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Video-on-demand (VoD) streaming services are becoming in-

creasingly popular due to their flexibility in allowing users to ac-

cess their favorite video content anytime and anywhere from a wide

range of access devices, such as smart phones, computers and TV.

The content providers rely on highly satisfied subscribers for rev-

enue generation and there have been significant efforts in developing

approaches to “estimate” the quality of experience (QoE) of VoD

subscribers. However, a key issue is that QoE can be difficult to

measure directly from residential and mobile user interactions with

content. Hence, appropriate proxies need to be found for QoE, via

the streaming metrics (the QoS metrics) that are largely based on

initial startup time, buffering delays, average bit rate and average

throughput and other relevant factors such as the video content and

user behavior and other external factors. The ultimate objective of

the content provider is to elevate the QoE of all the subscribers at

the cost of minimal network resources, such as hardware resources

and bandwidth.

In this paper, first, we propose a cognitive video streaming strat-

egy in order to ensure the QoE of subscribers, while utilizing mini-

mal network resources. The proposed cognitive video streaming ar-

chitecture consists of an estimation module, a prediction module, and

an adaptation module. Then, we demonstrate the prediction module

of the cognitive video streaming architecture through a play time

prediction tool. For this purpose, the applicability of different ma-

chine learning algorithms, such as the k-nearest neighbor, neural

network regression, and survival models are experimented with;

then, we develop an approach to identify the most relevant factors

that contributed to the prediction. The proposed approaches are

tested on dataset provided by Comcast Cable.
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I. INTRODUCTION

Major advances in wireless communication and con-

sumer electronics of the past decade have disrupted

the traditional ways in which people used to consume

video programs. In a traditional setting (see Figure 1),

a viewer has to “tune-in” to a TV station via cable,

satellite or on-air receiver in order to watch or record

his/her favorite program. Today, with internet and wire-

less broadband connectivity, there are several options

for a viewer to watch his/her favorite programs at the

time of his/her convenience using a device of his/her

choice (see Figure 2), such as a smart phone, tablet,

computer or TV. As a result, the video distribution strat-

egy also has gone through major changes.

Fig. 1. Traditional video transmission and reception. Traditional

QoS metrics try to quantify viewers’ perception using objective

metrics computed based on transmitted and received frame

sequences. (a) Video transmission. (b) Video reception.

A brief description of each of the blocks in Figure

2 is given below:

² Content. Content can be divided into online stream-
ing, i.e., regular TV programs, and recorded programs

that are delivered as video-on-demand (VoD), the fo-

cus of this paper. In VoD, a viewer browses through

the lists of available videos and selects one to play.

Unlike online streaming, VoD offers the capability to

pause and resume videos at any time.

² Delivery service. Delivery service providers, such as
cable networks, bring the videos to the viewers. Usu-

ally, the viewer has to be a subscriber to the delivery

service provider in order to get access to the content.

² Viewer. The viewer accesses the videos using devices,
such as smart phones, tablets, TV and Computer.

Each viewing device may have different connectiv-

ity and bandwidth. Depending on the access device

(portable or desktop), the characteristics of the viewer

might be different as well. For example, a viewer may

be willing to tolerate intermittent buffering events and
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Fig. 2. Description of a video-on-demand (VoD) system. Unlike traditional video transmission systems, the viewers have the option of

choosing from a large amount of video content or to select watching online video streaming.

longer startup times in a smart phone, while exhibit-

ing lesser tolerance towards similar events in a TV.

² Content servers. Content servers respond to the VoD
requests and stream videos to the viewers. Based on

the popularity of particular videos, content servers

adjust content delivery priorities in order to provide

good QoS to the viewers.

² Dynamic resource allocation. Content service pro-
viders respond to rapidly increasing/decreasing de-

mands to particular videos, anticipated and unex-

pected, such as major sports events and unexpected

world events, by dynamically adjusting the streaming

capacity of videos.

² Optimized streaming. Optimized streaming algorithms
aim to deliver high quality videos at reduced cost

(bandwidth) to the viewer. This is achieved by effi-

ciently compressing subsequent video frames. Some

other constraints include the power and memory re-

quirements of the video player at the viewing devices.

² Device registry. An important challenge in maintain-
ing superior quality of online video streaming is the

increasing number of different types of devices avail-

able to viewers in order to play videos. Each of these

devices has different hardware and software capabil-

ities. Knowing the exact capabilities of a particular

device is important in optimizing the video streaming.

² View logs. These represent feedback data from the

video players to the content delivery service pro-

viders. The feedback contains data, such as bit rate,

buffering information and media-failed events that are

useful in assessing the quality of experience of the

viewer.

² Adaptive bitrate switching. In mobile video devices,
the available bandwidth can vary depending on the

location of the receiver. For example, moving the

device (e.g., moving between different parts of a

house, traveling in a vehicle, walking through a mall,

etc.), can result in varying download bandwidths at

the device. The video streaming algorithms respond

to this by adjusting the bit-rate of the content.

The quality of user experience has been a concern

in both traditional and the emerging content delivery

systems. In the traditional video broadcasting scenario,

the issue of video quality arises due to video transmis-

sion and processing manifested in the form of noise,

jitter, shape transformation, and so on. Traditional QoS

assessment schemes focused on quantifying the percep-

tion of the viewers on videos with varying types and

degrees of video transmission distortions; such distor-

tions are generally defined as the QoS metrics, such

as peak signal to noise ratio (PSNR,[50]), video qual-

ity metric (VQM,[42]), moving picture quality metric

(MPQM,[48]), structural similarity index (SSIM,[51]),

and noise quality measure (NQM,[14]). The viewers’

perceptions as a result of varying QoS are obtained

through subjective methods and quantified usually as

a mean opinion score (MOS,[23]). The MOS, scaled

between 0 and 5, represents the perceptual quality of

the video; very pleasant and clear viewing experience

will result in MOS of 5 and an intolerable video will

have an MOS of 0. When poor QoS is detected in some

areas, the broadcasters must find ways to increase the

signal to noise ratio to the affected area; this can be

achieved by increasing the power of existing transmit-

ters or by installing additional transmitters (or repeaters)

in the affected area. The MOS scheme in traditional TV

broadcasting enjoys wide acceptance (see [20]).

In VoD, the QoS factors are different from those

in traditional video; some widely used QoS factors are

based on startup time, buffering and transmission bi-

trate. The startup time is defined as the time between

the initial video request (such as clicking on the play

button on a web interface) and the time of playing the

first video frame on the screen. Higher startup time

can cause the viewer to abandon the video [26]. There
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are several factors affecting the startup time; connection

bandwidth of the viewer, capability of the video distri-

bution server, and network delays are a few of them. In

order to reduce the startup time, the player “buffers” a

portion of the video before it starts and the rest of the

video is continuously buffered while the video is still

playing. Buffering is supposed to happen in the back-

ground while the video is playing; however, similar to

startup time, non ideal streaming conditions cause the

player to pause and wait for the data to be buffered.

It is reported in [26] that buffering delays negatively

impact the likelihood of a viewer’s return to the content

provider. Adaptive bitrate switching [28] allows con-

tent providers to reduce the startup and buffering delays

by adaptively switching the frame quality of the video

based on the bandwidth and other hardware capability

of the video player. The higher the bandwidth and pro-

cessing capabilities of the player, the higher the bit-rate

and quality of the video; the bitrate serves as a QoS fac-

tor. High average bitrate over a certain period of time

indicates that the rendering quality was high and vice

versa; frequent bitrate switching with high variation in-

dicates poor quality of experience due to volatile band-

width. Analysis of viewer responses to the startup time,

buffering and bitrate related QoS factors are reported in

[15]. The adaptive bitrate streaming technique has been

widely adopted by many existing content providers; in

[39] and [24], a general overview of the widely adopted

HTTP adaptive streaming (HAS) protocol is provided.

Adaptive video streaming itself is challenging and

diverse approaches have been published in the litera-

ture [45]. Most of the adaptive streaming strategies rec-

ommend adapting the bitrate based on buffering events

[17]. Other than adaptive streaming, there are several

suggestions in the literature to enhance a specific aspect

of QoE; in [4], an approach is suggested to enhance

the accessibility in shared video forums; [5] suggests

exploiting the knowledge that concurrent viewers are

viewing a specific content and using peer-to-peer (P2P)

strategies to offload some of the workload of the content

servers; an approach for client side server selection is

presented in [29]; in [44], the QoE is modeled based

on a packet loss model; in [49], the QoE is modeled in

terms of the QoS factors such as loss, delay and jitter;

and [11] talks about providing good quality video, while

being aware of the bandwidth quota of the user.

Current adaptive streaming and other approaches de-

veloped to enhance QoE are designed to “react” to the

QoS factors (that are largely based on startup time,

buffer level and average bitrate) from the viewer’s de-

vice. This does not guarantee that the quality of expe-

rience (QoE) of the viewer will be improved as a re-

sult. For example, the decision to downgrade the bitrate

(i.e, the quality of the video) as a result of buffering

delay may not be appreciated by all viewers; to make

things worse, the same viewer might have varying pref-

erences depending on circumstances such as the time

of day. Further, there is explosive growth in the internet

traffic caused by videos delivered by content delivery

networks; this trend is expected to continue as more

and more viewers turn from traditional TV to VoD [1].

Expanding the network infrastructure is costly and time

consuming; a QoE based adaptive streaming will help

ease some of the strain on the network by increasing the

bitrate only when it is likely to advance the QoE of the

viewer. In other words, a better and futuristic adaptive

streaming technique has to be “proactive” rather than

reactive.

The first step in QoE-based adaptive video streaming

is to come up with accurate methods of estimating the

QoE of the viewer. Taking cues from the widely adopted

MOS in traditional TV, some initial attempts were made

in [36] to estimate the MOS in response to the QoS

factors of VoD. However, unlike traditional video, the

MOS obtained through a limited experiment is unable to

represent the viewers’ perception in a wide ranging VoD

scenario. It is found that the viewers react differently

to the same video content with the same QoS factor;

viewers seemed to tolerate QoS deficiencies in live

video compared to non-live content [7]; viewers from

well connected devices (those with better connection

bandwidth) are found to be less tolerant compared to

their low-bandwidth counterparts.

A VoD viewer has millions and millions of videos to

choose from. Instead of traditional TV, there are devices

of convenience (with trade offs) for a particular time

of day; video in a smart phone might come with too

many buffering events and blurry images compared to

a TV; however, its portability is appealing to a certain

viewer during day-time; the same viewer might prefer to

continue the same video using TV during the evening.

For content providers, the objective has become one

of attracting and retaining subscribers by providing

superior quality of experience. Due to the nature of

VoD consumption, it is impossible to capture the QoE

in terms of a single metric, such as MOS. Hence the

MOS, which is subjectively estimated using a particular

viewing scenario, is not adequate to quantify viewers’

QoE [10].

Recently, there have been attempts to estimate QoE

from user data; these approaches are generally termed

“passive,” “online” or “indirect” approaches of estimat-

ing QoE. In [6], [7], it was suggested to create a pre-

dictive model of viewer engagement (such as total play

time, number of visits and probability of return) based

on the observed QoS factors. A machine learning frame-

work to estimate the QoE in mobile applications was

proposed in [3]; this approach requires training data

form past “good QoE” and “poor QoE” instances. Table

I gives a comparative summary of existing QoS liter-

ature corresponding to traditional video transmissions

and QoE metrics corresponding to VoD and internet

video.

The existing approaches focus heavily on modeling

the QoE as related to the QoS factors only. However,

even though the QoE is significantly influenced by the
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TABLE I

Summary of QoE Approaches in Traditional TV and VoD

Traditional Video VoD

QoS factors

² PSNR–Peak Signal to Noise Ratio [50]
² VQM–Video Quality Metric [42]
² MPQM–Moving Pictures Quality Metric [48]
² SSIM–Structural Similarity Index [51]
² NQM–Noise Quality Measure [14]

² Startup time [15]
² Buffering time [43]
² Buffering count [43]
² Buffering ratio [15]
² Rate of buffering events [15]
² Normalized re-buffer delay [25]
² Average bit rate [15]
² Average throughput [39]
² Frames per second (FPS) [15]
² Failures [25]

User satisfaction metrics

(alternately, viewer behavior metrics [25]) ² Mean opinion score (MOS) [23]

² MOS [36]
² Number of views [15],
² Total play time [15],
² Session duration ratio [43],
² Abandonment [25],
² Engagement [25],
² Repeat viewers [25]

Related standards

² For cable TV (2004) [20]
² For standard television (2004) [18]
² For multimedia applications (2008) [22]
² Relative to reduced bandwidth reference (2008) [21]
² Television (2002) [19]
² Multimedia (2008) [23]

² DASH [24]
² 3GP-DASH [2]

QoS factors, there could be other factors that wield in-

fluence on the QoE of the viewers. For example, consid-

ering the vast amount of video content to choose from,

the viewers’ QoE can be be influenced by the type of

content being accessed. Further, for a fixed video con-

tent, QoE varies significantly by demography, based on

age, gender, ethnic background, and language. In addi-

tion, seasonal factors, such as the time of day, day of

week and season of year, also might influence the QoE

of the user towards a particular video content. Finally,

there could be many other exogenous factors, such as

important local/national/world events, that might con-

tribute to the QoE of a particular viewer.

In the next Section, we describe our proposed cog-

nitive video streaming strategy [40], which considers all

the above factors in devising a video streaming strategy.

It must be noted that there are no direct comparisons,

because the proposed cognitive video streaming archi-

tecture is new and the proposed idea of using predicted

play time as a surrogate of QoE is also new. However,

the three prediction approaches (based on neural net-

works, survival models and k-nearest neighbor regres-

sion) that we discuss in Section IV have some com-

parisons. For example, [6] uses naive Bayes decision

tree and regression methods to predict user engagement

from quality metrics and in [12] survival models were

used for remaining time prediction.

II. COGNITIVE VIDEO STREAMING

A block diagram of the proposed cognitive video

streaming approach is shown in Figure 3. It is com-

prised of three fundamental modules: an estimation mod-

ule, a prediction module and an adaptation module. The

framework is designed in such a way that each mod-

ule is able to function with some basic functionalities

(sub-modules); as more sub-modules are added, the ef-

fectiveness of the module and the integrated system is

expected to improve. Next, we describe each module in

the proposed solution framework.

A. Prediction Module

The nature of completion of a particular video

changes from viewer to viewer; some videos are aban-

doned in the process of “browsing”; some videos are

terminated by the viewer because of lengthy buffering

and other QoS issues; and some videos are “temporar-

ily” abandoned to be resumed later. Once a viewer starts

playing a video, the remaining play time of that video

is a useful piece of information to the content provider

in order to ensure adequate QoE to the viewer. For ex-

ample, the knowledge of the remaining play time can

be used to allocate server bandwidth to the user; it can

be used to devise a more appropriate adaptive bitrate

switching scheme; and the prior knowledge that a video

is possibly terminated by the viewer can be used to rec-

ommend more appropriate videos in the first place. At

the network level, the predicted play time of each view-

ing session is useful for managing network traffic.

In addition to QoS, there are several other factors

determining the play time ratio (PTR) which is the

ratio of the completed time to the actual length of the

video (PTR 2 [0,1] is useful to compare the played
times of two videos of different length.) However, it
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Fig. 3. Proposed Cognitive Video Streaming Architecture.

was reported that shorter videos tend to have higher

PTR compared to longer videos [26]; hence, PTR gives

better comparison for videos of comparable length.

QoS factors such as buffering negatively affect the

PTR in well-connected devices. All the relevant factors

must be included in order to accurately predict the

play time of a video. We divide the factors affecting

the PTR into five categories: content-related, viewer-

related, QoS-related, seasonal and external. Each factor

contains several features affecting the play time; in

Table II, we have provided some examples.

Considering all the relevant factors/features helps

in accurately predicting the PTR of a particular video

session. This also allows us to investigate the features

that are significant to PTR prediction. It must be noted

that the dominant factor affecting play time will be

different from one viewer to the next. Identifying these

factors (even after knowing that a particular video has

been terminated) will help in devising individualized

remedies.

Similar to PTR, there are other user engagement

metrics that are indicative of the QoE of a viewer:

² Probability of return (POR) tells if the viewer will
return to a previously abandoned video. Returning to

the same video indicates the importance of that video

to the viewer. Hence, POR combined with PTR forms

a stronger indicator of the QoE.

² Probability of re-play (POP) tells if the viewer will
re-play a previously completed video. The difference

between POR and POP is that the former is the

(probability of) return to an abandoned video and

the latter is the (probability of) return to a previously

watched video.

TABLE II

Factors Affecting Play-Time Prediction and Sample Features in Each

Factor

Factor Features

Content popularity, age, length, match to viewer’s preference

Viewer age, gender, ethnic background, language

QoS startup time, buffering, average bitrate, throughput

Seasonal time of day, day of week, season of year

External important local/national/world events

² Average length of scrubbing (LOS) tells how long

a particular video will be “scrubbed,” i.e., rewound

or forwarded. Scrubbing is the process of moving

the player to a different point in the video. For

example, most of the viewers might try to scrub past a

commercial segment (due to this reason, many video

players nowadays disable the scrubbing option during

commercial breaks). Apart from commercial breaks,

abnormal scrubbing behavior might strongly correlate

to the QoE, hence LOS is another effective indicator

of QoE.

Later in the paper, we are demonstrating only the

PTR prediction. The same algorithms can be used for

other three metrics, however, POR, POP and LOS are

not computed due to some features missing in the

analyzed data.

Developing the ability to understand and predict all

the user engagement metrics will help in developing an

adaptive streaming method that is responsive to the QoE

of the individual viewer (instead of just the QoS factor

of a viewer’s device). Another important system vari-

able is load; indeed, load forecasting algorithms will
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be useful in dynamic resource allocation. In [41], we

experimented with Neural networks [30], [38], Nearest

neighbor classifiers [35], and Survival modeling [13]

techniques in developing a PTR prediction tool. The

remainder of this paper is dedicated to PTR prediction.

This will be useful in developing the proposed system

and the concomitant user-centered QoE prediction mod-

els.

B. Estimation Module

The objective of the estimation module is to infer

and provide all the features required by the predictive

module. First, the estimation module performs the fol-

lowing to prepare the data for training.

² Anomaly detection: It is desired to avoid using data
containing anomalous events for training. Anomaly

detection [8] is also important for accurate feature

extraction, security threat detection and QoE moni-

toring.

² Threat detection: Threats are unauthorized usage of
content such as accessing unauthorized videos (by

sharing login credentials or through other means).

Threats are more difficult to detect than anomalies

because what constitutes a threat depends on the cir-

cumstance. In the VoD domain, threat is an unautho-

rized usage of content by the subscribers and non-

subscribers getting access to content that are not

intended to be accesses. Such unauthorized usage

is not conducive to the sustained operation of the

content provider. The most effective threat detection

combines informative features from both anomaly-

based and signature-based approaches; understanding

of normal (and possibly abnormal) signatures is cru-

cial to devising an effective threat detection strategy.

C. Adaptation Module

The adaptation model consists of the following im-

portant sub-modules:

² Video recommendation: Video recommendation is an
indirect way of improving the QoE of a viewer. Sig-

nificant attention has been given in the past decade

in developing recommendation algorithms. Our pro-

posed methodology will benefit from such recom-

mendation algorithms.

² Adaptive bitrate switching: Adaptive bitrate switching
strategy helps in achieving uninterrupted play of the

video regardless of fluctuating bandwidth (mostly on

the user’s side).

² Streaming optimization: Streaming optimization aims
to achieve the most economic usage of bandwidth.

² Content management: Content management is re-
quired to respond to uneven and unexpected demand

of particular video content at particular times.

² Dynamic resource management: Dynamic resource
allocation [16] helps in optimizing the resources, such

as server bandwidth and content, in a way that a

Fig. 4. Typical video viewing session. The purpose of the play

time prediction tool (PPT) is to estimate the remaining playtime at

the current point in time t0.

guaranteed QoE can be maintained across all (of the

tens of millions of) subscribers.

III. PLAYTIME PREDICTION TOOL (PPT)

In this section, we provide a detailed description of

the play time prediction tool [41] of the cognitive video

streaming architecture.

Figure 4 shows a typical sequence of events in a

viewing session. The session starts when the viewer re-

quests a video. The request may go through an authenti-

cation process for non-public videos and then the video

starts buffering into the local player. The amount of

video being buffered (before the first video frame starts

playing) depends on factors, such as the player or the

bandwidth. Once a certain portion of the video buffer

is filled, the video starts playing in the local player.

If the streaming rate is poor, the video player might

be forced to temporarily stop playing the video due to

an empty buffer. As soon as the buffer is filled again,

playing resumes. Nowadays, most streaming protocols

use adaptive bitrate switching–meaning the bitrate is

adapted dynamically in order to get the best possible

video quality for the current bandwidth. The viewing

session ends when the entire video is finished playing

or when the viewer actively closes that video.

Functionality of the Playtime Prediction Tool (PPT)

In this work, we aim at developing an online play-

time prediction tool (PPT) that estimates the remaining

playtime in a viewing session, see Figure 4. Technically,

the tool may run on either the client side or the server

side.

To the best of our knowledge, there is no work yet

on an online prediction of the session playtime based on

an ongoing session. The most similar work [15] aims

at developing methods for predicting the playtime of

completed sessions.

The PPT presented in this work is the first step in

creating a tool that forecasts the entire set of events in

a session.

Data used for PPT

In order to perform playtime prediction, the tool ex-

ploits protocol data reported by the video player. Typ-

ically, this data contains high-level information about
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the video session such as in Figure 4. Content related

features, e.g., the popularity of the video, also play an

important role. A detailed description of the features

used in this work will be given in Section V.

Methods

We demonstrate several supervised machine learning

approaches for play time prediction. These approaches

use previously logged protocol data for training. The

proposed play time predictor can be set up for specific

users, particular VoD assets, or a group of users.

Benefits

The PPT is of high value to the content provider.

First and foremost, it allows the content provider to

react before the session is terminated. For example, the

content provider can enact counter measures to increase

the service quality or recommend alternate content.

Even if the PPT predicts a long playtime, the content

provider in general could decrease the quality of service

to a minimum acceptable level.

Second, the learned playtime prediction model en-

codes important information about the viewer behavior

(of the entire population or even a specific viewer). For

example, it is possible to perform a diagnosis that gives

the most relevant features that influence the playtime.

Also, a playtime prediction model allows for detecting

a change in user behavior, and this potentially is of in-

terest when threat detection is the goal.

Last but not least, playtime is a very strong indicator

of the QoE. Intuitively, if the QoE is bad, the playtime

will be low, too. And if the playtime is long, the QoE

cannot be that bad. Hence, a model for the playtime

will always be a significant part of a QoE model. In

this sense, content providers are interested in increasing

the playtime, i.e., the user engagement.

All told, the PPT had a substantial impact on im-

proving the overall QoE of video streaming.

IV. METHODS FOR PLAY-TIME PREDICTION

In this section, we introduce several approaches for

playtime prediction at a single specific time t0.
1

A. Linear Regression-based Prediction

A simple prediction model of playtime might be a

linear combination of the observed features:

yi =

NxX
n=0

knxi,n (1)

where xi,n is the nth observed feature corresponding

to the ith viewing session, and yi is the playtime.

The parameter k= [k0,k1,k2, : : : ,kNx] can be estimated

1Hence, we can omit t0 in the notation used in the remainder of this

paper.

by collecting the observation pairs fyi,xig where xi =
[1,xi,1,xi,1, : : : ,xi,Nx]

T for i= 1, : : : ,M, i.e.,

k̂= (XTX)¡1XTy (2)

where y= [y1,y2, : : : ,yM]
T and X= [xT1 ,x

T
2 , : : : ,x

T
M]

T.

For a given observed feature xj = [1,xj,1,xj,1,

: : : ,xj,Nx]
T, the predicted playtime is given as

ŷj = x
T
j k̂ (3)

The linear prediction is useful as a comparison

against other nonlinear approaches described later.

B. K-Nearest Neighbor Method

In the k-nearest neighbor approach, the target and

feature pairs fy,Xg are kept as training-data. Given the
observed feature xj , first, the following distance metric

is computed
di,j =D(xi,xj) (4)

where D(xi,xj) is a distance measure between the argu-
ments xi and xj . Let y

k correspond to the play time of

the first k of the smallest distance measures. Now, ŷj
is obtained in two different ways: (i) mean of yk, (ii)
median of yk. The median is robust to anomalies and
outliers.

C. Survival Models

Survival modeling has found wide application in a

number of areas, including medicine [13] and equip-

ment failure analysis [27]. Survival modeling was em-

ployed to derive a QoE metric in [12]. In this section,

we briefly describe how survival models can be used

for playtime prediction.

Let » be the time of termination of a particular video.

The probability density function of » can be written as

P»(t)
¢
=f(t) (5)

where f(t) is also known as the survival density function.

The cumulative probability distribution function of »

F(t) = P(» · t) =
Z t

0

f(u)du (6)

is the fraction of the videos terminated at time t. The

remaining (still playing) portion of videos is given by

R(t) = P(» > t) = 1¡F(t) (7)

where R(t) is also known as the reliability.

Given that a video has survived until time t, it is

often of interest to know the probability that it will be

terminated in the next moment, i.e.,

h(t) = f(t j » > t) = f(t)

R(t)
(8)

denotes the instantaneous risk or hazard rate of the

system. Let us rewrite (8) as

h(t) =
f(t)

1¡F(t) =
F 0(t)
1¡F(t) =¡

R0(t)
R(t)

(9)
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Integrating both sides of (9)

¡
Z t

0

h(u)du= lnR(t) (10)

Hence,

R(t) = expf¡H(t)g (11)

where H(t) =
R t
0
h(u)du is the cumulative hazard func-

tion.

Using (7) and (11)

1¡F(t) = expf¡H(t)g
f(t) = h(t)expf¡H(t)g (12)

So far it has been assumed that f(t) (and hence R(t)

and h(t)) are all functions of time only. However, all of

these functions are dependent on features x= fxig, or
covariates. The proportional hazard function, proposed

by Cox [13], suggests to separate the time-dependent

and feature-dependent hazards as follows:

h(t,x) = ¸(t)expfbTxg (13)

where ¸(t) is the baseline time-dependent hazard func-

tion, xi is the covariate, and bi is the coefficient corre-

sponding to the ith covariate, xi.

Now, (11) and (12) are rewritten as

f(t) = ¸(t)expfbTx¡¤(t)ebTxg (14)

R(t) = expf¡¤(t)ebTxg (15)

where ¤(t) =
R t
0
¸(u)du. Cox suggested that the the

model parameters b can be estimated independent of

¸(t) by maximizing the partial likelihoods. Once b is

estimated, there are several approaches in the literature

to model and estimate (the parameters of) ¸(t).

Once the parameters are estimated, the remaining

play time at time u can be computed as

ŷj(u) =

R1
u
(t¡ u)fj(t)dt
Rj(u)

(16)

where fj(t) and Rj(u) are obtained by substituting xj
for x in (14) and (15), respectively, and u is the time

elapsed.

An advantageof the survivalmodel-based approaches

described above is that the playtime prediction can

be updated as the video progresses. In this paper, we

assume ¸(t) = ¸.

D. Neural Networks

The playtime can be modeled as a function of the

observed features using artificial neural networks (e.g.,

multi-layer perceptrons)

yi = f(xi,fwl,kgNL,Nhl=1,k=1) (17)

where wl,k are different weights and NL is the number of

layers and Nh is the number of hidden nodes. Given a set

of (past) training data y,X, there are several approaches

to learn the weights [37]. A trained neural network can

be used to predict the playtime for a given feature set xj .
Neural Network predictor was implemented by the

use of the built in neural network function in Matlab™.

The number of neurons and the number of hidden

layers are selected to be the ones to give the highest

prediction accuracy metrics with the training data. For

the particular example described in Section V, a multi-

layer perceptron model was selected with three hidden

layers each having six neurons.

V. SIMULATION STUDIES

In this section, we evaluate the proposed approaches

using data from 8808 viewing sessions. In order to

avoid any confounding effects, all these 8808 viewing

sessions are selected from the same type of video;

in particular, all these videos are selected to be the

episodes of “The Simpsons.” Further, all these videos

were viewed on the same day. We focus on the first 8

minutes as we try to understand early quitters due to

the low streaming quality. A portion of these sessions is

randomly selected and denoted as the “learning” dataset,

and the rest is kept for testing. Each feature in the testing

data is used for predicting its playtime. This procedure

is repeated for 10 Monte-Carlo runs.

Our work is based on a dataset from the VoD stream-

ing service Xfinity On Demand from Comcast. The avail-

able data was logged by the video players and consists

of a sequence of events that come with time stamps, de-

vice ids, and further information. Specifically, we use

the following logged events from each user. For each of

these events, the starting and ending times are available.

² Opening: Indicates that a new viewing session is

opened by the user.

² Playing: Video starts playing.
² Buffering: The player starts buffering; the video

doesn’t play until a certain amount of data is buffered.

Further, the buffering event can occur while a video

is playing.

² Paused: The pause event occurs when the user presses
the pause button.

² Closing: Video may stop playing either due to the
user ending the session or when the end of the video

is reached.

² Bitrate switched: This event occurs whenever the
streaming bitrate changes.

We define a viewing session as the events between

the opening and closing events at a particular device.

Based upon the above described events, we determine

the following session features that potentially affect the

playtime and the QoE.

A. Data Analysis and Visualization

The following features are used in our current anal-

ysis:

1) Number of buffering events (f1)
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Fig. 5. Histogram of playtime.

2) Number of paused events (f2)

3) Inter buffering time (f3): The average time (in sec-

onds) between two buffering events.

Fig. 6. Histogram of features.

4) Startup time (f4): The time it takes from when the

user hits the play button to the time the video starts

playing on the screen.

5) Average bit rate (f5): The average bit rate is mea-

sured in Mega bits per second (Mbps).

6) Buffering ratio (f6): the relation between the total

buffering time and the total play time of a video.

The buffering ratio negatively affects the QoE.

Figure 5 shows the histogram of playtime for all

the 8808 viewing sessions. The play time distribution

suggests an exponential decay in this case. Figure 6

shows the histograms of the corresponding features.

It can be seen that the majority of the video sessions

had up to two buffering and paused events each. The

startup time is approximately 4 seconds for the majority

of the videos. The peaks around the 1.8 Mbps and 4.2

Mbps indicate the presence of standard video and high

definition video, respectively.

B. Performance Metrics

In this section, we use the algorithms introduced in

Section IV for playtime prediction and assess their per-

formance. Due to lack of knowledge on the statistical
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properties of playtime,we suggest using several surro-

gate metrics for assessing playtime. The following four

metrics were considered.

1) Normalized Mean-Squared Error (NMSE): This

metric gives insight on the error in playtime prediction

and is given by

NMSE=
1

M

MX
i=1

μ
yi¡ ŷi
yi

¶2
(18)

2) R2 Fit: The coefficient of determination, R2, gives

insight into how well the data points fit the statistical

model used to predict playtime. A value of R2 = 1

indicates perfect fit, and smaller the R2, the poorer is

the fit.

R2 = 1¡
PM
i=1(yi¡ ŷi)2PM
i=1(yi¡ ȳ)2

(19)

where ȳ = (1=M)
PM
i=1 yi.

3) Ratio of Predicted and True Playtime Greater

than r: The playtime is a quantity that can generally vary

anywhere from less than 1 minute to several hours. A

prediction error of 1 min is significant if the actual play

time is 5 min; however, it is not so significant if the

actual play time is 2 hours. The NMSE captures this

through normalization; however, the following metric

captures this error in a different light.

RG(r) =

#

½
ŷi
yi
> r

¾
M

(20)

where #f¢g denotes the number of times the argument
is true.

4) Ratio of Predicted and True Playtime Less than

1=r: Similar to RG(r), the following metric captures the

instances when the prediction was significantly smaller

than the true value of playtime.

RL(1=r) =

#

½
ŷi
yi
<
1

r

¾
M

(21)

C. Feature Selection

With N features, there are 2N ¡ 1 possible subsets of
features. Although it might be thought that more is bet-

ter, in machine learning, one can be subject to the “curse

of dimensionality”: extra features that are uninformative

actually hurt prediction performance by “fitting to the

noise.” In Figures 7, 8, 9 and 10, we show the perfor-

mance(s) plotted against binary representation of fea-

ture combinations, from 1 to 2N ¡ 1. Each time, half the
dataset is randomly selected and used for learning and

the playtime is predicted using the rest of the data. This

procedure is repeated for 10 Monte-Carlo runs (This

is called a 10£ 2 cross validation.) and the median of
each of the metrics is plotted in Figures 7—10. There

are six subplots in each of Figures 7—10, showing the

results of different playtime prediction approaches: Sur-

vival modeling, k-nearest neighbor (mean), k-nearest

TABLE III

Performance Metrics

TABLE IV

Feature Ranking Based on Borda Count

neighbor (median), LS, neural networks and random.

In “random” approach, we randomly select a playtime

from the training dataset.

Next we select just one playtime prediction approach

shown in Figures 7—10 and try to select the best feature

set (out of 2N ¡ 1) for online prediction. We select
the neural networks approach for this evaluation. The

objective of feature selection is to find the features

that gives the best result across all performance metrics

defined in Section V-B.

Table III shows the first six feature sets ranked ac-

cording to each of the performance metrics: R2, NMSE,

RG(2) and RL(0.5). For example, the features corre-

sponding to the binary number 61, i.e, NRB, IBT, STT,

BR and BUR, give the best performance according to

R2, NMSE and RG(2), whereas the features correspond-

ing to the binary number 41, i.e., NRB, STT, and BUR,

give the best performance according to RL(0.5).

We employ a method known as Borda count [9] in

order to select the best feature subset based on all four

evaluation metrics. For each feature ID (binary number)

in Table III, the Borda count gives a point based on the

ranking of that ID using each of the four evaluation

metrics. Then, the feature ID having the most Borda

points is selected as the best feature set in terms of all

four evaluation metrics. Table IV summarizes the Borda

count procedure in selecting the best feature subset. For

this particular example, the feature subset with ID 61

is ranked first, while the one with ID 41 is ranked 8th.
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Fig. 7. Median R2 Fit.

Fig. 8. Median NMSE.

Hence, for neural network approach, the features NRB,

IBT, STT, BR and BUR will be used for online playtime

prediction. The features are selected in a similar fashion

for the rest of the five playtime prediction methods.

D. Playtime Prediction Results

Assuming that the best features are selected offline

based on the approach described in the previous section,

in this section we show the online playtime prediction

results of each approach.

Figure 11 shows a scatter plot of true vs. predicted

play time. Each subplot corresponds to the prediction

approach mentioned in the title. For each approach,

the feature ID corresponding to the top Borda count is

displayed in parenthesis as well. Ideally, the scatter plot

should look like a line from the origin with gradient 1;

the “thickness” of the scatter as well as “concentrations”

at off-diagonal places indicate the error in predictions.

Fig. 9. Median RG(r).

Fig. 10. Median RL(1=r).

Figure 12 shows the predicted play time as an over-

lay plot of true and estimates; the blue line shows the

actual play time and the red stars are the predicted ones.

Figure 13 shows the prediction errors as a histogram;

a “thin” histogram implies good prediction and vice

versa. Out of all the six approaches, the neural network

approach yields the best prediction results followed by

both of the k-nearest neighbor methods. The “random”

approach is shown as a measure of comparison to the

worst method; the random approach randomly picks a

data from the training set as the predicted play time.

The playtime prediction results shown in this section

demonstrate that the proposed approaches are promis-

ing, since they all perform better than the random pre-

diction approach. However, our objective in this paper is

not to develop a perfect play time prediction tool, rather

to demonstrate a functioning PPT, which is a component

of the proposed cognitive video streaming architecture.
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Fig. 11. Scatter plot of true vs. predicted playtime.

Fig. 12. Overlay plot of true vs. predicted playtime.

For more accurate playtime prediction results, the

PPT has to be “fed” with more than the QoS related

features, such as the content related features, the viewer

related features and the external features. In this paper,

we limited the discussion to outlining the technical

details and demonstration of the PPT with just QoS

related features.

VI. CONCLUSIONS AND DISCUSSION

The contribution of the paper is to describe a frame-

work for modeling the variables that may affect the

quality of experience (QoE) of video-on-demand (VoD)

services, with the aim of maximizing QoE for sub-

scribers of commercial media providers. However, QoE

is difficult to measure based on the usage data that is

available to the service provider: it is only indirectly

inferable. Hence, one contribution of this paper is to

Fig. 13. PMF of playtime-prediction error.

formulate the problem and discuss the relevant litera-

ture, much of which appears in quite diverse journals.

Implicit is that if QoE is well understood, its real-time

prediction might be used to adapt the underlying con-

tent delivery strategy via adaptive bit-rate switching,

streaming optimization, content management, dynamic

resource management and video recommendations.

We proposed and discussed various QoE measures,

such as playtime, probability of return, probability of re-

play and average length of scrubbing. We discussed ap-

proaches for the prediction of such QoE measures by

supervised machine learning algorithms. Further, we de-

scribed the type of features that can be computed from

the subscriber data for use in the QoE prediction al-

gorithms as predictive features. We categorized these

features into content-related features, viewer-related fea-

tures and quality of service (QoS)-related features. Then,

we demonstrated playtime prediction through several

supervised classification approaches using QoS related

features that are collected from the subscribers of a pop-

ular VoD service.

The proposed cognitive video streaming architecture

is suitable to future developments in the fast changing

video consumption arena. For example, more accurate

measure of the QoE can be obtained by making use of

other relevant data. In [31], [32] and [34], we used the

eye tracking data, such as pupil dilation and eye-gaze

pattern in order to estimate the cognitive context of un-

manned aerial system (UAS) operators, while they ex-

ecute reconnaissance missions. However, existing VoD

systems are not equipped to measure/collect eye track-

ing data. Considering the fact that most of the video

playing devices (with the exception of TV) are equipped

with a front facing camera, creating and exploiting eye

tracking data for QoE estimation has a good chance of

becoming a reality.
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The availability of additional physiological measure-

ments, such as heart rate, breathing rate and body tem-

perature will pave the way for improved accuracy in

QoE estimation. None of the existing video devices are

equipped with the sensors to measure these physiolog-

ical features. However, driven by the personal health

monitoring devices (also known as fitness trackers, such

as fitbit™), the (direct or indirect) availability of these

physiological measurements for VoD services could be-

come a reality in the future. If and when that happens,

the QoE estimation can be done with increased con-

fidence and the cognitive video streaming architecture

will be able to cater to more advanced form of enter-

tainment.

In general, QoE estimation is a part of the much

larger human machine systems (HMS). An HMS is

formed when a semi-autonomous system is operated

by a human (or group of humans) operator(s); (i) a

pilot flying an aircraft, (ii) a car driven by a human

driver, (iii) a person working on a computer, and (iv)

an unmanned aerial system (UAS) mission executed

by a group of operators are all examples of HMS.

It has been well understood that human performance

becomes suboptimal when the workload is too high

as well as when it is too low [46]. An important re-

search challenge in the HMS domain is to create ma-

chines that are able to better understand human behav-

ior so that the overall efficiency of the HMS can be

improved through increased productivity and reduced

safety risk [33]. An understanding of the physiologi-

cal behavior of the human body can be combined with

statistical machine learning theory in order to develop

algorithms that are able to accurately predict the cog-

nitive context (such as the difficulty of work, level of

alertness, etc) experienced by humans. Also, a more

generalized topic of context based information fusion

[47] gives additional insights on this emerging research

field.

The future of VoD system will look more similar

to a HMS with one exception: the objective of all

the other HMS is to perform a certain task with high

efficiency, whereas the objective of the VoD system is

to offer entertainment and pleasure to the human. A

new ecosystem of services and applications are waiting

to be developed around a successful VoD system. For

example, doctors might prescribe certain videos as part

of treatment plans; students might be asked to watch

a certain video as part of a curriculum, all under the

assumption that a dependable QoE estimation system

(in general terms, a cognitive context detection system)

is available. The immediate challenge of the information

fusion community is to develop such systems.
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