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This paper considers the problem of estimating probability den-

sity functions on the rotation group SO(3). Two distinct approaches

are proposed, one based on characteristic functions and the other

on wavelets using the heat kernel. Expressions are derived for their

Mean Integrated Squared Errors. The performance of the estima-

tors is studied numerically and compared with the performance

of an existing technique using the De La Vallée Poussin kernel

estimator. The heat kernel wavelet approach appears to offer the

best compromise, with faster convergence to the optimal bound and

guaranteed positivity of the estimated probability density function.
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I. INTRODUCTION
Statistics on Lie groups have became more and

more popular in the last decade. Applications can be

found in shape statistics [1], [2], medical imaging [3],

multiple scattering processes [4], [5], crystallography

[6], robotics and mechanics [7], [8] and many others.

In directional statistics, the abundance of datasets taking

values on spheres and homogeneous spaces has also

motivated the study of random variables and processes

on Lie groups [9]. Amongst all the matrix Lie groups,

the most popular one is the rotation group in R3, i.e.,
the Special Orthogonal group SO(3). This is due to its

predominent use in engineering problems [7], [10].

Even though the number of engineering challenges

including random rotations has grown dramatically in

the last years, the problem of probability density esti-

mation for such variables was only considered in details

recently in [6]. In parallel, the concept of wavelets on

manifolds was transposed to the case of the rotation

group, due to its relation to the 2-sphere which has

attracted a lot of work since the 90s [11], [12], [13].

In [14], authors introduce diffusive wavelets on mani-

folds. The definition of a wavelet transform on a sur-

face/manifold is conditioned by the possible definition

of two operations on the manifold: scaling and transla-

tion. While translation is easily defined on Lie groups

as it is based on the group action, the definition of scal-

ing is less obvious. In [14], authors have chosen an

intrinsic definition for scaling, whereas some extrinsic

approaches had been proposed previously in [15]. The

difference in these definitions resides in the way the

mother wavelet is scaled: it is either firstly projected

in the tangent plane before scaling and back projection

(extrinsic); or scaled on the manifold directly (intrin-

sic). In this paper, we will make use of the intrinsic

approach and study the ability of diffusive wavelets to

define interesting estimators for densities on SO(3).

The specificity of diffusive wavelets is that they are

based on the heat kernel. As this kernel can be defined

on manifolds, the diffusive wavelet approach overcomes

the problem of “scaling” on manifold. Note that this

definition problem was already pointed out by many

authors [12], [15] when defining wavelets on the 2-

sphere for example.

In this paper, we present an estimation technique for

densities on SO(3) based on the diffusive wavelet trans-

form. Using wavelet estimators (linear or thresholded)

is well known in non parametric estimation [16]. We

propose the use of the linear1 wavelet estimator to the

case of SO(3)-valued random variables and give some

of its properties. In particular, the wavelet-based esti-

mator is a characteristic kernel estimator. A comparison

with other types of estimators (characteristic function

and kernel) is provided.

1Linear wavelet estimation refers to the standard estimation through

wavelet coefficients estimation, as opposed to thresholded wavelet

coefficients estimator sometimes refered as nonlinear [16].
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The rest of the paper is organized as follows: Sec-

tion II is dedicated to the presentation of harmonic

analysis on SO(3) and various concepts about random

variables on this Lie group. In Section III, the diffuse

wavelet formalism is introduced for the case of the ro-

tation group. It is then used in Section IV to propose

a probability density function estimator. Finally, Sec-

tion V presents simulation results and comparison of

the wavelet estimator with two other estimators.

II. CHARACTERISTIC FUNCTIONS FOR RANDOM
VARIABLES ON SO(3)

We first review some basic concepts on the rota-

tion group SO(3) and random variables taking values

on this well known Lie group. The concept of charac-

teristic function for SO(3)-valued random variables is of

importance as it can be identified as the “Fourier trans-

form” of the probability density of the random variable.

It will also be of use in Section IV to provide a proba-

bility density estimator. The results presented here can

be found in various textbooks, for example [17], [18].

A. The rotation group SO(3)

The set of rotations in the 3D space forms a compact

Lie group denoted SO(3). An element x 2 SO(3) can be
parametrized in several ways [17, Chap. 3]. Using the

so-called ZYZ convention of Euler angles parametriza-

tion, any element x 2 SO(3) can be associated to a ma-
trix Rx = Rx(',μ,Ã) with 0· ',Ã < 2¼ and 0· μ · ¼.
With this convention, Rx(',μ,Ã) takes the form:

Rx(',μ,Ã) =

264cos' ¡sin' 0

sin' cos' 0

0 0 1

375
264 cosμ 0 sinμ

0 1 0

¡sinμ 0 cosμ

375

£

264cosÃ ¡sinÃ 0

sinÃ cosÃ 0

0 0 1

375
It is also possible to parametrize an element of

SO(3) in terms of its rotation axis and its rotation angle
[17, Chap. 3]. The rotation axis ´ is a unit vector in

R3, i.e., ´ 2 S2. The rotation angle, denoted !(x), is
given by:

cos!(x) =
Tr(Rx)¡ 1

2
(1)

Note that in this parametrization, the angle takes values

in: ¡¼ < !(x)· ¼. It is also possible to express this
angle !(x) in terms of the Euler angles:

!(x) = 2arccos

μ
cos

μ

2
cos

'+Ã

2

¶
(2)

The rotation angle is of particular interest as it is a metric
on SO(3). In fact, one can define the distance between

x 2 SO(3) and y 2 SO(3), denoted d(x,y), as:

d(x,y) = j!(yx¡1)j= arccos
μ
Tr(Ry(Rx)¡1)¡ 1)

2

¶
(3)

In the sequel, we will make use of the notation R(!(x),´)
for an element x 2 SO(3), keeping in mind that:

R(!(x),´) = exp(!(x)M) with

M=

0B@ 0 ¡´3 ´2

´3 0 ¡´1
¡´2 ´1 0

1CA (4)

where ´1,´2,´3 are the components of the vector ´, i.e.,

´ = [´1,´2,´3]
T and exp(:) the matrix exponential [17].

B. Fourier series on SO(3)

We now consider the Fourier series expansion of

functions taking values on the rotation group. Consider

the set of square integrable functions L2(SO(3),R). By
the Peter-Weyl theorem [18, Chap. III], a function f 2
L2(SO(3),R) can be expressed as:

f(x) =
X
`¸0

+X̀
n=¡`

+X̀
m=¡`

(2`+1)f̂`nmD
`
nm(x) (5)

for x 2 SO(3) and where D`nm(x) are the Wigner-D func-
tions [19] evaluated at position x. This infinite series ex-

pansion over ` has matrix coefficients f̂` of dimension

(2`+1)£ (2`+1) with elements f̂`nm. The matrix entries
f̂`nm are obtained by projection of f on the Wigner-D

functions:

f̂`nm = hf,D`nmiSO(3) =
Z
SO(3)

f(x)D`nm(x)d¹(x) (6)

where hf,hiSO(3) is the scalar product on L2(SO(3),R)
and d¹(x) the bi-invariant Haar measure on SO(3), i.e.,

d¹(x) = (8¼2)¡1 sinμd'dμdÃ when using the ZYZ Euler
angle parametrization (',μ,Ã) for elements x 2 SO(3).
We also mention that the corresponding norm is:

kfk2 =
q
hf,fiSO(3) (7)

With the chosen parametrization of SO(3), the pre-

viously introduced Wigner-D functions D`nm take the

form:

D`nm(',μ,Ã) = e
¡in'P`nm(cosμ)e

¡imÃ (8)

where P`nm(cosμ) are the generalized Legendre polyno-

mials. We have used the fact that the Wigner-D func-

tions D`nm form a complete set of orthogonal functions:

hD`nm,D`
0
n0m0 iSO(3) =

1

(2`+1)
±nn0±mm0±``0 (9)

This showsclearly that the set of functions
np
2`+1D`nm,

`¸ 0,¡`· n,m· `
o
form an orthonormal basis for

functions in L2(SO(3),R), allowing the decomposition
of functions taking values on the rotation group using

this basis. In the sequel, we may refer to f̂`nm (and

abusively to f̂`) as the Fourier coefficients of f.
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C. Parseval identity
It is also well known that the Parseval identity holds

for functions f 2 L2(SO(3),R). Using our normalization
convention, the following is true:

kfk22 = hf,fiSO(3)

=
X
`¸0

X̀
n=¡`

X̀
m=¡`

(2`+1)jf̂`nmj2 (10)

The left hand side of equation (10) is commonly re-

ferred to as the energy and the Parseval identity simply
states that the energy of f consists in the infinite sum

of its modulus squared Fourier coefficients.

D. Zonal functions on SO(3)
Zonal functions, sometimes also called conjugate in-

variant functions, are radially symmetric functions with
center g0 = e 2 SO(3) where e is the identity element
in SO(3). See for example [20] for more details on ra-

dially symmetric fonctions on SO(3). They will be at

the heart of the diffusive wavelets construction in Sec-

tion III. A function f : SO(3)!R is called zonal iff it
satisfies 8x,y 2 SO(3):

f(yxy¡1) = f(x)

Equivalentlty, f : SO(3)!R is zonal iff f(x) = f(x0)
8x,x0 2 SO(3) such that !(x) = !(x0), i.e., x and x0 have
the same angle. In fact, it simply means that f, evaluated
at x 2 SO(3), only depends on the rotation angle of x
introduced in (1). It is known [6], [20] that the subspace

of zonal functions is spanned by functions Â`, ` 2 N,
called the characters of SO(3), and given as:

Â`(x) =
X̀
n=¡`

D`nn(x) =
sin((`+ 1

2
)!(x))

sin
!(x)

2

(11)

= U2`
μ
cos

!(x)

2

¶
(12)

where U2`(:) are the Chebychev polynomials of sec-
ond kind and of (even) degree 2`. For these (even de-

gree) polynomials, the following orthogonality relation

stands: Z 1

¡1
U2`(t)U2`0(t)

p
1¡ t2dt= ¼

2
±``0 (13)

In terms of the characters Â`, and using the notation

!(x) = ! for simplicity, this integral becomes:Z 2¼

0

Â`(!)Â`
0
(!)sin2

³!
2

´
d! = ¼±``0 (14)

where the link with the orthogonality relation for U2`
comes with t= cos(!=2). As a consequence, the char-

acters Â` fulfill the following orthogonality relation:

hÂ`,Â`0 iSO(3) =
1

4¼2

Z
S2
d´

Z 2¼

0

Â`(!)Â`
0
(!)sin2

³!
2

´
d!

= ±``0 (15)

where we used the expression of the Haar measure

in terms of axis ´ and rotation angle ! for SO(3).

With this convention the Haar measure takes the form

d» = (1=4¼2)d´ sin2(!=2)d!. As a consequence, a zonal

function f 2 L2(SO(3),R) has a Fourier series expansion
that can be written like:

f(x) =
X
`¸0
(2`+1)f̂`Â`(x) (16)

where its Fourier coefficients f̂`. These Fourier coeffi-

cients f̂` are simply given by:

f̂` =
1

(2`+1)
hf,Â`iSO(3)

=
1

¼

1

(2`+1)

Z 2¼

0

f(!)Â`(!)sin2
³!
2

´
d! (17)

The Parseval identity for a zonal function f now reads:

kfk22 =
X
`¸0
(2`+1)2jf̂`j2 (18)

Zonal functions will be used in Section III in the defi-

nition of wavelets on SO(3).

E. Convolution

A very important feature of Fourier transformation

is its behaviour with respect to the convolution product.

In the case of functions taking values on SO(3), the

relation still holds. First, given f,h 2 L1(SO(3),R), their
convolution product is defined as:

(f ¤ h)(x) =
Z
SO(3)

f(g)h(g¡1x)d¹(g) (19)

where the group operation stands naturally for trans-

lation. Now, if the Fourier coefficients of f and h are

respectively f̂` and ĥ` (in matrix format), then the fol-

lowing stands: df ¤ h` = f̂`ĥ` (20)

Note that the right-hand side of the equation is a matrix

product.

F. Characteristic function of SO(3)-valued random
variables

The characteristic function of a random variable is

the Fourier transform of its probability transform. This

well known result extends to random variables on the

rotation group, thanks to the results on Fourier series

expansion introduced in the previous Section. We now

give some definitions and properties for characteristic

functions of random variables on SO(3) as it will be

used to define a probability density function estimator

in Section IV.

Consider the case of a random variable X 2 SO(3)
with density f. Such random variables X taking values

on the rotation group SO(3) can simply be thought of as
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random rotation matrices of dimension 3£ 3, classically
parametrized by Euler angles. Alternatively, one can

think of these random variables as unit quaternions from

the upper hemisphere of S3.
1) Definition: Given a rotation random variable X

with density fX , the sequence ©X = f©X(`)g`¸0 of (2`+
1)£ (2`+1) matrices given by:

©X(`) = E[D`(X)] (21)

is the characteristic function of X. The elements of the
matrix ©X(`) are denoted ©

`
nm and they read as:

©`nm =

Z
SO(3)

fX(x)D
`
nm(x)d¹(x) (22)

Thus the density f has the following Fourier series

expansion:

fX(x) =
X
`¸0

X̀
n,m=¡`

(2`+1)©`nmD
`
nm(x) (23)

One can see by comparison with Equation (5) that

the characteristic function of fX is the Fourier transform

of its density fX , i.e., ©
`
X = f̂

`
X .

2) Basic properties: The following properties can
easily be verified:

² Given two rotation random variables X and Y, then:

X = Y iff ©X =©Y

² If X and Y are two independent rotation random

variables and Z = XY, then:

©`Z =©
`
X©

`
Y

² A rotation random variable U 2 SO(3) is uniformly
distributed iff:

©`U = 0 8` > 0
² Consider n i.i.d. rotation random variables X1,X2,

: : : ,Xn, then the random variable consisting in the ac-

cumulated products of the Xn, denoted Y = X1X2 : : :Xn
has the following characteristic function:

©`Y = [©
`
X]
n

where ©`X is the characteristic function shared by

the Xn.

3) Zonal invariance; A rotation random variable X

with density fX is called zonal invariant if:

X
d
=RXR¡1 for all R 2 SO(3)

Now, if X is zonal invariant, then its characteristic

function is:

©`X = a`I`

where a` 2 R and I` is the (2`+1)£ (2`+1) identity
matrix. As a consequence, if X is zonal invariant, then
its density fX takes the form:

fX(x) =
X
`¸0
(2`+1)a`Â

`(x) (24)

as detailed previously when considering zonal functions

on SO(3) in II-D.

This last expression shows that the characteristic

function of zonal invariant random rotation variables are
scalar coefficients a`, as opposed to matrix coefficients

for random variables with no symmetries.

III. DIFFUSIVE WAVELETS ON SO(3)

We now introduce diffusive wavelets on the rotation

group. They will be used in Section IV to propose a

probability density estimator. Recently, Ebert and Wirth

[21] introduced diffusive wavelets on groups. We detail
in the sequel the special case of the rotation group in

3D, i.e., SO(3).

A. Heat wavelet family on SO(3)

Here, we follow the construction given by Ebert

[21]. First recall that on SO(3) the heat kernel is

given by:

·½(x) =
X
`¸0
(2`+1)e¡`(`+1)½Â`(x) (25)

for x 2 SO(3), and where Â` are the irreducible charac-
ters of SO(3) introduced previously in Section II. Note

that the Fourier series expansion of ·½ exhibits the fact

that ·½ is a zonal function with Fourier coefficients

·̂`½ = e
¡`(`+1)½.

Now, we introduce some of the properties of the heat

kernel. First, ·½(x) is an approximate identity as it fullfils
the following properties:

² k·̂`½k · C 8` ½ 2 R+
² lim½!0 ·̂`½ = Id 8`
² lim½!1 ·̂`½ = 0 8` > 0
² ¡(@=@½)·̂`½ is a symmetric positive definite matrix for
all ½ > 0 and `¸ 0

where Id denotes the identity operator. As the heat

kernel ·½ is an approximate identity, it follows that:

·½ ¤ h¡!
½!0

h 8h 2 L2(SO(3))

As detailed in [21], a family of wavelets correspond-

ing to the heat kernel on SO(3) is consequently of the

form:

ª½(x) =
1p
®(½)

X
`¸0
(2`+1)

p
`(`+1)e¡(`(`+1)=2)½Â`(x)

(26)

with ®(½) a normalizing factor to be detailed below.

Rephrasing this equation in terms of Fourier transform,
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noticing that the heat wavelet family is zonal, one can

write that:

ª½(x) =
X
`¸0
(2`+1)ª̂½Â

`(x) (27)

where the Fourier coefficients of ª½ are:

ª̂½ =
1p
®(½)

p
`(`+1)e¡(`(`+1)=2)½ (28)

As can be seen in Equation (26), the choice for the

normalization coefficients ®(½) has to be made. In order

to have a normalized/unitary wavelet family, we can use

the Parseval identity to choose ®(½). In fact, by (18), we

have that:

kª½k22 =
X
`¸0
(2`+1)2jª̂½j2 (29)

and imposing that kª½k22 = 1 8½, one obtains that:

®(½) =
X
`¸0
(2`+1)2`(`+1)e¡`(`+1)½ (30)

This choice for ®(½) will be made throughout the rest

of the paper. Notice also that the heat wavelet family

ª½ 2 L2(SO(3)) is a diffusive wavelet family as it satisfies
the admissibility condition:

·½(x) =

Z +1

½

( ²ªt ¤ªt)(x)®(t)dt

=

Z +1

½

Z
SO(3)

²ªt(g)ªt(g
¡1x)d¹(g)®(t)dt (31)

in which ·½(x) is an diffusive approximate convolu-

tion identity and where we used the notation ²ª½(g) =

ª½(g
¡1). The fact that ·½(x) is an approximate convolu-

tion identity ensures that the wavelet transform can be

inverted. Note that the approximate convolution identity

can be expressed using the Fourier coefficients. In the

case of ·½, it means that:

lim
½!0

·̂`½ = 1 8`

This means that an approximate convolution identity

is characterized by constant Fourier coefficients in the

limit.

With the diffusive wavelets introduced, we can now

introduce the wavelet transform for functions on the

rotation group.

B. Wavelet transform on SO(3)

Recall that we are interested in estimating proba-

bility density functions of SO(3)-valued random vari-

ables using the diffusive wavelet transform. In the se-

quel, we consider probability density functions f be-

longing to L2(SO(3),R)\L1(SO(3),R) with the addi-
tionnal condition that

R
SO(3)

fd¹(g) = 1 and that they are

non-negative. The diffusive wavelet transform for such

densities is as follows. Given a diffusive wavelet family

ª½ 2 L1(SO(3)) as defined in III-A, then the Wavelet
Transform (WT) of f 2 L2(SO(3),R)\L1(SO(3),R) is:

WT : f
SO(3)

¡! WTf
R+£SO(3)

with the following expression:

WTf(½,g) = (f ¤ ²ª½)(g) =
Z
SO(3)

f(x) ²ª½(x
¡1g)d¹(x)

(32)

and where we made use of the notation ²ª (x) =ª(x¡1).
Using scalar product on the rotation group, this expres-

sion can be written like:

WTf(½,g) =

Z
SO(3)

f(x)ª½(g
¡1x)d¹(x) = hf,T¤g ª½iSO(3)

(33)

with T¤g the following operator: T
¤
g :ª !ª (g¡1:). Equa-

tion (33) is a very general definition of wavelet trans-

form on SO(3). In the sequel, we will only make use of

the heat wavelet family given in (26) to define the heat

wavelet transform. One of the interesting properties of

the wavelet transform is that it is invertible. The density

f can thus be reconstructed in the following way:

f(x) =

Z
R+

Z
SO(3)

WTf(t,g)ªt(g
¡1x)d¹(g)®(t)dt

=

Z
R+

Z
SO(3)

(f ¤ ²ªt)(g)ªt(g¡1x)d¹(g)®(t)dt

=

Z
R+
(f ¤ ²ªt ¤ªt)(x)®(t)dt

= f ¤
Z
R+
( ²ªt ¤ªt)(x)®(t)dt

= f ¤
Z +1

½!0
( ²ªt ¤ªt)(x)®(t)dt

= lim
½!0
(f ¤·½)(x)

= f(x) (34)

where the last equality is obtained thanks to the fact

that ·t(x) is a convolution identity. This can be verified

in the Fourier domain, when denoting f̂` the Fourier

coefficients of f, by:

lim
½!0
(f ¤·½)(x) = lim

½!0

X
`¸0
(2`+1)e¡`(`+1)½f̂`Â`(x)

=
X
`¸0
(2`+1)f̂`Â`(x)

= f(x) (35)

An interesting property of the heat wavelet transform

as defined above is that it is unitary. This property reads

hWTf1 (½,g),WTf2 (½,g)iR+£SO(3) = hf1,f2iSO(3) (36)
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where we use the notation h: : :iR+£SO(3) for the scalar
product between wavelet transforms. This unitary con-

dition makes possible to compare densities in the wave-

let domain for example.

We have introduced the heat wavelet transform (also

called diffusive wavelet transform) for probability den-

sities of rotation random variables. In the next Section,

we will make use of this transform to define an estimator

for densities on SO(3).

IV. ESTIMATION

In this section, we consider the problem of estimat-

ing the probability density function of a SO(3)-valued

random variable given an independent sample of size

K: fX1,X2, : : : ,XKg. After presenting kernel estimators
as defined in [6], we show that the characteristic func-

tion estimator and the heat wavelet estimator are actually

kernel estimators. We provide the MISE of each of them

and explain their differences.

A. Kernel estimators on SO(3)

First, we recall some of the results given in [6] for

kernel estimators of probability density functions on

SO(3).

1) Definition: A kernel estimator, with kernel ¥ 2
L2(SO(3)) has the following expression:

³K(x) =
1

K

KX
k=1

¥(X¡1k x) (37)

This definition is the extension of the classical kernel

estimator known for densities of random variables on

the line (see [16] for details). Once again, we emphasize

that translation is made through the group action. Before

introducing different types of kernels ¥(:), we introduce

how to study their estimation performances.

2) Bias and variance: In order to characterize the
kernel estimator, we provide here the expression of its

Mean Integrated Square Error (MISE). This expression

is general for kernel estimators and will be of use later

to analyze the behaviour of the characteristic function

and the wavelet estimators.

In the sequel, we will make use of the following

notation in order to distinguish the different density

estimator. Every estimator, based on a simple sample

of size K, will be denoted ³¢K (:) with the superscript

¢ taking the following values: ¢= ® for the “general”

kernel estimator, ¢= ¯ for the characteristic function

estimator and ¢= ° for the heat wavelet estimator.

Associate quantities will exhibit the ®,¯,° values when

needed.

As known in the classical case [16] and as given for

the SO(3) case in [6], the MISE of the kernel estimator

³®K(x) is made of a bias and a variance term:

MISE(³®K(x)) = kf¡E[³®K]k22 +E[k³®K(x)¡E[³®K(x)]k22]
(38)

with the following fact:

E[³®K(x)] = E

"
1

K

KX
k=1

¥(X¡1k x)

#
=
1

K

KX
k=1

E[¥(X¡1k x)]

=
1

K

KX
k=1

Z
SO(3)

¥(y¡1x)f(y)d¹(y) = (¥ ¤f)(x)

(39)

This means that the mean value of the kernel consists in

the convolution of the density with the kernel. One can

also express the bias b® and the variance ¾
2
® as follows:

b2® = kf¡E[³®K]k22 = kf¡f ¤¥k22 (40)

and

¾2® = E[k³®K(x)¡E[³®K(x)]k22] =
1

K
(k¥k22¡k¥ ¤fk22)

(41)

Also, it is interesting to note that the following property

holds:

lim
K!1

³®K(x) = (¥ ¤f)(x) (42)

As a consequence, the MISE for the kernel estimator is:

MISE(³®K) = kf¡f ¤¥k22 +
1

K
(k¥k22¡k¥ ¤fk22) (43)

This general expression is useful for the study of ker-

nel estimator. Using results from representation theory

(Fourier series expansion), it is also possible to write the

MISE in terms of the Fourier coefficients of ¥ and f.

Remembering the Parseval identity and the convolution

property of the Fourier series expansion on SO(3), one

gets, just like in [6] but with a slight (2`+1) factor due

to our normalization choice, the following representa-

tion:

MISE(³®K)

=
X
`¸1

μ
(2`+1)(f̂`)2(1¡ ¥̂`)2 + (2`+1)

K
(¥̂`)2(1¡ f̂`2)

¶
(44)

where the following notation was used for the Fourier

coefficients of the probability density function f:

(f̂`)2 = (2`+1)¡1
X̀
n,m=¡`

jf̂`n,mj2 (45)

This expression of the MISE of a kernel estimator on

SO(3) will be used with a specific kernel, namely the De

La Vallée Poussin kernel, in Section V for comparison

purposes with the characteristic function estimator and

the wavelet estimator.

B. Characteristic function estimator on SO(3)

The characteristic function estimator presented here

was used for example in [5] to provide a non-parametric

178 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 11, NO. 2 DECEMBER 2016



estimation of the density of a compound Poisson pro-

cess on the rotation group SO(3). Recall that our no-

tation is ³
¯
K(:) for this estimator. It is shown here that

this estimator is in fact a kernel estimator and use can

be made of the MISE expressions given in Section III-

A.2. Note that we consider the truncated version of the

estimator, with `max = L, given by:

³
¯
K(x) =

LX
`=0

X̀
n=¡`

X̀
m=¡`

(2`+1)
f̂
f`nmD

`
nm(x) (46)

and where: f̂
f`nm =

1

K

KX
k=1

D`nm(Xk) (47)

The use of truncated version of the Fourier expansion

is necessary for obvious computational reasons. Such a

truncation has effects on the performance of the esti-

mator as it only converges to a low-resolution version

of the density. However, it is well-adapted to naturally

band-limited functions. In the simulation in Section V,

we will investigate the influence of the bandwidth on

the estimation performances.

The definition of the characteristic kernel estimator

leads by simple calculation to:

³
¯
K(x) =

1

K

KX
k=1

X
`¸0
(2`+1)Â`(X¡1k x) (48)

This can be obtained thanks to the following prop-

erty (see [22] for example):

X̀
n=¡`

X̀
m=¡`

D`nm(x)D
`
nm(y) = Â

`(x¡1y) (49)

Note that this estimator indirectly estimates the density,

as it is designed to estimate its Fourier coefficients. The

estimator
f̂
f`nm is the characteristic function estimator.

From equation (48), one can see that the characteristic

function estimator is a kernel estimator, with the specific

kernel:

¥(:) =

`max=LX
`¸0

(2`+1)Â`(:)

From the expression of the MISE for a kernel esti-

mator given in Equation (44), one can directly deduce

the MISE for the characteristic function estimator. It

suffices to replace the Fourier coefficients ¥̂`, remem-

bering the linearity property of the Fourier expansion,

by the sum of the unit coefficients up to `max = L. This

make the characteristic function estimator a very “sim-

ple” kernel with constant Fourier coefficients. Illustra-

tion of its behaviour compared to other estimators will

be presented in Section V.

C. Linear diffusive wavelet estimator

Using the diffusive wavelet introduced in Section

III-B, it is possible to build an estimator of the density

f through its wavelet expansion. Recall that with our

notation, the wavelet estimator is denoted ³
°
K(:, :). Note

also that an extra scalar parameter is introduced when

using the wavelet estimator. This is the scaling param-

eter of the wavelet transform. The estimator based on

the wavelet transform consists in replacing the wavelet

transform WTf(½,x) in the inversion formula given in

Equation (34) by its empirical estimate, obtained from

the data sample. The wavelet coefficients are thus esti-

mated using:

gWTf(½,x) = 1

K

KX
k=1

²ª½(X
¡1
k x) (50)

The estimated density ³
°
K(x) takes the following expres-

sion when plugging the estimated coefficients in the in-

version formula:

³
°
K(x, t) =

1

K

KX
k=1

Z +1

t

Z
SO(3)

²ª½(X
¡1
k y)ª½(y

¡1x)d¹(y)®(½)d½

(51)

The ‘scaling’ coefficient ½ is a parameter for this esti-

mator. Ideal range should be 0 to +1. Obviously it is
not possible to reach the upper limit and one can only

numerically tend to very high values. As can be seen in

the Simulation section, it is not a limitation for the use

of the estimator. In the sequel, we will only keep the

t¸ 0 constraint and keep in mind the upper limit issue.
It can easily be shown that the wavelet estimator can

be expressed using the kernel ·t previsouly introduced

in Equation (31). The following equality thus stands:Z +1

t

Z
SO(3)

²ª½(X
¡1
k g)ª½(g

¡1x)d¹(g)

=

Z +1

t

Z
SO(3)

²ª½(g
0)ª½(g

0¡1X¡1k x)d¹(g
0)

=

Z +1

t

( ²ª½ ¤ª½)(X¡1k x)®(½)d½

= ·t(X
¡1
k x) (52)

which is obtained by simple change of variable g0 =
X¡1k g and using the fact that the Haar measure is bi-
invariant, inducing that d¹(Xkg

0) = d¹(g0). As a conse-
quence, the linear wavelet estimator is:

³
°
K(x, t) =

1

K

KX
k=1

·t(X
¡1
k x) (53)

where one can obviously see that this estimator is a

kernel estimator. In order to study this estimator, one

can look at its MISE with the bias and variance term.
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The bias term is:

E[³°K(x, t)]

= E

"
1

K

KX
k=1

Z +1

t

Z
SO(3)

²ª½(X
¡1
k y)

£ª½(y¡1x)d¹(y)®(½)d½
#

=
1

K

KX
k=1

Z +1

t

Z
SO(3)

Z
SO(3)

f(z) ²ª½(z
¡1y)

£ª½(y¡1x)d¹(z)d¹(y)®(½)d½

= f ¤
Z +1

t

( ²ª½ª½)(x)®(½)d½

= (f ¤·t)(x) (54)

Note that we have:

lim
t!0
E[³°K(x, t)] = f(x) (55)

Note that this is due to the fact that we used an approx-

imate convolution identity. Thus, the bias of the linear

wavelet estimator takes the following form:

b2°,t = kf¡E[³°K(t)]k22 = kf¡f ¤·tk22 (56)

It is noticeable that, asymptotically with t, the bias term

vanishes:

lim
t!0
b2°,t = 0 (57)

thanks to the definition of ·t. This makes the wavelet

estimator an unbiased estimator when t reaches 0. Now,

for the variance term, notice first that:

E[³°K(x, t)¡E[³°K(x, t)]]2 = var[³°K(x, t)]

=
1

K2

KX
k=1

var[·t(X
¡1
k x)]

(58)

It comes then naturally that the variance term takes

the form:

¾2°,t =

Z
SO(3)

var[³
°
K(x, t)]d¹(x)

=
1

K2

KX
k=1

Z
SO(3)

(E[·2t (X
¡1
k x)]¡E2[·t(X¡1k x)])d¹(x)

=
1

K2

KX
k=1

Z
SO(3)

Z
SO(3)

·2t (z
¡1x)f(z)d¹(z)d¹(x)

¡ 1

K2

KX
k=1

Z
SO(3)

(f ¤·t)2(Xk)d¹(Xk) (59)

where we made use of the bi-invariance of the Haar

measure and of the independence between the samples

Xk. Finally, it is possible to give the expression of the

variance as:

¾2°,t = E[k³°K(x, t)¡E[³°K(x, t)]k22] =
1

K
(k·tk22¡kf ¤·tk22)

(60)

As was noticed earlier, the wavelet estimator is a

kernel estimator. Using the general formula for the

MISE of kernel estimators and the expressions of the

bias and variance given above, one gets the following

expression for the MISE:

MISE(³
°
K , t) =

X
`¸1
((2`+1)(f̂`)2(1¡ e¡`(`+1)t)2

+
(2`+1)

K
e¡2`(`+1)t(1¡ (f̂`)2)) (61)

Using a first order approximation of the exp(:) func-

tion for small t, one gets an expression of the MISE of

the form:

MISE(³
°
K , t) =

X
`¸1

·
(2`+1)(1¡ 2`(`+1)t)

K

+(f̂`)2
(2`+1)

K
(2`(`+1)t(1+K)¡ 1)

¸
(62)

This expression will be used in Section V. It is of

interest to note that the behaviour of the MISE with

parameter t is as follows:

lim
t!0
MISE(³

°
K , t) =

X
`¸1

(2`+1)

K
(1¡ (f̂`)2) (63)

Also notice that as f is a probability density, then

f(x)¸ 0 almost everywhere and we have that f̂0 = 1
because f̂0 =

R
SO(3)

f(x)d¹(x).

The three studied estimators belong to the kernel es-

timator family, but they do have differences. The given

expressions allows to study and compare their behav-

iors. The following section highlights the differences

between them.

V. SIMULATIONS

In this section, we present some simulations that

illustrate the differences between the three considered

estimators studied in this paper. The comparison is

performed in terms of the respective MISE computed

in the context of estimation of a mixture of densities on

the rotation group SO(3).

A. Definition of a test function

First, we have to define a test function f on the

rotation group, which we take similar to the one studied

in [6]. This mixture takes the form:

f(x) = 0:2+0:7Ã30VP(R(e1,¼=6) ¢ x)
+0:1Ã45VP(R(e2,4¼=9) ¢ x), (64)
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Fig. 1. Kernels used in the simulations. From left to right: Heat kernel, La Vallée Poussin kernel and characteristic function kernel. Kernels

are displayed for different values of the “bandwidth” parameter.

where R(´,!) denotes the rotation of angle ! and axis ´,
and Ã·VP is the de La Vallee Poussin kernel. This kernel

has a closed form expression, which reads

Ã·VP(x) =
(2·+1)22·μ
2·+1

·

¶ cos2·
μ
!(x)

2

¶

=

μ
2·+1

·

¶¡1 ·X
`=0

(2`+1)

μ
2·+1

·¡ `
¶
Â`(x):

(65)

The parameter · can be understood as the analog of the

½ parameter in the heat kernel wavelet approach, that

is it plays the equivalent role of a bandwidth. Figure 2

illustrates the correspondence between different values

of · and ½ (log2 ½ actually).

B. Computing the MISE

We recall that the MISE can be expressed in the

Fourier domain for a kernel function ¥ by

MISE(¥)

=
X
`¸1

μ
(2`+1)(f̂`)2(1¡ ¥̂`)2 + (2`+1)

K
(¥̂`)2(1¡ (f̂`)2)

¶
:

(66)

The last expression of the MISE in terms of the Fourier

coefficients of both the test function f and the chosen

kernel ¥ allows us to compute the MISE in a simple

way. The Fourier coefficients of the kernel are in gen-

eral known, as it is the case here for the kernel used

(de la Vallée Poussin, Heat kernel, and characteristic

function kernel). However the coefficients of f have to

be computed with a numerical implementation of the

Fourier transform on the rotation group.

We used in our simulation an implementation of the

FFT on SO(3) as proposed by Kostelec and Rockmore

[23]. This FFT is based on a equiangular sampling

of the Euler angles. Since our test function f is a

linear combination of de la Vallée Poussin kernels, it

is bandlimited by the largest · value chosen, that is

in our case ·= 45. The FFT was thus performed up

to degree L= 49, leading to 166650 complex valued

Fourier coefficients f̂`nm. The energy per degree f̂
`2 can

be computed like:

(f̂`)2 =
1

(2`+1)

X̀
n,m=¡`

jf̂`nmj2: (67)

This expression, up to the maximum value of ` is then

plugged into the MISE expression.

C. Results

In figure 1 we have plotted the kernels used in our

simulations. We consider here only three kernel types,

the de La Vallée Poussin kernel, the Heat kernel (some-

times called the Gauss-Weierstrass kernel) and the char-

acteristic function kernel. For each of these kernels we

looked at different bandwidth parameters, respectively

·, ½, and L, the latter being the truncation order in

the characteristic function estimator. The plots in Fig-

ure 1 emphasize the role of the respective bandwidth,

as the concentration of the kernel functions increases

with larger bandwidths. We also note that the de La

Vallée Poussin and heat kernels are nonnegative kernels,

whereas the characteristic function kernel exhibits neg-

ative values. Such behaviour has drawbacks, especially

when the density to estimate exhibits narrow modes.

Before stepping into the MISE figures, we recall an

important result from Hielscher [6, theorem 3], which

gives the MISE optimal bound for the function f. It
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Fig. 2. Bandwidth (number of non-null coefficients in the Fourier

expansion) comparison for different values of · (de la Vallee

Poussin kernel) and ½ (Heat kernel).

reads explicitly as

MISEopt =

1X
`=1

(2`+1)
(f̂`)2(1¡ (f̂`)2)
(K ¡ 1)(f̂`)2 +1

(68)

where we have adapted the prefactor in (2`+1) due

to our normalization choice. This optimal MISE is

displayed on Figures 3, 4 and 5 (black solid line) for

comparison with the studied estimators. Recall also that

for comparison purpose, a comparison of parameters

½ and · with respect to the bandwidth is diplayed in

Figure 2.

We investigate now the behavior of each kernel and

its influence on the MISE for different values of band-

width parameters. It is important to note that in each

experiment, bandwidths were fixed, as opposed to what

was done in [6] were the bandwidths were chosen as

optimal with respect to the test function and the number

of observations. Our approach is indeed motivated by a

multiresolution approach, with the minimum amount of

information about the function f being incorporated in

the kernels.

In Figure 3 we have the MISE evaluated for de la

Vallée Poussin kernel with bandwidth parameter rang-

ing for ·= 5, 60, 115, 170, 225, 280, 335, 390, 445;

along the theoretical lower bound. In Figure 4 we have

the MISE evaluated for the heat kernel with bandwidth

parameter ranging from ½= 2¡1 to ½= 2¡9, (which cor-
responds to a dyadic scaling) along the theoretical lower

bound. Finally, in figure 5 we have the MISE evaluated

for the characteristic function kernel with bandwidth pa-

rameter ranging from L= 1 to L= 9, along the theoret-

ical lower bound.

Fig. 3. MISE computed for a de la Vallee Poussin kernel type, for

bandwidth values ·= 5, 60, 115, 170, 225, 280, 335, 390, 445

(from light yellow to dark red). The optimal MISE bound given in

Equation (68) is displayed in black for comparison.

Fig. 4. MISE computed for the heat kernel, for bandwidth values

½= 2¡j with j = 1,2, : : : ,9 (from light yellow to dark red). The

optimal MISE bound given in Equation (68) is displayed in black

for comparison.

As expected with a multiresolution approach, for a

given bandwidth the MISE reaches a lower threshold af-

ter a sufficient number of observations K. Moreover as

the bandwidth increases the threshold is lowered. Com-

paring the three kernel types, the de La Vallée Poussin

kernel seems to converge with various speeds for differ-
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Fig. 5. MISE computed for the characteristic function kernel, for

bandwidth values L= 1,2, : : : ,9 (from light yellow to dark red).The

optimal MISE bound given in Equation (68) is displayed in black

for comparison.

ent bandwidths, while the heat or characteristic function

kernel have a more regular rate of convergence with

respect to the bandwidth. Therefore, the de La Vallée

Poussin kernel seems slightly less appropriate for a mul-

tiresolution analysis. The heat kernel and characteristic

function kernel are performing better, with a slight ad-

vantage to the characteristic function kernel as it comes

closest to the MISE optimal bound. We note however

that the characteristic function kernel does not have the

nonnegative property of the heat kernel, which may be

critical when the density to estimate possesses sharp-

ened modes. Note that the nonnegativity can be handled

during estimation procedures using for example “square

root” estimators as in [24], and which thus require ex-

tra steps for the estimation. It is also noticeable that for

small sizes of samples (from 101 to 102) the wavelet es-

timator gets closer to the optimal bound. This suggests

that an adaptive choice of the parameter ½ could lead to

very good estimates in most of the situations.

VI. CONCLUSION

We have demonstrated that the characteristic func-

tion estimator and the linear heat wavelet estimator on

SO(3) both belong to the larger family of kernel estima-

tors for densities on SO(3). The characteristic function

estimator consists in a kernel estimator with constant

Fourier coefficients up to a maximum bandwidth, while

the wavelet estimator leads to a heat kernel with co-

efficients driven by the scaling parameter of the heat

wavelet family. The MISEs of the introduced estima-

tor have been presented and illustration of the differ-

ences between heat kernel, characteristic function and

De La Vallée Poussin kernels investigated. The diffusive

wavelet based estimator combines the nice property of

converging faster than the De La Vallée Poussin kernel

and of being strictly positive (as opposed to the char-

acteristic function kernel), allowing good performances

in many configurations. The heat wavelet kernel thus

combines naturally the advantages of both the De La

Vallée Poussin and characteristic function kernels, by

providing a nonnegative estimator with very good per-

formances in a wide range of bandwidths. The simu-

lation results presented demonstrate the advantage of

using the heat wavelet transform for probability density

estimation on the rotation group SO(3). Future work

should consist in studying the nonlinear (thresholded)

version of the heat wavelet estimator which is known to

perform better than linear wavelet estimator on the real

line. Validation on real datasets should also be investi-

gated to completely validate the proposed estimator.
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