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Directional data emerge in many scientific disciplines due to the
nature of the observed phenomena or the working principles of
a sensor. The problem of tracking with direction-only sensors is
challenging since the motion of the target typically resides either in
3D or 2D Euclidean space, while the corresponding measurements
reside either on the unit sphere or the unit circle, respectively.
Furthermore, in multitarget tracking there is the need to deal with
the problem of pairing sensors measurements with targets in the
presence of clutter (the data association problem). In this paper we
propose to approach multitarget tracking in clutter with direction-
only data by setting it on the unit hypersphere, thus tracking the
objects with a Bayesian estimator based on the von Mises-Fisher
distribution and probabilistic data association. To achieve this goal
we derive the probabilistic data association (PDA) filter and the
joint probabilistic data association (JPDA) filter for the Bayesian
von Mises-Fisher estimation on the unit hypersphere. The final
PDA and JPDA filter equations are derived with respect to the
Kullback-Leibler divergence by preserving the first moment of the
hyperspherical distribution. Although the fundamental equations
are given for the hyperspherical case, we focus on the filters on the
unit 1-sphere (circle inR2) and the unit 2-sphere (surface of the unit
ball in R3). The proposed approach is validated through synthetic
data experiments on 100 Monte Carlo runs simulating multitarget
tracking with noisy directional measurements and clutter.
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I. INTRODUCTION

Directional data emerge in many scientific disci-

plines. Since the surface of the earth is approximately a

sphere, such data arise readily in earth sciences, e.g. the

location of the earthquake’s epicenter, the paleomag-

netic directions of the earth’s magnetic pole etc. Fur-

thermore, many astronomical observations are points on

the celestial sphere and as such yield directional data. In

multitarget tracking (MTT), it is not uncommon to work

with sensors that can provide only directions to the ob-

jects in question. The measurement and estimation state

space have a specific geometry of their own, which is

different from the true trajectory space geometry.

The problem is challenging, because, although the

motion of the target resides either in 3D or 2D Euclidean

space, corresponding measurements reside either on the

sphere or the circle, respectively. For example, if we are

measuring and estimating only the direction to the target

in 2D, i.e. the azimuth, the state and measurements will

bear the non-Euclidean properties of angles. Applying

standard filtering techniques employing the Gaussian

distribution on Rd would ignore the underlying geome-
try. In robotics, measurements from various sensors, due

to their nature of operation, yield direction-only infor-

mation of the objects of interest, e.g. microphone arrays

measure the direction of the sound source, perspective

and omnidirectional cameras measure directions of var-

ious features of interest in space.

Considering MTT, the goal of such a system is to

estimate the multiple trajectories in scenarios with noisy

measurements, clutter or false alarms (measurements

that falsely appear to originate from moving objects).

The duties of such a system are truly numerous, and in

the past several seminal methods have been developed

in order to tackle this problem wherein data association

plays one of the crucial roles. To solve this problem

the methods that can be used are the global nearest

neighbor (GNN) which attempts to find the single most

likely data association hypothesis at each scan [1], the

probabilistic data association (PDA) filter for single

target tracking and joint probabilistic data association

(JPDA) filter for MTT where multiple hypotheses are

formed after each scan and then these hypotheses are

combined before proceeding further with the next scan

[2], and the multiple hypothesis filter (MHT) [3] where

multiple data association hypotheses are formed and

propagated from scan to scan [1]. Furthermore, a group

of methods based on random finite sets was developed

with MTT in mind. An example is the probability

hypothesis density (PHD) filter [4] which estimates the

number of objects in the scene but does not solve the

data association problem by itself, however, a solution

has been presented in [5] for the Gaussian mixture

PHD filter [6]. Further solutions within this framework

were developed, such as the cardinalized PHD (CPHD)

[7], [8], and multi-Bernoulli filters [9]—[12].

JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 11, NO. 2 DECEMBER 2016 157



Estimation methods using the von Mises (vM) and

the wrapped Gaussian distributions were recently dis-

cussed in [13]—[22]. Furthermore, inference on quater-

nions, namely the Bingham distribution (which actu-

ally models variables with 180± symmetry), was used
in [23]—[25] and in [26] where, furthermore, a second-

order filter was derived which included also the rota-

tional velocity. These approaches, advocating the unit

hypersphere as the appropriate filtering space, showed

better performance of the Bingham filter compared to

the extended Kalman filter. This approach was fur-

ther extended to unscented orientation estimation based

on the Bingham distribution and showed better perfor-

mance than the unscented Kalman filter and better to

equal performance than the particle filter (depending

on the number of particles) [27]. However, the normal-

ization constant of the Bingham distribution, hence its

partial derivative, cannot be computed in closed form,

but this can be surmounted by caching techniques and

its relationship with the vM distribution [25]. On the

contrary, the von Mises-Fisher (vMF) distribution does

not require such techniques since the normalization con-

stant and its partial derivative can be calculated in closed

form, which will be of practical interest in the ensuing

JPDA equations. Indeed, there are many choices for di-

rectional distributions, but for inferential purposes the

vMF distribution is most widely used because of its ex-

ponential family structure [28].

Considering target tracking on the unit sphere (as in

surface of the unit ball in R3), it was proposed in [29]
to utilize the vMF distribution to model the system state

and the sensors measurements after which a Bayesian

estimator was developed for single object tracking. This

method was used in our previous work [30] in order

to track a single target detected by an omnidirectional

camera on a mobile robot, thus not offering a consistent

method for dealing with multiple moving objects nor

false alarms/clutter. A global nearest neighbor (GNN),

which in contrast to JPDA solves the data association by

hard assignment, was applied in tracking multiple tar-

gets on the sphere in [31] and the Rényi ®-divergence

was used as a distance measure. In [32] we developed

the vM mixture PHD filter and compared it to the Gaus-

sian mixture PHD filter for MTT on the unit circle.

The vM mixture PHD filter showed better performance

since it was able to capture the circle geometry intrin-

sically, which proved important for the mixture PHD

filter having components spread throughout the entire

state space. In [33] the vMF filter was used to track

multiple speakers. The authors also addressed model-

ing the object velocity with a Gaussian distribution by

assuming that the posterior state distribution can fac-

tor to the product of the vMF and the Gaussian distri-

bution. The authors compared the performance of the

vMF filter to the constant velocity Kalman filter and

a particle filter based on the vMF sampling. The vMF

filter showed better performance than the Kalman filter,

while the performance with respect to the vMF particle

filter depended on the number of particles (at the cost

of increase in computational complexity). Multitarget

tracking was solved by averaging observations prior to

the update step, where the weights were computed based

on the normalized vMF innovation term (also taking

into account a uniform distribution to handle outliers).

The authors conclude that the vMF filter strikes a good

compromise between the efficiency of the Kalman filter

and the statistical grounding of the vMF particle filter.

In [34] we proposed a probabilistic data association

solution to the problem of tracking single and multiple

targets in clutter with direction-only sensors. This pa-

pers serves as a foundation for the present paper and we

are extending it in several ways. Instead of focusing on

the unit sphere, in the present work the Bayesian filter

is presented on the unit hypersphere, i.e. the (d¡ 1)-
dimensional unit sphere, and it is shown how vM and

vMF filters arise as special cases. We also provide

in depth mathematical proofs of the moment-matching

techniques used in the paper. Furthermore, validation

gating is discussed in detail and experiments are ex-

tended through more thorough validation via MC runs

of the vM and vMF PDA and JPDA filters.

Specifically, we pose the problem on the unit hy-

persphere and utilize a Bayesian tracking algorithm

that is based on the vMF distribution on the (d¡ 1)-
dimensional unit sphere. To solve the data association

problem we derive the PDA and JPDA filter equations

for the aforementioned Bayesian filter. This constituted

(i) deriving the a posteriori probabilities of association

events on the unit hypersphere which essentially weigh

each hypothetical estimation and form a mixture of von

Mises-Fisher densities, (ii) determining the final (single)

component density as the result of the update in the

PDA and JPDA filter by preserving the first moment

of the hyperspherical distribution (which is optimal in

the Kullback-Leibler sense), and (iii) modeling the false

alarms as Poisson processes. The proposed algorithms

were tested on 100 Monte Carlo runs of a synthetic

data set comprising of single and multiple-object scenar-

ios where direction-only measurements were corrupted

with noise and clutter.

The paper is organized as follows. Section II presents

the general mathematical background and formulae for

tracking on the hypersphere with the von Mises-Fisher

distribution. Section III describes the proposed PDA

and JPDA filtering approaches based on the von Mises-

Fisher distribution. Section IV presents the results and

discussion of the synthetic data experiments, while Sec-

tion V concludes the paper.

II. GENERAL BACKGROUND

When considering directions in d dimensions, i.e.

unit vectors in d-dimensional Euclidean space Rd, one
can represent them as points on the (d¡1)-dimensional
sphere Sd¡1 of unit radius. Thus, in our notation, 1-
sphere is the unit circle in R2 and the 2-sphere is
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the surface of the unit ball in R3. In the sequel we
introduce all the necessary constituents and discuss the

basic paradigm of a tracking system on the unit (d¡ 1)-
sphere using von the Mises-Fisher distributions.

A. von Mises-Fisher distribution
Parametric probability distribution defined on the

unit (d¡ 1)-dimensional sphere Sd¡1, whose probability
density function (pdf) is given by

f(x;¹,·) = Cd(·)exp(·¹ ¢ x), x 2 Sd¡1, (1)

is called von Mises-Fisher distribution with parameters
·¸ 0 and ¹ 2 Sd¡1 denoting the concentration and the
mean direction, respectively. Expression

Cd(·) =
·d=2¡1

(2¼)d=2Id=2¡1(·)
(2)

is the normalization constant with respect to the stan-

dard surface measure, while Ip denotes the modified

Bessel function of the first kind and order p [35]. To en-

lighten many of its properties, it is worth of considering

the vMF distributions as an exponential family. Recall, a

parametric set of probability distributions parametrized

by the natural parameter μ 2£ μ Rd is called an ex-
ponential family if their probability densities admit the
following canonical representation [36]

p(x;μ) = exp(T(x) ¢μ¡F(μ)+C(x)), (3)

where T(x) is called sufficient statistics, F(μ) is the
log-normalizing function and C(x) denotes the carrier
measure. Many familiar parametric distributions, like

the Gaussian, Poisson, Gamma, Dirichlet etc., are ex-

ponential families [37].

One easily deduces from (1) that the vMF distribu-

tion constitutes an exponential family parametrized by

the natural parameter μ = ·¹ 2 Rd, the log-normalizing
function given by

Fd(μ) =¡ logCd(kμk), (4)

and the trivial carrier measure. The minimal sufficient

statistics is the identity map on Sd¡1, T(x) = x, hence,
the vMF distribution is completely determined by the

directional (angular) mean1

E[x] =
Z
Sd¡1

xf(x;¹,·)dx=rFd(μ) = Ad(·)¹, (5)

where Ad(·) is the ratio of the following Bessel func-

tions

Ad(·) =
Id=2(·)

Id=2¡1(·)
: (6)

Please see Proposition A.1 in Appendix A for the proof.

Let us mention two more distinctive properties of the

vMF distribution: (i) density (1) is rotationally invari-

ant around the mean direction and, (ii) analogously to

1Note that the directional mean is defined by the integral (5), while the
mean direction ¹ is the parameter of the von Mises-Fisher distribution.

the multivariate Gaussian distribution, it is character-

ized by the maximum entropy principle in the follow-
ing sense. Given any pdf on Sd¡1 of prescribed di-
rectional mean ´, it is then the vMF distribution with
the natural parameter μ = (rF)¡1(´), which maximizes
the Boltzmann-Shannon entropy ¡RSd¡1 p(x) logp(x)dx
[29, Proposition 2.2].

In the present paper we present the vMF filter on

Sd¡1, but due to the aimed application of MTT, we
particularly show explicit relation in cases when d = 2

and d = 3, i.e. the vMF distributions on the unit 1-sphere

(called the von Mises distribution) and the unit 2-sphere

(also called the Fisher or Langevin distribution). For the

former the above expressions amount to [35]

C2(·) =
1

2¼I0(·)
and A2(·) =

I1(·)

I0(·)
, (7)

while for the latter they simplify to

C3(·) =
·

4¼ sinh·
and A3(·) =

1

tanh·
¡ 1
·
: (8)

An example of von Mises-Fisher distributions on the

unit 1-sphere and the unit 2-sphere with different mean

directions and concentration parameters are depicted in

Fig. 1 and Fig. 2, respectively. Even though the appli-

cation examples are shown for cases when d = 2 and

d = 3, with the presented general approach the higher

dimensional von Mises-Fisher filter could be applied in

novel applications beyond MTT. For example, a higher

dimensional von Mises-Fisher distribution was used in

[38] to address large scale data mining applications,

such as text categorization and gene expression anal-

ysis, which involve high-dimensional data that is also

inherently directional in nature.

Please note that we will denote the 1-sphere Bayes

filter as the von Mises filter, while with the practical

slight abuse of terminology the 2-sphere Bayes filter

will be denoted as the von Mises-Fisher filter and where

necessary the general Bayes filter on the (d¡ 1)-sphere
will be called the hyperspherical von Mises-Fisher fil-

ter. Furthermore, all the explicit formulae for the vM

distribution will be presented in angular variables with

the following relation ¹= (cos®, sin®).

B. Motion model

In our model we assume that moving objects are

relatively slow with respect to the sampling rate, i.e.

changes in the objects’s position between two conse-

quent observations are relatively small. Mathematically,

motion of such objects is then described by a wide-

sense stationary stochastic processes, among which,

the Wiener process (Brownian motion) is the standard

choice [39]. These time-continuous processes are typi-

cally further approximated by a random walk of a fixed

time step.

The Brownian motion distribution on Sd¡1 with pa-
rameters ¹ and · is the distribution at time ·¡1 of a ran-
dom point which starts at ¹ and moves on Sd¡1 under
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Fig. 1. Examples of the von Mises-Fisher distribution on the unit

1-sphere, i.e. the von Mises distribution, with equal mean directions

and concentration parameters of 50 (red), 150 (green), and 500

(blue), which correspond approximately to standard deviations of

8:1±, 4:7± and 2:6±, respectively.

Fig. 2. Samples on the unit 2-sphere of the von Mises-Fisher

distribution with different mean directions and concentration

parameters of 50 (red), 150 (green), and 500 (blue), which

correspond approximately to standard deviations of 10±, 5:7± and
3:1±, respectively.

an isotropic diffusion with infinitesimal variance Id¡1
(the identity matrix on the tangent space of Sd¡1) [28].
When d = 2 the Brownian motion distribution is the

wrapped Normal distribution, which in turn is very close

to and can be well approximated by the von Mises dis-

tribution with corresponding parameter transformations

[16], [28]. This closeness of the densities also extends

to the distributions on Sd¡1, i.e. to the Brownian mo-
tion distribution and the von Mises-Fisher distribution

on Sd¡1, as we shall detail out in the sequel for d = 3.
In practice, this means that in the prediction stage we

can approximate Brownian motion well with the corre-

sponding vMF distribution.

When d = 3, there are at least two viewpoints which

motivate the vMF as a motion model. First, consider

an isotropic Wiener process (Brownian motion) on S2,
which is defined as a temporally and spatially homo-

geneous Markov process [40]. It has been shown that

such process exists and is unique. Moreover, the pdf of

the distribution of a random point starting at x̂k¡1 2 S2
and moving to x̂k at time ¿ > 0 is given by

p(x̂k j x̂k¡1) = 1

4¼

1X
l=0

(2l+1)e¡¿l(l+1)=4Ll(x̂
k¡1 ¢ x̂k), (9)

where Ll are Legendre polynomials of degree l. This

formula is also obtained as the limit of the vanishing

step size of a random walk on the sphere with all di-

rections of movement being equally probable [41]. Fur-

thermore, in the same paper the authors discuss the ap-

proximation of (9), which is the true S2-analogue of the
planar symmetric Gaussian distribution, by a von Mises-

Fisher distribution, which unlike (9) features certain an-

alyticity properties. They show that for small variance

¿ > 0, one can approximate the Brownian motion on S2
by the von Mises-Fisher diffusion with large concentra-

tion parameter ·¿ = 2=¿ , i.e.

p(x̂k j x̂k¡1)¼ f(x̂k; x̂k¡1,·¿ ):
The second approach is from the applicational view-

point probably even more relevant. Consider the iso-

tropic Wiener process in R3 and corresponding time-
discretization (random walk) of fixed time step ¿ > 0.

The transition probability density function of the pro-

cess is given by the Gaussian density

p(xk j xk¡1) = 1

(2¼¾2¿ )
3=2
exp(¡kxk ¡ xk¡1k2=2¾2¿ ),

(10)

where ¾2¿ := ¾
2¿ and ¾ > 0 denotes the process strength.

If we are confined to a measurement device which only

measures direction x̂k 2 S2 of position vectors xk, then
marginalizing (10) over the range, one obtains statistical

model being the angular Gaussian density [42]

p(x̂k j xk¡1) = 1

C

Z 1

0

s2 exp(¡s2=2·¿ + sx̂k¡1 ¢ x̂k)ds
(11)

with parameters x̂k¡1 = xk¡1=kxk¡1k, ·¿ = kxk¡1k2=¾2¿ ,
and normalization constant C. Following [29], for mod-

erate or large values of ·¿ (practically most relevant

cases), (11) can be well approximated by the vMF den-

sity f(x̂k; x̂k¡1,·¿ ).
Usage of physically more realistic motion models

like Ornstein-Uhlenbeck or Langevin processes [43], in

place of simple Wiener process, requires more complex

state representation manifolds and solving the Fokker-

Planck equation to obtain the corresponding state transi-

tion densities. The latter typically needs to be further ap-

proximated by an appropriate parametric density which
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will keep the model computationally tractable and statis-

tically consistent with the remaining ingredients of the

filtering algorithm: state distribution and measurement

model.

C. Observation model

As already announced above, we assume that obser-

vation process consists of measuring a direction, where

measurement disturbances are interpreted as random ro-

tations, i.e. observed direction z is a random rotation of

the true direction x. It is reasonable to statistically de-
scribe such model by a unimodal distribution which is

rotationally invariant around the true direction x.
Since our goal is to derive a Bayesian filter on Sd¡1,

our choice for the measurement model will be the von

Mises-Fisher distribution defined on the (d¡ 1)-sphere,
represented by its density

p(z j x) = Cd(·o)exp(·ox ¢ z), z,x 2 Sd¡1, (12)

where the concentration parameter ·o describes the

measurement uncertainty. In the present paper specific

examples will be given when d = 2 and d = 3, serving

as a model for representing measurements of directions,

i.e. angle-only measurements, in 2D and 3D Euclidean

spaces.

D. Bayesian filter equations

With a Bayes filter we are striving to estimate the

density p(xk j z1:k), i.e. the pdf of the sate xk at time
instant k given the history of all the measurements z1:k.
This process can be decomposed in two steps–namely

the prediction and the correction step. Let us assume

that at time instant k¡ 1 we have estimated the pdf of
the targeted state, i.e. we have the available the posterior

p(xk¡1 j z1:k¡1). For the case at hand, filtering on Sd¡1,
the prediction step amounts to solving the following

integral

p(xk j z1:k¡1) =
Z
Sd¡1

p(xk j xk¡1)p(xk¡1 j z1:k¡1)dxk¡1,
(13)

where p(xk j xk¡1) is the transition density or motion
model of the tracked object. Then, after receiving

the measurement at time instant k the correction step

amounts to evaluating the Bayes rule

p(xk j z1:k) = p(z
k j xk)p(xk j z1:k¡1)
p(zk j z1:k¡1) , (14)

where p(zk j xk) is the sensor model and the normalizer
p(zk j z1:k¡1) can be evaluated via

p(zk j z1:k¡1) =
Z
Sd¡1

p(zk j xk)p(xk j z1:k¡1)dxk: (15)

The goal of the present paper is to employ the filtering

equations (13), (14) and (15) when the underlying dis-

tributions are all of the vMF form. If these equations

were to be solved for the Gaussian distribution, the re-

sult would be the Kalman filter [44].

If we assume that both the posterior at k¡ 1 and the
transition density are vMF distribution then the predic-

tion step (13) would not yield another vMF distribution

and the filtering equations would not stay in the do-

main of the same distribution. To solve this problem, a

moment-matching technique is applied where the mo-

ments of the resulting distribution are matched to the

moments of the corresponding vMF distribution. This

procedure is also the optimal choice in the sense of the

Kullback-Leibler divergence [45].

Let the state have the estimated position (direction)

¹k¡1 2 Sd¡1, conditioned upon all available measure-
ments up to (and including) time k¡ 1, which is sta-
tistically described by the density

p(xk¡1 j z1:k¡1) = Cd(·k¡1)exp(·k¡1¹k¡1 ¢ xk¡1):
Calculating the directional mean with respect to the

prediction density

E[xk j z1:k¡1] =
Z
Sd¡1

xkp(xk j z1:k¡1)dxk

= Ad(·¿ )Ad(·
k¡1)¹k¡1,

and according to (5) we determine a unique vMF

f(xk;¹̄k, ·̄k) such that E[xk j z1:k¡1] = Ad(·̄k)¹̄k. Thus,
the prediction equations are

¹̄k = ¹k¡1, ·̄k = A¡1d (Ad(·¿ )Ad(·
k¡1)), (16)

where A¡1d denotes the inverse to the function Ad de-

fined in (6). To compute the inverse, one must re-

sort to numerical methods since the derived equations

are transcendental. Please see Proposition A.2 in Ap-

pendix A for the proof. Similar equations were derived

in [13], [15], [16], [28], [29] for the cases of d = 2 and

d = 3, i.e. for the distributions on the unit 1-sphere and

the unit 2-sphere.

Upon availability of the measurement zk at time k,
and under the assumption that the sensor model follows

the vMF density f(zk;xk,·o), the posterior is found
using the Bayes rule (14)

p(xk j z1:k) = Cd(·k)exp(·k¹k ¢ xk),
with corresponding update equations [29]

·k = k·ozk + ·̄k¹̄kk,

¹k =
·oz

k + ·̄k¹̄k

·k
: (17)

The Bayes normalizer (15) evaluates to

p(zk j z1:k¡1) = Cd(·o)Cd(·̄
k)

Cd(·k)
: (18)

REMARK 2.1: The update equations of the 1-sphere

Bayes filter, i.e. the von Mises filter [13], [15], [16],

are

·k =

q
·2o+(·̄

k)2 +2·o·̄
k cos(¯k ¡ ®̄k), (19)

®k = ®̄k +arctan
sin(¯k ¡ ®̄k)

·̄k=·o+cos(¯
k ¡ ®̄k) , (20)
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where ·̄k¹̄k = ·̄k(cos ®̄k, sin ®̄k) and ·oz
k = ·o(cos¯

k,

sin¯k). See Appendix A for the proof.

III. TRACKING IN CLUTTER WITH THE VON
MISES-FISHER DISTRIBUTION

Target tracking in a cluttered environment requires,

among other, to resolve the problem of measurement-

to-target association. Moreover, in such approaches it is

often practical to devise a validation gate so as to reject

highly unlikely measurements. This way the computa-

tional complexity of the association procedure can be

significantly lowered [1]. In this section we recall two

basic probabilistic (nonbackscan) approaches, devel-

oped in seminal papers [46], [47] in the context of Pois-

son distributed clutter and models described by Gaus-

sian distributions. Here we extend these approaches to

directional (spherical) models described by vMF distri-

butions.

A. Validation gating

In order to assess the validity of a measurement zk,
we use the density (15) [48]. By inspecting (18) we

can notice that the result of the integral does not have

the form of a vMF distribution. If the goal was just to

compute (18) for explicit values, we would not need to

go further, but the validation gating assumes calculating

confidence intervals which is inconvenienced by a non-

standard density form of (18). To solve this issue,

similar logic as in the prediction stage is used–in lieu

of using the exact density, we will use the moment-

matched vMF distribution. Given that, the directional

mean with respect to (15) is

E[zk j z1:k¡1] =
Z
Sd¡1

zkp(zk j z1:k¡1)dzk

= A(·̄k)A(·o)¹̄
k (21)

and according to (5) we determine a unique vMF

f(zk;¹̄k,·kS) where

·kS = A
¡1
d (Ad(·o)Ad(·̄

k)): (22)

Please confer Remark A.1 for the proof. Note that

parameter ·kS has the role analogous to the Kalman

innovation for linear models.

Having computed the required vMF density, we can

determine the confidence intervals. When d = 2 the

quantiles of the distribution with mean direction ¹= 0

are transferred to the linear interval [¡¼,¼] by cutting
the unit circle at ¼. For an approximate validation region

100(1¡®)%, e.g. 95% when ®= 0:05, the lower and

upper tail area are respectively defined as [28]

Pr(¡180< x <¡180+ ±) = ®=2,
Pr(180¡ ± < x < 180) = ®=2: (23)

When d = 3, an approximate 100(1¡®)% validation

region for zk is [28]

fzk : zk ¢ ¹̄k ¸ cos±g, (24)

which defines the intersection of the unit 2-sphere with

the cone having vertex at the origin, axis the mean di-

rection ¹̄k and semi-vertical angle ± which is defined by

Pr(z ¢ ¹̄k ¸ ±) = ®, (25)

with z distributed according to vMF with parameters
¹̄k and ·S . The tables linking desired validation regions

defined by ®, and for given concentration parameters

· the corresponding intervals defined by ±, can be

found in [28], [49]. So the procedure is as follows, (i)

specify the desired validation region, i.e. the ®, (ii) given

the computed ·S from (22) and ® by using tables we

find the corresponding ±, (iii) we evaluate the obtained

measurement zk with respect to the predicted mean ¹̄k

to see if it satisfies the validation region constraint, and

(iv) if so the measurement is assigned to the target in

question, otherwise it is considered as clutter.

B. Probabilistic data association filter

First we assume a single target in track with multiple

measurements where the number of false alarms is a

Poisson distributed random variable. Let Zk denote the

set of all measurements that fall within the validation

gate at time k

Zk = fzkj : j = 1, : : : ,mkg,

and Z1:k = fZ1, : : : ,Zkg the history of all measurements
within the validation gate. We want to calculate the

conditional probability density p(xk j Z1:k) for all k ¸ 1.
Assume that at a given time k¡ 1, the object’s direction
is described by the vMF density

p(xk¡1 j Z1:k¡1) = Cd(·k¡1)exp(·k¡1¹k¡1 ¢ xk¡1):

Obtaining measurements Zk we build the following set

of hypotheses:

Hj = fzkj is the correct measurementg, j = 1, : : : ,mk,

and

H0 = fnone of the gated measurements are correctg:

Using the total probability formula, the posterior prob-

ability density at time k is given by

p(xk j Z1:k) =
mkX
j=0

p(xk j Hj ,Z1:k)P(Hj j Z1:k): (26)
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From the definition of Hj and using the Bayes rule, for
j = 1, : : : ,mk we have

p(xk j Hj ,Z1:k) = p(xk j Hj ,Zk,Z1:k¡1)

=
p(Zk,Hj j xk)p(xk j Z1:k¡1)

p(Zk,Hj j Z1:k¡1)

=
p(zkj j xk)p(xk j Z1:k¡1)

p(zkj j Z1:k¡1)
: (27)

Assuming that the likelihood and the prior density are

both vMF with respective parameters zkj ,·o, and ¹̄
k, ·̄k

given by (16), then the posterior density in (27) is also

vMF with parameters analogous to those in (17)

·kj = k·ozkj + ·̄k¹̄kk, (28)

¹kj =
·oz

k
j + ·̄

k¹̄k

·kj
, j = 1, : : : ,mk: (29)

Clearly, for j = 0, p(xk j H0,Z1:k) = p(xk j Z1:k¡1).
Let wj = P(Hj j Z1:k) denote the a posteriori proba-

bilities of each feature having originated from the object

in track. According to calculations in [47, Appendix]

wj =
p(zkj j Hj ,Z1:k¡1)

b+
Pmk

l=1p(z
k
l j Hl,Z1:k¡1)

, j = 1, : : : ,mk,

(30)

w0 =
b

b+
Pmk

l=1p(z
k
l j Hl,Z1:k¡1)

, (31)

where b = c(1¡pGpD)=pD, c > 0 is the clutter den-

sity, pG is the probability that the correct feature will

be inside the validation gate, and pD is the probabil-

ity that the correct feature will be detected. Density

p(zkj j Hj ,Z1:k¡1) denotes the probability density of a
measurement conditioned upon past data and hypoth-

esis that is correct, which is assumed to be known and

in our case it is modeled by the vMF density

p(zkj j Hj ,Z1:k¡1) = f(zkj ;¹̄k,·kS), (32)

where ·kS is given by (22).

Having defined and calculated all the ingredients,

posterior density (26) becomes a mixture of vMF den-

sities

p(xk j Z1:k) =
mkX
j=0

wjf(x
k;¹kj ,·

k
j ): (33)

In order to estimate the object’s direction ¹k 2 Sd¡1, we
calculate the directional mean

E[xk j Z1:k] =
Z
Sd¡1

xkp(xk j Z1:k)dxk =
mkX
j=0

wjAd(·
k
j )¹

k
j ,

and, using (5), determine the unique vMF density

f(xk;¹k,·k), which is the best approximation of (33) in

the sense of the Kullback-Leibler divergence by solving

·k = A¡1d

0@°°°°°°
mkX
j=0

wjAd(·
k
j )¹

k
j

°°°°°°
1A , (34)

¹k =

0@ mkX
j=0

wjAd(·
k
j )¹

k
j

1A.Ad(·k): (35)

The latter procedure is the analogon of computing the

state estimate and covariance matrix from the mix-

ture of Gaussians representing the posterior densities

in [46], [47].

When d = 2, the expressions (34) and (35) need not

be expressed in the vectorial form, but rather in the

angular variables. Componentwise, they evaluate to the

following formulae [50]

A22(·
k) =

mkX
j=0

w2j A
2
2(·

k
j )

+2

mkX
j,i=1
j<i

wjwiA2(·
k
j )A2(·

k
i )cos(®

k
j ¡®ki )

tan®k =

Pmk
j=0wjA2(·

k
j )sin®

k
jPmk

j=0wjA2(·
k
j )cos®

k
j

: (36)

C. Joint probabilistic data association filter

Next we consider the problem of tracking several in-

terfering targets fO1, : : : ,ONg, with the pertaining num-
ber being fixed to N. The main issue is how to appro-

priately assign features to targets in track. In principle,

PDA filter approach could be applied for each object

separately, but this would implicitly assume that all mea-

surement features originated by another object in track

are Poisson distributed clutter [47], and we would like

to avoid such a rough assumption.

Let Xk = fxk1, : : : ,xkNg ½ Sd¡1 denotes the set of ob-
ject’s states (directions) at time k, and assume that at a

given time k¡ 1 position of each object Oi is described
by the vMF density

p(xk¡1i j Z1:k¡1) = Cd(·k¡1i )exp(·k¡1i ¹k¡1i ¢ xk¡1i ):

Upon availability of a set of new measurements Zk =

fzkj : j = 1, : : : ,mkg, the following set of hypotheses is
built:

Hij = fzkj is caused by Oig, j = 1, : : : ,mk,

and

Hi0 = fnone of the measurements is caused by Oig:
Again, the total probability formula implies that the

posterior density for object Oi at time k is given by

p(xki j Z1:k) =
mkX
j=0

p(xki j Hij ,Z1:k)P(Hij j Z1:k), (37)
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where densities p(xki j Hij ,Z1:k) are computed following
the same lines and assumptions as in the previous PDA

filter approach. They are vMF densities f(xki ;¹
k
ij ,·

k
ij)

with parameters

·kij = k·ozkj + ·̄ki ¹̄ki k, (38)

¹kij =
·oz

k
j + ·̄

k
i ¹̄

k
i

·kij
, j = 1, : : : ,mk, (39)

and ·ki0 = ·̄
k
i and ¹

k
i0 = ¹̄

k
i .

The only difference between PDA filter and JPDA

filter is in calculation of a posteriori association prob-

abilities wij = P(Hij j Z1:k), where JPDA filter takes

into account measurement-to-object association events

jointly across the set of objects. This means that hy-

pothesis Hij consists of all valid joint association events
E which assign feature zkj to object Oi. By valid joint
association events we consider those which assert that

every feature lying within the validation gate region can

originate from at most one object and every object can

generate at most one feature. Thus, they partition the

hypothesis Hij and

wij =
X
E2Hij

P(E j Z1:k), j = 1, : : : ,mk, (40)

wi0 = 1¡
mkX
j=1

wij: (41)

In order to compute P(E j Z1:k), two auxiliary indicator
functions are introduced: measurement association indi-
cator 'j(E), which indicates whether in event E mea-
surement zkj is associated with any object, and target
detection indicator ±i(E), which indicates whether in E
any measurement is associated with object Oi. Follow-
ing [47] and using vMF model instead of the Gaussian,

we obtain

P(E j Z1:k) = B(E)
mkY
l=1

'l(E)=1

f(zkl ;¹̄
k
il
,·kS,il )

with ·kS,il = A
¡1
d (Ad(·o)Ad(·̄

k
il
)) analogous to (22), where

il is the object index with which measurement z
k
l is

associated. Next,

B(E) = cÁ(E)

p®(E)G C

NY
i=1

±i(E)=1

piD

NY
i=1

±i(E)=0

(1¡piD),

where Á(E) is the number of false features in joint
event E , which is assumed Poisson distributed, ®(E) =Pmk
j=1'j(E) is the number of measurement-to-object

associations in E , pG is the probability that the correct
measurement will be inside the validation gate, piD is

the detection probability of object Oi, and C is the

normalization constant.

Posterior density (37) for object Oi is again a mix-
ture of vMF densities, and the estimated posterior di-

rection ¹ki with uncertainty ·
k
i is calculated via

·ki = A
¡1
d

0@°°°°°°
mkX
j=0

wijAd(·
k
ij)¹

k
ij

°°°°°°
1A , (42)

¹ki =

0@ mkX
j=0

wijAd(·
k
ij)¹

k
ij

1A.Ad(·ki ): (43)

Here also for the case when d = 2, the resulting param-

eters can be computed as in (36).

IV. SYNTHETIC DATA EXPERIMENTS
In order to test the performance of the vMF PDA and

JPDA filters, we have simulated the system for 250 time

steps with maneuvering targets on the unit 1-sphere and

the unit 2-sphere. The targets were uniformly spawned

and their dynamics was described by a constant angu-

lar velocity model, where the disturbance acted as ran-

dom noise in the angular acceleration. The number of

spawned targets was a random integer from [3,5] for the

JPDA case, while for the PDA case it was set to one.

Since the JPDA filter assumes a constant and known

number of targets in the scene, the originally spawned

number of objects was kept constant during the simula-

tion, i.e. there were no target births nor deaths. Please

recall that the vM filter is the Bayes filter on the unit

1-sphere, while the vMF filter is the Bayes filter on the

unit 2-sphere. The underlying motivation behind these

simulations is MTT with directional sensors like mi-

crophone arrays and omnidirectional cameras. The for-

mer can determine directions to the sound sources based

on microphone pair signal differences [15], [51], [52],

while for the latter it has been shown that the image

formation can be described by the unified spherical pro-

jection model yielding a representation of the omnidi-

rectional image on the unit 2-sphere [30], [53], [54].

In order to make the simulations as realistic as pos-

sible (i) the trajectories were corrupted with the von

Mises, i.e. the von Mises-Fisher noise, with concentra-

tion parameter ·= 1500,2 (ii) the probability of detec-

tion was pD = 0:95 and (iii) false alarms were simulated

as a Poisson process on the unit spheres with the mean

value ¸= ¯¹(Sd¡1), where ¹ denotes the area measure
on Sd¡1, and the intensity ¯ = 0:25 was defined as the
number of false measurements per solid radian. For the

1-sphere case ¹(Sd¡1) = 2¼, while for the 2-sphere case
¹(Sd¡1) = 4¼. For example, on average we could expect
4¼¯ false alarms per sensor frame sampled from a uni-

form distribution on the unit 2-sphere. For all the exper-

iments the validation gate was computed for ®= 0:01,

i.e. the validation region of 99% was used. The experi-

ments involving the PDA and the JPDA filter were en-

visaged so as to simulate tracking of a single target and

2For the vM distribution this corresponds approximately to ¾ = 1:5±
[16], while for the vMF distribution it is closer to ¾ = 1:8±.

164 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 11, NO. 2 DECEMBER 2016



Fig. 3. An example of the experimental results of the tracking task

for the von Mises PDA filter. The solid green line represents the

estimated azimuth, while the solid black line is the ground truth. The

gray circles represent false alarms. The mean error for this example

was 0:97±.

multiple targets in clutter, both on the unit 1-sphere and

the unit 2-sphere. In the end, we have performed 100

Monte Carlo runs of the previously described scenarios

for both the vM and the vMF PDA and JPDA filters.

For the 1-sphere case the error ¢err was computed

as the absolute angular error by taking the periodicity

into account

¢err = jmod(xg¡ xk +¼,2¼)¡¼j: (44)

For the 2-sphere case the error ¢err was computed as

the great circle distance between the ground truth xg
and the estimated state xk

¢err = arccos(xg ¢ xk): (45)

The expression (45) would yield the same result as (44)

if therein 2D unit vectors were used instead of angles.

For the PDA filter the error calculation is straight-

forward, since we have only one object in the scene.

But for the JPDA filter the error calculation cannot be

approached in the same manner since we are tracking

multiple objects and a ground truth trajectory needs

to be paired up with a vMF filter trajectory. In this

paper we are assuming known and constant number

of objects in the scene, and, furthermore, we are fo-

cusing on deriving the fundamentals for probabilistic

data association techniques on the unit hyperspheres.

Hence, more involved methods for track management

are not discussed in the present paper and in error

calculation we are not penalizing if filters switches

tracks when the two tracks cross. Therefore, for the

JPDA filter case, we first calculate errors between

all the filters and the ground truth trajectories, after

which we apply the Hungarian algorithm [55], [56]

to optimally assign filters to the ground truth trajec-

tories. However, in Section IV-A we discuss solutions

Fig. 4. An example of the experimental results of the tracking task

for the vMF PDA filter. The solid green line represents the estimated

direction, while the solid black line is the ground truth. The gray

circles represent false alarms. The mean error for this example was

0:93±. (a) Trajectory on the unit 2-sphere. (b) Azimuth. (c) Elevation.

which could be applied for handling such multitarget

tracking issues and metrics that can capture such er-

rors.

Examples of the experimental results of the track-

ing task involving the PDA filter on the 1-sphere and

the 2-sphere are shown in Figs. 3 and 4, respectively.
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Fig. 5. An example of the experimental results of tracking five

objects with the von Mises JPDA filter. The solid color lines

represent the estimated azimuths, while the solid black lines are the

ground truth. The gray circles represent false alarms. The mean

absolute angular error of all the trajectories for this example was

0:99±.

The figures depict the ground truth, the estimated tra-

jectory and false alarms. We can notice that the fil-

ters successfully manage to track the object in such

a high clutter scenario, while yielding a mean error

smaller than 1±. Figures 5 and 6 show an example of

the JPDA filter tracking task. Examples with five ob-

jects in the scene are depicted, each color represent-

ing a single filter. We can see that in both cases fil-

ters manage to successfully track all the objects in the

scene while maintaining overall mean error smaller than

1±. We can notice that the filters achieve mean error
smaller than the measurement noise even when clut-

ter is present. However, Fig. 5 deserves further com-

ment. We can notice therein that during track cross-

ing the filters switched tracks, e.g. at approximately

70 s the red and the cyan filter exchanged objects ap-

pearing as if they changed their course, while in truth

they kept the same course during the whole simula-

tion. As discussed previously, in the present paper we

are not penalizing the track-switch, but we will ad-

dress in Section IV-A how these issues can be allevi-

ated.

Results of the 100 MC runs are depicted in Fig. 7.

Therein statistics of the resulting errors is given both

for the vM and vMF PDA and JPDA filters. The error

for each run was calculated using (44) and (45) for the

vM and the vMF filter, respectively. From the figure

we can notice that the vM JPDA filter exhibited more

outliers in comparison to others, but this was due to

track coalescence. Namely, trajectories crossed much

more often in the [0,2¼] interval than they did on the

unit 2-sphere. Overall, the median error was smaller

than 1±.

Fig. 6. An example of the experimental results of the tracking task

for the vMF JPDA filter. The solid color lines represent the

estimated directions, while the solid black lines are the ground truth.

The gray circles represent false alarms. The mean error of all the

trajectories for this example was 0:89±. (a) Trajectories on the unit
2-sphere. (b) Azimuth. (c) Elevation.

A. Discussion

As previously mentioned, the JPDA filter assumes

known and constant number of objects in the scene.

However, in [57] the joint integrated probability data

association (JIPDA) filter was proposed in order to al-
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Fig. 7. Matlab’s boxplot of the PDA and JPDA vM and vMF filter

errors over 100 MC runs. The red lines are the median, the edges of

the boxes are the 25th and 75th percentile, while the whiskers

extend to the most extreme error not considered outliers and outliers

are plotted as red pluses (errors 1.5 times larger than the difference

between the percentiles).

leviate the JPDA assumption of the constant and known

number of targets in the scene by including the prob-

ability of target existence within the framework. The

results presented in this paper can be directly employed

within the JIPDA framework. Furthermore, to handle

issues like track switching and track coalescence, var-

ious other extensions of the PDA/JPDA filtering have

been proposed [1], [58]. As long as the theoretical re-

sults derived in this paper are used, we believe that the

aforementioned extensions can be applied to the vM and

vMF JPDA filter as well.

In the present paper the likelihood for track switch-

ing is increased since the system state comprises of just

the static component. If dynamical terms were included,

the switch would be less likely to occur since terms like

the estimated velocity would suggest the future motion

of the object and would resolve situations like the one

depicted in Fig. 5. However, principally including veloc-

ity components, which are in general Euclidean and not

directional variables, into the same filtering framework

is not a trivial task and is out of the scope of this paper.

Examples of how the system state could be extended in

this vein for the cases of the Bingham, vM and vMF

distributions are given in [21], [26], [33], respectively.

Another solution for reducing the likelihood of track

switch and coalescence is to include independent fea-

tures for describing the tracked objects. For example, in

multiple speaker tracking with a microphone array the

fundamental frequency can tracked [59] and used in the

data association process. When tracking moving objects

with an omnidirectional camera appearance-based fea-

tures can used to describe each object, like the HOG

descriptor [60], which could also be used in the data

association process. With these extensions at hand the

multitarget tracking performance with respect to track

switch, track loss, track coalescence and similar issues

could be evaluated using the CLEARMOTmetrics [61],

the optimal subpattern assignment metric [62] and its

extensions [63], [64].

V. CONCLUSION

In the present paper we have proposed methods for

tracking single and multiple targets in clutter on the

(d¡1)-sphere with the von Mises-Fisher distribution.
The methods are based on Bayesian tracking and the

data association logic of the PDA and JPDA filters. For

single target tracking we have derived the PDA filter

equations by assuming a moving object in a Poisson

distributed clutter. This has resulted with a mixture of

hypotheses represented as hyperspherical von Mises-

Fisher densities which were weighted by the a posteri-

ori probability that the selected measurement is correct.

For multiple object tracking the JPDA filter was derived

under similar assumptions which again resulted with

a mixture of hypotheses represented as hyperspherical

von Mises-Fisher densities, where each component was

weighted by the a posteriori probability of the associa-

tion event. The final single component estimate for each

object in track, both in the PDA and JPDA filter case,

was obtained by preserving the first moment of the dis-

tribution which is optimal in the Kullback-Leibler sense.

For the cases of d = 2 and d = 3 the hyperspherical fil-

ter yields the vM PDA and JPDA and the vMF PDA

and JPDA filter, respectively. In the end, the proposed

methods were validated on synthetic data examples in

100 MC runs simulating scenarios of tracking a single

and multiple targets in clutter on the unit 1-sphere and

the unit 2-sphere.

APPENDIX A
PROPOSITION A.1 The directional angular mean of
the von Mises-Fisher density f(x;¹,·) defined on Sd¡1
equals

E[x] =rFd(μ) = Ad(·)¹, (46)

where Ad(·) = Id=2(·)=Id=2¡1(·).

PROOF The first equality in (46) follows from the

identity

0 =

Z
Sd¡1
(x¡rFd(μ))ex¢μ¡Fd(μ)dx,

obtained by differentiating 1 =
R
Sd¡1 e

x¢μ¡Fd(μ)dx with re-
spect to μ. For the second equality, using μ = ·¹ and
kμk= ·, we straightforwardly calculate

rFd(μ) =¡
C0d(·)
Cd(·)

¹: (47)

Using the basic recurrence relations for the modified

Bessel functions one obtains

C0d(·) =¡
·d=2¡1

(2¼)d=2

Id=2(·)

I2
d=2¡1(·)

,
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which yields

¡C
0
d(·)

Cd(·)
=

Id=2(·)

Id=2¡1(·)
=: Ad(·):

PROPOSITION A.2 Let the prior and the transition den-
sity be defined as following von Mises-Fisher densities

p(xk j xk¡1) = f(xk;xk¡1,·¿ )
p(xk¡1 j z1:k¡1) = f(xk¡1;¹k¡1,·k¡1): (48)

Then the directional mean of the predicted density p(xk j
z1:k¡1) equals to

E[xk j z1:k¡1] = Ad(·¿ )Ad(·k¡1)¹k¡1: (49)

PROOF The result is obtained by applying the Fubini’s

theorem (rearranging the terms within the integrals) and

using the previous proposition:

E[xk j z1:k¡1]

=

Z
Sd¡1

xk
μZ

Sd¡1
p(xk j xk¡1)p(xk¡1 j z1:k¡1)dxk¡1

¶
dxk

=

Z
Sd¡1

p(xk¡1 j z1:k¡1)
μZ

Sd¡1
xkp(xk j xk¡1)dxk

¶
dxk¡1

= Ad(·¿ )

Z
Sd¡1

xk¡1p(xk¡1 j z1:k¡1)dxk¡1

= Ad(·¿ )Ad(·
k¡1)¹k¡1: (50)

A von Mises-Fisher distribution f(xk;¹̄k, ·̄k) with

matched moments then has parameters

¹̄k = ¹k¡1, ·̄k = A¡1d (Ad(·¿ )Ad(·
k¡1)): (51)

REMARK A.1: Observe that the same calculations as

above yield the following. If the sensor likelihood and

the predicted density are defined as the von Mises-

Fisher densities

p(zk j xk) = f(zk;xk,·o)
p(xk j z1:k¡1) = f(xk;¹̄k, ·̄k), (52)

then the directional mean of the Bayes normalizer p(zk j
z1:k¡1) evaluates to

E[zk j z1:k¡1] = A(·o)A(·̄k)¹̄k: (53)

PROOF OF REMARK 2.1. The equation (19) for ·k fol-

lows directly from calculating the norm of the vector

·oz
k + ·̄k¹̄k. The proof of (20) is more involved, but

also straightforward. First observe that

®k = arctan
·o sin¯

k + ·̄k sin ®̄k

·o cos¯k + ·̄
k cos ®̄k

: (54)

This form of the angle update is also frequently used

[13], [16], but we find the expression (20) more expos-

itory from the prediction-correction standpoint [15]. Let

us now transform the numerator in (54) as follows

·o sin¯
k + ·̄k sin ®̄k

= ·o sin(º
k + ®̄k)+ ·̄k sin ®̄k

= (·̄k +·o cosº
k)sin ®̄k +·o sinº

k cos ®̄k,

(55)

where ºk = ¯k ¡ ®̄k. Now using the trigonometric iden-
tity

Asinx+B cosx=
p
A2 +B2 sin

μ
x+arctan

B

A

¶
,

we get the following formula

·o sin¯
k + ·̄k sin ®̄k

=

q
·2o+(·̄

k)2 +2·o·̄
k cosºk

¢ sin
μ
®̄k +arctan

sinºk

·̄k=·o+cosº
k

¶
: (56)

Analogous procedure can be performed for the denom-

inator of (54), yielding an expression similar to (56),

where the corresponding sines are replaced by cosines.

Returning to (54) cancels the square root terms and a

tangent is left due to the sine and cosine ratio–yielding

finally the sought mean angle update formula (20).
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Von Mises mixture PHD filter,

IEEE Signal Processing Letters, vol. 22, no. 12, pp. 2229—
2233, 2015.

[33] J. Traa and P. Smaragdis

Multiple speaker tracking with the factorial von Mises-

Fisher filter,

in IEEE International Workshop on Machine Learning for
Signal Processing, 2014.
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