

the equation 12 can be further expanded,

logh(x)¡ @ logK(¸)
@¸

=¡fT(x,¸) ¢r logp(x,¸)¡r¢ f(x,¸)

+
1

2p(x,¸)
(rTQ(x,¸)p(x,¸)r) (13)

The objective then becomes to solve the generic flow

equation (13) for the yet unknown flow f(x,¸).

C. Specific flow solutions

Various flow solutions have been obtained by solv-

ing (13) under different assumptions. Here we discuss

four such flows derived by F. Daum and J. Huang in

their series of papers.

1) Incompressible flow: The first solution of (13) ap-

peared in [9], which was based on two distinct assump-

tions. Firstly, the diffusion term ¾(x,¸) in (8) is ignored.
Secondly, the flow is considered incompressible, i.e.

r¢ f(x,¸) = 0. Also the derivative of the log of normal-
ization constant @ logK(¸)=@¸ is assumed to be very

small, and therefore neglected. Applying these simpli-

fications to the (13) leads to the incompressible flow

equation,

fT(x,¸) ¢r logp(x,¸) =¡ logh(x) (14)

For one dimensional state space (d= 1) the equation

has an exact solution. However, for (d¸ 2) a simple
inversion of the vector r(logp(x,¸)) is not possible.
Instead a unique minimum norm solution is obtained

using the generalized inverse,

f(x,¸) =¡ logh(x) r logp(x,¸)
kr logp(x,¸)k2 (15)

The authors suggest to use the fast kNN method to

evaluate the gradients. Implementational details are de-

scribed in [16]. Incompressible flow is generally infe-

rior to exact flow [17]. Also it was reported in [18]

that the incompressible flow could often hit a singular-

ity for d=1. As a rebuttal to this, in [19] it has been

argued that the incompressible flow can avoid singu-

larities for d¸ 2, as singularities in higher dimension
are just points in the state space and hence they can

be bypassed/flown around. In the current work we will

consider the incompressible flow for the sake of com-

parison. The filter based on the incompressible flow is

termed as DHF-IC.

2) Exact flow: If the diffusion term is still assumed to

be zero and @ logK(¸)=@¸ is neglected but the flow is

allowed to be compressible, following equation can be

derived from (13)

logh(x) + fT(x,¸) ¢r logp(x,¸) =¡r¢ f(x,¸) (16)

Different flows have been derived in [20] based on

solutions to the (16). One particular solution relates to
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the case of logg(x) and logh(x) being bilinear in the

components of vectorx, e.g., assuming a Gaussian prior

and likelihood.

logg(x) = logcg ¡ 1
2
(x¡ x̄)TP¡1(x¡ x̄) (17)

logh(x) = logch¡ 1
2
(z¡Ã(x))TR¡1(z¡Ã(x)) (18)

where logcg and logch are the associated log normal-

ization constants. The gradient of the two densities then

can be written as,

r logp(x,¸) =¡P¡1(x¡ x̄) +¸HTR¡1(z¡Ã(x)) (19)

where H= (@Ã=@x)jx¸ . More generally speaking, if the
additive noise processes wk and vk belong to the expo-

nential family, then an analytical solution termed as the

Exact flow can be derived. For the Gaussian case, this

is given as,

f(x,¸) =A(¸)x+b(¸) (20)

where A(¸) and b(¸) are,

A(¸) =¡ 1
2
PHT(¸HPHT+R)¡1H (21)

b(¸) = (I+2¸A)[(I+¸A)PHTR¡1z+Ax̄] (22)

For nonlinear systems, the measurement model can be

linearized by the Taylor series expansion up to the first

term, such that z¼ z¡Ã(x¸) +Hx¸. The derivation of
the exact flow has been described in detail in [21]. We

abbreviate this filter type as DHF-EF.

3) Coulomb’s law based flow: Yet another solution

can be developed in which the flow of particles in the

pseudo-time is derived from the gradient of Poisson’s

equation [11]. Diffusion term in (13) is again assumed

to be zero, but the derivative of the normalization con-

stant is not ignored. Instead it is derived and an exact

expression is found,

@ logK(¸)

@¸
= E(log(h(x))) (23)

Then the equation (13) is written in the form

r¢q(x,¸) =¡´(x,¸) (24)

where q(x,¸) = f(x,¸)p(x,¸) and ´(x,¸) =¡p(x,¸)
¢ (logh(x)¡ @ logK(¸)=@¸) It is noticed that the integral
of ´(x,¸) w.r.t. x along the flow is zero,Z

−

´(x,¸) = 0 (25)

where − is the relevant volume of the state space.

This is analogous to the zero divergence of the electric

flux density out of an enclosed region without any

charge (first of the Maxwell’s equations), i.e. net field

lines entering the an enclosed region equal to the those

leaving. Next it is reasoned that, if the function q(x,¸)

can be assumed to be the gradient of scalar potential

function V(x,¸), then the equation (24) can be expressed

as the Poisson’s equation for the potential V(x,¸).

¢V(x,¸) = ´(x,¸) (26)

such that,

f(x,¸) =
rV(x,¸)
p(x,¸)

(27)

where ¢ is the Laplacian operator. Solution to the (26)

can be expressed in terms of the convolution integral

for d¸ 3,

V(x,¸) =¡
Z
−

´(y,¸)
c

kx¡ ykd¡2 dy (28)

where c= (4¼)¡d=2¡ ((d=2)¡ 1) and y is the running
variable. The above equation gives the solution of scaler

potential V(x,¸), whereas our quantity of interest is its

gradient. Taking the gradient of (28) we get,

rV(x,¸) = E
·
(logh(y)¡E[logh(x)])c(2¡d)(x¡ y)

T

kx¡ ykd
¸

(29)

Using (23) together with the Monte Carlo approxima-

tion for integrals, (29) can be approximated as,

rV(xi,¸)¼
1

k

X
j2Si

0@logh(xj)¡ 1kX
l2Sl
logh(xl)

1A ¢
Ã
c(2¡ d)(xi¡ xj)T
kxi¡ xjkd+®

!
(30)

The expression for the gradient rV(x,¸) is similar to
the electromagnetic force equation given by Coulomb’s

law, hence the name of the flow. In order to reduce

the computational complexity, the outer summation is

carried over the subset of k nearest neighbors of the ith

particle xi, which is denoted here by Si. This is motivated

by the fact that the as the state space dimension is in-

creased, contribution of particles far apart, approaches

zero exponentially. The inner expectation is approxi-

mated in a similar way. ® is set to (1=¯)Tr(P)d=2, where

both ® and ¯ are design parameters. Their purpose is

to regularize the expression for rV(x,¸). Also P can

be approximated by a prior covariance matrix estimate.

Filter based on this type of flow is referred as DHF-CLF

4) Non zero diffusion constrained flow: The last type

of flow we consider, can be derived by not ignoring

the diffusion term in equation (13) as suggested in [13].

Taking the gradient we get,

r logh(x) =¡r logp(x,¸)T ¢rf(x,¸)
¡ fT(x,¸) ¢r2 logp(x,¸)¡r(r ¢ f(x,¸))

+r
μ

1

2p(x,¸)
rTQ(x,¸)p(x,¸)r

¶
(31)
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Analytical evaluation of the above equation for the flow

f(x,¸) is not possible, though numerical methods can be

employed for this purpose. Depending on the dimen-

sionality of the state-space, this could be computation-

ally quite demanding. A little trick can lead to closed

form solution for the flow, if the following constraint

holds valid,

r
μ

1

2p(x,¸)
rTQ(x,¸)p(x,¸)r

¶
=r logp(x,¸)T ¢rf(x,¸) +r(r¢ f(x,¸))

(32)

This resuults in a simple formula for the flow equation,

given by

f(x,¸) =¡(r2 logp(x,¸))¡1(r logh(x))T (33)

The flow derivation does not involve neglecting the

diffusion term, instead it appears in the constraint equa-

tion. Hence this flow is termed as non-zero diffusion

constrained flow (NZDCF), and the DHF with this par-

ticular flow is termed as DHF-NZDCF.

A closer look at (33) reveals that it requires the

hessians of the log prior and the likelihood, as well as

the gradient of the log-likelihood. The gradient and the

hessian of the log-likelihood, r logh(x) and r2 logh(x),
can be calculated analytically in most cases. On the

other hand, there is no single method for the evaluation

of the hessian of the prior density, r2 logg(x). The most
straight forward method is to approximate the prior

density by a multivariate gaussian density (e.g. using

Laplace approximation), and use the negative of the

inverse of the covariance matrix ¡P¡1. This leads to
the following,

r2 logp(x,¸) =r2 logg(x)+¸r2 logh(x) (34)

¼¡P¡1 +¸r2 logh(x) (35)

It has been suggested that the matrix P can be set

to the prior covariance matrix of a parallel running

EKF/UKF. Another suggested method is to use the

fast k-NN algorithm to compute the hessian of the

prior, similar to the incompressible flow. Alternatively,

an approximation can be used instead, where P is the

state covariance matrix computed directly from the prior

position of particles.

In this work, we primarily focus on analyzing DHF-

NZDCF.

III. IMPLEMENTATION OF PARTICLE FLOW FILTERS

Numerical results for the DHF have been presented

in [17]. DHF based on the incompressible and exact

flows have been implemented by Choi. et.al. in [16]

for non-linear scalar and linear vector system models.

Exact flow DHF implementations for multi-target track-

ing using acoustic measurements have been reported in

[21], where mobile targets are tracked based on the their

received signal strength at a fixed receivers. In [22],

joint probabilistic data association (JPDA) and maxi-

mum aposteriori penalty function (MAP-PF) algorithms

based on the exact flow DHF have been derived. Re-

cently, many researchers have carried out the compar-

itive analysis for the DHF-NZDCF, in quite varied ap-

plication. This include comparing the DHF performance

against more traditional methods for angle only filter-

ing in 3D by Gupta et.al. [23], comparing the track-

ing performance of DHF vs. other methods for super-

maneuverable targets by Kreucher et.al. in [24], and the

comparison of multisensor fusion using DHF against the

particle filters by Mostagh and Chan in [25]. Results

show a varying degree of success for DHF. While in

some applications particle flow filters are shown to out-

perform the competitors, in others they do not perform

quite well. The main issue is that while particle flow

filters are theoretically quite elegant, their performance

suffer from approximations made, both in theory and

in the practical implementation. This include approxi-

mations made while deriving the flow, estimation of the

prior density and the use of numerical techniques. This

leads to the introduction of bias and loss of asymptotic

consistency [26].

There could be several ways in which a DHF can be

implemented. In Algorithm 1, we outline the method

described by T. Ding and M. Coates in [21].

ALGORITHM 1: Generic implementation of DHF

Initialize DHF: Generate initial set of particles;

Initialize EKF/UKF: Initial mean and covariance;

Pseudo-time grid discretization;

for Loop over the time do

Propagate particles using the dynamic model;

Time update for EKF/UKF;

Prior covariance matrix estimate from EKF/UKF;

for Loop over the pseudo-time do

for Loop over individual particles do

Integration of the flow equation;

end

end

Measurement Update for EKF/UKF;

Redraw particles (Optional);

end

Particles are generated by sampling the transition

density. An EKF/UKF is run in parallel to the main

algorithm. This is done to approximate the prior covari-

ance matrix. Next the flow equation is solved in the

pseudo-time for all particles. The flow equation uses

the prior covariance estimate from the parallel running

EKF/UKF. Once done, the mean state vector is esti-

mated and the measurement update is carried out for

EKF/UKF. This process in repeated till the end of the

simulation time. The steps colored in red are the crucial

factors in the performance of the DHF.
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The first is the pseudo-time ¸ discretization strat-

egy together with the numerical integration method. As

the DHF flow is described by an ordinary differential

equation (ODE), a suitable discretization is essential to

capture the flow dynamics. Then the flow equation is in-

tegrated w.r.t. ¸. While the exact implementation details

for references [13], [16],[22] are not clear, authors in

[21] have used a single step Euler integration, as men-

tioned in the pseudo-code. It is simple to implement and

is fairly quick. But care has to be taken as the flow ODE

can exhibit stiffness. In that case a straight forward ¸

discretization together with the single step Euler inte-

gration might not work. Secondly, all flows described

above require an estimate of the prior covariance ma-

trix. While prior covariance estimate from parallel run-

ning EKF/UKF can be used as an approximation, this

makes the DHF accuracy dependant on EKF/UKF. On

the other hand, a sample covariance estimate can often

be ill-conditioned. The question then becomes, is there

a better method to estimate the prior covariance ma-

trix. Finally, the re-generation of a new set of particles

is an important step. Unlike a standard particle filter,

the re-sampling/re-drawing step is not mandatory in the

DHF, but optional. Instead, it has been mentioned that

the homotopy flow moves the particles to their correct

locations in the state space. But due to approximations

made in the derivations, the flow may not be accurate,

which could could reduce the accuracy of the estimates.

Hence the effect of particle re-generation is worth inves-

tigating. In the current work we look for improvements

in the DHF performance by considering changes in the

existing implementation architecture, as mentioned in

Algorithm 1.

IV. IMPORTANT FACTORS IN DHF

In this section we individually discuss the aforemen-

tioned key factors affecting the DHF performance.

A. Pseudo-time discretization

While comparing the two flows, it was shown in

[27] that the non zero diffusion flow is considerably

stiffer as compared to the exact flow, where authors

used 39 exponentially spaced ¸ points for solving the

ODEs. This has also been mentioned in [13] where

the usage of exponentially spaced time steps or higher

order integration schemes is recommended to solve the

issue. In this paper we consider both uniform and non-

uniform grid discretization. The idea is to analyze the

effect of a particular grid discretization strategy and the

numerical integration scheme on the filter performance,

in terms of the estimation error and the processing time.

While the coarse ¸ discretization would not result in the

correct solution, a fine discretization on the other hand

would lead to a substantial increase in the computational

cost. Therefore, a middle ground has to be chosen

such that, flow dynamics at very small ¸ values are

maximally captured, while only moderately increasing

the processing cost.

B. ODE numerical solution

The homotopy flow is defined by a vector ordinary

differential equation (ODE). In the current work, we

seek for the numerical solution of the ODE. Broadly

speaking, ODEs can be catagorized into being stiff and

non-stiff. While there is no precise definition of the stiff-

ness, in the literature two criteria are generally men-

tioned for describing a stiff ODE. First, the condition

number of the jacobian matrix J(x,¸) = @f(x,¸)=@x of

a stiff ODE is quite large. As a consequence, multiple

timescales exist in the ODE. Time scales, often referred

as modes, are defined by the inverse absolute eigenval-

ues of the Jacobian J(x,¸). Secondly, in the Lipschitz’s

inequality kf(x2,¸2)¡f(x1,¸1)k · Lk¸2¡¸1k, the Lip-
schitz’s constant L is typically very high for a stiff ODE.

Non-zero diffusion ODE can be characterized as stiff

according to both criteria. Therefore, care has to be

taken when chosing the numerical integration scheme

for solving the flow ODE.

The standard Euler’s method has been used for

solving the flow ODE in earlier works. It is a first order

method with the truncation error in the order of O(h2).
In this paper, we intend to compare the performance

of some other numerical integration (NI) schemes for

solving stiff ODEs alongside the Euler’s method. There

are several choices available. Below, we mention some

of the common NI methods for solving stiff ODEs.

1) Forth order Runge-Kutta method: Forth order Runge-
Kutta method (RK4) is our second integration method.

RK4 method has the local truncation error in the order

of O(h5), while the total accumulated error is of order
O(h4).
2) Rosenbrock method: Rosenbrock methods are fam-

ily of multistep procedures to solve stiff ODEs. Jaco-

bian matrix appears in the integration formula. Like

the Runge-Kutta methods, Rosenbrock methods succes-

sively form intermediate results. If the Jacobian matrix

is ignored then the method turns into the explicit Runge-

Kutta scheme. Therefore, they are also called Runge-

Kutta-Rosenbrock methods. Rosenbrock methods pre-

serve exact conservation properties due to the use of

the analytic Jacobian matrix, and possess optimal linear

stability properties for stiff problems.

3) Gear’s method: The Gear’s method [28] belongs to

the class of methods known as backward differentiation

formulae (BDF). It is an implicit integration method and

uses the first and higher order derivatives. Also, it is a

predictor-corrector type scheme where each time step is

initiated by prediction. Corrector iterations are then car-

ried until prescribed convergence criteria are achieved

or non-convergence is deemed to have occurred.

C. Prior covariance shrinkage estimation

The evaluation of the flow equation (33) require

the availability of the prior covariance estimate. This
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can be derived in several ways. The simplest way is to

estimate the covariance matrix using the prior particles.

This is referred to as the sample covariance estimate S.

S is an unbiased estimator of the true prior covariance

P, and is also the maximum likelihood estimate if

the data is Gaussian distributed. But for non-linear

models/non-Gaussian noises, the Gaussian assumption

may not remain valid. Also S could progressively get

ill-conditioned. i.e. the spread of the eigenvalues gets

larger with the passage of time. This is especially the

case, when the d=Np ratio is non-negligable, where d

is the state vector dimension and Np is the number

of particles. As a consequence, the matrix inversion

could lead to stability issues. For the case of d > Np,

the resulting covariance matrix is not even full rank and

hence not invertible. An alternative method suggested

by authors in [15] is to run an EKF/UKF in parallel to

DHF, and to use the prior covariance matrix generated

by those filters. We refer to such matrix as PXKF , where

XKF could be Extended or Unscented version of the

KF. While this method is better than using the raw data

based covariance estimate, it ties the DHF estimation

accuracy to that of the EKF/UKF. PXKF could also

exhibits a wide spread of the eigenvalues.

Therefore, we look for an alternative method for co-

variance matrix estimation. That method should have

two properties: the resulting matrix should always be

positive definite (PD) and the matrix should be well-

conditioned [29]. One approach could be to start with

the sample covariance, and ensure that the matrix is al-

ways PD. Such a matrix might not be well-conditioned.

Alternatively, variance reduction technqiues could be

used to get a well-conditioned matrix, but this could be

computationally expensive [30]. There is another ap-

proach used in the multivariate statistics literature for

the estimation of the covariance matrices, known as the

shrinkage estimation. The use of such methods dates

back to work of Stein [31]. The main idea is to merge

the raw estimate (S) which is unbiased but normally

with high variance, together with a more structured but

typically a biased target (B) through a scale factor, to get

the combined estimate (P¤). The objective is to reduce
the estimation error, typically in mean squared sense, by

achieving an optimal trade off between the biased (B)

and the unbiased (S) estimators. The scale factor is also

called shrinkage intensity ½ as it shrinks the eigenvalues

of S optimally towards the mean of eigenvalues of the

true covariance matrix P [32]. The resulting covariance

matrix (P¤)will be biased, but will improve on the two
aforementioned properties, and is hoped to lower the

estimation error. There are several shrinkage estimators

mentioned in the literature, with different target covari-

ance matrices. In the current work, we describe some

of the more established shrinkage estimators. In subsec-

tions IV-C.1 to IV-C.3, shrinkage estimators are defined

through a convex combination of the matrices B and

S. The objective becomes to find an optimal shrinkage

intensity that minimizes the cost function,

min
½
E[kP¤ ¡Pk2] (36)

where P¤ = ½B+(1¡ ½)S.

1) Shrinkage towards the Identity matrix: Shrinkage

towards the Identity matrix is described in [32]. The two

main objectives defined are, to get an asymptotically

consistent estimator that is more accurate than the sam-

ple covariance matrix S, and is also well-conditioned.

No prior structure is assumed for the target matrix B,

as it could lead to an increased biasness. Instead a sim-

ple matrix with same covariance terms and zero cross-

variances (scaled Identity) is chosen as the target. The

shrinkage estimator has following form

P¤ =
®2

±2
¹2I+

¯2

±2
S (37)

The estimator P¤ asymptotically shrinks its eigenvalues
towards the mean eigenvalue of the true covariance

matrix P, in quadratic mean sense. The terms ®, ¯, ±

and ¹ depend on the unobserved true covariance matrix

P. Therefore, a consistent estimator of P¤ is derived
under the assumptions of general asymptotics. We term

this estimator estimator is termed here as PLW0, and has

following form,

PLW0 =
a2n
d2n
mnI+

b2n
d2n
S (38)

where,

mn = tr(S)=d

d2n = kS¡mnIk2 (39)

xinonumber (40)

b̄2n =
1

n2

NpX
i=1

[kxixTi ¡ Sk2]

b2n =min(b̄
2
n,d

2
n)

a2n = d
2
n ¡ b2n

k:k is the squared Frobenius norm and xi is the ith

particle. Also the shrinkage intensity ½ is given by

a2n=d
2
n . It is shown that the MSE for PLW0 asymptoti-

cally approaches that of P¤ i.e. limNp!1E[kP¤ ¡Pk2Np]¡
E[kPLW0¡Pk2Np]! 0. One main advantage of this esti-

mator is that it does not assume any particular distribu-

tion for the data, and is therefore distribution-free.

2) Shrinkage towards the constant correlation matrix:
This estimator is derived in [33], in the context of port-

folio optimization. The target matrix is chosen accord-

ing to the constant correlation model. It means that pair-

wise correlations are identical, which is given by the
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average of all the sample correlations. We denote this

estimator by PLW1. The target matrix B is given by

B =

½
Sii : i= j

r̄
p
SiiSjj : i 6= j

where r̄ is the average sample correlation. It is defined as

r̄ =
2

d(d¡ 1)
d¡1X
i=1

dX
j=i+1

Sijp
SiiSjj

(41)

The shrinkage intensity is defined as ½=maxf0,
minf1,·=dgg, with ·= (¼̂¡ %̂)=°̂. ¼̂ denotes the sum of

asymptotic variances of the entries of the sample covari-

ance matrix S, while %̂ denotes the sum of asymptotic

covariances of the entries of the shrinkage target B with

the entries of the sample covariance matrix. °̂ gives a

measure of the misspecification of the shrinkage target.

The hat (:̂) on the top of terms indicate the fact that

these are the estimates of the true values, which are not

known. ¼̂ are %̂ are given by,

¼̂ =
1

d

nX
i=1

nX
j=1

dX
k=1

f(xik ¡ x̄i)(xjk ¡ x̄j)¡ sijg2

%̂=

nX
i=1

¼̂ii+

nX
i=1

nX
j=1
j 6=i

r̄

2

Ãs
Sjj

Sii
#ii,ij +

s
Sii
Sjj
#jj,ij

!

(42)

where,

#ii,ij =
1

d

dX
k=1

f(xik ¡ x̄i)2¡ x̄i)¡ Siig

¢ f(xik ¡ x̄i)(xjk ¡ x̄j)¡ Sijg

#jj,ij =
1

d

dX
k=1

f(xjk ¡ x̄j)2¡ x̄j)¡ Sjjg

¢ f(xik ¡ x̄i)(xjk ¡ x̄j)¡ Sijg (43)

Finally °̂ is given by

°̂ =

nX
i=1

nX
j=1
j 6=i

(Bij ¡ Sij)2 (44)

3) Shrinkage towards the perfect postive correlation ma-
trix: Authors in [34] suggest single-factor matrix as the

shrinkage target. The paper is concerned with estimating

the structure of the risk in the stock market and the mod-

elling of the stock returns. The fact that stock returns

are positively correlated to each other, is exploited. The

shrinkage target is given by,

Bij =

½
Sii : i= jp
SiiSjj : i 6= j

The resulting linear estimator is denoted as PLW2. The

shrinkage intensity has the same form as for PLW1, but

with slighty different formula for %̂, which is given

below.

%̂=

nX
i=1

¼̂ii+

nX
i=1

nX
j=1
j 6=i

1

2

Ãs
Sjj

Sii
#ii,ij +

s
Sii
Sjj
#jj,ij

!
(45)

4) Emprical bayesian: In [35], an estimator for multi-

variate gaussian data is derived. It is given by the lin-

ear combination of the sample covariance matrix S and

scaled identity matrix. The scaling factor is estimated

from the data. We denote this estimator by PEB and it is

given by

PEB =
Npd¡ 2Np¡ 2

N2p d
[det(S)]1=dI+

Np

Np+1
S (46)

5) Stein Haff: This estimator is described in [36]. The

general form of the estimtor is V(S)©(l(S))V(S)T, where

V(S) matrix contains the eigenvectors of the sample

covariance matrix S while ©(l(S)) is a matrix that is

a function of the eigenvalues l(S) of the S. The data

is assumed to be normally distributed. and the sam-

ple covariance estimate S is therefore Wishart dis-

tributed S »W(P,d). The Stein-Haff estimator denoted
by PSH , is contructed by leaving the eigenvectors of

the S unchanged while replacing the eigenvalues l

by
˜̂
li = nli=(n¡p+1+2li

PNp
j=1,j 6=i(1=(li¡ lj))). Eigen-

values can get disordered by the transformation and

might become negative, which could lead to the covari-

ance estimate lossing its positve definiteness. Therefore

another algorithm called isotonic regression is used in

conjunction with the transformation [37]. This lead to

eigenvalues l̃= fl̃1, l̃2 : : : l̃pgT. Hence, the estimate PSH is
given by V(S)Diag(l̃)V(S)T.

6) Minimax: The final shrinkage estimator considered

is derived in [38]. Again Gaussian assumption is made.

This estimator is termed minimax because under certain

loss function, it has the lowest worst case error [32]. Its

structure is similar to the PSH but sample eigenvalues

are replaced by l̃i = (n=(n+p¡ 1¡ 2i)li). This estimator
is denoted here by PMX . Isotonizing regression is not

applied in this case.

There is another interetsing covariance estimator by

Ledoit and Wolf [39] in which non-linear transforma-

tion of the sample eigenvalues is considered. Also it

requires solving a non-linear optimzation problem us-

ing sequential linear programming. It is shown that the

new non-linear estimator outperforms the linear shrink-

age estimators, described earlier in this section. In the

current work we do not consider this method.

D. Re-generating the particles set

In the standard particle filter, new set of particles are

generated after the measurement inclusion step. This is

done in order to avoid the particle degeneration. A mea-

sure of the particle degeneracy is the effective number
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of particles Neff . When Neff falls below a certain thresh-

old, resampling of the particles is carried out. Depend-

ing on the number of particles, this can be computa-

tionally expensive. Homotopy based particle flow filters

try to avoid the particle degeneracy by the gradual in-

clusion of the measurements. Unlike standard particle

filters, resampling is not a mandatory step in the DHF

[15], as it moves the particles to the correct region of

the state-space. However due to the inexactness of the

homotopy flow ODE, the particle state update itself is

imperfect. Hence the generation of a new particle set

could potentially help in relocating/confining the parti-

cles to the correct region. Instead of the conventional

resampling, an optional redrawing of the particles is

hinted out by the Daum and Huang in their papers. We

find a single source describing the particles redrawing

method. In [21], it is suggested to redraw a new set of

posterior particles by sampling a Gaussian distribution.

The mean of the distribution is estimated using parti-

cles, while the filtered covariance matrix is provided by

the EKF. In the current work we consider two redraw-

ing schemes, one using a single multivariate Gaussian

distribution (MVG), and other using a Gaussian mix-

ture model (GMM) that is estimated through the kernel

density estimation (KDE).

1) MVG: Our first technique is inspired by the one

described in the pseudo-code in [21]. The main differ-

ence is that we don’t re-draw the whole set of parti-

cles. Instead, only those particles are redrawn which

are deemed too wayward. Multivariate gaussian distri-

bution is fitted to the posterior particles. This amounts

to the estimation of the mean and variance of the MVG,

given the particles. New particles are generated from

this MVG.

2) KDE-GMM: Our next re-drawing scheme is based

on the intuition that, a Gaussian fit to the posterior dis-

tribution might not be well suited for all cases. Hence

we look for a non-Gaussian approximation to the fil-

tered particles. The next most intuitive approach is to

fit a Gaussian Mixture model (GMM) to the data. The

key-factor in the GMM approximation is the number of

components, which can be set to a fixed value or could

be data driven. The textbook approach to estimate the

GMM parameters is the expectation-maximization or

EM method [40]. Alternatively, non-paramteric meth-

ods like Kernel Density Estimation (KDE) may be

employed for the estimation of the probability den-

sity, which is given by the sum of estimation kernels

with a certain smoothing factor, centered at data points.

Smoothing factor is also called bandwidth. In this paper

we use the online KDE approach described by Kristan

et al. in [41], in which a new method for online KDE

is described. The method enables the construction of a

multivariate probability density estimate by observing

only a single sample at a time. The KDE of the target

distribution is estimated using the sample distribution

which is constructed by online clustering of the data

points. Each new observation is treated as a distribu-

tion in the form of Dirac delta functions. In the final

form of the sample distribution, Dirac delta functions

are smoothed out into Gaussians. Sample distribution is

continuously refined and compressed in order to keep

the algorithm complexity low.

3) Redrawing Algorithm: The purpose of re-drawing

is to reduce the spread of the particles and relocate

them in the appropriate region of the state space. We

use the Mahalanobis distance (±M) for deciding the

waywardness of particles. Given N (x j x̄p,Pp), the MVG
approximation to the posterior, the distance (±M) for the

posterior particle x
p
i is given by,

±MVGM (i) = (x
p
i ¡ x̄p)TP¡1p (x

p
i ¡ x̄p) (47)

We define a similar measure for the GMM model with

K components,

±GMMM (i) =

KX
k=1

wk((x
p
i ¡¹k)T§¡1k (xpi ¡¹k)) (48)

where wk, ¹k and §k are the weight, mean and co-

variance of the kth component of the GMM estimated

through the online-KDE. Inverse of the distance & =

1=±¤M is a measure of the closeness of a particle to the

estimated mean value. We use this value as a sort of

weight ascribed to a particle, such that the particles close

to the mean value are assigned a higher weight and vice

versa. These weights are then normalized. Next, the par-

ticle Assemblage, denoted as ¨ is calculated. ¨ has the
same form as the Effective Sample Size (ESS), in the

traditional particle filter, and is a measure of the particle

spread about the mean value. A higher value of ¨ in-
dicates an relatively even spread of the particles about

the mean, whereas a lower value might suggest frag-

mentation of the particles into sub-clusters. A detailed

analysis of this measure is presented in the Appendix A.

ALGORITHM 2: Particle redrawing criterion

&(i) =
1

±¤M(i)
8i;

¨=
1ÃPNp

i=1

&(i)PNp
j=1 &(j)

!2 ;
if ¨· ºM ¢Np then

if ±¤M(i)¸
s
¨

Np
¢max±¤M 8i then

Redraw fromN (x j x̄p,Pp)=
PK
j=1wkN (xi j ¹k,§k);

else

NoRedraw;

end

else

NoRedraw;

end
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xik+1 = x
i
k + _x

i
k¢t+

1
2
axk+1¢t

2 ¦1xk =
1

N ¡ 1
NX
i=2

0@ ·1q
(x1k ¡ xik)2 + (y1k ¡ yik)2 + ±

1A v2t
rt
cos

μ
vt
rt
k

¶

yik+1 = y
i
k + _y

i
k¢t+

1
2
ayk+1¢t

2 ¦1yk =¡
1

N ¡ 1
NX
i=2

0@ ·1q
(x1k ¡ xik)2 + (y1k ¡ yik)2 + ±

1A v2t
rt
sin

μ
vt
rt
k

¶
_xik+1 = _x

i
k +¦

i
xk
¢t+ axk+1¢t ¦ixk = ·2(x

1
k ¡ xik)¡·3 _xik

_yik+1 = _y
i
k +¦

i
yk
¢t+ ayk+1¢t ¦iyk = ·2(y

1
k ¡ yik)¡·3 _yik (D1)

rik+1 =

q
(x(i)k+1)

2 + (y(i)k+1)
2 + virk+1 μik+1 = tan

¡1
Ã
y(i)k+1

x(i)k+1

!
+ viμk+1 (D2)

Gaussian noise noise:

p(zk+1 j xk+1) = p(rk+1 j xk+1)p(μk+1 j xk+1)

=
1

(2¼¾r¾μ)
N

NY
i=1

exp

8<:¡ 1

2¾2r

μ
r(i)k+1¡

q
(x(i)k+1)

2 + (y(i)k+1)
2

¶2
¡ 1

2¾2μ

Ã
μ(i)k+1¡ tan¡1

Ã
y(i)k+1

x(i)k+1

!!29=;
(D3)

Non-Gaussian noise:

p(zk+1 j xk+1) = p(rk+1 j xk+1)p(μk+1 j xk+1)

=
1

(2¼¯2)N=2jRrj1=2
exp

½
¡1
2
(rk+1¡ r̃k+1)TR¡1r (rk+1¡ r̃k+1)

¾ NY
i=1

exp

(
¡1
¯

Ã
μ(i)k+1¡ tan¡1

Ã
y
(i)
k+1

x(i)k+1

!!)
(D4)

r̃k+1 =

·q
(x(1)k+1)

2 + (y(1)k+1)
2

q
(x(2)k+1)

2 + (y(2)k+1)
2 ¢ ¢ ¢

q
(x(N)k+1)

2 + (y(N)k+1)
2

¸T
Rr =

2666664
¾2r ¾2rx ¢ ¢ ¢ ¾2rx

¾2rx ¾2r ¢ ¢ ¢ ¾2rx

...
...

...
...

¾2rx ¾2rx ¢ ¢ ¢ ¾2r

3777775
Redrawing takes place only when the assemblage

falls below a certain value, which in our case equals

ºM ¢Np. We call ºM as the Redrawing Intensity and its

value can be set to any value between 0 and 1. When

ºM is 0, redrawing never takes place, while redrawing

happens surely for the value 1. In our previous work

[42], we re-drew the whole set of posterior particles,

when the redrawing criterion was met. Here we make a

small change and redraw only certain particles, which

are deemed too off the mean value. For that purpose, we

compare ±¤M for each particle against a certain threshold
which is dependant on the assemblage. If the criterion

is met, the particle is redrawn from the MVG or GMM.

The procedure is mentioned in the Algorithm 2.

V. MODEL DESCRIPTION

Here we consider a scenario similar to the one de-

scribed in [27], namely the tracking of multiple targets

in a 2D space using range and bearing measurements, in

order to study the effects of the methods proposed in the

previous sections. States of targets are interdependent,

therefore resulting in a non-linear coupled dynamical

model. Furthermore, target association is assumed to be

perfectly known and hence we do not use any data asso-

ciation algorithm. The state vector for the target i at time

instant k is x(i)k =(x
(i)
k ,y

(i)
k , _x

(i)
k , _y

(i)
k ), where x

(i)
k and y

(i)
k rep-

resent the position while _x(i)k and _y
(i)
k representing veloc-

ity components along the x and y-axis respectively. The

overall state vector is formed by concatenating the in-

dividual target state vectors xk = [x
(1)
k ,x

(2)
k : : :x

(N)
k ]. Also

the measurement vector for the target i is given by

z(i)k = (r
(i)
k ,μ

(i)
k ), where r

(i)
k is the range to the ith target

while μ(i)k is its bearing. The overall measurement vec-

tor at time k is generated in a similar way. The process

model is described in equations (D1), where axk+1 and

ayk+1 »N (0,¾2a), ¢t is the time discretization step size
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and N is the total number of targets. The intuition be-

hind the model is to make the targets motion coupled

to each other. The target (i= 1) is pursued by all other

targets (i > 1). The changes in the speed and direction

of the targets depend on their relative distances to each

other. ·1,·2 and ·3 are the coupling constants in the

model. ¦1xk and ¦
1
yk
control the speed/direction change

for the pursued target and is inversely proportional to

the sum of its relative distances to the all others. As pur-

suers come close, the pursued target changes its speed

and direction. The direction change is realized through

terms (v2t =rt)cos((vt=rt)k) and (v
2
t =rt) sin((vt=rt)k). rt and

vt are the turning radius and velocity respectively and

± is a small offset. Similarly, the speed and direction

changes for the pursuers are controlled by the terms

¦ixk and ¦
i
yk
.

If ·1, ·2 and ·3 are set to zero, then state dynamics

corresponds to the standard discrete white noise accel-

eration (DWNA) model. The measurement model for

the ith target is given by (D2). Measurements consist

of ranges and angles of the two object types, target

and the pursuer. We consider two measurement models,

one with uncorrelated Gaussian noises for both range

and the angle, while the other with correlated Gaus-

sian range noise and Exponentially distributed angle

noise. For the first model, the likelihood is given by

the (D3). We assume that both range and and bear-

ing measurement noise vμk+1 vectors are mutually in-

dependent at each time step. Also, both noises are un-

correlated within themselves such that E[virk+1v
j
rk+1
] = 0

and E[viμk+1v
j
μk+1
] = 0 for i 6= j, In the second measure-

ment model, range measurement noises vrk+1 »N (0,Rr)
are mutually correlated but are independent w.r.t. the

bearing measurement noises vμk+1 . Bearing measurement

noise elements viμk+1 are exponentially distributed with

the scale paramter ¯, such that E[(viμk+1 )
2] = ¯2 and

E[viμk+1v
j
μk+1
] = 0. Rr represent the covariance matrix of

vrk+1 with ¾
2
r = E[(virk+1)

2] and ¾2rx = E[v
i
rk+1
vjrk+1 ]. ¾

2
rx
is

assumed to be same for any two targets. Measurement

noises are chosen as such in order to create a challeng-

ing estimation scenario, in which the relative strength of

the particle flow method can be tested against the more

traditional solutions like the EKF and the Particle filter.

The likelihood function for this measurement model is

given in (D4).

A. Parameters setting

We simulate two targets (N=2) in our analysis. ¢t

is set to 1, ¾2a to 0.5 ms
¡2, ¾2r is set to 2000 m

2, ¾2rx to

(3=10)¾2r , while ¯
2 is set to (1=10)rad2. In this paper,

we work only with the strongly coupled model with

coupling constants ·1, ·2 and ·3 set to 8000, 0.01

and 0.1 respectively. The turn radius rt and turn speed

vt are set to 200 m and 10 ms¡1 while ± is set to
0.001. We use 100 DHF particles (Np = 100). DHF and

SIR-PF particles are initialized by sampling Gaussian

Fig. 1. Sample trajectory

distribution with mean of 20000 m and variance of

5000 m2 for position elements, while their velocities

are sampled from Gaussian distribution with mean and

variance of 5 ms¡1 and 25 m2s¡2 respectively. EKF is
initialized by sampling the Gaussian with initial state

vector as mean and with variances 104 and 1 for the

position and the velocity respectively. We note that

¾r < Di,k¾μ 8i,k, where Di,k represents the distance of
ith target from the radar location at time instant k. In

figure 1, we show a sample trajectory generated by

using these parameters. We note that the target object

(i=1) is pursued by the pursueing object (i=2). The

target turns and increases speed as it is approached by

the pursuer. The trajectory has segments of straight run

as well as turns in the middle and at the end. Turning, in

particular is challenging for the estimation algorithm, as

this in addition to the non-linearity in the measurements,

introduces non-linearity in the process model as well.

VI. SIMULATION RESULTS

We use root average mean square error (RAMSE) as

the performance metric. It is defined as following. LetM

be the total number of simulation runs for a particular

scenario, xi,mk and yi,mk denote the positions of the ith

target along X and Y-axis respectively, at time instant

k in the mth trial. Likewise, let x̂i,mk and ŷi,mk denote

estimated positions for the ith target. The RAMSE ¨r
is then defined as,

²r =

vuut 1

M

MX
m=1

"
1

N

NX
i=1

((xi,mk ¡ x̂i,mk )2 + (yi,mk ¡ ŷi,mk )2)
#

We simulate each scenario for a total of fifty times

(M = 50). First, we describe the effect of the numerical

integration schemes.

A. Effect of numerical integration schemes

We compare the performance of the four methods

mentioned in subsection IV-B, namely Euler’s method,

Runge-Kutta scheme of fourth order, Rosenbrock for-

mula of second order and Gear’s method. While we

wrote scripts for the first two methods, MATLAB pro-

vided functions ode23s and ode15s were used for the
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Fig. 2. Comparison of numerical integration schemes for the

Gaussian noise

Rosenbrock and the Gear’s methods respectively. We

also compare the effect of grid discretization on the

performance of the above schemes. We use two specific

cases, 10 uniformly spaced pseudo-time points (coarse

discretization) and 30 exponentially spaced points (fine

discretization). Also, the prior covariance matrix of a

parallel running EKF is used to compute the flow. We

plot the RAMSE ²r for different schemes in figures

2a and 2b. We see a general increasing trend in the

RAMSE vs. time for all methods. This is due to the

specific process model used, which results in the pecu-

liar targets trajectories involving rapid accelerations and

sharp turns. It can be observed that the difference in the

performance of different integration schemes is more

pronounced in the case with non-Gaussian noise, as ev-

ident by the wider spread in the error curves. For the

Gaussian case, we note that Runge-Kutta method with

30 ¸ points has the lowest error. Among the integration

methods with 30 discretization points, Euler’s method

has the highest error. We can also note that Gears-10

has the lowest error for all methods employing 10 dis-

cretization points. The largest error is exhibited by the

Euler-10 method, which happens to be the fastest. On

the other hand, Rosenbrock-30 is the slowest of all the

methods. Euler-30 ranks second in the processing speed,

as it is almost 1.5 times faster than its nearest competitor

Runge-Kutta-10, while being 3 times as fast as Gears-10

though slightly inferior in the performance.

Next we discuss the results for the model with

non-Gaussian measurement noise. As discussed earlier,

the error curves show more spread. We note that the

Rosenbrock method with 30 ¸ points has the lowest

RAMSE, while the Euler’s scheme with 10 ¸ points is

the worst performer followed closely by the Gears-10.

Runge-kutta methods with both 10 and 30 points

are the second best. In fact, the difference in the perfor-

mance between the two is very small. This is followed

by the Gear-30 and the Euler-30 methods. We tabulate

the time averaged RAMSE and the average processing

time per particle for all methods in the Table I. Note that

the time values mentioned only represent the time spent

while solving the homotopy ODE for a single particle.

The largest and the smallest values are highlighted in

Fig. 3. Comparison of numerical integration schemes for the

non-Gaussian noise

TABLE I

Comparison for differ integration schemes

Gaussian

Method Avg. ²r [m] Proc.time (pp) [ms]

Euler-30 178.45 6.6

Euler-10 181.70 2.3

Runge-Kutta-30 163.06 27.4

Runge-Kutta-10 180.60 9.1

Rosenbrock-30 169.66 80.5

Rosenbrock-10 178.04 62.8

Gears-30 169.42 27.4

Gears-10 172.37 19.3

Non-Gaussian

Method Avg. ²r [m] Proc.time (pp) [ms]

Euler-30 186.69 5.6

Euler-10 223.07 1.8

Runge-Kutta-30 181.68 38.5

Runge-Kutta-10 184.39 12.7

Rosenbrock-30 173.17 71.9

Rosenbrock-10 196.30 55.8

Gears-30 184.49 26.4

Gears-10 186.69 17.9

red and green respectively. It can be seen that while

the Runge-Kutta-30/Rosenbrock-30 are the best meth-

ods, they are also computationally very expensive. On

the other hand, the Euler-10 is the fastest but the worst

performer of all methods. Euler-30 represents a right

trade-off between the performance and the processing

time. In the proceeding analysis, we use Euler-30 as the

default integration scheme.

B. Effect of shrinkage covariance estimation

Next we analyze the effect of shrinkage estimation

schemes. We compare the performance of the six meth-

ods mentioned in subsection IV-C, together with that

of sample covariance and the prior covariance matri-

ces S and PEKF respectively. We describe the DHF esti-

mate generated using a particular covariance estimation

scheme X as DHF-X. We use four metrics to judge the

effectiveness of these methods. First and the foremost

is the RAMSE of the DHF estimates. This is the central
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Fig. 4. (a, d) Position RAMSE (²r), (b, e) PRIAL and (c, f) Shrikage intensity (½) vs. time, for different covariance estimation schemes.

Subfigures (a, b, c) show results for the case with Gaussian noise, while subfigures (d, e, f) show respective results for the case with

non-Gaussian noise.

criterion for judging the effectiveness of the shrinkage

schemes, in terms of the accuracy of the DHF estimates.

Second is the relative accuracy of the covariance matrix

estimates themselves. In the context of the shrinkage

estimation, we use the percentage relative improvement

in average loss or PRIAL as the measure for the exact-

ness of any shrinkage covariance estimate, as defined

in [32],

PRIAL =

Ã
1¡ E[kP(:)¡Pk

2]

E[kS¡Pk2]

!
£ 100 (49)

where k(:)k represents the Frobenius norm, S is the
sample covariance matrix estimate, while P(:) and P

are the shrinked covariance and the true covariance

estimates, respectively. As P is not known, in the current

scenario this is approximated by the covariance estimate

from a sampling importance resampling particle filter

(SIR-PF) with 25000 particles. Third, is the shrinkage

intensity ½, which indicates the compromise between

the unbiased but more variant sample based estimate

and the biased but less variant target. A lower value of

½ represents the closeness of covariance estimate to the

Sample covariance matrix S. On the other hand, a higher

value highlights a stronger influence of the target matrix

B. At last, we use the condition number kcond to analyze

the spread in the eigenvalues of covariance estimates

over the time. Plots for RAMSE, PRIAL and ½ are

shown in figures 4 (a,d), 4 (b,e) and 4 (c,f) respectively,

while time averaged kcond is shown only in the tabulated

form in the Table II.

First we discuss the RAMSE for DHF with covari-

ance estimates from all methods, for the Gaussian noise

model. DHF-MX (Minimax) has the highest error. This

can be explained as following. The minimax estimator

scales the eigenvalues of the sample covariance matrix

in a non-linear fashion. The highest b((p¡ 1)=2)c eigen-
vectors have their eigenvalues shrinked, while for the

others the eigenvalues are expanded. Scaling is done just

based on the order of the sorted eigenvalues and it does

not take into account any other possible information in

the structure of the matrix S. This simplicity renders the

estimator performing worse as compared to the others.

Next in the line is the DHF-EKF. As can be seen in the

figure 4d, the error increases sharply after about 80 s.

Although each simulated trajectory is not exactly the

same, this is roughly the time when the targets start

turning in our coupled motion model in most of those

runs. Hence this is a critical point, as this tend to in-

crease the non-linearlity in our motion model. We see

that for the DHF based on the EKF prior covariance,

error starts rising indicating a failure in proper tracking.

This outcome is inline with our previous results [27],

where we reported that the standard DHF (EKF based

DHF) fails for a coupled motion model. This also proves

to be a very strong motivation for the search of an al-

ternative covariance estimation method, which could be

better than PEKF . Interestingly, the performance of sam-

ple covariance based DHF is better than many other
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TABLE II

Comparison for different covariance estimation schemes

Gaussian

Method Ave. ²r [m] Ave. PRIAL Ave. ½ Ave. kcond

Stein-Haff 164.29 41.34 0.36 38620

Minimax 188.03 7.86 0.34 272820

Emp.Bayesian 170.94 1.20 0.20 181380

Ledoit-Wolf-0 144.77 63.13 0.05 170

Ledoit-Wolf-1 163.05 27.26 0.05 55610

Ledoit-Wolf-2 171.10 1.63 0.19 60370

EKF covariance 179.23 23.79 0 71460

Sample covariance 168.09 0 0 139760

Non-Gaussian

Method Ave. ²r [m] Ave. PRIAL Ave. ½ Ave. kcond

Stein-Haff 161.22 83.30 0.40 45080

Minimax 166.58 32.0711 0.38 55490

Emp.Bayesian 171.28 18.78 0.23 46730

Ledoit-Wolf-0 153.32 81.71 0.09 180

Ledoit-Wolf-1 161.92 27.01 0.09 53220

Ledoit-Wolf-2 171.27 9.38 0.21 48470

EKF covariance 189.80 15.15 0 67770

Sample covariance 213.41 0 0 142260

schemes. In fact for most of the simulation time it has

an error comparable to the better performing DHFs. It

starts to increase only when targets start turning. Af-

ter that time, the DHF-S fails to properly cope with

the induced process non-linearity and the filter diverges

rapidly. All variants of Ledoit-Wolf covariance estima-

tors perform better, with LW0 based DHF outperform-

ing all other filters. This can be attributed to the optimal

convex combination (asymptotically) of the sample co-

variance matrix S and the scaled identity matrix I. This

structure of the estimator results in a well-conditioned

covariance estimator, that is more stable (from inver-

sion point of view). This property can be critical when

considering the turning motion of the targets, as DHF

particles can be flung far and wide if the flow is in-

correct which of course depends on inverting the prior

covariance matrix. DHF with the other two covariance

estimators from Ledoit and Wolf perform a little inferior

relative to the DHF-LW0. PLW1 and PLW2 were derived

for special problems in portfolio estimation and have

very special structures. This lessens their generality and

makes them very application specific.

Next we discuss the non-Gaussian case. We note

that DHF-S is the worst method. DHF-EKF comes next

as its error is also shows steeply diverging trend. This

can be explained as follows: given that the measure-

ments are non-linear functions of state variables, and

bearing noise is exponentially distributed, the EKF is

not a good approximation for the resulting non-linear

and non-Gaussian scenario. Hence the covariance esti-

mates generated by the EKF will not be accurate. DHF-

LW0 has the lowest average error amongst all methods.

This is because PLW0 is a distribution free estimator,

and hence produces good estimates even in this non-

Gaussian scenario. It is followed by the Stein-Haff and

Minimax estimators. Compared to the DHF-EKF, all

estimators except the sample covariance DHF-S have

lower average RAMSE.

Next we discuss the PRIAL for the covariance es-

timates. The expectation in the formula (49) is calcu-

lated by averaging over all simulation runs. A value of

100 means perfect estimation accuracy, while 0 means

accuracy as good as the sample covariance matrix S.

Again we discuss the Gaussian case first. We note that

the PRIAL for PLW0 is highest while it is lowest for

PLW2 Again, this can be attributed to the very specific

structure of this estimator. For the non-Gaussian case,

we note that the PRIAL for PSH is the highest on the

average, while is lowest for the PLW2.

One noteworthy thing is to compare the PRIAL

of the estimators in the Gaussian vs. non-Gaussian

case. We see that the PRIAL, on average, is lower for

the Gaussian case. This can be explained by the fact

that PRIAL represents how better an estimator when

compared to the sample covariance estimator S. In non-

Gaussian case, DHF-S is worse performer, which points

to the fact that S is not a well-suited estimator. In fact,

all DHFs are better than DHF-S. Hence we see that the

PRIAL for the estimators in the non-Gaussian case is

significantly higher. On the other hand in the case of

Gaussian noise, S is not the worst estimator. This tends

to increase the ratio E[kP(:)¡Pk2]=E[kS¡Pk2], which
results in the lower values of PRIAL.

Shrinkage intensities ½ are shown in the figures 4c

and 4f. We note that the lowest shrinkage intensity in

both cases is exhibited by PLW0. This suggest a higher

contribution of the sample covariance than the scaled

identity matrix in the optimal combination. PSH has

the highest shrinkage intesity on average and is also

the most consistent. Shrinkage intensities in the non-

Gaussian case are higher, again suggesting the inad-

equacy of the sample covariance matrix in the non-

linear/non-Gaussian scenario. Finally we discuss the av-

erage logarithamic condition number logkcond. As ex-

pected, PLW0 has the lowest condition number over time,

at least two orders of magnitude smaller than all other

estimators. Also, the S has the highest condition number.

For the subsequent analysis, we consider PLW0 as the

default covariance estimation scheme.

C. Effect of Redrawing

Once decided upon the pseudo-time discretization,

flow integration and prior covariance estiamtion

schemes, we now study the effect of redrawing on the

performance of the DHF. As mentioned in section III-D,

we consider two methods for regenerating the particles.

The first method is redrawing from a Multivatiate Gaus-

sian (MVG), and the other from a Gaussian mixture

model fitted to the posterior particles, that is estimated
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Fig. 5. (a) Time averaged RAMSE, (b) Redrawing probability and (c) Average percentage of particles redrawn vs. ºM for Gaussian and

non-Gaussian models.

using an online Kernel density estimation method. First

we discuss the redrawing from MVG.

1) Multivariate Gaussian: We follow the Algorithm II

mentioned in the section III-D for redrawing. The main

parameter in that algorithm is the redrawing intensity

ºM . We vary ºM between 0 and 1 and use five distinct

values. First we study the effect of ºM on the estimation

accuracy, for which we plot the time averaged RAMSE

for both Gaussian and the non-Gaussain cases in the

Figure 5a. We see that as the redrawing threshold is

increased the error decreases monotonically: the lowest

error is for ºM = 1. We note that the improvement in

the performance by increasing ºM is stronger in non-

Gaussian case than in the Gaussian one. This suggests

the presence of more wayward particles in the non-

Gaussian case, which are subsequently moved to the

right regions after getting redrawn.

Next in the Figure 5b, we plot the redrawing proba-

bility vs. re-drawing intensity. Redrawing probability is

defined as the number of times redrawing event takes

place in the simulation divided by the total simulation

time. So if particles are redrawn for half of the whole

simulation duration, the redrawing probability is 0.5.

The value is averaged over all the simuation runs. A

higher value indicates a higher chance for particles to

be redrawn during the simulation. We note a monotoni-

cally increasing relation between ºM and the redrawing

probability, which assumes a value of 1 for ºM equals 1.

This plot can also be used to infer about the assemblage,

¨. The assemblage is always greater than zero, making
for the fact that no-redrawing happens for ºM equals

zero. As the ºM is increased, the probability of finding

¨ below the threshold ºM ¢Np increases. e.g. from the

figure 5b, it can be infered that almost 30% of the time

¨ value is below 0:5Np. This suggest that probability of
having fragmentation of particles about the mean into

two sub-groups of equal sizes (or any other equivalent

scenario resulting in ¨=0.5) is non-negligable. Also al-
most 50% of the time the value of the assemblage is

between 50 and 75, while it is between 75 and 100 for

almost 20% of the times. In relation to the RAMSE, we

can conclude that the redrawing frequency has a direct

positive effect on the estimation error. A higher redraw-

ing probability leads to the reduced estimation error.

We note that both the Gaussian and non-Gaussian cases

have a similar trend.

But how many particles, on average, are redrawn

at a given time instance. While several metrics can be

used for this effect, we use in particular the average per-

centage of particles redrawn, further averaged over the

simulation time as plotted in the Figure 5c. We see an

interesting trend. The percentage of particles redrawn

increases with the increase in the intensity ºM up to

0.5, at which it hits the maximum 7%—9% of the parti-

cles for both cases. Then this value decreases. This can

be explained in the light of the redrawing probability.

For ºM between 0 and 0.5, the redrawing probability

increases and so does the percentage of redrawn par-

ticles. This suggests that even though assemblage can

be expected to be below 0:5Np about 30% of the time,

at times there is a significant number of particles satis-

fying the redrawing condition ±¤M(i)¸
q
¨=Np ¢max±¤M .

That is why the redrawing criteria ¨· ºM ¢Np is met
in the first place, given the low value for ºM . As ºM
is increased beyond 0.5, the redrawing probability in-

creases, but the average number of particles satisfying

the redrawing conditions decrease. That also points to

the increase in the assemblage. We note that, on average,

more particles are redrawn in the case of non-Gaussian

noise than in the case of Gaussian case. This result is

expected as estimation under the non-Gaussian noise is

more challenging.

When seen together with the estimation error, we

note that although the average rate of particles redrawn

at any given time is not more than 10%, but redrawing

those particles amounts to a significant reduction in

the error. Also the particles redrawn for ºM equals 1

have the maximum effect on the estimation error as

they are the few quite seperated from the rest of the

particle cluster(s). If redrawn, they are moved to the

correct region of the state-space, and hence contributing

effectively to the point estimates.

2) Kernel Density Estimation: Now we discuss the ef-

fect of redrawing particles from a GMM, estimated
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Fig. 6. (a) Average number of GMM components, (b) RAMSE vs. ºM for different values of Dth, (c) Redrawing probability vs. ºM and

(d) Average number of particles redrawn per redraw vs. ºM .

through the online KDE (oKDE) as described in [41],

using the algorithm mentioned in the section III-D. We

have used the source code for the oKDE provided by

the authors at [43]. Although the method is general

and can be used with any estimation kernel, the au-

thors have used a multivariate Gaussian kernel in their

work. oKDE method fits a GMM to the online data,

which is supposed to arrive sequentially. In our context,

we use the oKDE method to approximate the density

of the particles after they move through the pseudo-

time loop. Hence those particles can be thought of as

coming from an importance sampler, and the task is to

estimate the corrected posterior distribution. As a result

we get an ensemble of weights, mean and covariances,

fwk,¹k,§kgKk=1. Next, the averaged distance of each par-
ticle given the estimated GMM is calculated, and those

particles which are thought to be too wayward are re-

drawn. As in the MVG case, we vary the redrawing

threshold ºM between 0 and 1.

There are two parameters that control the degree of

estimation accuracy: the error threshold Dth, which con-

trols the number of Gaussian components fitted to the

data, and Ninit which defines the number of data sam-

ples used for the initialization. Through experiments,

we have found out that Ninit, after a certain value, does

not strongly influence the estimation accuracy. There-

fore in our study we have kept Ninit fixed to 33 (one

third of total number of particles), while the threshold

Dth is varied between 0.3 and 0.7, in the steps of 0.1.

In the figure 6a we plot the average number of GMM

components (K) vs. the error threshold Dth. We note

that as the Dth is increased, K decreases exponentially.

This can be attributed to the particular implementation

method used by the authors in [43].

Next in figure 6b, we show the results for posi-

tion RAMSE vs ºM for various values of threshold Dth,

for both Gaussian and non-Gaussian cases. There are

a number of noteworthy things. First, we note that the

error for the Gaussian cases is less than that for the

non-Gaussian, for all values of ºM . We saw a similar

behaviour in the previous section, where the redrawing

was done using a MVG. Secondly, we see that the error

only slightly decreases with increasing ºM up to 0.75.

After that we observe a significant reduction in the er-

ror for both cases. This is explained in the following

way: in contrast to redrawing from a MVG where the

particles far from the estimated mean value had lower

weight defined by the &, here such particles can be softly

assigned to more than one Gaussian components. And

due to the relative weights of the GMM components,

the contribution of those particles is lessened. This re-

sults in a higher assemblage ¨ value, and hence the
redrawing criterion is rarely met. But when ºM is suf-

ficiently high, such that ¨ is below ºM:Np, redrawing

takes place. Particles which meet the redrawing condi-

tion are redrawn using the GMM. Statistically, particles

are more likely to be redrawn from the components with

the higher weights, and hence making those components

even stronger while the opposite happens to the original

low weight components. As a result, one can expect a
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significant reduction in the particle spread after redraw-

ing done in this manner. Lastly, we observe that the error

for a lower value of Dth(hence higher K) is lower for

both cases, for all values of ºM . Again this is intuitive,

as a higher number of GMM components is suggestive

of the better accuracy of the fitted distribution to the

posterior particles.

Figure 6c shows the redrawing probability vs. ºM .

We use the same definition for this probability as used

in the previous section. We note that the redrawing prob-

ability for both noise cases is almost zero for ºM less

than or equal to 0.25. Between ºM 0.25 and 0.75, we

see a slight increase for the non-Gaussian case while

it is still very close to zero for the Gaussian case. E.g.

at ºM = 0:75, the redrawing probability is 10% for the

case with non-Gaussian noise. A shape rise can be seen

for both cases between 0.75 and 1. Also the redraw-

ing probability is higher for the lower values of Dth.

This trend has been explaned in the previous para-

graph, where it was mentioned that for the higher as-

semblage values, the probability of redrawing is quite

low. Hence the redrawing probability also reveals in-

formation about the distribution of the assemblage. In

contrast to the MVG case, the assemblage values are

significantly larger (less spread). Therefore redrawing is

only expected to happpen for larger values of ºM . Also a

higher Dth (less K) tends to make the assemblage lower

and hence the increasing the redrawing probability.

The average percentage of particles drawn per re-

draw is shown in the figure 6d. We observe a mono-

tonically increasing trend for both Gaussian and non-

Gaussian noises. We note that while the assemblage ¨
value effect the redrawing probability, it is the distribu-

tion of the Mahalanobis distance itself that influences

the average percentage of particles drawn per redraw.

From the results we can infer that Mahalanobis dis-

tance distributions for both Gaussian and non-Gaussian

noises are similar, although for the latter it is more

skewed towards the right, as evident from the higher

percentage of redrawn particles. The average percent-

age of particles drawn per redraw rises sharply for

ºM between 0.75 and 1, hence more particles are re-

drawn for these values. This can be correlated with

the large drop in the estimation error. Altogether, it

can be infered that the redrawing done for ºM between

0.75 and 1 significantly increases the estimation ac-

curacy. It can also be concluded that the GMM pro-

vides more accurate description for the posterior distri-

bution. A higher percentage of particles is expected to

be redrawn for higher values of Dth as the estimated

GMM has fewer components, hence is not accurate

enough.

D. Comparison against other filters

In this subsection, we compare the performance

of our modified DHF against the other versions of

DHF mentioned in the section II-C, together with the

Fig. 7. Comparison for Gaussian noise

EKF and sampling importance resampling particle fil-

ter (SIR-PF) with 25000 particles. In total, we present

the results for eight different variants for DHF, out

of which three are different flavors of exact flow fil-

ter (EF), three are variants of non-zero diffusion con-

strained flow based filters (NZDCF), while the other

two are based on the incompressible flow (IC) and the

Coulomb’s law flow DHF (CLF) respectively. The most

basic version of the exact flow based DHF is reported

in [16], where the flow equation is solved by lineariz-

ing the measurement model about the estimated prior

mean value. We call this implementation as EF-mean.

The second implementation of the exact flow has been

reported by Ding and Coates in [21], and a pseudo-code

is also provided. Two distinct changes are made to the

EF-mean. In the first modification, the linearization of

the measurement equation is carried out for individual

particles, as opposed to being done only at the prior

mean location. The second modification is related to

the feedback of the DHF state estimates to the EKF,

making the two filters coupled. In this study we con-

sider these two cases individually i.e. the first modi-

fication alone and it together with the feedback. We

call these implementations as EF-part and EF-part-fb

respectively.

For the incompressible flow filter (IC), the flow

equation (14) is solved for individual particles by as-

suming a Gaussian prior. Finally for the Coulomb’s law

based DHF (CLF), we use the parameters settings men-

tioned by the authors in [44]. One third of nearest neigh-

bors are used in the evaluation of the equation (30). We

have found that this filter is very sensitive to the pa-

rameters settings, and in general is very hard to tune.

First we plot the RAMSE for the different filters for the

Gaussian case in figure 7. We note that the CLF is the

worst performer. The issue with this filter is the esti-

mation of the probability density p(x,¸) for all particles

throughout the pseudo-time, which is used in evaluat-

ing the flow equation f(x,¸) =rV(x,¸)=p(x,¸). As this
is done using the few available particles, the resulting

density estimate is not accuarte enough and the filter

is prone to divergence. This is also the issue with the

Monte-Carlo approximation of the integral for gradient
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Fig. 8. Comparison for non-Gaussian noise

rV(x,¸). Next we see that DHF based on IC although
being better than with CLF, still fares worse compared

to all other filters. The filter is based on the assumption

of zero-divergence, which appears to be a quite strict

condition. Also, the flow might encounter singularities

which can make the filter diverge. Amoung the three

variants of the exact flow, the EF-part-fb is the best.

This is expected as for this filter linearization is done

about each particle, and also the filter is coupled to a

parallel running EKF. The best amoung all DHF vari-

ants are the ones based on NZDCF, all of which use

Euler integration with 30 time steps and LW0 covari-

ance estiamtion scheme. We denote the DHF-NZDCF

without redrawing by NZD-LW0, with redrawing from

MVG by NZD-LW0-MVG, and the one with redrawing

from GMM as NZD-LW0-GMM. For the redrawing we

set the threshold ºM equal to 1. Also for the oKDE, we

set the Dth equal to 0.5, which on average fits 4 GMM

components to the posterior distribution. We note that

the NZD-LW0-GMM is the best of all the schemes, even

surpassing the SIR-PF with 25000. NZD-LW0-MVG is

a little worse in performance to the SIR-PF, but is still

better than the EKF. Next we discuss the results for

the non-Gaussian measurement noise, as plotted in fig-

ure 8.

We note that all filters, except the variants of DHF-

NZDCF and SIR-PF, perform poorly. DHF-IC and

DHF-CLF fail to track the targets, with the latter being

the worst in the performance. All variants of DHF-EF

show a diverging error trend. This is due to the fact that

EF hinges on the Gaussian assumption, which is not

valid in the current case. As a part of the measurement

noise is non-Gaussian, we see that these filters are un-

able to properly track targets. The same reasoning can

be applied to EKF. NZD-LW0-GMM, NZD-LW0-MVG

and SIR-PF are the first, second and the third best per-

former respectively. The error for all filters is generally

larger when compared to the case with the Gaussian

noise.

Next, we compare the execution time ¿ for a single

update, including both the time and the measurement

update steps. Matlab simulations were performed on the

TABLE III

Comparison of processing time for different filters

Method Processing

time ¿ [s]

Processing

time ¿ [s]

(Gaussian) (Non-Gaussian)

EKF 0.0004 0.0004

EF-mean 0.004 0.005

EF-part 0.10 0.10

EF-part-fb 0.105 0.105

IC 0.19 0.20

CLF 8.34 8.57

NZD 0.195 0.20

NZD-LW0 0.202 0.205

NZD-LW0-MVG 0.205 0.21

NZD-LW0-GMM (Dth=0.3) 1.77 1.83

NZD-LW0-GMM (Dth=0.4) 1.33 1.36

NZD-LW0-GMM (Dth=0.5) 1.19 1.21

NZD-LW0-GMM (Dth=0.6) 1.12 1.13

NZD-LW0-GMM (Dth=0.7) 1.09 1.11

SIR-PF (Np=25000) 4.34 4.65

computer with Intel Core2 Quad with 2.66 GHz pro-

cessors and 4 GB RAM. Table III shows the processing

time per time step in seconds. We note that the EKF

is the fastest of all methods. Next in the line are the

EF based DHF, with DHF-EF-mean being the fastest.

DHF with IC flow and NZD flow have quite simi-

lar processing time. We can also note that the covari-

ance estimation (LW0) and redrawing from MVG do

not incur any significant processing overhead. oKDE,

on the other hand takes quite a while to compute the

GMM components. The processing time is the highest

for Dth=0.3 and it drops exponentially with increasing

the threshold. Redrawing with threshold 0.5 takes al-

most 1.2 seconds per time step, which is 6 times the

processing time of the DHF-NZD-LW0. Hence the re-

drawing with KDE takes significant amount of time.

The particle filter with 25000 particles takes 4.5 sec-

onds, which makes it almost 4 times slower than the

DHF-NZD-LW0-GMM. Finally, the slowest method is

the DHF-CLF taking almost 8.5 second per time step.

We note that the processing time for the model with

non-Gaussian noise is slightly higher in general for most

of the schemes.

VII. DISCUSSION

Euler based numerical integration scheme is quite

simple, but together with a clever pseudo-time dis-

cretization, can perform quite well. It is the most time

efficient scheme. We analyzed different shrinkage es-

timation schemes. Some of them are tailor made for

specific scenarios. The most general one is shrink-

age towards identity matrix where no prior structure

of the target matrix is assumed. It is a distribution

free scheme and is shown to have outperformed other

shrinkage estimators used in our analysis. Finally, we

studied the effect of redrawing on the quality of the

filter estimates. We choose two redrawing schemes: a
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single MVG based re-drawing, and redrawing from a

GMM estimated via the oKDE. The estimated density

is then used to redraw particles which are considered

too off the main cluster. The re-drawing algorithm uses

the Mahalanobis distance of particles to calculate the

assemblage ¨. When ¨ falls below a certain thresh-

old determined by the redrawing intensity ºM , particles

deemed too wayward are redrawn. We show that the

redrawing, when combined with the skhrinkage estima-

tion reduces the error even further. Redrawing from a

GMM gives better estimation accuracy than from the

MVG.

VIII. CONCLUSION

DHF filters, even though not new in the literature,

are still not fully explored in detail. They lack the in-

depth theoretical and numerical analysis that the other

contemporary filters have gone through. Especially, the

implementational details are very application specific.

In this paper we have tried to point out the key fac-

tors affecting the performance of a generic DHF. High-

lighted factors have been studied individually in de-

tail, with several possible methods suggested for each

of them. This include different schemes for pseudo-

time discretization, numerical integration, prior covari-

ance estimation and the redrawing. We have compared

their performance in a challenging non-linear multi-

target scenario, under both Gaussian and non-Gaussian

measurement noises. Eulers method with exponentially

spaced pseudo-time points, provides a nice trade off be-

tween the performance and the complexity. DHF with

shrinkage estimation methods is shown to have outper-

formed the one with the sample covariace matrix or

with the EKF based estimate. Finally, it is shown that a

NZDCF based DHF with the shrinkage estimation and

proper redrawing, can outperform a bootstrap particle

filter with comparable performance within less execu-

tion time.
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APPENDIX

A. Assemblage ¨

Let D be the vector containing the Mahalanobis

distances of the particles. We assume that the particles

can be divided into L distinct sub-clusters, each cluster

has the same distance to the estimated mean. In that

case D= [d1,d2, : : :dL]. This could either mean that the

particles lie on hyper-balls in Rd with radii di concentric
around the estimated mean, or each cluster is small

enough, and far apart from others, such that it can

be approximated by individual hyper-balls. Let the ith

cluster has Ni number of particles such that
PL

i=1Ni =

Np.

Let the vector © contain the inverse of Mahalanobis
distances

©=

"μ
1

d1

¶
£N1
,

μ
1

d2

¶
£N2
, : : : ,

μ
1

dL

¶
£NL

#
The sum of the vector © is given by,

LX
i=1

©i =
N1
d1
+
N2
d2
+ ¢ ¢ ¢+ NL

dL

=

PL
i=1

³QL
j=1,j 6=i dj

´
NiQL

j=1 dj

Therefore the normalized vector ©̃ is given by

©̃=

"μ
1

d1

¶
£N1
,

μ
1

d2

¶
£N2
, : : : ,

μ
1

dL

¶
£NL

#

£
QL
j=1djPL

i=1

³QL
j=1,j 6=i dj

´
Ni

Next the sum of squares of the above vector is evaluated,

LX
i=1

©̃
2

i =

·
N1
(d1)

2
+

N2
(d2)

2
+ ¢ ¢ ¢+ NL

(dL)
2

¸

£
0@ QL

j=1 djPL
i=1

³QL
j=1,j 6=i dj

´
Ni

1A2

=
N1
QL
j=1,j 6=1(dj)

2PL
i=1

³QL
j=1,j 6=i(dj)2

´
Ni

¢ ¢ ¢

¢ ¢ ¢+
N2

³QL
j=1,j 6=2 dj

´2
³PL

i=1

³QL
j=1,j 6=i dj

´
Ni

´2 + ¢ ¢ ¢

¢ ¢ ¢+
NL

³QL
j=1,j 6=L dj

´2
³PL
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³QL
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´
Ni
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i=1

©̃
2

i =

LX
i=1

Ni

0@ QL
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³QL
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´
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and finally the assemblage ¨ is given by,

¨=
1PL
i=1 ©̃

2

i

=

³PL
k=1Nk

³QL
j=1,j 6=k dj

´´2
PL

i=1Ni

³QL
j=1,j 6=i dj

´2
Below, we consider few special cases for the assem-

blage.
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1) Number of clusters equals Np: Each particle is con-

sidered as single clusters, hence each clusters has one

particle with distinct distance di. assemblage in that case

is given by,

¨=

³PNp
k=1

³QNp
j=1,j 6=k dj

´´2
PNp
i=1

³QNp
j=1,j 6=i dj

´2
2) All particles equidistant: If di ¼ d

¨=

³PNp
k=1 d

Np¡1
´2

PNp
k=1(d

Np¡1)2
=
(Npd

Np¡1)2

Npd
2(Np¡1) =

N2p d
2(Np¡1)

Npd
2(Np¡1)

which leads to,

¨=Np

3) Two dominant clusters: Now suppose that there are

two main sub-cluster i.e. L=2.

¨=

³P2
k=1Nk

³Q2
j=1,j 6=k dj

´´2
P2
i=1Ni

³Q2
j=1,j 6=i dj

´2 =
(d2N1 +d1N2)

2

d22N1 +d
2
1N2

Now assume that d1 >> d2. In that case we can say

in the limiting sense,

lim
d1!1

¨= lim
d1!1

(d2N1 +d1N2)
2

d22N1 +d
2
1N2

=
N22
N2
=N2

Likewise for d2 >> d1, limd2!1¨=N1.
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