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The performance of the conventional bearings-only tracking

(BOT) from a single passive sensor hinges on the sensor platform

maneuvers. This paper presents a new BOT approach based on

fusion from two heterogenous bearings-only sensors residing on

the same moving or stationary platform. The two sensors are an

ESM/EO with negligible propagation delay and an acoustic sensor

with significant propagation delay. The time difference between

the reception times of the two sensors (corresponding to the same

emission time) is the acoustic propagation delay. Since target range

information is contained in the acoustic propagation delay (which

is not known but can be estimated), the target state is shown to

be completely observable even when the platform is stationary. The

observability is studied in this paper via the Fisher information

matrix (FIM).

Two estimators are developed. They are the maximum likeli-

hood (ML) estimator for batch estimation and the out-of-sequence

measurements fusion from acoustic and ESM/EO sensors (OOSM-

AE) for recursive estimation. It shows that the ML estimator for

batch estimation attains the Cramér-Rao lower bound (CRLB)–

it is statistically efficient–except in cases with a small number of

measurements and the target heading close to the bearing from

the sensor platform. The OOSM-AE is developed to handle out-of-

sequence measurements (OOSM) due to the acoustic propagation

delay. It consists of an unscented Kalman filter (UKF) to handle

the in-sequence ESM/EO measurements and an OOSM unscented

Gauss-Helmert filter (OOSM-UGHF) to handle the out-of-sequence

acoustic measurements. Simulation results are presented to demon-

strate the performance of this new BOT approach.
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I. INTRODUCTION

The commonly used passive sensors, like acoustic

sensors, electronic support measures (ESM) sensors and

electro-optical (EO) sensors, measure target bearings

only. This makes the target state estimation from range-

absent measurements a challenging problem.

Several approaches for this problem have been de-

veloped in the last four decades. The most popular

one is to deploy a passive sensor on a maneuver-

ing platform, and the target state is estimated using

bearings-only tracking (BOT) or bearings-only target

motion analysis (BO-TMA) [16] [1]. This approach re-

quires the sensor platform to maneuver, so the target

state is observable [17] [11] [6]. Since these maneuvers

can interfere with the sensor platform’s own mission

(for example: to reach its destination as early as pos-

sible), BOT from a nonmaneuvering platform has at-

tracted attention recently. Results showed that the BOT

problem is indeed observable from a nonmaneuver-

ing platform when the target is performing particular

maneuvers (two-leg with constant speed, or constant

turn) [13] [7]. However, there is still a gap to tran-

sition these results to real applications, for the target

can maneuver in a manner unbeknownst to the ob-

server.

TheBOT approach has been extended to theDoppler-

bearing tracking (DBT) approach in [18] [10]. This ap-

proach tracks the target state and emitted frequencies

from bearing and Doppler shifted frequency measure-

ments and the state can be estimated even when the plat-

form is not maneuvering. The difficulty faced in DBT is

to identify the target Doppler shifted frequencies from

a noisy environment, especially when the target emitted

frequencies are varying.

Another approach is to locate targets through tri-

angulation from multiple stationary or moving passive

sensors located at different positions. This approach

needs to remove triangulation “ghosts” in multi-target

scenarios, and can be solved as an S-D assignment prob-

lem, where S is the number of sensors. A Lagrangian

relaxation approach was suggested to solve this prob-

lem when S ¸ 3 [19] [8]. By making use of Doppler
frequencies, the number of sensors can be reduced to 2

(S = 2) [22].

In this paper, we propose a new bearings-only ap-

proach to fuse measurements from two heterogenous

passive sensors deployed on the same platform which

can be either moving or stationary. The two sensors are a

passive ESM/EO sensor, designated as s1 and a passive

acoustic sensor, designated as s2. Both sensors measure

target bearings only. The ESM/EO sensor’s detections

have no propagation delay, whereas the acoustic sensor

receives the target signals after significant propagation

delays. The time difference between the reception times

of the two sensors (corresponding to the same emis-

sion time) is the acoustic propagation delay, and the

target range can then be inferred from the estimates of
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Fig. 1. Out-of-sequence measurements in ESM/EO and acoustic

sensors.

these delays assuming the propagation speed is known.

Complete observability in this BOT problem is therefore

obtained, as range is implied in the sensors’ reception

times.

However, to obtain target range using the princi-

ple mentioned above is not straightforward. To com-

pute the acoustic propagation delay, a pair of passive

signals from s1 and s2 having the same emission time

needs to be identified. A BOT target usually emits con-

tinuous signals which are received by the sensors and

discretized by sampling. They are not instantaneous sig-

nals, like “ping” or “pulse” which can be associated

easily. There is no feature to identify an acoustic bear-

ing measurement and an ESM/EO measurement emit-

ted at the same time. Furthermore, the ESM/EO and

acoustic sensor may have different sampling times (they

are asynchronous), and the sensor platform may be dy-

namic. These make the problem even more compli-

cated.

Fig. 1 illustrates the ESM/EO and acoustic signal

emission and reception time sequences, where k is

the reception time index, which orders the combined

acoustic and EO/ESM discretized signals by arrival

(sensor) time. This is also the measurement index, while

i and j are the target signal emission time indexes from

s1 and s2, respectively. It can be seen that measurements

arrive the observer out-of-sequence due to the acoustic

propagation delay.

Our preliminary study on this problem has been pre-

sented in [25] recently. At the same time, the problem

has also been addressed in [14]. In the present paper,

we will conduct a comprehensive study, which includes

the problem observability, appropriate algorithms from

batch and recursive estimation and analyzing the effi-

ciency of these estimators.

The structure of the rest of paper is as follows. Sec-

tion II formulates the problem as a batch estimation

problem, and develops a maximum likelihood (ML) es-

timator for the problem. Section III analyzes the ob-

servability of the problem via the Fisher Information

Matrix (FIM). Section IV presents simulation results

for the batch estimation and studies the estimator ef-

ficiency. Sections V—VII focus on the recursive estima-

tion. Sections V and VI develop a novel recursive state

estimation algorithm, and Section VII presents simula-

tion results and recursive estimator efficiency analysis.

Conclusions are given in Section VIII.

II. PROBLEM FORMULATION AND ML ESTIMATOR
FOR THE BATCH ESTIMATION

This section formulates the acoustic and ESM/EO

bearing fusion problem (designated as “AE”) as a pa-

rameter estimation problem from a batch of bearing

measurements. Since the BOT problem has been well

studied when the platform is maneuvering, we focus on

the stationary platform here. The target motion parame-

ter x is to be estimated from the measurement vector Z

consisting of a batch of ESM/EO (s1) and acoustic (s2)

bearings. This is modeled as

Z= h(x) +w (1)

where h(¢) is the function that relates x to Z, and w is
the measurement noise. The measurement vector Z is

Z= [b(ts1) ¢ ¢ ¢b(tsn)]0 (2)

where s 2 fs1,s2g is the sensor receiving the signal at
time tsk. The parameter x consists of the position and

velocity of the target at time tsn

x= [x y _x _y]0 (3)

Assuming the measurement noises of s1 and s2 are zero-

mean white Gaussian with the same standard deviation1

¾b, the covariance of w is

R= ¾2bIn (4)

where In is the identity matrix of dimension n.

The function that relates x to Z is

h[x] = [h(ts1,x) ¢ ¢ ¢h(tsn,x)]0 (5)

where h(¢) is the function that maps x to s1 or s2
bearings. Assuming the stationary sensor is located at

(0,0), h(¢) is given by

h(tsk,x) =

8>>><>>>:
tan¡1

·
x¡ (tsn¡ tsk) _x
y¡ (tsn¡ tsk) _y

¸
if s= s1

tan¡1
"
x¡ (tsn¡ tsk + ±j,k) _x
y¡ (tsn¡ tsk + ±j,k) _y

#
if s= s2

(6)

where ±j,k is the propagation delay of the jth acoustic

bearing with arrival time tsk (see (44)—(45) and Fig. 1),

which follows from the quadratic equation

[x¡ (tsn¡ tsk + ±j,k) _x]2 + [y¡ (tsn¡ tsk + ±j,k) _y]2 = (cp±j,k)2

(7)

1This is for simplicity of notation only.
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The solution of the above is2

±j,k =
xdk _x+ y

d
k
_y§Ák

½

=
xdk _x+ y

d
k
_y¡Ák

½
(8)

where

Ák =

q
(xdk _x+ y

d
k
_y)2¡ [(xdk )2 + (ydk )2]½ (9)

½= _x2 + _y2¡ (cp)2 (10)

xdk = x¡ (tsn¡ tsk) _x (11)

ydk = y¡ (tsn¡ tsk) _y (12)

The ML estimate x̂ of x is obtained from the likeli-

hood function ¤(x;Z) of x based on the batch of mea-

surements Z as

x̂= argmax
x
¤(x;Z) = argmax

x
p(Z j x) (13)

Under the zero-mean Gaussian assumption on the noise

w, the above becomes the following nonlinear least

squares (NLS) problem [2]

x̂= argmin
x
f[Z¡h(x)]0R¡1[Z¡h(x)]g (14)

which will be solved numerically via the iterated squares

(ILS) method. The ILS yields the ML estimate of the

parameter x(n) (at the end of the batch of length n) is

as follows

Pl = [H[x̂l(n)]0R¡1H[x̂l(n)]]¡1 (15)

x̂l+1(n) = x̂l(n)+PlH[x̂l(n)]0R¡1[Z¡h[x̂l(n)]] (16)

where l is the iteration number, and H= (¢) the Jacobian
matrix of h(¢). This is derived next.

H(x) = (rxh[x]0)0 = [Hs1 ¢ ¢ ¢Hsn]0 (17)

where

Hsk =

8>>>>>><>>>>>>:

·
ydk
(rdk )

2
¡ xdk
(rdk )

2
¡ (t

s
n¡ tsk)ydk
(rdk )

2

(tsn¡ tsk)xdk
(rdk )

2

¸0
if s= s1

[Hs
k,1 H

s
k,2 H

s
k,3 H

s
k,4]

0

if s= s2
(18)

and (recall that j denotes the index of the acoustic

2The negative sign is selected in (8.) so that the propagation delay ±j,k
is greater than 0, to match (6)—(7).

bearing that arrives at tk)

Hs
k,1 =

yej,k +(x
e
j,k
_y¡ yej,k _x)rx±j,k
(rej,k)

2
(19)

Hs
k,2 =

¡xej,k +(xej,k _y¡ yej,k _x)ry±j,k
(rej,k)

2
(20)

Hs
k,3 =

¡(tsn¡ tsk + ±j,k)yej,k +(xej,k _y¡ yej,k _x)r _x±j,k

(rej,k)
2

(21)

Hs
k,4 =

(tsn¡ tsk + ±j,k)xej,k +(xej,k _y¡ yej,k _x)r _y±j,k

(rej,k)
2

(22)

rx±j,k =
1

½

·
_x¡ (c

p)2xdk ¡ _y(xdk _y¡ ydk _x)
Ák

¸
(23)

ry±j,k =
1

½

·
_y¡ (c

p)2ydk + _x(x
d
k
_y¡ ydk _x)

Ák

¸
(24)

r _x±j,k =
1

½

·
xdk ¡ (tsn¡ tsk) _x+

(cp)2(tsn¡ tsk)xdk
Ák

¡ (x
d
k
_y¡ ydk _x)(ydk +(tsn¡ tsk) _y)

Ák

¸
¡ 2_x(x

d
k
_x+ ydk _y¡Ák)
½2

(25)

r _y±j,k =
1

½

·
xdk ¡ (tsn¡ tsk) _x+

(cp)2(tsn¡ tsk)ydk
Ák

+
(xdk _y¡ ydk _x)(xdk +(tsn¡ tsk) _x)

Ák

¸
¡ 2 _y(x

d
k
_x+ ydk _y¡Ák)
½2

(26)

rdk =

q
(xdk )

2 + (ydk )
2 (27)

xej,k = x¡ (tsn¡ tsk + ±j,k) _x (28)

yej,k = y¡ (tsn¡ tsk + ±j,k) _y (29)

rej,k =
q
(xej,k)

2 + (yej,k)
2 (30)

III. OBSERVABILITY ANALYSIS VIA THE FISHER
INFORMATION MATRIX

To analyze the observability of the nonlinear model

(1), the Fisher information matrix (FIM) will be used.

The relationship between the FIM and parameter ob-

servability (i.e., its estimability) has been studied in

[12]. The parameter x in (1) is completely observable,

if the FIM is nonsingular (invertible). The FIM is given

by [2]

F(x) =H0(x)R¡1H(x) (31)

where H is the Jacobian matrix given in (17).
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Fig. 2. Observability analysis. Estimation of the target position and

velocity at point B using four bearings (the acoustic bearing’s

reception time is t
s2
2
= 1:5s).

Since the size of the parameter x is four, Z should
consist of at least four bearings for observability. Fig. 2

illustrates the problem with three ESM/EO bearings

received at times 1 s, 2 s and 3 s, and a delayed acoustic

bearing with reception time 1.5 s, and

Z= [b(1) b(1:5) b(2) b(3)]0 (32)

The parameter to be estimated is x at time ts4 = 3s, which

corresponds to point B on the trajectory AB.

The observability analysis is based on the numerical

results of det[F(x)] for various geometries of the target
trajectory and platform. The scenarios consist of the

target trajectory AB rotating 360± around point A in

Fig. 2, namely the target heading varies from 1± to
360±. The bearing error standard deviation for both
sensors is ¾b = 1

± in the FIM. Figs. 3—6 show det[F(x)]
versus target heading with the target speeds of 5 m/s,

10 m/s, 50 m/s and 100 m/s respectively. In each figure,

det[F(x)] is investigated at two different ranges, namely,
target motion starting point A is at (0 m, 5000 m) and

(0 m, 6000 m).

From the results, we observe that FIM is singular

(or det[F] = 0) only when the target heading is at 180±
and 360± w.r.t. the line-of-sight (LOS) to the sensor
platform. The problem is unobservable in these cases,

and the four bearings are the same and always in line

with the target heading. Thus, we can conclude that the

problem is completely observable unless the bearing is

constant over time.

The FIM itself is the total information about the

parameter x from the measurement set Z. A higher

value of det[F] represents a better estimation of x from
Z. Obviously, the determinant of F is affected by the

target range, speed and heading. It can be seen that

the value of det[F] is increasing with target speed and
decreasing with target range. For the target heading,

it closely links to the change of the bearings in the

batch. Intuitively, a larger bearing change gives a better

Fig. 3. det[F] versus target heading when the target speed is 5 m/s.

Fig. 4. det[F] versus target heading when the target speed is
10 m/s.

estimate. We can see that det[F] almost reaches zero
when the heading is close to 180± or 360±, where the
bearing change is small. When the heading is away

from 180± and 360±, det[F] increases as the bearing
change increases. However, the maximum det[F] is not
exactly on the target trajectory with the largest change

in bearing. Target range is also taken into consideration

in FIM. Fig. 7 shows that the trajectory AB0 has the
largest change in bearing. However it does not have the

highest det[F]. The trajectories with the highest det[F]
is AB. This is because B is closer to the sensor than B0.

IV. SIMULATION RESULTS FOR THE BATCH
ESTIMATION

The scenarios in the simulation are similar to those

used in Section III but with different batch size. Point

A in Fig. 7 is set at (0 m, 5000 m). The target speed

is 100 m/s, and the heading is chosen from 10±—140±.
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Fig. 5. det[F] versus target heading when the target speed is
50 m/s.

Fig. 6. det[F] versus target heading when the target speed is
100 m/s.

The bearing error standard deviations for both s1 and

s2 are set to ¾b = 1
±. Four different batch sizes are

investigated, namely

² n= 10: 10 ESM/EO bearings and 5 acoustic bearings
over a total time of 10 s.

² n= 20: 20 ESM/EO bearings and 10 acoustic bear-

ings over a total time of 20 s.

² n= 30: 30 ESM/EO bearings and 15 acoustic bear-

ings over a total time of 30 s.

² n= 60: 60 ESM/EO bearings and 30 acoustic bear-

ings over a total time of 60 s.

This section also studies the CRLB of the prob-

lem, and compares the errors of the ILS estimates to

the CRLB. The CRLB error covariance matrix PCRLB,

which is a 4£ 4 matrix, is given by
PCRLB = F¡1 (33)

Fig. 7. The target trajectory AB has the highest det[F], and AB0
has the largest bearing change.

The CRLB-based root mean square errors (RMSE) of

the position and velocity are

posCRLBbatch =

q
PCRLB11 +PCRLB22 (34)

velCRLBbatch =

q
PCRLB33 +PCRLB44 (35)

The ILS RMSEs of the final position and velocity

estimates are computed based on 200 Monte Carlo runs

for each of the above batches. They are given by

posRMSEbatch =

vuut 1

N

NX
i=1

[poserrbatch,i]
2 (36)

velRMSEbatch =

vuut 1

N

NX
i=1

[velerrbatch,i]
2 (37)

where i is the run index, N = 200 is the number of runs,

and

poserrbatch,i =
p
[x̂¡ x]2 + [ŷ¡ y]2 (38)

velerrbatch,i =

q
[ _̂x¡ _x]2 + [ _̂y¡ _y]2 (39)

where x̂, ŷ, _̂x and _̂y are the estimated target position and

velocity in x and y coordinates, respectively, x, y, _x and _y

are the true target positions and velocities, respectively.

To evaluate the consistency of the estimates obtained

via the ILS with the CRLB (i.e. its statistical efficiency),

the normalized estimation error squared (NEES) [2]

is evaluated. The full state NEES for N Monte Carlo

runs is

²̄=
1

N

NX
i=1

(x̂i¡ x)0F(x̂i¡ x) (40)

where i is the run index.

Table I presents the ILS RMSEs of the position

and velocity estimates versus the CRLBs. Fig. 8 shows
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TABLE I

Estimate RMSEs versus CRLB

Position Velocity

Target ILS ILS

Batch heading CRLB RMSE CRLB RMSE NEES

size (±) (m) (m) (m/s) (m/s)

45 1961.0 2893.9 139.7 187.3 5.04

50 1735.2 1962.3 124.4 130.3 4.17

55 1548.3 1848.4 111.8 123.9 4.13

n= 10 60 1390.9 1498.2 101.2 107.6 4.23

80 949.1 1020.4 72.0 77.5 4.01

100 682.6 722.52 54.9 45.2 4.09

120 502.6 535.1 45.3 46.9 4.31

140 451.1 478.2 43.3 44.5 3.70

20 2516.9 2680.5 118.1 122.8 4.60

25 1994.3 2001.3 93.8 90.0 4.19

30 1642.5 1653.3 77.5 77.5 4.28

40 1195.5 1223.1 56.9 56.9 4.29

n= 20 60 731.3 753.7 35.6 37.2 4.24

80 486.0 487.7 24.6 24.7 3.96

100 333.5 343.9 17.8 18.3 3.81

120 232.9 234.5 13.4 13.9 4.02

140 169.9 174.2 10.9 11.4 4.06

15 2565.2 3011.2 87.0 95.0 4.79

20 1908.5 1970.0 64.8 64.8 4.02

25 1511.0 1553.3 51.4 52.2 4.26

40 902.5 915.8 31.0 31.8 4.23

n= 30 60 547.3 565.8 19.2 20.1 3.79

80 358.2 361.9 12.9 13.2 4.20

100 238.9 248.9 9.0 9.2 4.39

120 157.7 160.6 6.4 6.5 3.70

140 101.0 103.3 4.6 4.7 4.20

10 2893.1 3066.2 48.4 62.6 4.50

15 1917.7 2102.4 32.1 33.5 4.24

20 1426.8 1452.1 23.9 24.8 4.25

40 675.0 687.9 11.3 11.5 3.98

n= 60 60 409.8 433.6 6.9 7.2 4.05

80 268.8 269.9 4.6 4.5 3.86

100 180.3 182.2 3.2 3.2 3.71

120 120.6 121.3 2.3 2.3 4.17

140 80.0 81.5 1.8 1.8 3.75

the ILS RMSEs of position estimates versus CRLBs

in graph form, where n in legends ILS-n and CRLB-n

stands for the batch size. It can be seen that the estimates

are very close to their CRLBs, except for the cases

with marginal observability (e.g., n= 10 and heading

μ = 45±). In these cases the errors are large, and the ILS
does not yield a statistically efficient estimate. Upon

examining the reason why the estimate in these cases

had large errors compared to the CRLB, it was observed

that the likelihood ¤(x;Z) is larger at the (bad) estimate

than at the true value (i.e., better goodness of fit to the

noisy data for the bad estimate). This is because of the

noisiness of the likelihood function due to the combined

effect of the small number of measurements and the

marginal observability.

The NEES is also shown in Table I. The 95% of

probability region upper limit for a 800 degrees of

freedom (N = 200, the size of x is 4) chi-square random

Fig. 8. Comparison of the ILS position estimation RMSE with the

CRLB for n= 10, 20, 30 and 60.

variable is 867. Dividing by N = 200, the NEES ²̄

should be less than 4.33. We carry out a test between

the hypotheses

H0 : P = PCRLB = F¡1 (41)

H1 : P > PCRLB = F¡1 (42)

where P is the actual covariance of the ML estimator.

With the 95% probability region of p(²̄ jH0) the test
accepts H0, i.e., it rejects H1 at 5% significance level if

²̄ < 4:33 (43)

In Table I, only 4 cases of the 35 cases considered

do not satisfy (43). This shows that the ML estimate ob-

tained via ILS yields results consistent with the CRLB in

most of the cases. The four inconsistent cases (the first

case in each batch category) are inserted on purpose, so

that one can find the estimator’s limitation through the

NEES. We reduced the heading μ in each batch category
until the NEES exceeds 4.33. It can be seen that the

NEES exceeded 4.33 at μ = 45± when n= 10, whereas
this occurs at μ = 10± when n= 60. Thus, the region of
the ILS where the performance is consistent with the

CRLB increases with the batch size.

Therefore the estimator’s actual covariance is equal

to the CRLB (with the exceptions noted above), i.e.,

the estimator presented is statistically efficient. This

is in accordance to the well known property of the

ML estimator that it is asymptotically efficient, i.e.,

for large n its covariance tends to the bound. In the

present problem, this property holds for all but the

first case (small number of measurements and marginal

observability) from each group from Table I.

Fig. 9 shows the position error ellipses based on

CRLB on the three target trajectories with heading 60±,
100± and 140±. The ellipses are drawn at time 10 s, 20 s,
30 s and 60 s, which correspond to batch sizes of n= 10,

20, 30 and 60, respectively. From the orientation of the

ellipses, we can observe that main position error is along
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Fig. 9. Target position error ellipses based on CRLB. Three

trajectories with heading 60±, 100± and 140± are shown. The
position error ellipses are drawn for n= 10, 20, 30 and 60.

the bearing line, and the cross-bearing error is relatively

small. This is reasonable and commonly occurs in the

BOT estimation problem.

V. RECURSIVE STATE ESTIMATION

A. The Fusion Architecture

The recursive state estimation updates the target state

as measurements are received. It can be seen from Fig. 1

that out-of-sequence measurements (OOSM) occur due

to the acoustic propagation delay.

The OOSM problem is also referred to as “negative-

time measurement update” problem, namely, the state

emission time, te2j , corresponding to the latest mea-

surement at ts2k is earlier than the latest state updating

time, te1i , namely t
e2
j < t

e1
i The prediction step in the

in-sequence estimation becomes a retrodiction for the

OOSM. The OOSM problem has been extensively stud-

ied [5]. The simplest approach performs an approximate

retrodiction by neglecting the process noise [5]. This

approach is referred to as Algorithm C in [5]. Algo-

rithms B1 and A1 were proposed to solve the one-step-

lag OOSM by considering the process noise [9] [3],

and they give an approximate and the exact solutions,

respectively. They were further developed to the algo-

rithms Bl1 and Al1 for solving the l-step-lag OOSM

(l > 1) in a single step [4].

The existing OOSM algorithms mentioned above

assume that retrodiction time is known. However, the

retrodiction time is the acoustic signal emission time

in our problem. This is unknown to the observer and

depends on the state of the target according to the

following propagation delay constraint

te2j = t
s2
k ¡ ±j,k (44)

where

±j,k =
rj,k

cp
(45)

Fig. 10. OOSE-AE fusion architecture

is the propagation delay, cp is the signal propagation

speed in the medium, and rj,k, which depends on the

state (at the emission time), is the distance from the

target at time te2j to the sensor at time ts2k . This leads to

an implicit constraint in the state transition model.

Recently, we have formulated an implicit-constraint

dynamic estimation problem using a Gauss-Helmert

model (GHM), and presented an unscented Gauss-

Helmert filter (UGHF) [23] [24] to solve this problem.

The UGHF works only with in-sequence measurements.

The development for the OOSM-UGHF is one of the

main contributions of this paper.

The recursive estimation problem in this paper is

to estimate the target state with fusion of in-sequence

bearings from the ESM/EO sensor (s1) and out-of-

sequence bearings from the acoustic sensor (s2). The

algorithm is called out-of-sequence measurement fusion

for acoustic and ESM/EO sensors (OOSM-AE). Its

architecture is shown in Fig. 10. State estimation for

the bearings from s1 will be performed by a unscented

Kalman filter (UKF), which will be given next. For s2,

a new OOSM-UGHF will be developed and described

in Section VI.

B. The Model for the Recursive Estimation with
Non-Delayed Bearings

The state estimation using the ESM/EO bearings is

straightforward as the measurements arrive in-sequence

and no propagation delay needs to be taken into consid-

eration. The problem is formulated based on the nearly

CV state model (or WNA–white noise acceleration).

The target state, with dimension 4, is defined as

x4(ts1k ) = [x(t
s1
k ) y(t

s1
k ) _x(t

s1
k ) _y(t

s1
k )]

0 (46)

where ts1k is the signal reception (or sensor) time by the

ESM/EO sensor s1 at time cycle k. Since the propagation

delay is negligible for s1, the target signal emission time

te1i is equal to t
s1
k . The state transition model is

3

x4(ts1k ) = F(t
s1
k , t

s1
k¡1)x

4(ts1k¡1)+ v
4(ts1k , t

s1
k¡1) (47)

where the transition matrix is

F(ts1k , t
s1
k¡1) =

26664
1 0 Tk,k¡1 0

0 1 0 Tk,k¡1
0 0 1 0

0 0 0 1

37775 (48)

3Here it is assumed for simplicity that the measurements arriving at

tk¡1 and tk are both from sensor s1.
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Fig. 11. OOSM-UGHF

and
Tk,k¡1 = t

s1
k ¡ ts1k¡1 (49)

with v4 the zero-mean process noise4 (WNA) for the in-
terval (ts1k¡1, t

s1
k ]. The discretized white noise acceleration

(DWNA) model [2] has covariance

E[v4(¢)v4(¢)0] =Q4(ts1k , ts1k¡1)

=

2666666666664

T3k,k¡1
3

0
T2k,k¡1
2

0

0
T3k,k¡1
3

0
T2k,k¡1
2

T2k,k¡1
2

0 Tk,k¡1 0

0
T2k,k¡1
2

0 Tk,k¡1

3777777777775
q

(50)

where q is the power spectral density (PSD) of the

(acceleration) process noise (same for x and y, and

assumed independent between the coordinates). The

measurement model is given by

z(ts1k ) = h
4[x4(ts1k )] = tan

¡1
·
x(ts1k )¡ xs(ts1k )
y(ts1k )¡ ys(ts1k )

¸
+w(ts1k )

(51)

where xs(ts1k ) and y
s(ts1k ) are the sensor positions at time

ts1k in the x and y coordinates respectively, w(t
s1
k ) is zero-

mean white Gaussian measurement noise with variance

R(ts1k ), assumed independent of the process noise.

The unscented Kalman filter (UKF) is used to esti-

mate the state as in [15].

VI. RECURSIVE STATE ESTIMATION WITH DELAYED
BEARINGS

An out-of-sequence-measurement filter is required

for the bearings from the acoustic sensor s2. It can be

seen in Fig. 11 that an acoustic measurement received

at time ts2k corresponds to the target state at emission

time te2j , which is earlier than the latest state assumed to

have been updated by the ESM/EO sensor at time ts1k¡1 =
te1i . The problem is then to update the state estimate

x̂4(ts1k¡1 j ts1k¡1) with the acoustic measurement z(ts2k ). The
main challenge of this problem compared to the existing

4The process noise arguments are shown in the same manner as for

the state transition matrix.

OOSM approaches is that the time te2j is unknown, and it

needs to be estimated together with the kinematic state.

Instead of the first-order Taylor linearization used

in the existing OOSM algorithms [4] [5], the unscented

transform is used in the above above mentioned prob-

lem. This consists of the following steps:

² Retrodict the state from time te1i = t
s1
k¡1 to the (un-

known) emission time te2j (to be estimated) corre-

sponding to the sensor time ts2k . The state estimate

before retrodiction is x̂4(ts1k¡1 j ts1k¡1), and the retrod-
icted state is x̂5(te2j j ts1k¡1). The latter, defined below in
(52), includes the acoustic emission time. This step is

illustrated through a) and b) in Fig. 11.

² Update the state estimate x̂4(ts1k¡1 j ts1k¡1) to x̂4(ts1k¡1 j ts2k )
with the acoustic OOSM z(ts2k ). This step is illustrated

through c) and d) in Fig. 11.

The algorithm details are presented next.

A. State Retrodiction

The retrodiction that has to be done to the emis-

sion time te2j (unknown to the observer) is subject to the

propagation delay constraint described in (44). To es-

timate the retrodicted target kinematic information and

the emission time te2j simultaneously, the following aug-

mented state is defined:

x5(te2j ) = [x(t
e2
j ) y(t

e2
j ) _x(t

e2
j ) _y(t

e2
j ) t

e2
j ]

0 (52)

Obviously, the positions x(te2j ), y(t
e2
j ) and the time t

e2
j de-

pend on each other, and this leads to the retrodicted state

x̂5(te2j j ts1k¡1) and the latest state estimate x̂4(ts1k¡1 j ts1k¡1) to
have an implicit relationship. The Gauss-Helmert tran-

sition model [23] [24], which handles such implicit re-

lationships, is then used for retrodiction. This is de-

scribed by

g[x5(te2j ),x
4(ts1k¡1)] + v

5(ts1k¡1, t
e2
j ) = 05 (53)

where g[¢] is the Gauss-Helmert implicit state transition
function, which combines the target motion constraints

and the delay constraint between x5(te2j ) of dimension 5

and x4(ts1k¡1) of dimension 4, and 05 is the zero vector
of dimension 5. Assuming the target motion follows a

WNA motion, g[¢] is given by
g[¢] = [g1(¢) g2(¢) g3(¢) g4(¢) g5(¢)]0 (54)

where

g1 = x(t
e2
j )¡ x(ts1k¡1)¡ _x(ts1k¡1)Tj,k¡1 (55)

g2 = y(t
e2
j )¡ y(ts1k¡1)¡ _y(ts1k¡1)Tj,k¡1 (56)

g3 = _x(t
e2
j )¡ _x(ts1k¡1) (57)

g4 = _y(t
e2
j )¡ _y(ts1k¡1) (58)

g5 = t
e2
j +

rj,k

cp
¡ ts2k (59)

and
Tj,k¡1 = t

e2
j ¡ ts1k¡1 < 0 (60)
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rj,k =
q
[x(te2j )¡ xs(ts2k )]2 + [y(te2j )¡ ys(ts2k )]2 (61)

Note that (59) is the equation that connects the emission

time and target location to the corresponding sensor

reception time.

The process noise v5 in (53) is modeled as zero-

mean Gaussian. Based on the DWNA model [5], its

covariance is

Q5(te2j , t
s1
k¡1) =2666666666666664

jTj,k¡1j3
3

q 0
T2j,k¡1
2

q 0 0

0
jTj,k¡1j3
3

q 0
T2j,k¡1
2

q 0

T2j,k¡1
2

q 0 jTj,k¡1jq 0 0

0
T2j,k¡1
2

q 0 jTj,k¡1jq 0

0 0 0 0 q±

3777777777777775
(62)

where q is as in (50), and q± is the variance of the

process noise in the delay.

The algorithm used for retrodiction is the UGHF [24]

[23], which obtains the retrodicted state iteratively

through a Gauss-Newton algorithm. Given x̂4(ts1k¡1 j ts1k¡1)
and its error covariance P4(ts1k¡1 j ts1k¡1), the sigma points
and their corresponding weights are

ffx̂4,m(ts1k¡1 j ts1k¡1)g,fwmgg=
SigmaPts[x̂4(ts1k¡1 j ts1k¡1),P4(ts1k¡1 j ts1k¡1),·] (63)

with5

x̂4,0(ts1k¡1 j ts1k¡1) = x̂4(ts1k¡1 j ts1k¡1) (64)

x̂4,m(ts1k¡1 j ts1k¡1) = x̂4(ts1k¡1 j ts1k¡1) (65)

+
hq
(4+·)P4(ts1k¡1 j ts1k¡1)

i
jmj

m= 1, : : : ,4 (66)

x̂4,m(ts1k¡1 j ts1k¡1) = x̂4(ts1k¡1 j ts1k¡1)

¡
hq
(4+·)P4(ts1k¡1 j ts1k¡1)

i
jmj

m=¡4, : : : ,¡1

w0 =
·

4+·
(67)

wm =
1

2(4+·)
jmj= 1, : : : ,4 (68)

where m=¡4, : : : ,4, is the sigma point index,hq
(4+·)P4(tek¡1 j ts1k¡1)

i
jmj
indicates the jmjth column

5Since x̂4(t
s1
k¡1 j t

s1
k¡1) has dimension 4, there are 9 sigma points [15].

of the matrix
hq
(4+·)P4(ts1k¡1 j ts1k¡1)

i
, and · is a scalar

that determines the spread of sigma points. Each sigma

point is retrodicted from the previous target time ts1k¡1 to
an unknown time (te2j )

m. The problem is then to solve

g[x̂5,m(te2j j ts1k¡1), x̂4,m(ts1k¡1 j ts1k¡1)] = 05 m=¡4, : : : ,4
(69)

Note that the process noise is not taken into considera-

tion in the OOSM algorithm C.

The Gauss-Newton algorithm is applied to obtain the

points x̂5,m(te2j j ts1k¡1) iteratively. The iteration procedure
(with index n) for the mth sigma point is

[x̂5,m(te2j j ts1k¡1)]n = [x̂5,m(te2j j ts1k¡1)]n¡1

+A¡1g[[x̂5,m(te2j j ts1k¡1)]n¡1, x̂4,m(ts1k¡1 j ts1k¡1)]
(70)

where A (without arguments, for conciseness) is the

Jacobian matrix given by

A=
@g[[x̂5,m(te2j j ts1k¡1)]n, x̂4,m(ts1k¡1 j ts1k¡1)]

@[x̂5,m(te2j j ts1k¡1)]n

=

2666666664

1 0 0 0 ¡ _xm(ts1k¡1 j ts1k¡1)
0 1 0 0 ¡ _ym(ts1k¡1 j ts1k¡1)
0 0 1 0 0

0 0 0 1 0

xrj,k

rj,kc
p

yrj,k

rj,kc
p

0 0 1

3777777775
(71)

and

xrj,k
¢
=[xm(te2j j ts1k¡1)]n¡ xs(ts2k ) (72)

yrj,k
¢
=[ym(te2j j ts1k¡1)]n¡ ys(ts2k ) (73)

rj,k
¢
=
q
(xrj,k)

2 + (yrj,k)
2 (74)

The Gauss-Newton algorithm described in (70) is

quadratically convergent to the unique solution when a

target is not approaching the sensor with radial speed

cp, if we assume the initial point is reasonably close to

the solution [24].

The initial value of the mth sigma point [x̂5,m(te2j j
ts1k¡1)]

0 for the iteration (70) is computed as

[xm(te2j j ts1k¡1)]0 = xm(ts1k¡1 j ts1k¡1)+ _xm(ts1k¡1 j ts1k¡1)[¢(te2j )]0

(75)

[ym(te2j j ts1k¡1)]0 = ym(ts1k¡1 j ts1k¡1)+ _ym(ts1k¡1 j ts1k¡1)[¢(te2j )]0

(76)

[ _xm(te2j j ts1k¡1)]0 = _xm(ts1k¡1 j ts1k¡1) (77)

[ _ym(te2j j ts1k¡1)]0 = _ym(ts1k¡1 j ts1k¡1) (78)

[(te2j )
m]0 = ts2k ¡ ±j,k (79)

BEARINGS-ONLY TRACKING WITH FUSION FROM HETEROGENOUS PASSIVE SENSORS: ESM/EO AND ACOUSTIC 11



where

[¢(te2j )]
0 = [(te2j )

m]0¡ ts1k¡1 (80)

±j,k ¼ rmk¡1=cp (81)

and rmk¡1 is the distance between the target position
estimate and the sensor at time ts1k¡1.
The retrodicted state x̂5(te2j j ts1k¡1) and its error covari-

ance P5(te2j j ts1k¡1) are then computed from the following
weighted sums of the retrodicted sigma points

x̂5(te2j j ts1k¡1) =
4X

m=¡4
wmx̂5,m(te2j j ts1k¡1) (82)

P5(te2j j ts1k¡1)¼
4X

m=¡4
wmx̃5,m(te2j j ts1k¡1)(x̃5,m(te2j j ts1k¡1))0

(83)

where

x̃5,m(te2j j ts1k¡1) = x̂5,m(te2j j ts1k¡1)¡ x̂5(te2j j ts1k¡1) (84)

with m=¡4, : : : ,4.

B. State Update

This step updates x̂4(ts1k¡1 j ts1k¡1) to x̂4(ts1k¡1 j ts2k ) by
the OOSM z(ts2k )–it fuses the latter into the former.

Note that the sigma points of x̂4(ts1k¡1 j ts1k¡1) have been
generated in (63).

According to the linear minimum mean square error

(LMMSE) estimator [2], the estimate x̂4(ts1k¡1 j ts2k ) and
its error covariance P4(ts1k¡1 j ts2k ) are given by
x̂4(ts1k¡1 j ts2k ) = x̂4(ts1k¡1 j ts1k¡1)+PxzP¡1zz [z(t

s2
k )¡ ẑ(ts2k )]

(85)

P4(ts1k¡1 j ts2k ) = P4(ts1k¡1 j ts1k¡1)¡PxzP¡1zz P
0
xz (86)

The expected measurement ẑ(ts2k ), based on the retrod-

icted state x̂5,m(te2j j ts1k¡1), is

ẑ(ts2k ) =

4X
m=¡4

wmẑm(ts2k ) (87)

where

ẑm(ts2k ) = h
5[x̂5,m(te2j j ts1k¡1)]

= tan¡1
"
xm(te2j j ts1k¡1)¡ xs(ts2k )
ym(te2j j ts1k¡1)¡ ys(ts2k )

#
(88)

The variance Pzz of the innovation and the covariance Pxz
between the state to be estimated and the measurement

are computed as

Pzz =

4X
m=¡4

wm[z̃m(ts2k )]
2 +R(ts2k ) (89)

Pxz =

4X
m=¡4

wmx̃4,m(ts1k¡1 j ts1k¡1)z̃m(ts2k ) (90)

Fig. 12. Test scenarios. Initial locations of the targets and the

maneuvering sensor platform are shown as “o.” The stationary

platform is located at (0,0)

where

x̃4,m(ts1k¡1 j ts1k¡1) = x̂4,m(ts1k¡1 j ts1k¡1)¡ x̂4(ts1k¡1 j ts1k¡1)
(91)

z̃m(ts2k ) = ẑ
m(ts2k )¡ ẑ(ts2k ) (92)

The OOSM-UGHF does not create new states, it

only updates the state generated by the bearing from

s1 before.

VII. SIMULATION RESULTS FOR RECURSIVE
ESTIMATION

Simulation results are given to demonstrate the new

algorithm’s performance. The conventional BOT ap-

proach is also evaluated using the same simulation data.

Two sensor platform scenarios are used in the simula-

tion tests:

² Maneuvering (M): It has three legs linked by two
90± turns with turn rate 3±=s shown in Fig. 12. The
platform speed is 10 m/s throughout the whole path.

It moves to the east for 60 s, spends 30 s to make a

90± left turn, and moves to the north for 60 s. It then
makes a 90± left turn, and moves towards the west for
180 s. The total duration is 360 s.

² Stationary (S): The platform stays at position (0 m,

0 m) for 360 s.

An ESM sensor and an acoustic sensor are deployed

on the platform to detect target bearings. The two sen-

sors are not synchronized. Their sampling intervals and

initial detection times are different. The ESM sensor is

initiated at time 0 s with sampling interval 1s, whereas,

the acoustic sensor is initiated at time 0.2 s with sam-

pling interval 2 s. The 2:1 ratio of the sampling intervals

is determined by the assumed reasonable sampling times

of ESM and acoustic sensors. It can be set to other val-

ues based on real applications. The measured bearing

errors of the ESM and the acoustic sensors are zero-

mean white Gaussian with standard deviations ¾b = 1
±.

We assume that both sensors have no bearing detection

during platform turns (total missed detection duration is
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60 s for the maneuvering platform scenarios). This as-

sumption is valid for most real applications. Typically,

during a turn the pointing of the sensors is not known

accurately.

Four targets moving at constant speeds of 5 m/s,

10 m/s, 50 m/s and 100 m/s, respectively, are shown

in Fig. 12 (the actual trajectories have process noise,

as discussed in the sequel). The state estimation starts

50 s after the targets move from their initial positions

and the first bearing is from the ESM, so the acoustic

signal can be guaranteed to reach the sensor platform

when the estimation starts. This means that the targets

are at their initial points at time ¡50 s, and the sensor
platform is at its initial point at time 0 s. The estimation

starts at time 0 s.

The algorithms used in the simulation are:

² OOSM-AE: The acoustic-ESM fusion algorithm pro-

posed in this paper. The OOSM-UGHF is used for

the bearings from the acoustic sensor, and the UKF

is used for the bearings from the ESM. It works for

both stationary and moving (maneuvering or nonma-

neuvering) platform.

² UKF-E: A UKF to estimate state based on the ESM

bearings only. The acoustic bearings are regarded as

“expired” information and discarded. This algorithm

is the conventional BOT approach, which works for

maneuvering platform only.

The initial state estimate is

x̂4(ts10 ) = [r0 sinb0 r0 cosb0 _x0 _y0]
0 (93)

where b0 = b(t
s1
0 ) is the ESM measured bearing at time

ts10 = 0 s,

r0 »N (r̂0,¾2r0 ) (94)

_x0 »N (0,¾2_x0 ) (95)

_y0 »N (0,¾2_y0 ) (96)

with r̂0 = 7500 m is half of the detection range (assum-

ing 15000 m), ¾r0 = 2500 m, and ¾ _x0 = ¾ _y0 = 30 m/s.

The initial state error covariance is computed by [20]

P4(ts10 ) =

266664
Pxx Pxy 0 0

Pyx Pyy 0 0

0 0 ¾2_x0 0

0 0 0 ¾2_y0

377775 (97)

where

Pxx = (r̂0¾b cosb0)
2 + (¾r sinb0)

2 (98)

Pyy = (r̂0¾b sinb0)
2 + (¾r cosb0)

2 (99)

Pxy = Pyx = (¾
2
r ¡ r̂20¾2b)sinb0 cosb0 (100)

In other words, in each run we have a random initial

state, which is in accordance with the Bayesian model

(see, e.g. [2] Sec. 5.5).

The process noise PSD q in (50) is set to 0.01m2/s3.
Note that due to the presence of process noise, batch
estimation is not applicable. The acoustic signal prop-
agation speed cp in the air is 344 m/s. The scalar ·
in (63)—(68) is set to 1.
The UGHF-E performance is investigated below in

several aspects.

A. Root Mean Square Errors

The estimated position root mean square errors
(RMSE) obtained from 100 Monte Carlo runs versus
time are displayed in Figs. 13—16 for the maneuvering
platform, and Figs. 17—18 for the stationary platform.
The overall and the last point position RMSEs for all
the scenarios are given in Table II. The RMSEs of the
UKF-E are not shown in this table for the stationary
platform, because the targets are unobservable in this
case. The overall position RMSE for a particular sce-
nario is computed by

posRMSE =

vuut 1

NK

NX
i=1

KX
k=1

[poserri (t
s1
k )]

2 (101)

where i is the run index, N = 100 is the number of runs,
K = 360 is the number of time cycles in the scenario,
and

poserr(ts1k ) =
q
[x̂(ts1k )¡ x(ts1k )]2 + [ŷ(ts1k )¡ y(ts1k )]2

(102)
where x̂(ts1k ) and ŷ(t

s1
k ) are the estimated target positions,

and x(ts1k ) and y(t
s1
k ) are the true target positions.

It can be seen that the OOSM-AE clearly outper-
forms the UKF-E for the maneuvering platform sce-
narios. The overall accuracy improvement in terms of
position RMSE reduction is from 69% to 77%, a signif-
icant improvement. For the slow moving targets (shown
in Figs. 13—14), the UKF-E takes a longer time to con-
verge. The UKF-E position RMSEs start to decrease at
time 180 s (after the second turn), whereas the RMSE
reduction of the OOSM-AE occurs around time 50 s,
which is much earlier than for the UKF-E. For the fast
moving targets (shown in Figs. 15—16), both algorithms
converge fast at the beginning, but the UKF-E has larger
errors after a while.
For the stationary platform (Figs. 17—18), theOOSM-

AE provides reliable estimation, whereas the UKF-E
diverges since BOT from a single fixed passive sensor
is not observable.
We also observe that the OOSM-AE has better per-

formance for the fast moving targets than the slow mov-
ing targets in both maneuvering and stationary platform
scenarios. The reason for this is that the slow moving
targets have lower bearing change rate. The information
provided by these slowly changing bearings is limited
when they are “buried in the noise,” and this results
in marginal observability and slow convergence in the
beginning. This effect is more serious for the stationary
platform as its bearing change rate is even smaller than
for the maneuvering platform.
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Fig. 13. Maneuvering platform: The estimated position RMSE

versus time for the target with speed 5 m/s.

Fig. 14. Maneuvering platform: The estimated position RMSE

versus time for the target with speed 10 m/s.

Fig. 15. Maneuvering platform: The estimated position RMSE

versus time for the target with speed 50 m/s.

Fig. 16. Maneuvering platform: The estimated position RMSE

versus time for the target with speed 100 m/s.

Fig. 17. Stationary platform: The OOSM-AE estimated position

RMSE versus time for the targets with speeds of 5 m/s (tgt 1),

10 m/s (tgt 2), 50 m/s (tgt 3) and 100 m/s (tgt 4).

Fig. 18. Stationary platform: The UKF-E estimated position RMSE

versus time for the four targets with speeds of 5 m/s (tgt 1), 10 m/s

(tgt 2), 50 m/s (tgt 3) and 100 m/s (tgt 4).
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Fig. 19. The average state NEES (from 100 runs) for maneuvering

platform scenarios with target speeds 5 m/s (NEES-5), 10 m/s

(NEES-10), 50 m/s (NEES-50) and 100 m/s (NEES-100).

TABLE II

Position RMSEs for all the scenarios

Overall RMSE Last point RMSE

Target OOSM- Impro- OOSM-

speed AE UKF-E vement AE UKF-E

Platform (m/s) (m) (m) (%) (m) (m)

5 1134.4 3694.5 69.3 124.2 156.3

M 10 1152.4 4261.3 73.0 252.1 289.1

50 752.5 2461.4 69.4 307.0 3540.7

100 609.3 2673.5 77.2 483.9 4381.5

5 2724.2 – – 836.2 –

S 10 1708.2 – – 261.3 –

50 755.7 – – 286.7 –

100 624.2 – – 445.0 –

B. Statistical Analysis: Consistency and Efficiency

To evaluate the consistency of OOSM-AE, the aver-

age normalized estimation error squared (NEES) is eval-

uated. The average state NEES at time tsk for N Monte

Carlo runs is [2]

²̄(tsk) =
1

nx4N

NX
i=1

x̃4i (t
s
k)
0P¡1(tsk)x̃

4
i (t

s
k) (103)

where P(tsk) is the state error covariance computed by the

OOSM-AE estimator, nx4 = 4 is the state dimension, i

is the run index, and

x̃4i (t
s
k) = x

4(tsk)¡ x̂4i (tsk) (104)

The two-sided 95% probability region for a 400 de-

grees of freedom (N = 100, nx4 = 4) chi-square random

variable is [346:5,457:3]. Dividing by 400, the average

NEES should be in the interval [0:87,1:14]. Figs. 19

and 20 show the average NEES versus time in the

OOSM-AE for the maneuvering and stationary plat-

form, respectively, where n in NEES-n stands for the

target speed. It can be seen that the NEES for all test

Fig. 20. The average state NEES (from 100 runs) for stationary

platform scenarios with target speeds 5 m/s (NEES-5), 10 m/s

(NEES-10), 50 m/s (NEES-50) and 100 m/s (NEES-100).

cases are within the range. This shows that OOSM-AE

yields consistent estimation results.

Please note that the initial state for each run is

randomly generated based on (93) with

r0 »N (rtrue0 ,¾2r0 ) (105)

_x0 »N ( _xtrue0 ,¾2_x0 ) (106)

_y0 »N ( _ytrue0 ,¾2_y0 ) (107)

where rtrue0 , _xtrue0 and _ytrue0 are true values at time 0, and

the error standard deviations are

¾r0 = 0:2r
true
0 (108)

¾ _x0 = 0:2
_xtrue0 (109)

¾ _y0 = 0:2
_ytrue0 (110)

This setting prevents the initial state (randomly gener-

ated) from bias and apart from the ground truth signif-

icantly (which may cause divergency).

The efficiency of the OOSM-AE can be studied

through the posterior CRLB (PCRLB) which is also

called Bayesian CRLB (BCRLB). It is the inverse of

the Bayesian information matrix (BIM), J [21]. An

estimator with state error x̃4i (t
s
k) is statistically efficient

iff
1

nx4
E[x̃4i (t

s
k)
0J(tsk)x̃

4
i (t

s
k)] = 1 (111)

where J(tsk) is the BIM at time tsk. Since P
¡1(tsk) is a

good (run-specific) approximation of J(tsk)
6 (the former

is conditioned on the measurements, while the latter is

the average over all the measurements and states), the

NEES (from 100 runs) can than be used to evaluate the

estimator efficiency. It can be seen the NEES in Figs. 19

and 20 are within the 95% probability region.

6Based on our best knowledge, the BIM for the UGHF has not studied

in literature. P¡1(ts
k
) is therefore used as the approximation of BIM.
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VIII. CONCLUSIONS

This paper presented a new passive BOT approach

through fusion of an ESM/EO and an acoustic sensor

deployed on the same sensor platform. The OOSM-

AE algorithm has been developed to estimate the target

trajectory by utilizing the acoustic propagation delay

which contains target range information. This approach

avoids the requirement for platform maneuvers of the

conventional BOT. The observability study conducted

for this problem showed that the target state is com-

pletely observable when its bearing from the sensor plat-

form is not a constant over time. Two algorithms, the

ML estimator computed via ILS and OOSM-AE, were

developed for batch and recursive estimations, respec-

tively. Simulation results showed that the OOSM-AE

can estimate the target trajectory effectively even from

a stationary platform, and provides significant accuracy

improvement (69%—77%) over the conventional BOT

for the maneuvering platform cases considered. Statis-

tical studies on consistency and efficiency were also

conducted. The ML estimates obtained via ILS for a

constant velocity target are statistically efficient, except

for the case with too few measurements and marginal

observability. The OOSM-AE yields consistent estima-

tion results, and its average NEES is close 1. Thus, the

new approach has the potential to enhance passive BOT

capability significantly.
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