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Particle filtering is currently a popular numerical method for

solving stochastic filtering problems. This paper outlines its appli-

cation to continuous time filtering problems with observations in a

manifold. Such problems include a variety of important engineering

situations and have received independent interest in the mathemat-

ical literature. The paper begins by stating a general stochastic fil-

tering problem where the observation process, conditionally on the

unknown signal, is an elliptic diffusion in a differentiable manifold.

Using a geometric structure (a Riemannian metric and a connection)

which is adapted to the observation model, it expresses the solution

of this problem in the form of a Kallianpur-Striebel formula. The

paper proposes a new particle filtering algorithm which implements

this formula using sequential Monte Carlo strategy. This algorithm

is based on an original use of the concept of connector map, which

is here applied for the first time in the context of filtering problems.

The paper proves the convergence of this algorithm, under the as-

sumption that the underlying manifold is compact, and illustrates

it with two worked examples. In the first example, the observations

lie in the special orthogonal group SO(3). The second example is

concerned with the case of observations in the unit sphere S2.
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1. INTRODUCTION

The language of differential geometry is increas-

ingly being used by engineers. This is due to the reali-

sation that, in many concrete situations, the most natural

mathematical model involves a nontrivial differentiable

manifold. Key differential geometric concepts (tangent

vectors, geodesics, etc.) have allowed for tasks such as

optimisation and stochastic modeling to be approached

in a unified and intuitive way [1].

This trend has lead to several variants of “particle

filtering on manifolds” proposed in the literature, (for

example, [2—9]). These involve discrete time filtering

problems where either the unknown signal or the ob-

servation process lie in a differentiable manifold. The

current paper outlines the application of particle fil-

tering to continuous time filtering problems where the

observation process takes its values in a differentiable

manifold, and the unknown signal is a hidden Markov

process. These are essentially different from problems

where the unknown signal is a diffusion in a differen-

tiable manifold and the observation process follows a

classical additive white noise model; see Section 2.

The choice of continuous time over discrete time

has technical and modeling advantages. It allows for

the machinery of stochastic calculus and differential

geometry to be applied. Also, the immense majority of

physical models do not immediately discretise the time

variable. Concretely, though, the difference between

continuous and discrete time is a convenience. The

question is to solve-then-discretise or discretise-then-

solve. The final product in this paper, the algorithm of

Section 4, is in discrete time and can be compared to

any other algorithm developed directly in discrete time.

Predominantly, the differentiable manifolds appear-

ing in engineering are classical matrix Lie groups and

their symmetric spaces. The general stochastic filtering

problem stated in Section 2 starts from an abstract dif-

ferentiable manifold. All subsequent constructions are

stated at this level of generality. It is hoped this will have

the advantage of providing a deeper overall understand-

ing. When (as a special instance of the general problem)

the manifold is specified to be a matrix manifold, this

allows for the complexity of differential geometric con-

structions to be reduced. This will be discussed again,

using two concrete examples, in Section 5.

A subtheme of this paper is to realise a transfer

of knowledge, from the mathematical field of stochas-

tic differential geometry to the engineering commu-

nity. Stochastic differential geometry was pioneered by

Schwartz and Meyer. Among the fundamental texts, it

is impossible to ignore the elegant and comprehensive

account by Emery [10]. A more recent highly readable

textbooks is the one by Hsu [11]. A recent account,

written specifically for engineers, is [12].

Stochastic differential geometry begins with a man-

ifold equipped with a connection. In differential ge-

ometry, connections are introduced to distinguish in
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an invariant way those differentiable curves which

are geodesics; in other words, zero acceleration lines.

Stochastic differential geometry uses a connection to

distinguish those pathwise continuous processes which

are martingales; in other words zero drift processes.

For the purpose of filtering, it is very useful to think

in terms of antidevelopment. The antidevelopment of
a differentiable curve in a manifold is a differentiable

curve in a Euclidean space, which could be identified

with the tangent space at the base point of the curve.

This can be visualised when the manifold is a two di-

mensional surface embedded in physical space, for in-

stance a sphere. The antidevelopment of a differentiable

curve drown on the sphere is the trace that it leaves on a

tangent plane while rolling without slipping (one could

imagine the curve is drawn in ink so it leaves a trace

on the plane). This visualisation is helpful for intuition,

but it is important to keep in mind the notion of an-

tidevelopment depends on a choice of connection. The

picture of rolling without slipping corresponds to the

connection inherited from the ambient space. Roughly

speaking, the relation between a connection and the cor-

responding antidevelopment is that antidevelopment of

a geodesic in a manifold is a straight line in Euclidean

space. Similarly, antidevelopment of a martingale in the

manifold is a martingale in Euclidean space. Required

background from stochastic differential geometry is pre-

sented in Section 3.

In terms of stochastic filtering with observations in

a manifold, the main problem considered in this paper,

antidevelopment plays an essential role. While the ob-

servation process is a diffusion in a given differentiable

manifold, its antidevelopment process takes its values

in a Euclidean space. Regardless of the choice of con-

nection, there is no loss of information in replacing the

observation process by its atidevelopment. Moreover,

see Proposition 1 of Section 3, an adequate choice of

connection (roughly, one which is adapted to the ob-

servation model) leads to an antidevelopment process

which depends on the unknown signal through a classi-

cal additive white noise model. Thus, antidevelopment

can be thought of as a preprocessing, reducing the initial

problem to a classical filtering problem defined by an

additive white noise model. This idea of reduction was

used in the engineering literature by Lo [13], in the case

of observations in a matrix Lie group. In a recent pa-

per [14], the authors were able to extend it to the general

case of observations in a differentiable manifold.

The role of stochastic differential geometry in prob-

lems of stochastic filtering with observations in a mani-

fold was exploited more extensively in the mathematical

literature. Several authors have used it in deriving Zakai

or filtering equations for these problems [15—17]. To the

author’s knowledge, on the other hand, few papers have

been devoted to their numerical solution. Note, however,

the paper by Pontier [18], which will be quite impor-

tant in the following. This proves the convergence of a

discrete time filter based on uniformly sampled obser-

vations to the solution of the continuous time problem.

The filtering problem is to compute the conditional

distribution of the unknown signal given the observa-

tions. In section 4, the solution of this problem is ex-

pressed in the form of a Kallianpur-Striebel formula

(see Proposition 4). This has a structure quite similar

to that of the classical Kallianpur-Striebel formula. It

is a Bayes formula where the prior distribution of the

unknown signal is given by its Markov nature, i.e., ini-

tial distribution and transition kernel, and the likelihood

function is an exponential functional of the observation

process.

The proposed particle filtering algorithm imple-

ments the Kallianpur-Striebel formula using sequential

Monte Carlo. There are at least two motivations for ap-

plying a sequential Monte Carlo approach. First, the fact

that it is suitable for real time situations. Second, the

computational stability which it provides in dealing with

noisy observations over a longer time.

The algorithm follows sequential Monte Carlo strat-

egy of sequential importance sampling with resampling.

At a higher level, its main steps are exactly the same

as for usual particle filtering. A fixed number of parti-

cles is used throughout. The interval of observation is

subdivided into subintervals of equal length. Over each

subinterval, the particles are propagated without inter-

action according to (an approximation of) the unknown

signal’s transition kernel. They are subsequently given

new weights corresponding to their likelihood and re-

sampled to eliminate particles with lower weight. For

a rigorous general discussion, see Del Moral’s mono-

graph [19].

The specific role of stochastic differential geome-

try only appears in the computation of particle weights.

This requires the use of connector maps. Under the
assumption that the underlying manifold is compact,

Proposition 3 of Section 3 shows that connector maps

yield “increments” which are approximately normally

distributed tangent vectors, conditionally on the un-

known signal. The computation of weights then takes

place as in the presence of additive normally distributed

noise. Simply put, the proposed algorithm is a classical

particle filter which employs the geometric concept of

connector maps to locally linearise the observation pro-

cess.

Proposition 5 of Section 4 states the convergence of

this discrete algorithm to the solution of the continu-

ous time problem. The convergence takes place as the

number of particles tends to infinity and the length of

of each subdivision interval tends to zero. It depends

on the quality of the approximation being used for the

unknown signal transition kernel and also on the one

described in Proposition 3. As several approximations

are involved, the compromise between complexity and

performance should be based on the most difficult one

to realise. This leads to a kind of bottleneck effect. See

discussion at the end of Section 4.

228 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 11, NO. 2 DECEMBER 2016



Section 5 presents two examples illustrating the im-

plementation and performance of the proposed particle

filtering algorithm. In the first example, see 5.1, the ob-

servation process is a left invariant diffusion with values

in the special orthogonal group SO(3); conditionally on

the unknown signal. The fact that the observation model

is compatible with the Lie group structure of SO(3)

leads to a certain simplification of the notions of an-

tidevelopment and connector maps. Roughly speaking,

these just amount to application of the group logarithm

map (i.e., the matrix logarithm) and this can moreover

be replaced by a linear approximation, which reduces

computational complexity.

In the example of 5.2, the observation process has its

values in the unit sphere S2. Here, a detailed discussion

of the mathematical concepts introduced in the paper is

provided and, as in the first example, it is shown how the

particle filtering algorithm can be implemented in a way

that reduces the complexity of geometric constructions.

These two examples are representative of problems

where the observation process lies in a classical matrix

Lie group or in a related symmetric space. With some

adjustment, they could be extended in a straightforward

way to deal with general matrix Lie groups and their

symmetric spaces. This has not been possible in the

current paper, essentially for a reason of space. How-

ever, for the case where the observation process takes

its values in a Stiefel manifold, the reader is referred

to [20].

The particle filtering algorithm proposed in this pa-

per seems entirely new in the literature. It is encouraging

that, building directly on existing results (from [14, 18]

and [21]), the algorithm can be described and its conver-

gence proved. However, the current treatment still suf-

fers from certain drawbacks which should be addressed

in future work. For instance, the restriction to compact

manifolds is quite artificial and it should be possible to

drop it with some additional care. Also, the convergence

result of Proposition 5 does not explicitly provide a rate

of convergence (see discussion after the proposition).

2. GENERAL FILTERING PROBLEM

To state a filtering problem, it is sufficient to define

the signal and observation models [22]. In the follow-

ing, the unknown signal will be a hidden Markov pro-

cess x with values in some Polish (i.e., complete separa-

ble metric) space (S,S). Concretely, in most cases, this
space S is either a finite set or a Euclidean space. The

observation process Y will be a diffusion in a differen-

tiable manifoldM of dimension d (see [23] for required

background in differential geometry). Besides precisely

giving the definition of x and Y, this section aims to put

the resulting filtering problem into perspective. This is

done by comparing it to other filtering problems, both

classical and involving an observation process with val-

ues in a manifold, and by discussing how it can simu-

lated numerically.

Both x and Y are defined in continuous time. One

begins by introducing a complete probability space

(−,A,P) on which x and Y are defined.
The unknown signal x is a time invariant Markov

process. Let Cb(S) denote the space of bounded contin-

uous functions ' : S!R. The generator of x is an op-
erator A with domain D(A), a dense subspace of Cb(')

which contains the constant function 1. The generator

A is assumed to verify A1 = 0 and, for ' 2D(A),
d'(xt) = A'(xt)dt+ dM

'
t , (1)

where t¸ 0 is the time variable. The meaning of the
above equation is that

'(xt)¡'(x0)¡
Z t

0

A'(xs)ds=M
'
t ,

where M' is a martingale adapted to the augmented

natural filtration of x, denoted X [24]. The distribution

of x is determined by its generator A and its initial

distribution ¹; i.e., ¹ is the distribution of the initial

value x0.

Two typical examples of the above definition are

when x is a diffusion in some manifold N of dimension

l, possibly N =Rl, and when x in a finite state Markov
process. The first example may appear when the prob-

lem is applied to tracking the pose of a rigid body. The

second is generally considered within the framework of

change detection. It is usual to refer to x as a hidden

Markov process as it is unknown and only observed

through Y.

In order to define the observation process Y, assume

M is a C4 manifold. The signal x is encoded through

the sensor function H : S£M! TM, where TM de-

notes the tangent bundle ofM. For s 2 S, it is required
the application p 7!H(s,p) is a C1 vector field on M.

That is, H(s,p) 2 TpM where TpM is the tangent space

toM at p. Observation noise is introduced as follows.

Let (§r;r = 1, : : : ,m) be C
2 vector fields onM and B a

standard Brownian motion in Rm, which is independent
from x. The observation process Y is assumed nonex-

plosive (i.e., for p 2M, if Y0 = p then Yt is defined with

values inM for t¸ 0) and satisfying [25],
dYt =H(xt,Yt)dt+§r(Yt) ± dBrt : (2)

Here and in all the following, summation convention

is understood, (that is, a sum is understood over any

repeated subscripts or superscripts). Since the §r are

vector fields on M, the §r(Yt) are tangent vectors to

M at Yt. Moreover, the circle is the usual notation for

the Stratonovich differential [26]. The filtering problem

defined by (1) and (2) is more general than a classical

filtering problem where Y depends on x through an

additive white noise model. In (2) the observation noise

B is “carried” by the vector fields §r. In other words,

it is introduced in a way which depends on the current

observation. The model (2) reduces to a classical one

when M=Rd and i) m= d with §r(p) = er, where

PARTICLE FILTERING WITH OBSERVATIONS IN A MANIFOLD: A PROOF OF CONVERGENCE 229



(er;r = 1, : : : ,d) is a canonical basis of Rd; ii)H(s,p) =
H(s) is given by a function H : S!Rd.
Intuitively, the classical problem is a limit of prob-

lems where the observation process is sampled at times

k± where k 2N and ± the sampling step size. Then, since
Y has values in Rd, it is possible to consider discrete
observations

(for observations in Rd) ¢Yk = Y(k+1)± ¡Yk±: (3)

Each one of these increments is normally distributed

conditionally on x. Therefore, the corresponding likeli-

hood function is known analytically. This last aspect is

what characterises a classical filtering problem. It is un-

affected if x is a diffusion in a manifold N . In practice,
whatever the state space S, what matters is the ability to

simulate the sample path distribution of x with sufficient

precision.

The chief difference between the classical filtering

problem, and the problem of filtering with observations

in a manifold, given by the observation model (2), is

that no formula similar to (3) is immediately available

in the latter case. As a result, it is difficult to arrive

at an analytic expression of the likelihood function. As

the standard analysis, based on the assumption that Y

depends on x through an additive white noise model,

does not apply to the observation model (2), it becomes

necessary to search for a well-defined generalisation of

(3). This generalisation, will be introduced as of the be-

ginning of Section 3, in the form of equation (6), based

on an original use of the concept of connector map. The
systematic use of connector maps constitutes the main

ingredient of the new particle filtering algorithm pro-

posed in the present paper.

In the mathematical literature, problems with obser-

vations in a manifold have been stated in two different

forms. In [14, 15] the problem statement is the same

as above, with the additional requirement that Y is an

elliptic diffusion. In fact, this same requirement will be

imposed in Section 3. In [16, 17], the diffusion Y is

specified in terms of its horizontal lift. The difference

between the two settings is that, in the latter one, there is

a choice of connection already included in the problem

statement. In the setting of (2), a metric and connection

need to be constructed from the vector fields §r. The

current paper differs from [15] in the way this construc-

tion is defined. See Section 3.

In a real world application, the issue of how to sim-

ulate Y numerically is irrelevant. Indeed, Y is itself ob-

served through some measurement device. However, in

order to carry out a computer experiment, it is necessary

to simulate Y given the model (2). In many cases, M
is embedded in a higher dimensional Euclidean space,

M½ RN , and the vector fields H and §r are restric-

tions of complete vector fields defined on all of RN . In
particular, this is true for all the examples in Section

5. Then, numerical simulation of Y is a matter of solv-

ing a stochastic differential equation. It is possible to

use Euler, Milstein or a higher order stochastic Taylor

scheme, according to desired precision [27]. All these

numerical schemes will suffer from the same problem of

producing an approximation which “falls off” the em-

bedded manifold. A simple way of dealing with this is to

project back onto the manifold once the approximation

has been computed. WhenM is presented as an abstract

manifold, a generally applicable numerical scheme is

the McShane approximation. This approximates Y by

processes Y± where ± is a discretisation step size. On

each interval [k±, (k+1)±[ for k 2 N, Y± is the solution
of an ordinary differential equation,

_Y±t =H(xt,Y
±
t )+§r(Yt)¢B

r
k, (4)

where the dot denotes differentiation with respect to

time and ¢Bk = ±
¡1(B(k+1)± ¡Bk±). When M is a com-

pact Riemannian manifold and Y±0 is taken to be the

same as Y0, the rate of local uniform convergence of the

paths of Y± to those of Y is given in [28],

P(sup
t·T
d(Y±t ,Yt)> ") =O(±), (5)

where d is the Riemannian distance and " > 0. Note that

this depends on T so the same precision " for larger T

requires smaller ±.

The numerical approximation (4) gives an intu-

itive interpretation of the stochastic differential equation

(2), whose rigorous definition may be found in [25].

Roughly, this approximation states that, over short time

intervals of the form [t, t+ ±], the observation process

Y moves along the integral curves of a random vector

field H+§r¢B
r. This motion has a deterministic com-

ponent H, which depends on the unknown signal, and

a stochastic or “noise” component §r¢B
r. These two

components are not observed independently, but rather

only through the observations Yt and Yt+±. From the point

of view of filtering, it is natural to search for a trans-

formation which takes these observations Yt and Yt+± to

a random vector of the form “H+normally distributed

noise.” This is the starting point of the following section.

3. STOCHASTIC DIFFERENTIAL GEOMETRY

The aim of this section is to generalise (3) so that

it can be applied for the observation model (2). This

is done by adopting the following point of view. In

(3), ¢Yk is a tangent vector to M=Rd at Yk±, de-
termined from two successive samples Yk± and Y(k+1)±.

Accordingly, in the general case of (2), a mapping

I :M£M! TM will be constructed with the follow-

ing properties. First, I(p1,p2) 2 Tp1M for all p1,p2 2M.

Second, if ¢Yk is defined as

¢Yk = I(Yk±,Y(k+1)±), (6)

then, in the limit ± # 0, the distribution of ¢Yk is approx-
imately normal, conditionally on the unknown signal x.

Such a mapping I is called a connector map, and it turns

out that, it is always possible to choose a connector map
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I which verifies the required properties. This is stated

precisely in Proposition 3, which is the main result in

this section.

Proposition 3 requires some basic concepts from

stochastic differential geometry. These are recovered in

3.1 which, in particular, gives the definition of the an-

tidevelopment process y of Y. The choice of connection

leading to I is given in 3.2. Finally, Proposition 3 is

stated and discussed in 3.3. Here, 3.1 and 3.2 are based

on [14].

3.1. Stochastic antidevelopment

In the filtering problem defined by (1) and (2),

the available information is a path of the observation

process Y, taken over some time interval t· T. An
observer is only able to compute functionals of the

process Y. These are processes, in practice real or vector

valued, adapted to the augmented natural filtration of Y;

which is denoted Y . Two classes of such functionals are
the building blocks for the following, the Stratonovich

and Itô integrals along Y. The notion of antidevelopment

is itself defined using these two kinds of integrals.

Assume a Riemannian metric h¢, ¢i and a compat-
ible connection r are defined on M. In the current

paragraph, these are not specified and can be chosen

arbitrarily.

To define the integrands involved in Stratonovich

and Itô integrals along Y, let F be the filtration where

Ft = X1 _Bt. Here, X1 = _t¸0Xt and B is the aug-

mented natural filtration of B. A stochastic integrand

μ is an F-adapted process with values in T¤M which is

above Y; this means μt 2 T¤YtM for t¸ 0.
Let (μt, ¢) denote the application of the linear form

μt. The Stratonovich and Itô integrals of μ along Y

are real valued F-adapted processes with the following
differentials,

(μt,±dY) = (μt,H)dt+(μt,§r) ±dBrt , (7)

(μt,dY) = f(μt,H)+ (1=2)(μt,r§r§r)gdt+(μt,§r)dBrt :
(8)

The Stratonovich differential does not involve the cho-

sen connection. On the other hand, the connection ap-

pears explicitly in the Itô differential. Note that Y is

called a r-martingale if H+(1=2)r§r§r ´ 0. In this
case, (μ,dY) is a martingale differential, as is the case

for a usual Itô differential.

Using the Riemannian metric h¢, ¢i, it is possible to
define Stratonovich and Itô integrals of vector fields.

A vector field along Y is a process E, F-adapted with
values in TM and which is above Y; in the sense

that Et 2 TYtM for t¸ 0. A corresponding process μ

in T¤M is then given by (μt, ¢) = hEt, ¢i. The resulting
differentials of (7) and (8) are written hEt,±dYi and
hEt,dYi.
In order to formulate the notion of antidevelopment,

it is necessary to define what it means for E to be paral-

lel (i.e., along Y). If the paths of Y were differentiable,

this would have the usual meaning from differential ge-

ometry. While this is not the case, due the presence

of Brownian terms, it is still possible to introduce a

stochastic covariant derivative of E and require this to

vanish. Thus E is said to be parallel if

r±dYEt = 0, (9)

where the left hand side is the stochastic covariant

derivative. In order to give this a precise meaning,

consider first the case where G is a C1 vector field on

M and E =G(Yt). Assuming the usual properties of a

connection, (2) would give

r±dYG(Yt) =rHG(Yt)dt+r§rG(Yt) ±dBrt : (10)

This is extended to a general vector field E along Y

by the following transformation. For a C2 function

f on M, let r2f be the Hessian of f with respect

to r. By definition, rHGf =HGf¡r2f(H,G) and
similarly for r§rG. Now, (μt, ¢) =r2f(¢,Et) is a process
in T¤M as in (7). Thus, (10) can be generalised by

writing

r±dYEtf = dEtf¡r2f(±dY,Et), (11)

which is taken as the definition of the stochastic covari-

ant derivative. In integral notation, (11) defines a vector

field
R t
0
r±dYEs along Y. For any C2 function f on M,

this verifiesZ t

0

r±dYEsf = Etf¡E0f¡
Z t

0

r2f(±dY,Es):

Recall the connection r is compatible with the metric

h¢, ¢i. Again, if the usual properties of a connection were
assumed, one would expect the following. If E,K are

vector fields along Y, then

dhEt,Kti= hr±dYEt,Kti+ hEt,r±dYKti: (12)

The proof that this identity indeed holds true is here

omitted. The main point is that it is possible to per-

form calculations involving r±dY jut like in differential
geometry, by treating ±dY as the tangent vector to the
process Y.

Now, it is possible to define the antidevelopment of

Y. This is a process y which has values in Rd. A parallel
orthonormal frame is a family (Ei)´ (Ei; i= 1, : : : ,d) of
vector fields along Y which verify (9) and hEi0,Ej0i= ±ij .
In this case, it follows from (12) that hEit ,Ejt i= ±ij
for t¸ 0. Given a parallel orthonormal frame (Ei), the
process y is defined by

yit =

Z t

0

hEis,±dYi: (13)

It seems this definition is arbitrary, due to the issue of

uniqueness of a parallel orthonormal frame. However,

the classical uniqueness result for linear stochastic dif-

ferential equations can be used to show y is essentially
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unique. In fact, (Ei) is determined by (Ei0) so that dif-

ferent choices of (Ei) only amount to y being multiplied

by an orthogonal matrix.

Stratonovich and Itô integrals along Y can be written

as classical Stratonovich and Itô integrals with respect to

y. For the Stratonovich integral, this is a straightforward

result of (13). For μ as in (7),

(μt,±dY) = μi(t) ± dyit , (14)

where μi(t) = (μt,E
i
t ). This follows by the chain rule of

Stratonovich calculus, since (μt, ¢) = μi(t)hEit , ¢i. Recall
that (Ei) is a basis of the the tangent space toM at Yt.

The case of the Itô integral is slightly more involved.

Here, it is necessary to realise that (13) can also be

written

yit =

Z t

0

hEis,dYi: (15)

In other words, since the vector fields Ei are parallel,

there is no difference between their Stratonovich and

Itô integrals. Expressing (13) as in (7), (the arguments

of H and §r are dropped for space)

hEit ,±dYi= hEit ,Hi+ hEit ,§ri ± dBrt :
In order to change the Stratonovich differential into an

Itô differential, note from (9) and (12)

dhEit ,§ri= hEit ,r±dYt§ri,
and from (10)

dhEit ,§ri= hEit ,rH§ridt+ hEit ,r§v§ri ±dBvt :
From this, it finally follows

hEit ,§ri ± dBrt = hEit ,§ridBrt +(1=2)hEit ,r§r§ridt, (16)
so that (15) follows from (8). Given (15), it is possible

to write
(μt,dY) = μi(t)dy

i
t , (17)

using a reasoning similar to the one that lead to (14).

At the beginning of this paragraph, it was claimed

that Stratonovich and Itô integrals along Y can be used

to obtain functionals of this process. Even when the

process μ is Y-adapted, this is not clear from (7) and

(8). For example, the right hand side in each of these

two formulae contains a stochastic integral with respect

to B. However, there is no reason to believe that B is
the same as Y . Indeed, the definition (2) of Y involves
both x and B.

It is possible to write (7) and (8) in an alternative

form, which makes it evident that the resulting integrals

are Y-adapted as soon as μ is Y-adapted. To do so,
assume M is embedded in a higher dimensional Eu-

clidean space,M½ RN . There is little loss of generality
in this assumption. Whitney’s theorem asserts such an

embedding exists ifM is C1, connected and paracom-
pact [10]. Such conditions are always verified in prac-

tice. Also, when M is embedded in RN , it is possible
to assume the vector fields H and §r are restrictions

of vector fields defined on all of RN . Under these two
assumptions, let ´1, : : : ,´N be canonical (i.e., rectangu-

lar) coordinates on RN and write μ(t) = μ®(t)d´
® where

®= 1, : : : ,N. Replacing in (7) and using the chain rule

of Stratonovich calculus,

(μt,±dY) = μ®(t) ± dY®t , (18)

where Y® are the coordinates of Yt. In other words, the

Stratonovich integral (7) is just the classical Stratonovich

integral. Moving on to (8), a similar formula will be

shown. Note that the coordinates ´® can be thought of as

C2 functions onM. Using the notation r2´®(§r,§v) =
H®
rv,

(μt,dY) = μ®(t)fdY®t ¡ (1=2)H®
rr(Yt)dtg: (19)

Thus, the Itô integral (8) is the sum of the classical Itô

integral, corresponding to μ®(t)dY
®
t , and of a correction

term depending on the connection r. It is possible that
the latter correction term vanishes identically, so the Itô

integral (8) is the same as the classical Itô integral. This

is for instance the case when the connectionr is the one
whichM inherits from RN . From the last two formulae,
it is seen that the Itô and Stratonovich integrals are Y-
adapted as soon as the process μ is Y-adapted. This
follows from the same property for classical Itô and

Stratonovich integrals.

The proof of (19) is as follows. Assume in (7) that

μt = ¿(Yt) for some differential form ¿ on M. Passing

from Stratonovich to Itô differentials,

(μt,§r) ± dBrt = (μt,§r)dBrt +(1=2)§r(μt,§r)dt:
Using the fact that r is compatible with h¢, ¢i and
comparing to (8), the following general rule is found,

(¿ (Yt),±dY) = (¿(Yt),dY) + (1=2)(r§r¿ (Yt),§r)dt: (20)
In order to obtain (19), it is enough to apply (20) with

¿ = d´® and recall the definition of r2´®, (as cited
before (11)).

In many cases, the embedding M½ RN is known

explicitly. For instance, M is often directly defined as

an embedded submanifold in Euclidean space. Then,

formulae (18) and (19) can be used to compute the Itô

and Stratonovich integrals. This is useful since the prop-

erties of classical stochastic integrals become available.

This situation will apply throughout the examples of

Section 5.

3.2. Le Jan-Watanabe connection

This paragraph describes the “right” choice for the

metric h¢, ¢i and the connection r. When this choice is
used to evaluate (13), the resulting antidevelopment y of

Y depends on the unknown signal x through a classical

additive white noise model. This reduces the initial

filtering problem defined by (1) and (2) to a classical

filtering problem. The precise statement is given in

Proposition 1.

232 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 11, NO. 2 DECEMBER 2016



A usual simplifying assumption imposed on Y in

the literature is that, conditionally on x, it is an elliptic

diffusion in M. This means that, for each p 2M, the

subspace of TpM spanned by the §r(p) is equal to

TpM. Under this assumption, elementary linear algebra

implies there exists a unique Riemannian metric h¢, ¢i
such that

hE,Ki= hE,§r(p)ihK,§r(p)i, (21)

for E,K 2 TpM. This will be the choice of metric made

in this following. In [15], the corresponding Levi-Civita

connection is used in (13). Here, a different connection

is used. Namely, the connection r is taken to be the Le

Jan-Watanabe connection. Based on [29], this is here

defined as follows.

Let E be any C1 vector field on M. It results

from (21) that this can be written E = Er§r, where

Er = hE,§ri. For K 2 TpM, let

rKE = (KEr)§r(p): (22)

This defines a connection r compatible with h¢, ¢i. Pre-
cisely, for C1 vector fields E,G onM,

KhE,Gi= (KEr)Gr+Er(KGr)
= hrKE,Gi+ hE,rKGi, (23)

where (21) and (22) have been used.

With regard to the proof of Propostion 1, the only

necessary property of r is

r§r§r = 0: (24)

To obtain (24), replace (21) in (22). Since §r is a

derivation,

r§r§r =
§rh§r,§vi§v =
§rh§r,§wih§v,§wi§v + h§r,§wi§rh§v,§wi§v:

A simplification of the third line gives

r§r§r =
§rh§r,§wi§w+§wh§w,§vi§v =
r§r§r+r§w§w,

which immediately leads to (24).

PROPOSITION 1. Let (Ei) be a parallel orthonormal
frame and y given by (13), where the connection r is
defined by (22). Also, let Ȳ be the augmented natural
filtration of y. Then, y has its values in Rd. Moreover, for
t¸ 0, Ȳt = Yt and

dyt = htdt+ d¯t, hit = hEit ,Hi, (25)

where ¯ is a Brownian motion in Rd which is independent
from x.

PROOF By definition, y has its values in Rd. The proof
of the second claim, i.e., Ȳt = Yt, is identical to that

of the analogous claim made in [15], (Theorem IV.3

on page 135). More generally, this claim holds for any

connection r compatible with h¢, ¢i.
In order to obtain (25) define first

¯it =

Z t

0

hEis,§ridBrs : (26)

Clearly, ¯ is an F-local martingale. Moreover, (21)
implies Z t

0

hEis,§rihEjs ,§rids= ±ij
Z t

0

ds:

By Lévy’s characterisation, ¯ is an F-Brownian motion.
Since F0 = X1, it follows ¯ is independent from x.

Recall that y can be computed from (15). Replacing

the definition (8) of this integral, it follows

dyit = fhit+(1=2)hEit ,r§r§rigdt+d¯it :
However, (24) states the second term is identically zero.

This completes the proof of (25).

3.3. Connector maps

This paragraph is devoted to Proposition 3, which

is the main result in the current section. This theorem

states that the mapping I to be used in (6) is a connec-

tor map which verifies certain conditions, expressed in

terms of the Le Jan-Watanabe connection introduced in

(22) of the previous paragraph. Roughly, such a con-

nector map becomes the discrete counterpart of antide-

velopment. This is the content of Proposition 2 below.

As in 3.1, let h¢, ¢i be a Riemannian metric and r
a compatible connection. Consider first the definition

of a geodesic connector. Recall that, for each p 2M
and K 2 TpM there exists a unique geodesic curve ° :

]¡ ²,²[!M such that °(0) = p and _°(0) =K, where

² > 0. A geodesic curve is one satisfying the geodesic

equation
r _°
_°(t) = 0: (27)

If the manifold M is complete for the connection r,
then any geodesic curve ° can be extended to all t 2R,
(that is, ² can be taken arbitrarily large). Assuming

this is the case, consider the exponential mapping exp :

TM!M. For p and K as above, it is usual to write

exp(K) = expp(K) in order to distinguish the base point

p. By definition, expp(K) = °(1).

The exponential mapping is locally invertible. If two

points p,q 2M are close enough to each other, then

there exists a unique geodesic ° as above such that

°(1) = q. It is suitable to write K = logp(q), since then

“log is the inverse of exp.” Note that both expp and logp
are C2 mappings [23].

Let d(¢, ¢) denote the Riemannian distance associated
to h¢, ¢i. It will be assumed thatM has a strictly positive

radius of injectivity for the connection r. That is, there
exists r > 0 such that for all p,q 2M the inequality

d(p,q)< r implies logp(q) is well defined. The two
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assumptions of completeness of M with respect to r
and of a strictly positive radius of injectivity are note

very stringent. In particular, they are verified whenever

M is compact.

A geodesic connector is a mapping I defined fol-

lowing [15]. Let u < r and Á :R+! [0,1] a decreasing

C1 function such that Á(d) = 1 if d · u and Á(d) = 0 if
d ¸ r. Let I be given by

I(p,q) = Á(d(p,q)) logp(q): (28)

Now, I is essentially intended to be the mapping logp
where p is the first argument. The function Á is only

introduced as a cutoff, to avoid points q which lie

beyond the injectivity radius.

In the following, let k ¢ k denote Riemannian length,
(e.g., kGk2 = hG,Gi), and E expectation with respect

to P.

PROPOSITION 2. Assume M is compact. Let G be a
vector field along Y such that t 7! kGtk is bounded.
Then, for t¸ 0, the Itô integral R = R t

0
hGs,dYi is square

integrable (that is, EjRj2 <1). Moreover, if for ± > 0
R± =

X
k±<t

hGk±,I(Yk±,Y(k+1)±)i, (29)

then EjR± ¡Rj2! 0 as ± # 0.
Proposition 2, (exactly the same as Theorem 3:4:2

on page 55 in [30]), generalises the definition of a clas-

sical Itô integral as a limit in the square mean of Rie-

mann sums. In the classical definition, the increments of

the integrating process are given by (3). Proposition 2

shows that for an Itô integral as in (8), at least when the

manifold M is compact, the limit continues to hold if

the classical increments are replaced by those obtained

from a geodesic connector. That is, from (6) where I is

given by (28). Note that (3) is truely a special case of

(28), since geodesics inM=Rd are just straight lines.
The use of geodesic connectors seems natural from

a theoretical point of view. However, the mapping I of

(28) may be quite difficult to compute. It is important

to note that Proposition 2 continuous to hold, all other

hypotheses being the same, if I is any mapping with

the same property I(p1,p2) 2 Tp1M, as long as (this is

proved in Appendix A)

(I1) I is jointly C2 (as a mappingM£M! TM)

(I2) dI(p,p)(V) = V for all V 2 TpM
(I3) r2I(p,p)(V,V) = 0 for all V 2 TpM
Here, dI and r2I are the derivative and the Hessian

of I with respect to its second argument. When the first

argument p is fixed, I has its values in a fixed vector

space TpM. Therefore, it is possible to speak of its

derivative and Hessian. Conditions (I1-I3) are verified
by the mapping of (28). Intuitively, any mapping I

which verifies them is “geodesic connector up to second

order.”

It is now possible to state Proposition 3.

PROPOSITION 3. AssumeM is compact and the connec-
tion r is given by (22). Moreover, let y be given by (13).
For ± > 0, let ¢Yk be given by (6) and ¢yk = y(k+1)± ¡ yk±
where k 2N. Then,

Ej¢yik ¡¢Yik j2 = o(±), (30)

where ¢Yik = hEik±,¢Yki. In particular, as ± # 0, the distri-
bution of the vector ¢Yik conditionally on Fk± is approx-
imately normal. Precisely, as ± # 0,

L
n
±¡1=2(¢Yik ¡ ±£ hik±)

o
¡!Nd: (31)

Here, L denotes the law of the random vector whose
components are in brackets and Nd denotes a standard
normal distribution in Rd.

PROOF The order of magnitude given in equation (30)

is essentially a result of Proposition 2.

For (31), note from Proposition 1

¢yik =

Z (k+1)±

k±

hitdt+ f¯i(k+1)± ¡¯ik±g,

but then, as is clear by bounded convergence,

Lf±¡1=2(¢yik ¡ ±£ hik±)g ¡!Nd:

The proposition follows from (30) by noting that hk± is

measurable wit respect to Fk± and ¯ is an F-Brownian
motion, so ¯(k+1)± ¡¯k± is independent of Fk± with the
required covariance.

4. PARTICLE FILTERING ALGORITHM

This section is concerned with the numerical solu-

tion of the filtering problem defined by (1) and (2). In

4.1, Proposition 4 expresses the solution in closed form

using a Kallianpur-Striebel formula. In 4.2, a particle

filtering algorithm is proposed in order to numerically

implement this formula. The convergence of this algo-

rithm to the solution of the original filtering problem,

(i.e., that of (1) and (2)), is the subject of Proposition 5

in 4.3.

4.1. Kallianpur-Striebel formula

A Kallianpur-Striebel formula may be though of as

an abstract Bayes formula which expresses in closed

form the solution of a continuous time filtering prob-

lem. For classical filtering problems, where the obser-

vation process depends on the unknown signal through

an additive white noise model, the Kallianpur-Striebel

formula is quite well known [22]. The idea in this sec-

tion is to profit from Proposition 1 in order to obtain a

similar formula for the problem defined by (1) and (2).

The following Proposition 4 uses the notion of a

copy of the unknown signal independent from the ob-

servation process. This means a process x̃ with the same

law as the signal x, given by (1), but which is indepen-

dent from the observation process Y.
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Let ¼t be the conditional distribution of xt, given

past observations Yt. The aim of the filtering problem

is precisely to find ¼t(') for any function ' 2 Cb(S). By
definition, ¼ is a càdlàg process with values in the space
of probability measures on (S,S) and such that

¼t(') = E['(xt) j Yt]: (32)

From this, it is clear that the process ¼ is Y-adapted.
Thus it should be possible to write it down in terms of

some functional of the process Y (see the discussion at

the beginning of 3.1).

PROPOSITION 4. Let x̃ be a copy of x independent from
Y. Let H̃ be the process where H̃t =H(x̃t,Yt). For ' 2
Cb(S),

¼t(') =
½t(')

½t(1)
, ½t(') = E['(x̃t)Lt j Y1], (33)

where Y1 = _t¸0Yt and

Lt = exp

μZ t

0

hH̃s,dYi¡ (1=2)
Z t

0

kH̃sk2ds
¶
: (34)

Here the Itô differential hH̃s,dYi is computed using the
Le Jan-Watanabe connection defined by (22).

PROOF Recall that Proposition 1 states Y = Ȳ , where
Ȳ is the augmented natural filtration of y. If y is com-
puted using the Le Jan-Watanabe connection defined

by (22), then y depends on x using a classical additive

white noise model (25). The corresponding Kallianpur-

Striebel formula is the same as above, but with Lt given

by (this is the classical formula [22])

Lt = exp

μZ t

0

h̃i(s)dy
i
s¡
Z t

0

h̃i(s)h̃i(s)ds

¶
:

Here, h̃i(s) = hEis,H̃i, as in (25). Using the fact that
Y = Ȳ , the Proposition follows by (17) and (32).

4.2. Algorithm description

Numerical implementation of the Kallianpur-Striebel

formula, i.e., of (33) in Proposition 4, can proceed in at

least two ways [22]. First, it is possible to derive from

this formula the corresponding Zakai equation, whose

solution can be attempted using a finite difference or

spectral method. The Zakai equation is a stochastic dif-

ferential equation satisfied by the unnormalised distri-

bution ½. It was indeed found in [14], but it seems its

solution has not been specifically considered in the lit-

erature. Second, thinking of the Kallianpur-Striebel for-

mula as an abstract Bayes formula, it is possible to im-

plement it using sequential Monte Carlo strategy. Here,

this latter option is pursued. The result takes the form

of a particle filtering algorithm.

The proposed particle filtering algorithm and its

convergence are easily understood in the framework of

a discretised version of the original filtering problem

of (1) and (2). Note that, in (33), x̃ and Y are taken

to be independent. It is then natural to think of x̃ as a

computer simulated version of x. However, this is just an

idealisation. A computer experiment can only yield an

approximation of the model (1). Such an approximation

is obtained for a given discretisation step size ± > 0.

It is a process denoted x± with its value at time k±

written x±k± = x
±
k. The particle filtering algorithm will be

convergent when x± verifies the following conditions

(x1) fx±k;k 2 Ng is a time invariant Markov chain
(x2) x±0 has the same distribution as x0 (noted ¹)
(x3) fx±kg has strong order of convergence 0.5
(x4) the transition kernel q(s,ds0) of fx±kg is Feller
Conditions (x1-x2) are necessary for the statement of

the algorithm. Conditions (x3-x4) do not appear in the
algorithm, but are required in showing its convergence.

The meaning of (x3) is

E[d2S(xt,x
±
k)] =O(±), (35)

for k such that t 2 [k±, (k+1)±[, where dS(¢, ¢) is the
metric in the state space S. The Feller condition (x4)
is that for all ' 2 Cb(S), if q' is the function

q'(s) =

Z
S

q(s,ds0)'(s0),

then q' 2 Cb(S). Recall that q(s,ds0) is the transition
probability for going from s to the “neighborhood” ds0.
If x is a diffusion in Rl with bounded Lipschitz

coefficients and x0 square integrable, then the first order

Euler scheme gives an approximation x± verifying (x1-
x4). In fact, the assumptions on the coefficients of x can
be weakened to those of [27], (Exercise 9.6.3 on page

326). Of course, in this case the metric dS(¢, ¢) is just the
Euclidean metric of Rl.
If x is a diffusion in a compact Riemannian mani-

fold N , then conditions (x1-x4) are verified when x is
approximated using successive geodesic steps.

In a purely heuristic way, consider now a discrete

time filtering problem where the unknown signal is

the Markov chain fx±kg and the observations are the
sequence of increments f¢Ykg. Here, ¢Yk is obtained
from (6) where the connection r is that of (22).

Based on Proposition 3 and on (35), consider the

likelihood for the observations ¢Yk to be

l(x±k,¢Yk) = exp

μ
hH±

k ,¢Yki¡
±

2
kH±

k k2
¶
, (36)

where H±
k =H(x

±
k,Yk±). Applying the usual Bayes for-

mula for a discrete time filtering problem obtained in

this way, the resulting conditional distribution given the

first M +1 observations is

¼±M(') =
½±M(')

½±M(1)
, ½±M(') = E['(x̃

±
M)L

±
M j Y1], (37)
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for ' 2 Cb(S), where fx̃±kg is a copy of fx±kg independent
from Y and

L±M =

MY
k=0

l(x̃±k,¢Yk): (38)

This is really just Bayes formula in discrete time.

From (37),

½±M(') = ½
±
M¡1('M¡), (39)

where

'M¡(s) =
Z
S

l(s0,¢YM)'(s
0)q(s,ds0): (40)

This is the usual “prediction-measurement update” for-

mula, where prediction is according to the transition

kernel q(s,ds0) and measurement update is based on the
likelihood l(s0,¢YM).
It is important to note that ¼±M is a true proba-

bility measure on S conditionally on the increments

¢Y0, : : : ,¢YM . In particular, it makes sense to speak of

sampling from ¼±M once these increments are given. This

is the aim of the proposed particle filtering algorithm.

The algorithm has as its input the sequence of in-

crements f¢Ykg and is parameterised by the number of
particles N. The output after M +1 observations is a

family of N particles x̂iM , : : : , x̂
N
M 2 S which give a Monte

Carlo approximation ¼̂±M of ¼
±
M . This is

¼̂±M(') = (1=N)

NX
i=1

'(x̂iM): (41)

The implementation is the following,

² when ¢Y0 is available
1 generate i.i.d. particles x̃10, : : : , x̃

N
0 » ¹

2 compute normalised weights, wi0 / l(x̃i0,¢Y0)
3 generate (n10, : : : ,n

N
0 )»multinomial(w10, : : : ,wN0 ) and

replace x̃i0 by n
i
0 particles with same value

4 relabel new particles x̂10, : : : , x̂
N
0 ; set w

i
0 = 1=N

² when ¢Yk is available (k ¸ 1)
1 generate particles x̃ik » q(x̂ik¡1,ds)
2 compute normalised weights, wik / wik¡1l(x̃ik,¢Yk)
3 generate (n1k , : : : ,n

N
k )»multinomial(w1k , : : : ,wNk ) and

replace x̃ik by n
i
k particles with same value

4 relabel new particles x̂1k , : : : , x̂
N
k ; set w

i
0 = 1=N

These steps are very much the same as in the clas-

sical bootstrap filter. The geometry of the observation

process Y only appears through the use of a connector

map I, which provides the increments ¢Yk.

The bootstrap filter is the simplest, but the least

robust, particle filtering algorithm and there are many

improvements upon it known in the literature. These

can all be implemented in an equally direct way once

the ¢Yk have been obtained.

To summarise, a connector map I leads to incre-

ments ¢Yk with approximate likelihood given by (36).

Once this situation is accepted, it can be replaced into

any suitable algorithm. It is possible to say that the con-

nector map serves to linearise the observation process

Y locally, i.e., in the neighborhood of each sample Yk±
as in (6).

4.3. Convergence

The convergence of the particle filtering algorithm

proposed in the previous paragraph is here given in

Proposition 5. Precisely, what is meant by this is the

convergence of ¼̂±M to ¼t as the step size ± goes to zero

and the number of particles N goes to infinity, when M

is taken of the order of t=±. That is, the order of the

number of increments ¢Yk which can be constructed

from (6) up to time t.

An equally important question, not dealt with here,

is the convergence as t goes to infinity of the conditional

distribution ¼t or of its Monte Carlo approximation

obtained from the particle filtering algorithm. This is

related to the eventual ergodicity or mixing properties

of the unknown signal x.

Proposition 5 is based on two lemmas, which are

first given. Lemma 1 states the convergence of ¼±M to

¼t. Lemma 2 states the convergence of ¼̂
±
M to ¼±M for

any given value of ±. This latter limit is not shown to be

uniform in ±. Thus, in their form stated below, Lemmas

1 and 2 cannot be used to justify an approach where ±

is taken proportional to 1=N (or some other function of

N which converges to zero as N goes to infinity) and

¼̂±M is then computed for a large value of N.

It is possible to say that Proposition 5 only provides,

in a satisfactory way, the consistency of the approxima-

tion ¼̂±M . That is, the fact that it is possible to choose ±

and N to make this approximation arbitrarily close to ¼t.

For Lemma 1, the two following conditions are

required.

(H1) kHk is bounded (as a function S£M!R+)
(H2) kH(s,p)¡H(s0,p)k · CdS(s,s0) for all p 2M,

where the constant C does not depend on p

These are quite strong restrictions, however they

allow for straightforward proofs. Replacing them by

weaker conditions may lead to convergence in the

square mean being replaced by convergence in prob-

ability, (see the statement of the lemma), but it would

not introduce any more fundamental changes.

Assumption (H2) means that H is a Lipschitz con-

tinuous application from S to the space of continuous

vector fields onM, this latter space being equipped with

its topology of uniform convergence with respect to the

Riemannian metric.

LEMMA 1. Assume M is compact and conditions (x1-
x3), (H1-H2) hold. Let ' 2 Cb(S) be Lipschitz continuous,
such that ' 2D(A) and A' 2 Cb(S), (recall the notation
of (1)). Then, if M is the integer part of t=±,

Ej¼±M(')¡¼t(')j2 =O(±):
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PROOF The proof is identical to the one in [15],

(Proposition 2.1 on page 292). Here, the main steps are

indicated.

Note first that it is possible to consider M± = t.

Indeed, the assumption that ' 2D(A) and A' 2 Cb(S)
guarantees

Ej¼t(')¡¼M±(')j2 =O(±):
This is since ¼t verifies the filtering equation given

in [14], which has bounded coefficients under condi-

tion (H1).
The proof follows from the identity

¼±M(')¡¼t(') = E['(x±M)¡'(xt) j Y1]
+E[(A¡ 1)('(x±M)¡¼±M(')) j Y1],

(42)

where A= L±M=Lt. This can be proved by using the

Kallianpur-Striebel formula (33) to express the condi-

tional expectations and then by developing the products.

Since ' is Lipschitz continuous, the square mean of

the first term is bounded by

Ej'(x±M)¡'(xt)j2 · CE[d2S(xt,x±k)] =O(±), (43)

where the second inequality uses (x3).
The bound for the second term is more delicate. The

idea is to note

L±M = exp

ÃX
k±<t

hH±
k ,¢Yki¡ (±=2)

X
k±<t

kH±
k k2
!

(44)

and compare this to Lt, given by (34), using Proposition

2. The detailed development requires condition (H2)
and gives

Ej(A¡ 1)('(x±M)¡¼±M('))j2 · 4k'k2E(A¡ 1)2 =O(±),
(45)

where k'k is the supremum of j'(s)j over s 2 S.
The proof is completed by applying Minkowski’s

inequality, (43) and (45).

LEMMA 2. Assume conditions (x1-x2), (x4) and (H1)
hold. For all ' 2 Cb(S) and any values of ± and M

Ej¼̂±M(')¡¼±M(')j2! 0 as N "1:

PROOF It is clear from (41) that ¼̂±M(') is bounded.

Note, moreover, that ¼±M(') is square integrable. By

dominated convergence, in order to show the Lemma,

it is enough to show that ¼̂±M(') converges to ¼
±
M(')

almost surely.

Almost sure convergence is a direct application of a

general theorem from [21], (Theorem 1, on page 742).

This requires that the transition kernel be Feller, which

is condition (x4), and that the likelihood function is
continuous, bounded and strictly positive.

Here, the likelihood function is the one correspond-

ing to (36). That is

l(s,¢Yk±) = exp

μ
hH(s,Yk±),¢Yki¡

±

2
kH(s,Yk±)k2

¶
:

That this is continuous, as a function of s, and strictly

positive is immediate. Boundedness follows since the

second term under the exponential is negative and

hH(s,Yk±),¢Yki · rkH(s,Yk±)k:
By Cauchy-Schwarz inequality, where r is as in the

definition (28) of the mapping I.

Finally, it is possible to conclude by condition (H1).
Now, it is possible to state Proposition 5 which

combines Lemmas 1 and 2.

PROPOSITION 5. Assume that M is compact and that
conditions (x1-x4), (H1-H2) hold. Let ' be as in Lemma
1. Then, if M is the integer part of t=±

lim
±#0
lim
N"1

Ej¼̂±M(')¡¼t(')j2 = 0:

PROOF The conditions of Lemmas 1 and 2 are united.

By Lemma 1

lim
±#0
Ej¼±M(')¡¼t(')j2 = 0,

where the expression under the limit does not depend

on N. By Lemma 2

lim
N"1

Ej¼̂±M(')¡¼±M(')j2 = 0,

for any values of ± and M. Thus, the proposition fol-

lows by adding together these two limits and applying

Minkowski’s inequality.

Proposition 5 does not explicitly provide the rate at

which ¼̂±M converges to ¼t. Obtaining this rate of conver-

gence requires a deeper analysis than provided here (in

Lemmas 1 and 2). This can be carried out on the basis

of the corresponding analysis for a classical filtering

problem [22], (Chapter 9), but still has not been pur-

sued in the literature. Clearly, this situation represents

an important drawback for practical application.

The information lacking from Proposition 5, i.e.,

the rate of convergence, can eventually be recovered

on a case by case basis. For the convergence of ¼±M
to ¼t, Lemma 1 can be used to obtain the precise rate

of convergence, (by expressing the various constants

appearing in the proof). Then, for any required values

of ± and M, the problem is to find a number of particles

N sufficiently large for a given precision. It is well

known that ¼̂±M converges to ¼±M at a rate of the order

of 1=N but where the involved constants depend on the

observations f¢Ykg. For an individual realisation of the
observations, this can be made precise either through

additional calculation or through computer experiments,

based on the specific model being studied, (that is, on

a particular instance of equations (1) and (2)).
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Regarding the convergence of ¼±M to ¼t, stated in

Lemma 1, it is useful to make the following remark.

The order of convergence in condition (x3) can often
be improved. For example [27], if x is a diffusion in

Rl, using the Milstein approximation instead of a first
order Euler scheme gives strong order 1 instead of 0:5.

However, this is not enough to improve the overall order

of magnitude given in the lemma. As can be seen from

the proof, this order of magnitude involves both (43)

and (45). While improving the order of convergence in

condition (x3) will accordingly improve the order of
magnitude in (43), it has no similar effect on (45). The

computer experiments presented in the following sec-

tion show that the proposed particle filtering algorithm,

when implemented with adequate values of ± and N,

performs in a sensibly satisfactory way for the chosen

examples.

5. EXAMPLES: OBSERVATIONS IN SO(3) AND S2

The stochastic filtering problem stated in Section 2

is of a quite general form. By specifying the state space

S, the manifold M and the various objects appearing

in (1) and (2), it is possible to recover a wide range

of problems. As already mentioned, these include the

classical ones defined by an additive white noise model.

Several natural and important observation models

also arise as special cases of the problem of Section 2.

Of particular interest in engineering is the case where

the manifoldM is a classical matrix manifold, (that is, a

matrix Lie group or a related symmetric space), and the

observation process Y, conditionally on the unknown

signal x, is an invariant diffusion.

In signal and image processing, classical matrix

manifolds such as Stiefel and Grassmann manifolds

are of widespread use and importance. Therefore, it is

natural to consider observation models compatible with

their underlying structure. Roughly speaking, these are

exactly the ones involving invariant diffusions.

To explain and optimise the implementation and per-

formance of the particle filtering algorithm of Section 4

in the special case of classical matrix manifolds should

be one of the main objectives for the present work.

Mainly for a reason of space, the current section has

a more modest scope dealing only with two individual

examples.

In 5.1, the problem is considered where the obser-

vation process Y is an invariant diffusion in the special

orthogonal group SO(3). In 5.2 a similar problem is

studied but where Y has its values in the unit sphere S2.

These two examples serve as case studies. They show

how, when faced with a problem of the kind given by

(1) and (2), to carry out the various steps leading to a

successful implementation of the particle filtering algo-

rithm of Section 4. These include, at least, specification

of the metric (21) and the connection (22), choice of

the connector map I to be replaced in (6) and choice of

the approximation fx±kg of the signal x.

It should be noted none of these steps is known

a priori, just by knowing the manifold M. They are

all carried out based on (1) and (2). In particular, the

geometric structure given by the metric and connection

of (21) and (22) is adapted to the observation model.

5.1. Observations in SO(3)

The first example considers the case where the ob-

servation process Y, conditionally on the unknown sig-

nal x, is a left invariant diffusion in the special orthogo-

nal group SO(3). This is the set of 3£ 3 real matrices g
which are orthogonal and have unit determinant. That is,

g¡1 = g†, det(g) = 1, (46)

where † denotes matrix transpose. As a subset of the

vector space R3£3 (space of 3£ 3 real matrices), SO(3)
is connected and compact. Furthermore, it is closed un-

der matrix multiplication and inversion. Thus, SO(3) is

a compact connected Lie group [31]. The 3£ 3 identity
matrix is denoted e; clearly e 2 SO(3).
Let so (3) denote the subspace of R3£3, consisting of

all antisymmetric matrices. That is, matrices ¾ 2R3£3
such that ¾+¾† = 0. It can be shown that, for ¾ 2R3£3
and °(t) = exp(t¾) where t 2 R, °(t) 2 SO(3) for all t 2R
if and only if ¾ 2 so (3). By definition, this means that
so (3) is the Lie algebra of the Lie group SO(3). For

this and other facts on compact Lie groups used in the

following, see [31].

It is not surprising that, being defined by the differ-

entiable constraints (46), SO(3) is a differentiable mani-

fold. Moreover, so (3) can be identified with the tangent

space TeSO(3).

The special orthogonal group SO(3) is quite impor-

tant in many applications. A matrix g 2 SO(3) defines
an orientation preserving rotation in R3. Furthermore,
SO(3) is often thought of as the typical example of a

nontrivial compact connected Lie group. The presen-

tation in the rest of this paragraph generalises to any

compact connected Lie group with very minor changes.

In terms of the general filtering problem of Section

2, the example considered here makes no restriction on

the signal model (that is, on (1)). The observation model

(2) is specified in the following way.

The sensor function H and the vector fields §r are

defined in terms of left invariant vector fields on SO(3).

For each ¾ 2 so (3), there is a corresponding vector field
§ on SO(3) where,

§(g) = g¾, g 2 SO(3): (47)

This means that for each g 2 SO(3), there exists some
differentiable curve °g :]¡ ²,²[! SO(3) such that

°g(0) = g and _°g(0) =§(g). In fact, it is quite straight-

forward to obtain such a curve. First, let °e be the curve

°e(t) = exp(t¾). This is defined for all real t and has

its values in SO(3) as mentioned above. By elemen-

tary properties of the matrix exponential, °e(0) = e and
_°e(0) = ¾. To obtain the curve °g for any g 2 SO(3), it is
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enough to put °g(t) = g°e(t). The meaning of the name

“left invariant vector field” is precisely that °g can be

obtained from °e by left multiplication.

Note that ¾ and § define each other uniquely. Any

left invariant vector field § is of the form (47) where

¾ =§(e).

It is required that for all s 2 S, the application g 7!
H(s,g) is a left invariant vector field. It follows that there

exists a mapping h : S! so (3) such that for g 2 SO(3)
H(s,g) = gh(s): (48)

The vector fields §r are also taken to be left invariant

vector fields. Let ¾1,¾2,¾3 be any basis of so (3). This

basis being fixed, let §1,§2,§3 be the corresponding

left invariant vector fields as in (47). In other words,

§r(g) = g¾r: (49)

Note that the number of vector fields §r is here equal to

3, the dimension of SO(3) (which is also the dimension

of so (3)). This was not assumed in the general problem

of Section 2.

Now that H and §1,§2,§3 have been defined, it is

possible to write down the observation model (2). From

(48) and (49), a simple rearrangement shows

dYt = Yt ± fh(xt)dt+ dB̂tg: (50)

Here B̂ is a process with values in so (3) defined from

a Brownian motion B in Rd, which is independent from
x, by

B̂t = B
1
t ¾1 +B

2
t ¾2 +B

3
t ¾3: (51)

The reader should be immediately aware equation (50)

is just a linear matrix stochastic differential equation. It

can be understood for each matrix element after writing

down the usual formula for matrix product. A process Y

satisfying an equation of this form, when x is assumed

known, is called a left invariant diffusion in SO(3). An

alternative way of writing equation (50) involves the

vector fields §1,§2,§3. This is

dYt =§r(Y) ± fhr(xt)dt+ dBrt g, (52)

where h= hr¾r for some functions h
r : S!R. note the

differentiability conditions of Seciton 2 are verified.

Indeed, as functions of g, H(s,g) and §r(g) are linear

and therefore smooth (C1).
In [13], Lo considered the observation model (50)

by itself (but for a general matrix Lie group, not just

SO(3)). It was proposed that this can be reduced to a

classical, additive white noise model by the following

simple transformation

yt =

Z t

0

Y¡1s ±dYs: (53)

By the chain rule of Stratonovich calculus, it is clear

that

dyt = h(xt)dt+ dB̂t: (54)

This result is strikingly similar to (25) in Proposition 1.

It is now shown that, in effect, it is a special case of that

proposition.

Following the approach of 3.2, the Le Jan-Watanabe

connection is now introduced. Note first the condition of

ellipticity is here verified. In fact, a sharper result holds

since for each g 2 SO(3) the vectors §1(g),§2(g),§3(g)
form a basis of TgSO(3).

Definition (21) amounts to introducing a Rieman-

nian metric on SO(3) such that this basis is orthonormal,

h§r(g),§v(g)i= ±rv: (55)

Using this metric, the Le Jan-Watanabe connection is

defined by (22) which gives

r§r§v = 0: (56)

This immediately implies (24). In fact, for any g 2
SO(3) and tangent vector K 2 TgSO(3), it follows by
linearity that rK§r = 0. Here, one says the vector fields
§r form a global parallel frame.

For the following, it is important to note the metric

(55) is left invariant. If g 2 SO(3) and E,K 2 TgSO(3),
hE,Ki= hg¡1E,g¡1Ki: (57)

That is, the left hand side is computed in the tangent

space TgSO(3) and the right hand side in TeSO(3),

which is so (3). This can be shown by putting ´ =

g¡1E 2 so (3) and ·= g¡1K 2 so (3) and considering the
corresponding left invariant vector fields as in (47). It

is then a straightforward result of (55).

Due to (57), the Riemannian metric (55) is com-

pletely determined by the basis ¾1,¾2,¾3. This can be

chosen in a completely arbitrary way. It is clear that the

following matrices form a basis of so (3)

!1 =

0B@ ¡1
1

1CA!2 =
0B@ 1

¡1

1CA!3 =
0B@ ¡1
1

1CA :
The general form of the basis ¾1,¾2,¾3 is therefore

¾r = bvr!v, (58)

where b is an invertible matrix.

It is possible that the Riemannian metric (55) will

not be biinvariant (i.e., both left and right invariant).

This is the case if and only if the matrix b is orthogonal.

In practice, there is no reason why this should be

the case. In rigid body mechanics [32], an orthogonal

matrix b may be chosen when studying the motion of a

spherically symmetric body. In general, b is given by the

inertia matrix of the body, reflecting its shape and mass

distribution. This can be far from spherical symmetry

(consider an airplane). The metric (55) is introduced

based on the observation model (52). In other words, it

is adapted to the observation model.

Furthermore, the connection defined by (56) is

known as the Cartan-Schouten (¡)-connection. Since it
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has nonzero torsion, it is not the Levi-Civita connection

of any Riemannian metric (in particular, of the metric

(55)). When the matrix b is orthogonal, the Levi-Civita

connection of the metric (55) is known as the Cartan-

Schouten (0)-connection (see [23, 33]).

In order to apply Proposition 1, it is necessary to

compute a parallel orthonormal frame (Ei). This turns

out to be especially simple. Applying (10) and (56),

r±dY§r(Yt) = 0:
Therefore, by (9) and (12),

dhEi,§ri= 0:
Since both (Ei) and (§r) are orthonormal families, this

implies the existence of an orthogonal matrix a= (air)

such that

Eit = a
ir§r(Yt):

Moreover, by a choice of initial condition, it is possible

to take a= e identity matrix.

Now, (13) gives

yit = a
ir

Z t

0

h§r(Ys),±dYi: (59)

To evaluate this Stratonovich integral, it is possible

to apply (18). Note that this states the Stratonovich

integral is the same as a classical Stratonovich integral.

Applying this prescription is easier than changing the

current notation to that of (18) and then changing back.

In short, it follows form (49) and (57),

yit = hair¾r,
Z t

0

Y¡1s ±dYsi:

This shows that (54) is the same as (59) up to a change

of basis. Thus (54) is indeed a special case of (25),

Proposition 1. It is interesting to note the Brownian

motion ¯ appearing in Proposition 1 turns out, in the

present case, to be the same as the original Brownian

motion B.

The transformation (54) taking Y into y can be

extended to any Lie group, not just compact and matrix.

It is known as the Lie group stochastic logarithm and

was generalised extensively by Estrade [34]. That is

coincides with a stochastic antidevelopment was first

pointed out in [35].

Going on with the programme of applying Section

4 in the current example, consider now the construction

of connector maps. Recall this was described in (6)

and (28). Moreover, it can be implemented using any

mapping I verifying conditions (I1-I3).
As in 3.3, the starting point is the notion of geodesic.

Finding the geodesics of the connection (56) is straight-

forward. Indeed, the definition of this connection sug-

gests geodesics are precisely the flow lines of left in-

variant vector fields. These are the curves of the form

°g discussed after (47). This is easily checked to be the

case by replacing (56) in the geodesic equation (27).

Thus, the mapping exp : TSO(3)! SO(3) is related

in a simple way to the matrix exponential. For g 2 SO(3)
and K 2 TgSO(3),

expg(K) = g exp(g
¡1K): (60)

Indeed, letting ¾ = g¡1K, it follows from (47) that

§(g) =K. Then, it is clear the right hand side is °g(1).

To specify the mapping I of (28) to the current

context, an estimate of the radius of injectivity of the

connection (56) would be needed. In (28), this is the

role played by r which is needed in constructing the

cut off function Á. With the considered geometry, the

group SO(3) is a manifold of constant (strictly) positive

curvature. The radius of injectivity is then known from

Riemannian geometry [23].

Here, a less elegant but simpler approach is taken.

For each g1 2 SO(3) and K 2 Tg1SO(3), let g2 =

expg1 (K). If jg¡11 g2¡ ej< 1, where j ¢ j stands for the
Euclidean matrix norm, then g¡11 g2 has a unique matrix
logarithm. Denote this log(g¡11 g2). Then by (60),

K = g1 log(g
¡1
1 g2):

For any g1,g2 2 SO(3) verifying jg¡11 g2¡ ej< 1, define
logg1 (g2) = g1 log(g

¡1
1 g2): (61)

According to (28), when it is possible, I(g1,g2) should

coincide with logg1 (g2). To take into account couples

g1,g2 for which this expression is not well defined,

let Á : SO(3)£ SO(3)! [0,1] be a C1 function such

that Á(g1,g2) = 0 if jg¡11 g2¡ ej ¸ 1 and Á(p,q) = 1 if
jg¡11 g2¡ ej · 1¡¸. Here, 0< ¸< 1 is fixed. Now, I can
be defined as

I(g1,g2) = Á(g1,g2) logg1 (g2): (62)

Computing a matrix logarithm, even for 3£ 3 matrices,
is a relatively involved task. It is possible to propose an

alternative mapping I, which does not involve a matrix

logarithm. Recall the first order Taylor expansion of the

matrix logarithm at e,

log(g¡11 g2) = g
¡1
1 g2¡ e+O(jg¡11 g2¡ ej2): (63)

Let ¦ be a linear projection from R3£3 to so (3). For
instance, ¦(¾) = (1=2)[¾+¾†] associates to the matrix

¾ its antisymmetric part. Instead of (62), it is possible

to use

I(g1,g2) = g1¦(g
¡1
1 g2¡ e): (64)

Of course, it is an abuse of notation to call both map-

pings (62) and (64) by the same name I. Still, this is

done since they serve the same purpose. Roughly, the

difference between (62) and (64) is that in the latter

expression the matrix logarithm is replaced by the first

term in its Taylor expansion. Moreover, in this same

expression (64), there is no need for a cut off factor

since all operations are well defined for g1,g2 2 SO(3).
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Recall that any chosen mapping I is here required to

verify conditions (I1-I3). It is straightforward to show
this is the case for the mapping (64).

That condition (I1) is verified, follows from smooth-
ness of matrix inversion and multiplication; in addition

to the linear operation ¦. To verify conditions (I1-I2),
note that in the same notation used to state these condi-

tions,

dI(g1,g2)(§r) = g1¦(g
¡1
1 §r(g2)),

and, using (56) and the definition of the Hessian,

r2I(g1,g2)(§r,§v) =§r§vI(g1,g2)¡r§r§vI(g1,g2)
= 0:

These simply follow from the fact that (64) is linear in

g2. The latter formula immediately gives condition (I3),
since §1(g1),§2(g1),§3(g1) is a basis of Tg1SO(3). For

condition (I1), note by the same argument

dI(g1,g1)(K) = g1¦(g
¡1
1 K),

for all K 2 Tg1SO(3). However, ·= g¡11 K 2 so (3), so
that ¦(·) = ·. Then,

dI(g1,g1)(K) = g1·=K,

which is condition (I1). The mapping I of (64) is

especially easy to compute. Thanks to (46), the matrix

inverse is the same as the transpose.

All that is needed in order to apply the particle

filtering algorithm of Section 4 to the current example

is the mapping I. At each step of the algorithm, as

descried in 4.2, instructions 1,3 and 4 do not involve

the observation process Y. This only appears through

the increments ¢Yk in instruction 2. For this instruction,

each ¢Yk is computed using I as in (6) and replaced in

(36) in order to find particle weights.

To illustrate the above discussion, a computer ex-

periment is now presented. For the signal model (1),

the experiment considers S =R3. The unknown signal
x is taken to be an Ornstein-Uhlenbeck process,

dxt =¡ºxtdt+ dvt, x0 = (0,0,0), (65)

where º > 0 and v is a Brownian motion in R3 with
variance parameter ¾2 = 0:5. As discussed in 4.2, the

first step is to choose an approximation fx±kg of x. In
the following, only one value of ± is considered, ± = 0:1.

The x±k are constructed using a first order Euler scheme,

which verifies conditions (x1-x4).
The function h : R3! so (3) is taken to be a linear

isomorphism, mapping the canonical basis of R3 to the
basis !1,!2,!3 of so (3). In other words,

h(s) = s1!1 + s
2!2 + s

3!3, (66)

for each s= (s1,s2,s3) in R3. It should be noted that,
with this choice for h, the sensor function H of (48)

verifies condition (H2) but does not verify condition
(H1).

It was stated in 4.3 that conditions (H1-H2) are not
essential for the overall behaviour of the particle fil-

tering algorithm. The missing condition here is condi-

tion (H1), which requires the sensor function H to be

bounded. It can be shown by (48) and (57) that

kH(s,g)k2 = kh(s)k2 = jsj2,
where, as before, j ¢ j denotes the Euclidean norm. Thus,
condition (H1) is equivalent to the condition that the
function h be bounded. It is clear this does not hold for

the function h in (66). However, it should be noted that

the unknown signal x of (65) is a normal process. That

is, the distribution of xt is normal for each t¸ 0. Thus,
the distribution of h(xt) has exponentially decreasing

tales and finite moments of all orders. This compensates

for condition (H1) being dropped, since kh(xt)k2 = jxtj2
and this has an exponentially small probability of being

large.

In order to simulate a trajectory of the observation

process Y, a slight modification of the McShane approx-

imation (4) was used. Applied to (50), the McShane ap-

proximation gives an approximating process Y± which

satisfies a linear ordinary differential equation

_Y±t = Y
±
t fh(xt)+¢B̂kg, (67)

on each interval [k±, (k+1)±[; for k 2 N and where, as
in (4), ¢B̂k = ±

¡1(B̂(k+1)± ¡ B̂k±).
Equation (67) is a linear ordinary differential equa-

tion with time dependent coefficients. This is due to the

presence of h(xt) which contains the unknown signal.

Without changing the convergence rate (5), it is possible

to consider another approximating proces Ȳ± which sat-

isfies an equation with piecewise constant coefficients.

This has the advantage of having a straightforward an-

alytical solution. In effect, if Ȳ± satisfies the equation

_̄
Y
±

t = Ȳ
±
t fh(xk±) +¢B̂kg, (68)

on each interval [k±, (k+1)±[ for k 2 N, then
Ȳ±t = Ȳ

±
k± exp[(t¡ k±)(h(xk±)+¢B̂k)], (69)

on the interval [k±, (k+1)±[. Equation (68) is the same

as (67), but with h(xt) replaced by h(xk±).

Formula (69) is the one used in simulating a trajec-

tory of Y. The experiment was carried out with b = e

in (58). In this case (69) admits a simple interpretation

since, for s 2R3, if °(t) = exp[th(s)] then ° represents
a uniform rotation with angular velocity s. Thus, Ȳ±

consists in a sequence of successive uniform rotations

where the angular velocity is xk± +¢Bk on the interval

[k±, (k+1)±[.

Once a trajectory of Y has been simulated, the

particle filtering algorithm of Section 4 can be applied

immediately. The algorithm has as its input the sequence

of increments f¢Ykg. Here, these are obtained using the
mapping I of (64). With the choice of projection ¦
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discussed above, ¦(¾) equal to the antisymmetric part

of ¾, this mapping becomes

I(g1,g2) = g1[(1=2)(g
†
1g2¡ g†2g1)], (70)

where (46) was used in order to avoid matrix inversion.

In the particle filtering algorithm, the mapping I is

only used in instruction 2 which requires evaluating the

likelihood (36) (computation of normalised weights).

Here, it is important to note the factor g1 before the

bracket in the right hand side of (70) can be overlooked.

This is seen by replacing the invariance property (57)

and definition (70) in (36). As a result, an unnecessary

matrix multiplication can be avoided.

Figure 1 below is now used to illustrate the per-

formance of the particle filtering algorithm. With the

values of ± and ¾2 mentioned above, this figure shows

the estimation error jx̂t¡ xtj for t 2 [1,T] where T = 10.
Here, in the notation of (41), x̂t is the estimate

x̂t = (1=N)

NX
i=1

x̂iM , (71)

whereM is the integer part of t=±. This is the expectation

of the Monte Carlo approximation ¼̂±M obtained from

the particle filtering algorithm. Since ¼̂±M converges to

¼t, (as described in Proposition 5 of 4.3), x̂t should also

converge to the expectation of ¼t, say x
¤
t . That x

¤
t exists

follows from the fact that xt is normal and thus square

integrable, since ¼t is defined in (32) as the conditional

distribution of xt given past observations.

The notation x̂t obscures dependence on ± and N.

However, the values of ± and N essentially control the

estimation error when (65) is determined; i.e., when º

is given. Figure 1 considers º = 1 and º = 0:5. The es-

timation error in the present case can be understood as

combining a bias and a variance. By its very definition,

x¤t is an unbiased estimator of xt, whereas x̂t is con-
structed as an approximation of x¤t . The bias is then the
difference (in the square mean) between x̂t and x

¤
t . The

convergence result given in this paper, Proposition 5, is

only concerned with this difference and does not say

anything about the variance part of the estimation error.

The variance part of the error turns out to be the

variance of the conditional distribution ¼t. This is due

to the following important remark.

The filtering problem considered here (with x given

by (65) and Y by (50)) has a finite dimensional solution.

This is quite similar to a Kalman-Bucy filter. Proposi-

tion 1 states that the conditional distribution ¼t given

past observations of Y is the same as given past obser-

vations of y, (in the proposition, this is the statement

that Ȳt = Yt). Now, y is here given by (54). Replacing
(66) for the function h shows it is just a linear addi-

tive white noise model. Moreover, it is clear from that

Fig. 1. Influence of º and N on estimation errors

equation (65) satisfied by x is a linear stochastic differ-

ential equation. In particular, as already mentioned, x is

normal.

Thus, the conditional distribution ¼t is a normal

distribution with mean x¤t and covariance Pte where
Pt ¸ 0, (recall e is the 3£3 identity matrix). Moreover,
x¤ and P satisfy the Kalman-Bucy equations [36]

dx¤t =¡ºx¤t +Pt[dzt¡ x¤t dt], (72)

and
_Pt =¡P2t ¡ 2ºPt+¾2, (73)

where z is a process with values in R3 whose coordinates
are zrt = hyt,!ri.
The conditional distribution ¼t is the exact solution

of the current filtering problem. It can be computed by

integrating the Kalman-Bucy equations (72) and (73).

This can be done in a standard way after replacing dzt
in terms of dyt = Y

†
t ±dYt, which is (53). On the other

hand, ¼̂±M is an approximation of ¼t. In addition to being

unbiased, x¤t is an optimal estimator of xt in the sense of
mean square error. As x̂t converges to x

¤
t , the bias part

of the estimation error disappears and the optimal error

Pt is achieved in the limit.

From a practical point of view, there is no need here

to implement a particle filter. In fact, it is even com-

putationally less expensive to integrate (72) and (73).

However, as it is well know, the existence of finite di-

mensional solutions is the exception rather than the rule

in real situations. The connection between the present

example and rigid body mechanics has already been

mentioned. If Y is used to represent the pose of a rigid

body, then x is the angular velocity. The filtering prob-

lem appears as the problem of tracking angular velocity

based on observations of the pose alone. In general,

the angular velocity of a rigid body satisfies Euler’s

equation of rigid body mechanics, which is far more

complicated than (65) and in particular nonlinear [32].

Thus, when a realistic model is used for x, using a par-

ticle algorithm or some other approximation becomes

indispensable.

Before going on to the next example, note the be-

havior of the estimation error in Figure 1. While x0 =

(0,0,0), the particles were initialised at (4,0,0). Since

º > 0, this initial error is quickly overcome. However,
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the fact that º > 0 leads to nonzero asymptotic variance.

As t goes to infinity Pt goes to P1 =¡º +(¾2 + º2)1=2.
Thus, it is not possible to track x exactly. This prob-

lem appears since, when º > 0, the process x is ergodic.

In particular, its asymptotic distribution is normal with

mean 0 and variance ¾2=2º. This imposes a fundamental

limit on estimation error.

5.2. Observations in S2

In this second example, the observation process Y

lies in the unit sphere S2. Of course, S2 is the set

of p 2 R3 such that jpj= 1. In comparison with the
previous example, the current one will raise several

additional difficulties. Roughly, these are due to the fact

that S2 is not a Lie group but a symmetric space of the

compact Lie group SO(3).

The manifold structure of S2 is most easily under-

stood as inherited from R3. Precisely, S2 is a compact
embedded submanifold of R3. For p 2 S2, the tangent
space TpS

2 is the subspace of R3 consisting of those
vectors K such that (K,p) = 0. Here, (¢, ¢) denotes the
standard Euclidean scalar product in R3. In particular,
(p,p) = jpj2.
As in the previous example, no restriction is made

on the signal model (1). The sensor function H and the

vector fields §r are defined in terms of the action of

SO(3) on S2. This is now briefly discussed.

For each p 2 S2, consider the two following linear
mappings. First, the orthogonal projection ¦p : R3!
TpS

2. This is defined by

¦p(v) = v¡ (p,v)p= p£ v£p, (74)

for v 2R3, where £ denotes vector product.
The second mapping is §p :R3! TpS

2 defined as

follows. Let ¾1,¾2,¾3 be as in (58), with b = e. In other

words, ¾r = !r. Also, let ¾(v) = v
r¾r where v 2R3 (this

was called h(v) in (66)). The mapping §p is given by

§p(v) = ¾(v)p= v£p: (75)

This is related to the action of SO(3) on S2 in a sim-

ple way. Note that ¾(v) 2 so (3) for v 2 R3. If °(t) =
exp(t¾(v)) for t 2R then °(t) 2 SO(3) and

§p(v) =
d

dt

¯̄̄̄
t=0

°(t)p:

In other words, §p(v) is the velocity of the point p when

it is in uniform rotation with angular velocity v.

Unlike ¦p, the mapping §p is not a projection.

However, both mappings are surjective and have the

same kernel,

Ker(¦p) = Ker(§p) =NpS
2,

where NpS
2 is the normal space to S2 at p. This is a

one dimensional subspace of R3 consisting of vectors
¸p where ¸ 2 R.

Using the mappings ¦p and §p, the tangent bundle

of the sphere can be described in a covariant way. For

any p,q 2 S2 there exists k 2 SO(3) such that kp= q.
In fact, there are an infinity of such k. The following

relations hold

¦kp(kv) = k¦p(v), §kp(kv) = k§p(v), (76)

and can also be written

¦q(v) = (k¦pk
¡1)(v), §q(v) = (k§pk

¡1)(v): (77)

Returning to the filtering problem, a general observation

model where the observations lie on S2 can be defined

using either the mappings ¦p or §p for each p 2 S2. It
is preferable to use §p, since it is immediately related

to the action of SO(3) on S2.

The sensor function H will be assumed of the fol-

lowing form,

H(s,p) =§p(h(s)), (78)

where h : S!R3. The vector fields §r will be de-
fined by

§r(p) =§p(er), r = 1,2,3, (79)

where e1,e2,e3 is the canonical basis of R3.
As in the previous example, all the differentiability

conditions of Section 2 hold, since the operations used

to define H and §r are linear. Moreover, the condition

of ellipticity, required to introduce the metric (21) and

the Le Jan-Watanabe connection (22), is verified. This

is because, by construction, the mapping §p is surjective

for each p 2 S2. Replacing the definition (75) of §p in
(2) gives the observation model

dYt =¡Yt£fh(xt)dt+ ±dBtg, (80)

where B is a standard Brownian motion in R3.
In the current example, the number of vector fields

§r is equal to 3 whereas the dimension of S
2 is equal

to 2. As a result, there is no simple formula similar

to (53) that can be used to find the antidevelopment

process y of Y. Rather, it is necessary to consider a

parallel frame along Y. This is done after introducing the

metric (21) and the Le Jan-Watanabe connection (22).

It turns out these are the same as the Riemannian metric

that S2 inherits from R3 and its associated Levi-Civita
connection [29].

It is straightforward to show the Euclidean scalar

product (¢, ¢) verifies (21). Let p 2 S2 and K 2 TpS2. Note
that

(K,§r(p)) = (p£K)r,
where the right hand side is the rth component of p£K
in the canonical basis e1,e2,e3. Evaluating the right hand

side of (21) (with K = E) gives

(K,§r(p))(K,§r(p)) = jp£Kj2:
But this is

(p,p)(K,K)¡ (K,p)2 = (K,K),
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since (p,p) = jpj2 = 1 and (K,p) = 0. Thus, the metric
(21) is the same as (¢, ¢).
For the connection (22), note that by definition this

is given by

rKE =K(E,§r)§r(p),
for K 2 TpS2 and any C1 vector field E on S2. This can
also be written

rKE = §p((p£KE)),
where KE is the vector KE = (KE1,KE2,KE3). The last

formula follows from (75) and (79) by linearity. If (75)

is applied to it again, then it follows

rKE = p£KE£p=¦p(KE),
which is the definition of the Levi-Civitation connection

associated to (¢, ¢); see [23].
In order to construct a parallel frame along Y, let

E10 ,E
2
0 2 TY0S2 be orthonormal. Also, let E1,E2 be vector

fields along Y solving the equation of parallel transport

(9). Here, this reads

r±dYEit =¦Yt (dEit ) = 0,
for i= 1,2 and with initial conditions E10 ,E

2
0 . Another

way of writing this equation, based on (74), is

dEit =¡Yt(Eit ,±dYt): (81)

To obtain this, it is enough to replace in (74) the fact

that

d(Eit ,Yt) = (±dEit ,Yt) + (Eit ,±dYt) = 0:
If Y0,E

1
0 ,¡E20 is a positively oriented orthonormal basis

in R3, then Yt,E1t ,¡E2t will have this same property. It
is now assumed this is the case.

From its definition (13), the antidevelopment pro-

cess y of Y has its values in R2 and is given by

yit =

Z t

0

(Eis,±dYs): (82)

Let z be the process with values in R3,

zt = h(xt)dt+ dBt: (83)

It follows from (80) that

dyit =¡(Eit ,Yt£±dzt) =¡(Eit £Yt,±dzt):
Given the chosen orientation for Yt,E

1
t ,E

2
t , this yields

dyit = (E
j
t ,±dzt): (84)

From this, it is possible to recover (25) of Proposition

1. Namely,

dyit = h
i
tdt+ d¯t, (85)

where hit = (E
i
t ,h(xt)) and ¯ is a standard Brownian

motion in R2.
From (84),

dyit = h
i
tdt+(E

j
t ,±dBt):

Thus, it is enough to show

(E
j
t ,±dBt) = (Ejt ,dBt) = d¯it :

That the Stratonovich differential can be replaced by an

Itô differential follows from

(E
j
t ,±dBt) = (Ejt ,dBt)+ 1

2
(dE

j
t ,dBt),

where the last term denotes quadratic covariation. From

(80) and (81), this is

(dE
j
t ,dBt) =¡(Yt,dBt)(Ejt ,Yt£ dBt) = (Ejt ,Yt£Yt)dt,

which is identically zero. That ¯ is a Brownian motion

follows from the fact that E1,E2 are orthonormal.

Equation (80) can be rewritten in terms of the par-

allel frame E1,E2 and the antidevelopment process y.

Replacing in (80) the fact that Y,E1,E2 is an orthonor-

mal basis, it follows from (82) that

dYt = E
1
t ± dy1t +E2t ± dy2t : (86)

Similarly, (81) can be rewritten using (82),

dEit =¡Yt ± dyit : (87)

Now (86) and (87) form a system of linear stochastic

differential equations which can be solved knowing the

antidevelopment y. This shows that Y can be obtained

if y is known. This is in spite of the fact that y has its

values in R2 while Y has its values in R3.
In order to apply the particle filtering algorithm of

Section 4 to the current example, it is enough to specify

a mapping I verifying conditions (I1-I3) of 3.3. Two
such mappings are now considered. First, recall that I

can be given by (28) as a geodesic connector. Here, the

connection r is the Levi-Civita connection correspond-
ing to the Euclidean scalar product (¢, ¢). Thus, geodesics
are to be understood in the usual meaning of large cir-

cles. Accordingly, for p 2 S2 and K 2 TpS2 with jKj 6= 0,
expp(K) = cos jKjp+sin jKj(K=jKj): (88)

Moreover, when p,q 2 S2 and (p,q) 6=§1,
logp(q) = arcsin j¦p(q)j(¦p(q)=j¦p(q)j): (89)

Using this last formula, it is possible to implement (28).

However, this involves several nonlinear operations.

Another, simpler, mapping I can be guessed from (89).

Consider the following

I(p,q) =¦p(q): (90)

This is the first order approximation of logp(q) and is

well defined for any p,q 2 S2. To see that it verifies
conditions (I1-I3) note that

d¦p(q)(V) =¦p(V),

for all V 2 TqS2. Thus, if V 2 TpS2,
d¦p(p)(V) = V,
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which is condition (I2). Condition (I3) reads

r2¦p(p)(V,V) = 0:
By definition of the connection r, the left hand side is
the projection on TpS

2 of the acceleration at t= 0 of the

geodesic

°p(t) = cos(t)p+sin(t)(V=jVj),
but this acceleration is equal to ¡p, so its projection
on TpS

2 is zero. Finally, condition (I1) is easily verified
from (74).

The particle filtering algorithm of Section 4 can be

applied as before. In particular, instruction 2 is carried

out by replacing (78) and (90) into (36) in order to

compute particle weights.

Precisely, the likelihood function based on succes-

sive samples Yk± and Y(k+1)± becomes

l(s) = exp

μ
(h(s)£Yk±,Y(k+1)±)¡

±

2
jh(s)£Yk±j2

¶
: (91)

By (78) and (90), the first term under the exponential is

(H(s,Yk±),Y(k+1)±) = (H(s,Yk±),I(Yk±,Y(k+1)±)),

just like in (36). The second term can also be found

from (78).

The above discussion is now illustrated with a com-

puter experiment. For the signal model, consider S =R3.
The signal is simply a constant x¤=(0,0,1). The function
h of (78) is taken to be the identity function h(s) = s

for s 2R3. Just like in the previous example, it can be
noted that condition (H1) is not verified. Again, since x
is normal this condition can be overlooked.

With the function h chosen in this way, the observa-

tion model (80) becomes

dYt =¡Yt£fxt + ±dBtg: (92)

A trajectory of the observation process Y can be simu-

lated using a formula similar to (68). Precisely, consider

an approximating process Ȳ± where, (letting x̂¤ = x̂r¾r),

Ȳ±t = exp[(t¡ k±)(x̂¤+¢B̂k)]Ȳ±k±, (93)

on each interval [k±(k+1)±[. The value of ± used here

was ± = 0:1, (the same as in the previous example).

In order to ensure the process Ȳ± has its values

in S2 ½ R3, it is enough to take Ȳ±0 2 S2. This was
chosen to be Ȳ±0 = (0,0,1). The product appearing in

(93) is between the matrix exponential on the left, which

belongs to SO(3), and the vector Ȳ±k± on the right which

belongs to S2.

Unlike the case of the previous example, (see (72)

and (73)), there is here no known finite dimensional

solution for optimal estimation of x¤. Application of
particle filtering or of some other approximate solution

is thus necessary.

Figure 2 below shows the distribution of N = 1000

particles in the (x1,x2) and (x1,x3) planes at times T =

Fig. 2. Particles distribution (grey); estimate (±); true value (+)

1:5 (top row) and T = 3 (bottom row). Here, (x1,x2,x3)

are canonical coordinates in the basis e1,e2,e3. The

position of x¤ is designated by a + and the estimate

x̂t (arithmetic average of the particles as in (71)) by

±. The particles were initially generated from a normal

distribution ¹ with mean (0:5,0:5,1) and variance 1.

A large value of N was chosen for visualisation. It is

possible to use N = 100 with a similar performance.

Figure 2 shows the particle filtering algorithm of

Section 4 is able to recover x¤ within a relatively short
time. It is interesting to note the larger variability of the

particle distribution in the x3 direction, apparent in the

right column of the figure. This is because Y0 = (0,0,1)

(the same as Ȳ±0 ) so that, initially, the component of x
¤

along e3 has no effect on the position of Y.

Due to the presence of noise B, the observation pro-

cess Y rapidly explores a large area of S2 (theoretically,

Y is a recurrent process in S2). This allows for the initial

ambiguity in the x3 direction to be overcome.

In the absence of noise, Yt rotates uniformly around

x¤. If x¤ and Y0 are parallel, Yt = Y0 for all t¸ 0. Then, Y
contains no information regarding the magnitude of x¤.
Otherwise, x¤ can be recovered after an arbitrarily short
time (knowing the model (92)). Such a situation cannot

arise in the general case of noisy observations, since Yt
and x¤ do not remain parallel.
The computer experiment presented here shows that

the particle filtering algorithm of Section 4 is able to

successfully handle a filtering problem which is not

solvable by classical methods.

6. CONCLUSION

This paper considered continuous time filtering

problems where the observation process, conditionally

on the unknown signal, is an elliptic diffusion in a

differentiable manifold. In order to numerically solve

filtering problems of this kind, the paper proposed a

particle filtering algorithm which it also proved to be

PARTICLE FILTERING WITH OBSERVATIONS IN A MANIFOLD: A PROOF OF CONVERGENCE 245



convergent under some additional technical conditions.

Roughly, this algorithm combines the well known se-

quential Monte Carlo structure of a classical particle fil-

ter with the geometric construction of connector maps,

used to locally linearise the observation process. To the

author’s knowledge, the proposed algorithm is entirely

new in the literature.

The filtering problems considered in the paper are of

a very general form. While this may have lead to some

unnecessary abstraction, it also has clear advantages.

When dealing with an applied problem, greater general-

ity in mathematical formulation allows additional free-

dom in choosing a realistic observation model which

includes sufficient a priori knowledge of the target ap-

plication. Also, since most physical phenomena are nat-

urally described in continuous time, the fact of starting

from a continuous time formulation should accommo-

date the majority of physical models.

The particle filtering algorithm proposed in this pa-

per leaves several choices open to the user wishing to

implement it. These include the choice of an approxi-

mation of the hidden Markov structure and the choice of

a connector map for local linearisation. This gives addi-

tional adaptability and allows for the trade-off between

complexity and performance to be optimised according

to applications. In any case, the paper gave precise con-

ditions which the chosen implementation should satisfy

in order to produce a consistent numerical solution.

This paper was only a first effort in the new direction

of particle filtering with observations in a manifold. It

was aimed at laying down a rigorous and adaptable gen-

eral framework. Hopefully, additional papers strength-

ening convergence results and exploring in detail impor-

tant engineering applications will be shortly submitted.

APPENDIX A

In 3.3, Proposition 2 was cited from [30]. However,

soon after, a more general claim was made without

proof. Namely, that Proposition 2 continues to hold if

the mapping I of (28) is replaced by any other mapping

which verifies conditions (I1-I3).
The proof of this claim is a repetition of the one

in [30], but does not seem to have been given explicitly

in the literature. For completeness, it is here provided.

In preparation, consider the following generalised

Itô formula. Let f be a C2 function on M and replace

¿ = df in (20). This gives

df(Yt) = (df,dYt) + (1=2)r2f(Yt)(§r,§r)dt: (94)

Let I :M£M! TM be any mapping which verifies

conditions (I1-I3). For ± > 0 and any k 2 N, let
Ik(q) = I(Yk±,q) q 2M:

Conditionally on Yk± = p, this is a C
2 function on M

with values in TpM. This is by condition (I1). In [37],

it was shown that the Itô formula (94) can be applied so

I(Yk±,Y(k+1)±) =Z (k+1)±

k±

(dIk,dYt) + (1=2)

Z (k+1)±

k±

r2Ik(Yt)(§r,§r)dt:

Here dIk and r2Ik denote differentiation component by
component of the vector valued function Ik after an

arbitrary choice of basis.

It will be useful to rewrite this using (17),

Ii(Yk±,Y(k+1)±) =Z (k+1)±

k±

dI
ij
k (Yt)dy

j
t +(1=2)

Z (k+1)±

k±

r2Iik(Yt)dt,

where Iik = hIk,Eii and
dI
ij
k = (dI

i
k,E

j), r2Iik =r2Iik(Ej ,Ej):
On the other hand

yi(k+1)± ¡ yik± =Z (k+1)±

k±

dI
ij
k (Yk±)dy

j
t +(1=2)

Z (k+1)±

k±

r2Iik(Yk±)dt:

This is because, by conditions (I2-I3),

dI
ij
k (Yk±) = ±ij , r2Iik(Yk±) = 0:

Note that, by (15),

dyit = hEi,H+(1=2)r§r§ridt+ d¯it :
Here, the drift coefficient appearing before dt is uni-

formly bounded and ¯ is a standard Brownian motion

in Rd.
Let, (this is the notation of (30) in Proposition 3),

¢yik = y
i
(k+1)± ¡ yik±, ¢Yik = I

i(Yk±,Y(k+1)±):

Then, by Itô isometry,

Ej¢yik ¡¢Yik j2 · Cmax
j

Z (k+1)±

k±

EjdIijk (Yt)¡dIijk (Yk±)j2dt

+

Z (k+1)±

k±

Ejr2Iik(Yt)¡r2Iik(Yk±)j2dt,

where C is some positive constant (which does note

depend on k).

By condition (I1) and the fact that the manifoldM
is compact, dI

ij
k and r2Iik are bounded and continuous.

Therefore, the expectations under the integral in each

term tend to zero as ± # 0.
This proves that

Ej¢yik ¡¢Yik j2 = o(±), (95)

by an extension of this result, it is straightforward to

establish Proposition 2. This is now done.

As in the proposition, formula (29), let

R± =
X
k±<t

hGk±,¢Yki=
X
k±<t

Gik±¢Y
i
k ,

246 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 11, NO. 2 DECEMBER 2016



where Gik± = hEi,Gk±i.
By (17) and the definition of classical Itô integral,

the integral R =
R t
0
hGs,dYi is the limit in the square

mean of

r± =
X
k±<t

Gik±¢y
i
k:

Note as before

Gik±¢Y
i
k =Z (k+1)±

k±

Gik±dI
ij
k (Yt)dy

j
t +(1=2)

Z (k+1)±

k±

Gik±r2Iik(Yt)dt,

and

Gik±¢y
i
k =Z (k+1)±

k±

Gik±dI
ij
k (Yk±)dy

j
t +(1=2)

Z (k+1)±

k±

Gik±r2Iik(Yk±)dt:

By summing over k and using Itô isometry and the fact

that kGtk is bounded
EjR± ¡ r±j2 · C sup

s·t
kGk2£

X
k±<t

max
j

Z (k+1)±

k±

EjdIijk (Yt)¡ dIijk (Yk±)j2dt

X
k±<t

max
j

Z (k+1)±

k±

Ejr2Iik(Yt)¡r2Iik(Yk±)j2dt,

where C is some positive constant, possibly different

from before. Using again condition (I1) and the fact
that the manifoldM is compact it is seen that

lim
±#0
EjR± ¡ r±j2 = 0,

which, from the definition of r±, immediately gives

Proposition 2. It is enough to write

EjR± ¡Rj2 · 2EjR± ¡ r±j2 +2Ejr± ¡Rj2:
The first term has just been proved to converge to zero.

The second term converges to zero by definition of r±.

As already mentioned, this proof is similar to the one

in [30], but makes the additional remark that the only

required properties for the mapping I are conditions (I1-
I3). Accordingly, there is no need to restrict I to being
the geodesic connector mapping (28). In its above form,

the proof explicitly uses compactness ofM in order to

obtain convergence in the square mean. However, it is

clear that this can be replaced by a milder assumption.
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