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In this paper, an approach to bias estimation in the presence

of measurement association uncertainty using common targets of

opportunity, is developed. Data association is carried out before the

estimation of sensor angle measurement biases. Consequently, the

quality of data association is critical to the overall tracking perfor-

mance. Data association becomes especially challenging if the sen-

sors are passive. Mathematically, the problem can be formulated

as a multidimensional optimization problem, where the objective

is to maximize the generalized likelihood that the associated mea-

surements correspond to common targets, based on target locations

and sensor bias estimates. Applying gating techniques significantly

reduces the size of this problem. The association likelihoods are

evaluated using an exhaustive search after which an acceptance test

is applied to each solution in order to obtain the correct solution.

We demonstrate the merits of this approach by applying it to a

simulated tracking system, which consists of two or three satellites

tracking a ballistic target. We assume the sensors are synchronized,

their locations are known, and we estimate their orientation biases

together with the unknown target locations.
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I. INTRODUCTION

Data association is a crucial task in many surveil-

lance systems, and becomes especially challenging if
the sensors are passive and measure Line of Sight (LOS)

angles only for the targets. Measurements from multiple
sensors have to be associated to determine the biases of

the sensors and the positions of the targets from which
the measurements originated. In general, the goal of data

association is to partition the set of measurements across
sensors into a number of subsets, in which the measure-

ments are either from the same target (i.e., having the
identical origin) or false alarms. For angle-only sensors,
imperfect registration leads to LOS angle measurement

errors in azimuth and elevation that can be much larger
than those due to measurement noise. If uncorrected,

registration errors can lead to large tracking errors and
potentially to the formation of multiple tracks (ghosts)

on the same target [8].
Mathematically, the problem can be formulated as a

multidimensional optimization problem where the ob-
jective is to maximize the generalized likelihood, based

on target locations and sensor bias estimates, that the
associations correspond to real targets. Any feasible so-

lution of this problem corresponds to a potential asso-
ciation hypothesis. In [14], the problem was formulated

as a multidimensional assignment (S-D) problem where
the objective was to maximize the likelihood that the

associations correspond to targets. For S ¸ 3, the multi-
dimensional assignment problem is NP-hard. Many sub-

optimal algorithms have been proposed to find an ap-
proximate solution, such as Lagrangian relaxation [11],

greedy rounding adaptive search (GRASP) [15], genetic
algorithms [3] and linear relaxation and rounding tech-

niques [16]. Moreover, in many cases, it is possible to
resort to gating techniques [10] which drastically reduce

the number of decisions variables and make it possible
to solve the problem optimally.

Even if a large part of the literature is devoted to this
aspect, solving efficiently the multidimensional assign-

ment problem is not the only challenge for data asso-
ciation problems. Indeed, the quality of near-optimal,

or even optimal, solution may vary considerably de-
pending on the context. In sparse configurations or with

highly accurate sensors, the model behaves well and the
optimal, or even an approximate solution, often has an
acceptable percentage of correct associations. On the

other hand, in medium or high density configurations
or with sensors of low accuracy, the model behaves

poorly, namely, there is ambiguity due to similarity of
likelihoods. The optimal solution can have a poor as-

sociation correctness while the correct solution can be
suboptimal.

The optimal solution of the problem is supposed to
be the most likely solution. As the complexity of the

observed situations increases, the number of ambigu-
ous elementary associations increases also. Since such

associations get a high likelihood within the model, it
usually happens that more than one solution can get
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an overall likelihood very close to the likelihood of the
optimal solution. In such cases, any of these solutions,
including the optimal one, could appear to be the correct
association hypothesis. Therefore, it seems more rea-
sonable to consider several candidate solutions rather
than by selecting only one solution, even if it has a
slightly better likelihood. The general scheme underly-
ing our approach is based on the idea of selecting several
good candidate solutions, by evaluating the likelihoods,
and using a goodness of fit test to obtain the correct
association hypothesis.
Space-based sensors can expand the range and effec-

tiveness of the capabilities of a Ballistic Missile Defense
System (BMDS) to counter future projected threats. In-
tegration of space based sensors into the BMDS allows
for detection and tracking of threats over a larger area
than ground based sensors [1]. The Space Tracking and
Surveillance System (STSS) constellation consists of
two or more satellites (on known trajectories) for track-
ing ballistic targets. Each satellite is equipped with an
IR sensor that provides the azimuth and elevation to the
target. The tracking problem is made more difficult due
to a constant or slowly varying bias error present in each
sensor’s line of sight measurements.
Maximum a posteriori (MAP) data association for

concurrent bias estimation and data association based on
sensor-level track state estimates was proposed in [12]
and extended in [13]. Sensor calibration using in-situ
celestial observations to estimate bias in space-based
missile tracking was proposed in [9].
In [7] we investigated the use of the minimum possi-

ble number of moving optical sensors (three or two op-
tical sensors to observe three or six points, respectively,
on the trajectory of a single target of opportunity), under
the assumption of perfect data association. In the present
paper, bias estimation is investigated, in the presence of
false alarms, when only targets of opportunity are avail-
able. The present problem is not amenable to the multi-
dimensional assignment (S-D, [9]) because the number
of measurements needed to obtain a solution for the sen-
sor biases presents the sequential use of 2-D assignment
and relaxation as in the S-D algorithm, i.e., in problems
where S-D assignment can be used one has a first so-
lution using the first 2 lists and then, using relaxation,
the remaining lists are incorporated one at a time. In the
present problem the minimum number of measurements
needed for a solution is as given in equation (22) and
these measurements have to be correctly associated: oth-
erwise the residual yields “unacceptable” result. Conse-
quently one has to find such a “correct set.” After this,
if one uses additional measurements from the same sen-
sors, they have to form a set of common origin (an “ex-
tra” target point), which introduces another 3 unknowns.
Thus one has to find one measurement from each of (at
least) two sensors (4 scalars that add 4 equations) and a
search is needed until a first such set is formed (based
on the residual). Then one can proceed iteratively in this
fashion by adding a measurement from another sensor
or a set of 2 measurements from the same 2 sensors.

For the problem considered we found that it is faster
to obtain the results using directly an exhaustive search
for the target points. By generating (enumerating) the
set of all possible associations, which is guaranteed to
contain the desired (correct association) solution, based
on the association likelihoods using the target location
estimates and the sensor bias estimates, an acceptance
test can be applied to each solution in order to obtain
the correct solution. It appears, that through the use of
gating technique, the solution is obtained in a reasonable
time.
We demonstrate the merits of this approach by ap-

plying it to a simulated tracking system, which con-
sists of two or three satellites tracking a ballistic target.
We assume the sensors are synchronized, their locations
are known, and we estimate their orientation biases.
We investigate the use of the minimum possible num-
ber of space-based sensors (which can not be less than
two). Two cases are considered. In the first case, we
use three optical sensors to estimate three points on the
(unknown) trajectory of a single target of opportunity
simultaneously with the biases of the three optical sen-
sors [5]. In the second case, we estimate the position of
six points on the trajectory of a single target of opportu-
nity simultaneously with the biases of two space-based
optical sensors [4].
Section II presents the problem formulation and

solution in detail. Section III describes the simulations
performed and gives the results. Finally, Section IV
gives the conclusions.

II. PROBLEM FORMULATION

Assume there are NS synchronized moving passive
sensors, with known positions in the Earth Centred
Inertial (ECI) Coordinate System at times ti,

»s(ti) = [»s(ti),´s(ti),³s(ti)]
0, s= 1,2, : : : ,NS (1)

and Nt target locations (target trajectory at Nt time
instants of a single target) at

x(ti) = [x(ti),y(ti),z(ti)]
0 i= 1,2, : : : ,Nt (2)

also in ECI coordinates. We assume that each sensor
sees all the target locations (same physical target at
different times).1

The rotation between the ECI and a sensor frame
is described by Ás+Á

n
s , ½s+ ½

n
s , Ãs+Ã

n
s of sensor s

as roll, pitch, and yaw respectively, where Áns is the
nominal roll angle, Ás is the roll bias, etc. Each angle
defines a rotation about a prescribed axis, in order to
align the sensor frame axes with the ECI axes. The
xyz rotation sequence is chosen, which is accomplished
by first rotating about the x axis by Áns , then rotating
about the y axis by ½ns , and finally rotating about the
z axis by Ãns . The operations needed to transform the
position of a given target location at ti expressed in ECI

1This can also be different targets at a common time or at different

times, as long as the sensors are synchronized.
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Fig. 1. Optical sensor coordinate system with the origin in the

center of the focal plane.

coordinates into the sensor s coordinate system (based

on its nominal orientation) is

xns (ti) = T(!s(ti))(x(ti)¡ »s(ti))
i= 1,2, : : : ,Nt, s= 1,2, : : : ,NS (3)

where !s(ti) = [Á
n
s (ti),½

n
s (ti),Ã

n
s (ti)]

0 is the nominal orien-
tation of sensor s at times ti, T(!s(ti)) is the appropriate
rotation matrix, and the translation (x(ti)¡ »s(ti)) is the
difference between the vector position of the target at

time ti and the vector position of the sensor s at time ti,

both expressed in ECI coordinates. The superscript “n”

in (3) indicates that the rotation matrix is based on the

nominal sensor orientation.

As shown in Figure 1, the azimuth angle ®s(ti) is

the angle in the sensor’s xz plane between the sensor’s

z axis and the projection of the line of sight to the target

onto the xz plane, while the elevation angle ²s(ti) is the

angle between the line of sight to the target and its

projection onto the xz plane, i.e.,

·
®s(ti)

²s(ti)

¸
=

26664
tan¡1

μ
xs(ti)

zs(ti)

¶
tan¡1

Ã
ys(ti)p

x2s (ti) + z
2
s (ti)

!
37775 (4)

The model for the biased noise-free LOS measure-

ments is then·
®bs (ti)

²bs (ti)

¸
=

·
g1(x(ti),»s(ti),!s(ti),bs)

g2(x(ti),»s(ti),!s(ti),bs)

¸
¢
=g[x(ti),»s(ti),!s(ti),bs] (5)

where g1 and g2 denote the sensor Cartesian coordinates-

to-azimuth/elevation angle mapping that can be found

by inserting (3) and (4) into (5), and the bias vector of

sensor s is

bs = [Ás,½s,Ãs]
0 (6)

For a given target, each sensor provides the noisy

LOS measurements

zs(ti) = g[x(ti),»s(ti),!s(ti),bs] +ws(ti) (7)

where

ws(ti) = [w
®
s (ti),w

²
s(ti)]

0 (8)

The measurement noises ws(ti) are zero-mean, white
Gaussian with

Rs =

·
(¾®s )

2 0

0 (¾²s)
2

¸
(9)

and are assumed mutually independent. We shall as-
sume, for simlicity, ¾®s = ¾

²
s = ¾.

The problem is to estimate the bias vectors for all
sensors and the locations of the targets of opportunity.
We shall obtain the maximum likelihood (ML) estimate
of the augmented parameter vector

μ = [x(t1)
0, : : : ,x(tNt )

0,b01, : : : ,b
0
NS
]0 (10)

consisting of the (unknown) target locations and sensor
biases, by maximizing the likelihood function (LF) of μ.

III. SOLUTION

It will be assumed that there is a single target at
different (unknown) locations (2), observed at times ti,
i= 1, : : : ,Nt. The set of measurements from sensor s at
time ti is

Zs(ti) = fzs(l, ti)gns,il=1 i= 1,2, : : : ,Nt, s= 1,2, : : : ,NS

(11)

and it contains the noisy measurement from the tar-
get and clutter points or false alarms (assumed to be
spatially and temporally white); the total number of
measurements at sensor s at time ti is denoted as ns,i.
The problem consists of selecting the measurement ls,i
deemed from the target, i.e., one from each of the NsNt
lists. Due to the high accuracy of the IR spaced based
sensors, we assume that each target is detected by the
sensors at any given time ti, i.e., the probability of de-
tection PD = 1. The likelihood function (LF) of μ for a
particular set of selected measurements (one from each
sensor s and time ti) assumed target-originated

L= fls,ig (12)

based on the entire set of measurements

Z= fZs(ti) i= 1,2, : : : ,Nt, s= 1,2, : : : ,NSg (13)

is

¤(μ;L,ZL) =
NtY
i=1

NSY
s=1

p(zs(ls,i, ti) j μ) (14)

where ZL is the set of selected measurements, and

p[zs(ls,i, ti) j μ] =
NtY
i=1

NSY
s=1

N (zs(ls,i, ti);hsi(μ),Rs) (15)

and we use the compact notation

hsi(μ)
¢
=g(x(ti),»s(ti),!s(ti),bs) (16)

Note that each L consists of an NSNt-tuple. The ML
estimate of μ for a certain L is

μ̂ML(L) = argmax
μ
¤(μ;L,ZL) (17)
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and
μ̂ML = μ̂ML(LML) (18)

where
LML = argmax

L
¤(μ̂ML(L);L,ZL) (19)

i.e., the final estimate (18) of (10) is based on the
most likely assignment (19). The final (generalized)
likelihood to be used for acceptance testing is

¤̂(L) = ¤(μ̂ML(LML);LML,ZLML)

=

NtY
i=1

NSY
s=1

N (zs(ls,i, ti);hs[μ̂ML(LML), ti],Rs) (20)

Solving (17) amounts to a nonlinear LS (NLS) prob-

lem. While there are many methods to obtain μ̂, the iter-
ated least squares (ILS) technique is preferred since it is
easy to implement (no Hessian involved) and provides
an (approximate) covariance matrix for its estimate at
the same time. In order to find the MLE, one has to
solve a nonlinear least squares problem for the exponent
in (15). This will be done using a numerical search via
the ILS technique [2].

A. Gating Region (Validation Region)

Validation gates are set up for selecting the candi-
date measurements originated from the target with high
probability for each ti. Measurements outside the val-
idation regions can be ignored reasonably because the
probabilities of them being from the corresponding tar-
get are quite low according to the true measurement
statistical characterization. After enumerating the set of
all possible associations, i.e., generating all full tuples
(of length NS) with one measurement from each of the
Ns lists, the maximum cross range error is used in gating
to prune unlikely associations. If a candidate association
fails in the gating test, there is no need to use it in the
likelihood cost. The calculation of the gate is recursive.
Beginning with the measurement z1(l1,i, ti) from the first
sensor (list), we take one measurement from each list at
time ti. If the measurement from the second list z2(l2,iti)
falls inside the gate bounded by the cone with angle
(4¾+ max bias), around the z1(l1,iti), this measurement
is incorporated in the tuple for time ti, which advances
to the next list. Only full tuples (consisting of NS LOS
measurements), are to be considered. If no measurement
of a particular sensor appears in any validated tuple at
ti, then none of these tuples carry information about the
biases of this sensor. Consequently, none of these tuples
(from ti) will be used in the estimation of the NS sensor
biases. This is repeated for each ti and then (16) can
be carried out. Consequently, the CPU time spent in the
cost computation can be reduced via the gating process.

B. Number of Hypotheses

The total number of hypotheses (combinations) for a
scenario of Nt target locations and NS sensors (assuming
no missed detections) is

NH =

NtY
i=1

NSY
s=1

ns,i (21)

For example, in the case of the 2 sensors and 6 target

locations, with medium clutter density, in a particular

run, assume ns,i (number of clutter points plus the

measurement from the target) as: 2,1,2,1,3,3 for s= 1

and 1,5,2,2,1,2 for s= 2; then the total number of
hypotheses is 1440. The size of the search problem can

be reduced considerably by applying gating in order

to prevent implausible associations. In the previous

example, only, 14% (201) passed the gating: then, this

problem can be solved exactly by using an exhaustive

search of modest size.

C. Requirements for bias estimability

First requirement for bias estimability. For a given

target location we have a two-dimensional measurement

from each sensor (the two LOS angles to the target).

We assume that each sensor sees all the target locations

at common times. Stacking together each measurement
of Nt target locations seen by NS sensors results in an

overall measurement vector of dimension 2NtNS . Given

that the position and bias vectors of each target are

three-dimensional, and knowing that the number of

equations (size of the stacked measurement vector) has

to be at least equal to the number of parameters to be

estimated (target locations and biases), we must have

2NtNS ¸ 3(Nt+NS) (22)

This is a necessary condition but not sufficient because

(18) has to have a unique solution, i.e., the parameter

vector has to be estimable. This is guaranteed by the

second requirement.

Second requirement of bias estimability. This is the

invertibility of the Fisher Information Matrix (FIM). In

order to have parameter observability, the FIM must be

invertible. If the FIM is not invertible (i.e., it is singular),

then the CRLB (the inverse of the FIM) will not exist–
the FIM will have one or more infinite eigenvalues,

which means total uncertainty in a subspace of the

parameter space, i.e., ambiguity [2].

For the examples of bias estimability discussed in

the sequel, to estimate the biases of 3 sensors (9 bias

components) we need 3 target locations (9 position

components), i.e., the search is in an 18-dimensional

space, while for 2 sensors (6 bias components) we need

at least 6 target locations (18 position components) in
order to meet the necessary requirement (22). As stated

previously, the FIM must be invertible, so the rank of

the FIM has to be equal to the number of parameters to

be estimated (9+9 = 18, or 6+18 = 24, in the previous

examples). The full rank of the FIM is a necessary and

sufficient condition for estimability.

D. Iterated Least Squares for maximization of the LF
of μ

Given the estimate μ̂j after j iterations, the ILS
estimate after the (j+1)th iteration will be

μ̂j+1 = μ̂j +[(Hj)0R¡1Hj]¡1(Hj)0R¡1[z¡h(μ̂j)] (23)
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where

z= [z1(t1)
0, : : : ,zs(t1)

0, : : : ,zs(ti)
0, : : : ,zNS (tNt )

0]0 (24)

h(μ̂j) = [h11(μ̂
j)0, : : : ,his(μ̂

j)0, : : : ,hNtNS (μ̂
j)0] (25)

R =

266664
R1 0 ¢ ¢ ¢ 0

0 R2 ¢ ¢ ¢ 0

...
...

. . .
...

0 ¢ ¢ ¢ 0 RNS

377775 (26)

where Rs is the measurement noise covariance matrix
of sensor s, and

Hj =
@h(μj)

@μ

¯̄̄̄
μ=μ̂j

(27)

is the Jacobian matrix of the vector consisting of the
stacked measurement functions (25) w.r.t. (10) evaluated
at the ILS estimate from the previous iteration j. In this
case, the Jacobian matrix is, with the iteration index
omitted for conciseness,

H = [H11 H21 ¢ ¢ ¢HNt1 H12 ¢ ¢ ¢HNtNS ]0 (28)

where

His =

2666666666666666666666666666666666666666666666666666666666664

@g1s(ti)

@x(t1)

@g2s(ti)

@x(t1)

@g1s(ti)

@y(t1)

@g2s(ti)

@y(t1)

@g1s(ti)

@z(t1)

@g2s(ti)

@z(t1)

...
...

@g1s(ti)

@x(tNt )

@g2s(ti)

@x(tNt )

@g1s(ti)

@y(tNt )

@g2s(ti)

@y(tNt )

@g1s(ti)

@z(tNt )

@g2s(ti)

@z(tNt )

@g1s(ti)

@Ã1

@g2s(ti)

@Ã1

@g1s(ti)

@½1

@g2s(ti)

@½1

@g1s(ti)

@Á1

@g2s(ti)

@Á1

...
...

@g1s(ti)

@ÃNS

@g2s(ti)

@ÃNS

@g1s(ti)

@½NS

@g2s(ti)

@½NS

@g1s(ti)

@ÁNS

@g2s(ti)

@ÁNS

3777777777777777777777777777777777777777777777777777777777775

(29)

The appropriate partial derivatives are given in the ap-
pendix.

E. Initialialization

In order to perform the numerical search via ILS, an

initial estimate μ̂0 is required. Assuming that the biases
are null, the LOS measurements from the first and the

second sensor ®1(ti), ®2(ti) and ²1(ti) can be used to

solve for each initial Cartesian target position, in ECI

coordinates, using (30)—(32).

x(ti)
0 =

»2(ti)¡ »1(ti)+ ³1(ti) tan®1(ti)¡ ³2(ti) tan®2(ti)
tan®1(ti)¡ tan®2(ti)

(30)

y(ti)
0 =

tan®1(ti)(»2(ti)+ tan®2(ti)(³1(ti)¡ ³2(ti)))¡»1(ti) tan®2(ti)
tan®1(ti)¡ tan®2(ti)

(31)

z(ti)
0 = ´1(ti) + tan²1(ti)

¯̄̄̄
¯̄̄ (»1(ti)¡ »2(ti))cos®2(ti)+(³2(ti)¡ ³1(ti)) sin®2(ti)

sin(®1(ti)¡®2(ti))

¯̄̄̄
¯̄̄

(32)

F. Cramér-Rao Lower Bound

In order to evaluate the efficiency of the estimator,

the CRLB must be calculated. The CRLB provides a

lower bound on the covariance matrix of an unbiased

estimator as [1]

Ef(μ¡ μ̂)(μ¡ μ̂)0g ¸ J(μ)¡1 (33)

where J is the Fisher Information Matrix (FIM), μ is

the true parameter vector to be estimated, and μ̂ is the
estimate. The FIM is

J(μ) = Ef[rμ ln¤(μ)][rμ ln¤(μ)]
0gjμ=μtrue (34)

where the gradient of the log-likelihood function is

¸(μ)
¢
=ln¤(μ) (35)

rμ¸(μ) =

NtX
i=1

NSX
s=1

H 0isR
¡1
s (zs(ti)¡hsi(μ)) (36)

which, when plugged into (34), gives

J(μ) =

NtX
i=1

NSX
s=1

H 0is(R
¡1
s )Hisjμ=μtrue

=H 0(R¡1)Hjμ=μtrue (37)

IV. SIMULATIONS

We simulate a space based system tracking a ballistic

missile. The missile and satellite trajectories are gener-

ated using System Tool Kit (STK).2 The target modeled

represents a ballistic missile with a flight time of about

20 minutes. STK provides the target and sensor posi-

tions in three dimensional Cartesian coordinates at 1 s

intervals. The target launch time is chosen so that the

2STK Systems Tool Kit are registered trademarks of Analytical

Graphics, Inc.
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satellite based sensors were able to follow the missile

trajectory throughout its flight path.

Any association NSNt-tuple that passes the gating

test, falls into one of the following three categories:

² Completely correct (CC) association: The measure-
ments in an association tuple have identical origin

and there is no clutter measurement associated.

² Partially correct (PC) association: There are at least 2
measurements with common origin, and the rest may

be from different origins or clutter measurements.

² Completely incorrect (CI) association: In an associa-
tion tuple, there does not exist a pair of measurements

that come from the same origin.

A. Statistical Acceptance test (Goodness of Fit)

In order to obtain the correct association, the Sum

of the Normalized Square Residuals (SNSR) is used as

a measure of the goodness of fit, which is defined as

the minimized value of the log likelihood function (20),

multiplied by 2 for convenience

¸?(μ̂ML(LML)) =
NtX
i=1

NSX
s=1

³
[zs(ls,i, ti)¡hsi(μ̂ML(LML))]0

£R¡1s [zs(ls,i, ti)¡hsi(μ̂ML(LML))]
´
(38)

This is similar to the linear least squares case (LS),

under the Gaussian noise assumptions, where the fitting

error was shown to be Chi-square distributed in [2].

In the present nonlinear LS problem, a Monte Carlo

simulation is used to confirm the validity of this result,

by summing up the fitting errors from N runs with

independent random variables, with nz being the number

of measurements and nx is the number of parameters,

the total error obtained is Chi-square distributed with

N(nz ¡ nx) degrees of freedom.
For the three sensor case (nx = 18), the sample aver-

age SNSR over 100 Monte Carlo runs was evaluated us-

ing nz = 24 LOS measurements yielding 5.71. The 99%

upper limit of the probability region is, based on the

100(nz ¡nx) = 600 degrees of freedom Chi-square dis-

tribution (divided by 100), approximately 6.83. Similar

results were obtained for the two sensor case (nx = 24):

the sample average SNSR over 100 Monte Carlo runs

was evaluated using nz = 28 LOS measurements yield-

ing 4.13. The 99% upper limit of the probability region

is, based on the 100(nz ¡ nx) = 400 degrees of freedom
Chi-square distribution (divided by 100), approximately

4.68.

The statistical acceptance test of an association, in

a particular run, is based on data from single run,

which can be used with real data, and does not require

knowledge of the true parameter. Then

¸?(μ̂ML(LML))» Â2nz¡nx (39)

Namely, ¸? should be, with 99% probability, below the

threshold Â2nz¡nx(0:01) denoted as ¿ . Given an associa-
tion tuple, if its SNSR (38) is less than the threshold ¿ ,

then this association is accepted, otherwise it is rejected.

For the three sensor case (nx = 18), three scenarios

are considered, in the first scenario, the SNSR is eval-

uated using nz = 30 LOS measurements. The 99% up-

per limit of the probability region is 26.6, based on the

nz ¡ nx = 12 degrees of freedom Chi-square distribution
(¿ = 26:6). In the second scenario, the SNSR is evalu-

ated using nz = 24 LOS measurements. The 99% up-

per limit of the probability region is 16.8, based on the

nz ¡ nx = 6 degrees of freedom Chi-square distribution

(¿ = 16:8). In the third scenario, we evaluate the SNSR

using an 18 LOS measurements, in this case (¿ = 0).

Practically, in this case one has 18 unknowns and 18

nonlinear equations.

For the two sensor case (nx = 24), three scenarios are

considered, in the first scenario, the SNSR is evaluated

using nz = 32 LOS measurements. The 99% upper limit

of the probability region is 20.1, based on the nz ¡ nx =
8 degrees of freedom Chi-square distribution (¿ = 20:1).

In the second scenario, the SNSR is evaluated using

nz = 28 LOS measurements. The 99% upper limit of

the probability region is 13.3, based on the nz ¡ nx = 4
degrees of freedom Chi-square distribution (¿ = 13:3).

In the third scenario, we evaluate the SNSR using 24

LOS measurements (¿ = 0).

B. Three-Sensor Case

We simulated three space based optical sensors at

various known orbits observing a target at three points

in time at unknown locations. In this case, an 18-

dimensional parameter vector is to be estimated. Figure

2 shows each target position observed by the sensors

(Figure 3 gives an image of this). All the sensors are as-

sumed to have the same accuracy, detection probability

PD = 1 and the expected number of false measurements

at each sensor at each time is assumed to be 3. As dis-

cussed in the previous section, the three sensor biases

are roll, pitch and yaw angle offsets. The biases for each

sensor were set to 0:5± = 8:72 mrad. We ran 100 Monte
Carlo runs. The horizontal and vertical fields-of-view of

each sensor are assumed to be 60±. The measurement
noise standard deviation ¾s (identical across sensors for

both azimuth and elevation measurements, ¾®s = ¾
²
s = ¾)

was assumed to be 30 ¹rad.

1) Description of the Scenarios. The sensors are as-

sumed to provide LOS angle measurements. We de-

note by »1,»2,»3 the 3D Cartesian sensor locations, and
x(t1),x(t2),x(t3) the 3D Cartesian target locations (all in

ECI). The three target locations were chosen from a
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Fig. 2. Target and satellite trajectories for the three-sensor case

TABLE I

Sensor positions (km).

»1 ´1 ³1 »2 ´2 ³2 »3 ´3 ³3

Time 1 1,235 158 6,927 5,549 1,116 6,285 6,499 ¡279 ¡5,407
Time 2 1,062 ¡174 6,955 3,061 2,993 7,295 7,897 ¡719 ¡2,944
Time 3 887 ¡507 6,963 112 4,418 7,212 8,389 ¡1,074 ¡143

trajectory of a ballistic target as follows (in km)

x(t1) = [7,518 ¡ 1,311 ¡1,673]0 (40)

x(t2) = [7,942 ¡ 509 ¡ 1,375]0 (41)

x(t3) = [7,988 317 ¡ 1,012]0 (42)

Table I summarizes the sensor positions (in km).

The statistical acceptance of an association hypoth-

esis is carried out as discussed in Sec. IV-A. The SNSR

is evaluated for each validated association hypothesis.

Three scenarios are considered, in the first scenario,

the SNSR is evaluated using nz = 30 LOS measure-

ments. The 99% upper limit of the probability region is

26.6, based on the nz ¡ nx = 12 degrees of freedom Chi-
square distribution (¿ = 26:6). In the second scenario,

the SNSR is evaluated using nz = 24 LOS measure-

ments. The 99% upper limit of the probability region is

16.8, based on the nz ¡ nx = 6 degrees of freedom Chi-

square distribution (¿ = 16:8). In the third scenario, we

evaluate the SNSR using an 18 LOS measurements, in

this case (¿ = 0). Practically, in this case one has 18 un-

knowns and 18 nonlinear equations and the problem is

not solvable unless PD = 1, in this case, we set ¿ = 0:01

to account for numerical imprecisions. For the first sce-

nario, the SNRS of the completely correct (CC) asso-

ciation is 5.66. The SNSR of the partially correct (PC)

associations and the completely incorrect (CI) associa-

tions are of the order of 109. For the second scenario,

the SNSR of the completely correct (CC) association is

6.12. The SNSR of the partially correct (PC) associa-

tions and the completely incorrect (CI) associations are

of the order of 109. For the last scenario, the SNSR of

the completely correct (CC) association is 0:23 ¢ 10¡24.
The SNSR of the partially correct (PC) associations and

the completely incorrect (CI) associations are of the or-

der of 109.

The RMS bias errors for the correct association,

are summarized in Table II, for the three scenarios in

the three sensors case. The value of the ¾CRLB was

calculated using (37) and they were provided by the

ILS [6].

C. Two-Sensor Case

We simulated two space-based optical sensors at var-

ious known orbits observing a target at six (unknown)

locations (which is equivalent to viewing six differ-

ent targets at unknown locations). In this case, a 24-

dimensional parameter vector is to be estimated. As

shown in Figure 4, each target position can be observed

by all sensors. All the sensors are assumed to have the
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Fig. 3. Target and satellite trajectories for the three-sensor case

same accuracy, detection probability PD = 1 and the ex-

pected number of false measurements at each sensor

at each time is assumed to be 3. As discussed in the

previous section, the three sensor biases were roll, pitch

and yaw angle offsets. All the biases for each sensor

were set to 0:5± = 8:72 mrad. The measurement noise
standard deviation ¾s (identical across sensors for both

azimuth and elevation measurements) was assumed to

be 30 ¹rad.

1) Description of the Scenarios. The sensors are as-

sumed to provide LOS angle measurements. We denote

by »1,»2 the 3D Cartesian sensor positions at six differ-

ent times, and x(t1), x(t2), x(t3), x(t4), x(t5), x(t6) the six

3D Cartesian target locations (all in ECI). The six tar-

get locations were chosen from a trajectory of a ballistic

target as follows (in km)

x(t1) = [¡1,167 ¡ 5,782 3,028]0 (43)

x(t2) = [¡1,054 ¡ 6,027 3,436]0 (44)

x(t3) = [¡922 ¡ 6,148 3,772]0 (45)

x(t4) = [¡774 ¡6,155 4,036]0 (46)

x(t5) = [¡611 ¡6,056 4,228]0 (47)

x(t6) = [¡435 ¡5,852 4,344]0 (48)

Table III summarizes the sensor positions.

The statistical acceptance is done as follows. The

SNSR is evaluated for each validated association hy-

pothesis. Three scenarios were considered. In the first

scenario, the SNSR is evaluated using nz = 32 LOS

measurements. The 99% upper limit of the probabil-

ity region is 20.8, based on the 8 degrees of free-

dom Chi-square distribution (¿ = 20:8). In the second

scenario, the SNSR is evaluated using nz = 28 LOS

measurements. The 99% upper limit of the probabil-

ity region is 13.3, based on the 4 degrees of free-

dom Chi-square distribution (¿ = 13:3). In the third

scenario, we evaluate the SNSR using nz = 24 LOS

measurements, Practically, in this case one has 24 un-

knowns and 24 nonlinear equations and the problem

is not solvable unless PD = 1, in this case, we set

¿ = 0:01 to account for numerical imprecisions. For
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Fig. 4. Target and satellite trajectories for the two-sensor case

TABLE II

Sample average bias RMSE over 100 Monte Carlo runs and the corresponding bias standard deviation from the CRLB (¾CRLB)(¹rad)

(Three-sensor case).

First Sensor Second Sensor Third Sensor

Scenario Ã ½ Á Ã ½ Á Ã ½ Á

1 RMSE 79.493 35.943 71.858 50.758 26.681 159.936 65.475 38.605 122.921

¾CRLB 78.365 39.332 85.466 50.407 25.728 152.354 69.317 38.452 133.942

2 RMSE 67.209 37.311 79.951 49.890 22.072 145.564 55.912 31.129 125.762

¾CRLB 68.909 36.620 82.351 48.584 24.235 143.217 62.641 34.364 126.637

3 RMSE 86.245 39.679 97.153 53.311 25.623 164.339 77.544 38.196 148.291

¾CRLB 78.349 39.337 85.473 50.401 25.729 152.355 69.320 38.459 133.963

the first scenario, the SNSR of the completely cor-

rect (CC) association is 6.47. The SNSR of the par-

tially correct (PC) associations and the completely in-

correct (CI) associations are of the order of 1010. For

the second scenario, the SNSR of the completely cor-

rect (CC) association is 7.12. The SNSR of the par-

tially correct (PC) associations and the completely in-

correct (CI) associations are of the order of 1010. For

the last scenario, the SNRS of the completely cor-

rect (CC) association is 0:42 ¢ 10¡24. The SNSR of

the partially correct (PC) associations and the com-

pletely incorrect (CI) associations are of the order

of 1010.

The RMS bias errors for the correct association, are

summarized in Table IV, for the three scenarios in the

two sensors case.

V. CONCLUSIONS

In this paper we presented an approach to bias es-

timation in the presence of measurement association

TABLE III

Sensor positions (km).

»1 ´1 ³1 »2 ´2 ³2

t1 187 ¡1,439 6,886 ¡3,966 ¡5,969 8,519

t2 ¡902 ¡2,786 6,400 123 ¡7,238 8,458

t3 ¡1,934 ¡3,951 5,494 4,195 ¡7,436 7,145

t4 ¡2,840 ¡4,858 4,229 7,646 ¡6,533 4,774

t5 ¡3,559 ¡5,447 2,687 9,965 ¡4,664 1,698

t6 ¡4,046 ¡5,680 968 10,810 ¡2,105 ¡1,630

uncertainty using common targets of opportunity. The

association likelihoods are evaluated, following gating,

using an exhaustive search after which a statistical ac-

ceptance test is applied to each solution in order to dis-

criminate the correct solution from the incorrect asso-

ciations. Using simulated space based tracking systems

consisting of two or three satellites tracking a ballis-

tic target, we showed that this approach performs well.
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Fig. 5. Target and satellite trajectories for the two-sensor case

TABLE IV

Sample average bias RMSE over 100 Monte Carlo runs and the corresponding bias standard deviation from the CRLB (¾CRLB)(¹rad)

(Two-sensor case).

First Sensor Second Sensor

Scenario Ã ½ Á Ã ½ Á

1 RMSE 128.469 139.761 164.244 74.097 43.693 166.525

¾CRLB 133.688 150.919 165.933 73.772 46.724 164.050

2 RMSE 143.732 148.461 173.969 80.755 49.571 173.860

¾CRLB 133.609 151.170 165.929 73.865 46.622 164.23

3 RMSE 149.383 168.707 180.788 82.082 52.476 181.479

¾CRLB 133.784 151.194 177.097 74.251 46.727 170.014

Another significance of this work is the formulation of

a measure of the goodness of fit (Sum of the Normal-

ized Square Residuals–(SNSR)) for the nonlinear least

squares case, under Gaussian noise assumptions. Simi-

larly, to the linear least squares case, where the fitting

error was shown to be Chi-square distributed [2], we

showed that this can be used in the nonlinear LS, thus

providing a statistical test that selects the correct asso-

ciations.

APPENDIX A PARTIAL DERIVATIVES

The appropriate partial derivatives of (29) are
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+
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@zs(ti)
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(49)
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Given that (3) can be written as
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therefore

xs(ti) = Ts11 (x(ti)¡ »s)+Ts12 (y(ti)¡ ´s) +Ts13 (z(ti)¡ ³s)
(62)

ys(ti) = Ts21 (x(ti)¡ »s)+Ts22 (y(ti)¡ ´s) +Ts23 (z(ti)¡ ³s)
(63)

zs(ti) = Ts31 (x(ti)¡ »s)+Ts32 (y(ti)¡ ´s) +Ts33 (z(ti)¡ ³s)
(64)

and

@xs(ti)

@x(tk)
= Ts11 ,

@xs(ti)

@y(tk)
= Ts12 ,

@xs(ti)

@y(tk)
= Ts13

@ys(ti)

@x(tk)
= Ts21 ,

@ys(ti)

@y(tk)
= Ts22 ,

@ys(ti)

@y(tk)
= Ts23

@zs(ti)

@x(tk)
= Ts31 ,

@zs(ti)

@y(tk)
= Ts32 ,

@zs(ti)

@y(tk)
= Ts33 (65)

@xs(ti)

@Ãk
=
@Ts11
@Ãk

(x(ti)¡ »s)+
@Ts12
@Ãk

(y(ti)¡ ´s) +
@Ts13
@Ãk

(z(ti)¡ ³s)

(66)

@xs(ti)

@½k
=
@Ts11
@½k

(x(ti)¡ »s)+
@Ts12
@½k

(y(ti)¡ ´s) +
@Ts13
@½k

(z(ti)¡ ³s)

(67)

@xs(ti)

@Ák
=
@Ts11
@Ák

(x(ti)¡ »s)+
@Ts12
@Ák

(y(ti)¡ ´s) +
@Ts13
@Ák

(z(ti)¡ ³s)

(68)

@ys(ti)

@Ãk
=
@Ts21
@Ãk

(x(ti)¡ »s)+
@Ts22
@Ãk

(y(ti)¡ ´s) +
@Ts23
@Ãk

(z(ti)¡ ³s)

(69)

@ys(ti)

@½k
=
@Ts21
@½k

(x(ti)¡ »s)+
@Ts22
@½k

(y(ti)¡ ´s) +
@Ts23
@½k

(z(ti)¡ ³s)

(70)

@ys(ti)

@Ák
=
@Ts11
@Ák

(x(ti)¡ »s)+
@Ts22
@Ák

(y(ti)¡ ´s) +
@Ts23
@Ák

(z(ti)¡ ³s)

(71)

@zs(ti)

@Ãk
=
@Ts31
@Ãk

(x(ti)¡ »s)+
@Ts32
@Ãk

(y(ti)¡ ´s) +
@Ts33
@Ãk

(z(ti)¡ ³s)

(72)

@zs(ti)

@½k
=
@Ts31
@½k

(x(ti)¡ »s)+
@Ts32
@½k

(y(ti)¡ ´s) +
@Ts33
@½k

(z(ti)¡ ³s)

(73)

@zs(ti)

@Ák
=
@Ts31
@Ák

(x(ti)¡ »s)+
@Ts32
@Ák

(y(ti)¡ ´s) +
@Ts33
@Ák

(z(ti)¡ ³s)

(74)

@g1s (ti)

@xs(ti)
=

zs(ti)

zs(ti)
2 + xs(ti)

2
(75)

@g1s (ti)

@ys(ti)
= 0 (76)

@g1s (ti)

@zs(ti)
=¡ xs(ti)

xs(ti)
2 + zs(ti)

2
(77)

@g2s (ti)

@xs(ti)
=¡ xs(ti)ys(ti)p

(xs(ti)
2 + zs(ti)

2)(xs(ti)
2 + ys(ti)

2 + zs(ti)
2)

(78)

@g2s (ti)

@ys(ti)
=

p
xs(ti)

2 + zs(ti)
2

xs(ti)
2 + ys(ti)

2 + zs(ti)
2

(79)

68 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 12, NO. 1 JUNE 2017



@g2s (ti)

@zs(ti)
=¡ zs(ti)ys(ti)

(xs(ti)
2 + ys(ti)

2 + zs(ti)
2)
¡p

xs(ti)
2 + zs(ti)

2
¢
(80)

@Ts11
@Ãk

=¡sinÃk cos½k (81)

@Ts12
@Ãk

=¡sinÃk sin½k sinÁk ¡ cosÃk cosÁk (82)

@Ts13
@Ãk

=¡sinÃk sin½k cosÁk +cosÃk sinÁk (83)

@Ts21
@Ãk

= cosÃk cos½k (84)

@Ts22
@Ãk

= cosÃk sin½k sinÁk ¡ sinÃk cosÁk (85)

@Ts23
@Ãk

= cosÃk sin½k cosÁk +sinÃk sinÁk (86)

@Ts31
@Ãk

= 0 (87)

@Ts32
@Ãk

= 0 (88)

@Ts33
@Ãk

= 0

@Ts11
@½k

=¡cosÃk sin½k (89)

@Ts12
@½k

= cosÃk cos½k sinÁk (90)

@Ts13
@½k

= cosÃk cos½k cosÁk (91)

@Ts21
@½k

=¡sinÃk sinÁk (92)

@Ts22
@½k

= sinÃk cos½k sinÁk (93)

@Ts23
@½k

= sinÃk cos½k cosÁk (94)

@Ts31
@½k

=¡cosÁk (95)

@Ts32
@½k

=¡sin½k sinÁk (96)

@Ts33
@½k

=¡sin½k cosÁk (97)

@Ts11
@Ák

= 0 (98)

@Ts12
@Ák

= cosÃk sin½k cosÁk +sinÃk sinÁk (99)

@Ts13
@Ák

=¡cosÃk sin½k sinÁk +sinÃk cosÁk (100)

@Ts21
@Ák

= 0 (101)

@Ts22
@Ák

= sinÃk sin½k cosÁk ¡ cosÃk sinÁk (102)

@Ts23
@Ák

=¡sinÃk sin½k sinÁk ¡ cosÃk cosÁk (103)

@Ts31
@Ák

= 0 (104)

@Ts32
@Ák

= cosÃk cosÁk (105)

@Ts33
@Ák

=¡cos½k sinÁk (106)

REFERENCES

[1] “FTM-20 in the Ballistic Missile Defense System,”

AEGIS Ballistic Missile Defense System, Tech. Rep., ap-

proved For Public Release 13-MDA-7168 (5 Feb 13).

[2] Y. Bar-Shalom, X.-R. Li, and T. Kirubarajan

Estimation with Applications to Tracking and Navigation:

Theory, Algorithms and Software.

J. Wiley and Sons, 2001.

[3] M. Basseville

A genetic algorithm based multi-dimensional data associa-

tion algorithm for multi-sensor multi-target tracking,

Mathematical and Computer Modelling, vol. 26, no. 4, Dec.

1997.

[4] D. Belfadel, R. W. Osborne, and Y. Bar-Shalom

A Minimalist Approach to Bias Estimation for Passive

Sensor Measurements with Targets of Opportunity,

in Proc. SPIE Conf. Signal and Data Processing of Small

Targets, #8857-13, San Diego, California, Aug. 2013.

[5] D. Belfadel, R. W. Osborne, and Y. Bar-Shalom

Bias Estimation for Optical Sensor Measurements with

Targets of Opportunity,

in Proc. FUSION Conf., Istanbul, Turkey, July 2013.

[6] D. Belfadel, R. W. Osborne, and Y. Bar-Shalom

Bias Estimation and Observability for Optical Sensor Mea-

surements with Targets of Opportunity,

Journal of Advances in Information Fusion, vol. 9, no. 2,

Dec. 2014.

[7] D. Belfadel, R. W. Osborne, and Y. Bar-Shalom

Bias Estimation for Moving Optical Sensor Measurements

with Targets of Opportunity,

JAIF, vol. 24, no. 3, Dec. 2014.

[8] D. Belfadel, R. W. Osborne, and Y. Bar-Shalom

Bias estimation for space-based optical sensors with targets

of opportunity,

in Proc. SPIE Conf. Signal and Data Processing of Small

Targets, #9092-25, Baltimore, MD, May. 2014.

[9] T. M. Clemons and K.-C. Chang

Sensor Calibration using In-Situ Celestial Observations to

Estimate Bias in Space-Based Missile Tracking,

IEEE Trans. on Aerospace and Electronic Systems, vol. 48,

no. 2, pp. 1403—1427, April 2012.

[10] J. B. Collins and J. K. Uhlmann

Efficient gating in data association with multivariate dis-

tributed states,

IEEE Trans. Aerosp. Electron. Syst., vol. 28, no. 3, 1992.

[11] S. Deb, M. Yeddanapudi, K. Pattipati, and Y. Bar-Shalom

A generalized S-D assignment algorithm for multisensor-

multitarget state estimation,

IEEE Trans. Aerosp. Electron. Syst., vol. 33, no. 2, Dec.

1997.

SPACE BASED SENSOR BIAS ESTIMATION IN THE PRESENCE OF DATA ASSOCIATION UNCERTAINTY 69



[12] B. D. Kragel, S. Danford, S. M. Herman, and A. B. Poore

Joint MAP Bias Estimation and Data Association: Algo-

rithms,

Proc. SPIE Conf. on Signal and Data Processing of Small

Targets, #6699-1E, Aug. 2007.

[13] B. D. Kragel, S. Danford, and A. B. Poore

Concurrent MAP Data Association and Absolute Bias Es-

timation with an Arbitrary Number of Sensors,

Proc. SPIE Conf. on Signal and Data Processing of Small

Targets, #6969-50, May 2008.

[14] K. R. Pattipati, S. Deb, Y. Bar-Shalom, and R. Washburn

A new relaxation algorithm and passive sensor data asso-

ciation,

IEEE Trans. Automat. Contr., vol. 37, no. 2, pp. 198—213,

Apr. 1992.

Djedjiga Belfadel is an Assistant Professor in the Electrical and Computer Engi-

neering department at Fairfield University, Fairfield, CT. She obtained her B.S.,

degrees from the University of Mouloud Mammeri in 2003, her M.S., degrees from

the University of New Haven in 2008, and her Ph.D. degree from University of

Connecticut in 2015, all in electrical engineering. From 2009 to 2011, she worked,

as an Electrical Engineer, at Evax Systems Inc. in Branford, Connecticut. Her re-

search interests include target tracking, data association, sensor fusion, machine

vision, and other aspects of estimation.

Richard W. Osborne, III obtained his B.S., M.S., and Ph.D. degrees in electrical
engineering from the University of Connecticut in 2004, 2007, and 2012, respec-

tively. From 2012—2014 he was an Assistant Research Professor in the Electrical

Engineering department at the University of Connecticut, Storrs, CT. From 2014—

2015 he was a Senior Research Engineer at BAE Systems, Inc. in Burlington, MA,

and since 2015, he has been a Senior Research Engineer at United Technologies

Research Center in East Hartford, CT. His academic interests include adaptive tar-

get tracking, information/sensor fusion, perception/computer vision, autonomous

systems, and other aspects of estimation.

[15] R. Robertson

A set of greedy rounding randomized adaptative local

search procedure (grasp) implementation for the multidi-

mensional assignment problem,

Computational Optimization and Applications, vol. 19, Dec.

2001.

[16] P. P. A. Storms and F. C. R. Spieksma

An LP-based algorithm for the data association problem in

multitarget tracking,

Computers and Operations Research, vol. 30, no. 7, 2003.

70 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 12, NO. 1 JUNE 2017



Yaakov Bar-Shalom received the B.S. and M.S. degrees from the Technion in

1963 and 1967 and the Ph.D. degree from Princeton University in 1970, all in

EE. From 1970 to 1976 he was with Systems Control, Inc., Palo Alto, California.

Currently he is Board of Trustees Distinguished Professor in the Dept. of Electrical

and Computer Engineering and Marianne E. Klewin Professor in Engineering

at the University of Connecticut. His current research interests are in estimation

theory, target tracking and data fusion. He has published over 550 papers and book

chapters. He coauthored/edited 8 books, including Tracking and Data Fusion (YBS

Publishing, 2011), He has been elected Fellow of IEEE for “contributions to the

theory of stochastic systems and of multitarget tracking.” He served as Associate

Editor of the IEEE Transactions on Automatic Control and Automatica. He was

General Chairman of the 1985 ACC. He served as Chairman of the Conference

Activities Board of the IEEE CSS and member of its Board of Governors. He

served as General Chairman of FUSION 2000, President of ISIF in 2000 and

2002 and Vice President for Publications during 2004—13. In 1987 he received

the IEEE CSS Distinguished Member Award. Since 1995 he is a Distinguished

Lecturer of the IEEE AESS. He is corecipient of the M. Barry Carlton Award for

the best paper in the IEEE TAESystems in 1995 and 2000. In 2002 he received

the J. Mignona Data Fusion Award from the DoD JDL Data Fusion Group. He

is a member of the Connecticut Academy of Science and Engineering. In 2008

he was awarded the IEEE Dennis J. Picard Medal for Radar Technologies and

Applications, and in 2012 the Connecticut Medal of Technology. He has been

listed by academic.research.microsoft (top authors in engineering) as #1 among

the researchers in Aerospace Engineering based on the citations of his work. He is

the recipient of the 2015 ISIF Award for a Lifetime of Excellence in Information

Fusion. This award has been renamed in 2016 as the Yaakov Bar-Shalom Award

for a Lifetime of Excellence in Information Fusion.

SPACE BASED SENSOR BIAS ESTIMATION IN THE PRESENCE OF DATA ASSOCIATION UNCERTAINTY 71



Krishna R. Pattipati received the B. Tech. degree in electrical engineering with

highest honors from the Indian Institute of Technology, Kharagpur, in 1975, and

the M.S. and Ph.D. degrees in systems engineering from UConn, Storrs, in 1977 and

1980, respectively. He was with ALPHATECH, Inc., Burlington, MA from 1980

to 1986. He has been with the department of Electrical and Computer Engineering

at UConn, where he is currently the Board of Trustees Distinguished Professor

and the UTC Chair Professor in Systems Engineering. Dr. Pattipati’s research

activities are in the areas of proactive decision support, uncertainty quantification,

smart manufacturing, autonomy, knowledge representation, and optimization-based

learning and inference. A common theme among these applications is that they

are characterized by a great deal of uncertainty, complexity, and computational

intractability. He is a cofounder of Qualtech Systems, Inc., a firm specializing in

advanced integrated diagnostics software tools (TEAMS, TEAMS-RT, TEAMS-

RDS, TEAMATE), and serves on the board of Aptima, Inc. Dr. Pattipati was selected

by the IEEE Systems, Man, and Cybernetics (SMC) Society as the Outstanding

Young Engineer of 1984, and received the Centennial Key to the Future award. He

has served as the Editor-in-Chief of the IEEE TRANSACTIONS ON SYSTEMS,

MAN, AND CYBERNETICS–PART B from 1998 to 2001, Vice-President for

Technical Activities of the IEEE SMC Society from 1998 to 1999, and as Vice-

President for Conferences and Meetings of the IEEE SMC Society from 2000

to 2001. He was co-recipient of the Andrew P. Sage Award for the Best SMC

Transactions Paper for 1999, the Barry Carlton Award for the Best AES Transactions

Paper for 2000, the 2002 and 2008 NASA Space Act Awards for “A Comprehensive

Toolset for Model-based Health Monitoring and Diagnosis,” and “Real-time Update

of Fault-Test Dependencies of Dynamic Systems: A Comprehensive Toolset for

Model-Based Health Monitoring and Diagnostics,” and the 2003 AAUP Research

Excellence Award at UCONN. He also won the best technical paper awards at the

1985, 1990, 1994, 2002, 2004, 2005 and 2011 IEEE AUTOTEST Conferences, and

at the 1997, 2004 Command and Control Conference. He is an elected Fellow of

IEEE and of the Connecticut Academy of Science and Engineering.

72 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 12, NO. 1 JUNE 2017




