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Stochastic filters attempt to estimate an unobservable state of a

stochastic dynamical system from a set of noisy measurements. In

this paper, we consider circular stochastic filtering and develop two

dynamic methods for estimation of circular states, named sample-

based stochastic filtering via root-finding (SB-SFRF) and Fourier-

based stochastic filtering via root-finding (FB-SFRF). The proposed

SB-SFRF and FB-SFRF methods attempt to dynamically minimize

Bayes periodic risks by using Fourier series representation of their

corresponding cost functions. The performance of the proposed

methods is evaluated in the problem of direction-of-arrival (DOA)

tracking.
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1. INTRODUCTION

In stochastic filtering problems, it is required to es-

timate the state of a dynamic system using a sequence

of noisy measurements. Bayesian stochastic filtering is

a commonly-used estimation technique that based on

a state space model, recursively updates the posterior

probability density function (pdf) of the current state

given current and previous measurements. Under a cho-

sen risk, optimal estimators can be obtained from the

posterior pdf at each time step.

The mean-squared-error (MSE) risk is widely used

for performance evaluation in stochastic filtering prob-

lems. Due to the dynamic nature of these problems,

computation/approximation of the minimum MSE

(MMSE) estimator is performed recursively by using

stochastic filters and recursive computation of the pos-

terior pdf. For linear dynamic systems with Gaussian

noise, the well-known Kalman filter [17] provides, at

each time step, a closed-form expression for the MMSE

estimator. However, for the general nonlinear and/or

non-Gaussian case there is no optimal filtering method

that provides an analytic expression for the MMSE es-

timator or for the MMSE performance. Suboptimal fil-

tering methods include the extended Kalman filter (e.g.

[1], [12], [16], [56]), the unscented Kalman filter (e.g.

[15], [51]), as well as discrete (approximate grid-based)

filters and particle filters (e.g. [2], [10], [13]).

In many stochastic filtering problems, the unknown

state has a circular nature, for example, phase, fre-

quency, and direction-of-arrival (DOA) (see e.g. [26],

[43], [55], [59]). We denote these problems as circular

stochastic filtering problems. In this case, at each time

step, we are interested in the modulo-2¼ estimation er-

rors and not in the plain error values. In fact, the plain

error values may be absurd for estimation of circular

states, especially if the unknown state is close to the

edges of the circular domain [31], [45], [49]. Thus, the

MSE risk and the MMSE estimator are inappropriate for

circular stochastic filtering and alternative periodic risks

that are based on 2¼-periodic cost functions, should be

used [5], [37], [38], [40], [49]. As a result, recursively-

computed estimators under these periodic risks should

be derived.

Several circular estimation methods, also known as

directional estimation methods, have been proposed for

obtaining estimators under periodic risks in static esti-

mation problems. In [57] and [58], infinite-dimensional

equations for optimal estimation under periodic risks are

derived by using infinite Fourier series. However, the

solution to these infinite-dimensional equations is not

presented. In [47], the parameter estimation via root-

finding (PERF) method is proposed. The PERF method

expresses 2¼-periodic cost functions via their Fourier

series and derives corresponding optimal Bayes esti-

mators for these cost functions, by using a polynomial

root-finding algorithm. This method is computationally
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manageable and avoids a grid search for the optimal es-

timator. A new approach for estimating the mean direc-

tion of a circular random variable is presented in [35],

based on the minimum squared arc length criterion.

There are two main approaches in the literature for

circular stochastic filtering that utilize the circular na-

ture of the state. In [3], [20]—[23], [33], circular filters

attempt to estimate the current posterior pdf under the

assumption that it belongs to specific distributions on

the circle. The second approach is representing the pos-

terior pdf via a Fourier series, without assuming any

specific distribution, and predicting/updating its Fourier

coefficients. In [7], this approach was utilized for non-

linear filtering on linear domains under a general state

and measurement model. Circular filters that utilize this

approach are proposed in [57], [58] for a specific state

model and in [44] for a more general state model. The

circular filter in [44] maintains a valid approximation

for the posterior pdf by efficiently predicting and up-

dating the Fourier coefficients of its square root and

normalizing it accordingly.

In general stochastic filtering problems and in partic-

ular in circular problems, the posterior pdf, from which

the state is estimated, is usually computed or approxi-

mated. In circular stochastic filtering problems, the cir-

cular mean of the posterior pdf, which describes the

pdf location on the circle, is usually used as an estima-

tor of the circular state (see e.g. [20], [21], [44], [53]).

However, the posterior circular mean is not the optimal

estimator under a general periodic risk [47].

In this paper, we consider discrete-time circular

stochastic filtering problems. We propose two methods

for circular stochastic filtering via root-finding (SFRF):

the sample-based SFRF (SB-SFRF) and the Fourier-

based SFRF (FB-SFRF). The proposed methods enable

the implementation of PERF method from [47], which is

suitable for off-line estimation with batch data, for filter-

ing problems, where the data is processed sequentially.

The SB-SFRF and FB-SFRF methods derive estimators

under a general periodic Bayes risk in circular stochas-

tic filtering problems. The two methods are based on

representation of the corresponding periodic cost func-

tion by a Fourier series and then, implementation of a

root-finding algorithm. The SB-SFRF method approx-

imates the current posterior pdf with a finite sum of

weighted Dirac components while the FB-SFRF method

approximates the posterior pdf with a finite Fourier se-

ries. We examine the following periodic cost functions:

1) squared-periodic-error (SPE) (see e.g. [22], [48]); 2)

absolute-periodic-error (APE) (see e.g. [32, pp. 19—20],

[36]); and 3) cyclic-error (CE) (see e.g. [3], [39], [50],

[57]). The performance of the proposed SB-SFRF and

FB-SFRF methods is demonstrated in the problem of

DOA tracking.

The remainder of the paper is organized as follows.

In Section 2, we formulate the circular stochastic fil-

tering model and review the properties of common pe-

riodic risks. In Section 3, the SB-SFRF and FB-SFRF

methods are derived. The proposed methods are evalu-

ated via simulations for DOA tracking problem in Sec-

tion 4. Finally, our conclusions appear in Section 5.

In the sequel, we denote vectors and matrices by

boldface lowercase and uppercase letters, respectively.

The mth element of the vector b is denoted by bm and

j
¢
=
p¡1. The notations (¢)T and (¢)¤ denote the transpose

and complex conjugate operators, respectively. The no-

tation 6 ¢ stands for the phase of a complex scalar, which
is assumed to be restricted to the interval [¡¼,¼). The
modulo-2¼ operator, which maps ½ 2 R to [¡¼,¼), is
denoted as [½]2¼

¢
=½¡ 2¼b 1

2
+ ½

2¼
c, where b¢c is the floor

operator. The operators of expectation and conditional

expectation given an event Z, are denoted as E[¢] and
E[¢ j Z], respectively.

2. CIRCULAR STOCHASTIC FILTERING

Consider the following nonlinear discrete-time state

space model½
μn = an(μn¡1,wn)

xn = hn(μn,ºn)
, n= 1,2, : : : , (1)

where for any n= 1,2, : : :

² μn 2−μ

¢
=[¡¼,¼)–circular state for which we are in-

terested in the modulo-2¼ estimation error.

² μ0 2−μ–initial state with known a priori pdf fμ0 .

² xn 2CL–measurement vector.
² fwng–sequence of mutually independent P£ 1 noise
vectors with known pdfs, ffwng, that are independent
of past and present states.

² fºng–sequence of mutually independent Q£ 1 com-
plex noise vectors with known pdfs, ffºng, that are
independent of past and present states and the state

noise.

² an :−μ £RP !−μ–state transition function.

² hn :−μ £CQ!CL–measurement function.

The conditional pdfs fμnjμn¡1 and fxnjμn can be ob-
tained from (1) and the pdfs of wn and ºn, respectively.
The filtering goal is to estimate the circular state μn at

each time step n= 1,2, : : :, based on x(n)
¢
=[xT1 , : : : ,x

T
n ]
T 2

−(n)x , which is the augmented measurement vector con-

taining all the measurements up to time step n, where

−(n)x is the nth step measurement space. An estimator

of μn, based on x
(n), is denoted by μ̂n : −

(n)
x !−μ. The

posterior pdf of μn given x
(n) and the predicted pdf of μn

given x(n¡1) are denoted by fμnjx(n) and fμnjx(n¡1) , respec-

tively, 8n= 1,2, : : :, where fμ1jx(0)
¢
=fμ1 denotes the a pri-

ori pdf of μ1 2−μ. In addition, we define fμ0jx(0)
¢
=fμ0 .

In the Bayesian framework, optimal estimators are

obtained via minimization of Bayes risks. In circular

stochastic filtering problems, the appropriate Bayes risk

at time step n is based on 2¼-periodic cost function,
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Fig. 1. SE and periodic cost functions: SPE, APE, and CE.

C(μ̂n¡ μn), with respect to (w.r.t.) the estimation er-

ror, μ̂n¡ μn. The corresponding risk is the mean of the

cost function, E[C(μ̂n¡ μn)]. It should be noted that

restriction of the state estimator to the region [¡¼,¼)
does not prevent the resulting estimation error from

taking values in the region (¡2¼,2¼). Thus, the inap-
propriate nature of the conventional risks, such as the

MSE, cannot be resolved. For example, consider the

case of close parameter and its estimate on the cir-

cle, in which μn =¡¼+ ±1 and μ̂n = ¼¡ ±2, 0< ±i¿ 1,

i= 1,2. In this case, direct computation of the error re-

sults in μ̂n¡ μn = 2¼¡ (±1 + ±2), which is a large error.
However, computation of the periodic error results in

[μ̂n¡ μn]2¼ =¡(±1 + ±2), which is a small error.
In the following, we describe three examples for pe-

riodic cost functions: SPE, APE, and CE. These periodic

cost functions and the nonperiodic squared-error (SE)

cost function are presented in Fig. 1 versus the estima-

tion error. It can be seen that as the absolute value of

the estimation error grows from ¼ to 2¼, the SE cost

function increases, since it does not take the circular

nature of the error into account, while the periodic cost

functions decrease.

² SPE: The SPE cost function at the nth time step is
defined as

C(μ̂n¡ μn) = SPE(μ̂n¡ μn)
¢
=([μ̂n¡ μn]2¼)

2: (2)

Given a measurement vector, x(n), the minimum mean
SPE (MMSPE) estimator is given by

μ̂n,MMSPE = arg min
μ̂n2−μ

E[([μ̂n¡ μn]2¼)
2 j x(n)]: (3)

² APE: The APE cost function at the nth time step is
defined as

C(μ̂n¡ μn) = APE(μ̂n¡ μn)
¢
= j[μ̂n¡ μn]2¼j: (4)

Given a measurement vector, x(n), the minimum mean
APE (MMAPE) estimator is given by

μ̂n,MMAPE = arg min
μ̂n2−μ

E[j[μ̂n¡ μn]2¼j j x(n)]: (5)

² CE: The CE cost function at the nth time step is

defined as

C(μ̂n¡ μn) = CE(μ̂n¡ μn)
¢
=2¡2cos(μ̂n¡ μn): (6)

In [57], [58], it is shown that given a measurement

vector, x(n), the minimum mean CE (MMCE) estima-

tor is given by

μ̂n,MMCE(x
(n)) =½ 6 E[ejμn j x(n)], E[ejμn j x(n)] 6= 0
0, otherwise

, (7)

which is the posterior circular mean at time step n.

In general, optimal estimators under periodic risks

cannot be analytically derived except for a few special

cases, such as the estimator from (7), which is optimal

under the mean CE (MCE) risk. Therefore, a grid-

search method is used for their derivation. A grid-

search method involves the computation of conditional

expectation, as in (3) and (5), for any point on the grid.

The disadvantages of a grid-search method are: (a) its

accuracy depends on the chosen grid; and (b) using

a dense grid can be computationally prohibitive. In

[47], a method called PERF was proposed for obtaining

optimal estimators under arbitrary periodic risks. This

method was derived for batch data. In this paper, we

extend this method to circular stochastic filtering in

which the estimators can be computed recursively at

each time step, based on results from the previous steps

and the new measurement. In the following section, we

first review the PERF method. Then, we describe the

SB-SFRF and FB-SFRF methods that utilize the PERF

approach and obtain estimators under a general periodic

risk in a dynamic setting.

3. SB-SFRF AND FB-SFRF METHODS

3.1. Review–PERF method

In circular stochastic filtering, our goal is minimiza-

tion of an arbitrary periodic risk at each time step. First,

we discuss periodic risks, whose corresponding cost

function can be represented by a finite Fourier series.

We refer to the case of infinite Fourier series in Subsec-

tion 3.4.

Let C :−"!R be a real, 2¼-periodic, and even cost
function, where −"

¢
=(¡2¼,2¼), that can be expressed

as the following finite Fourier series [61]:

C(μ̂n¡ μn) =

KX
k=¡K

cke
jk(μ̂n¡μn), (8)
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for any n= 1,2, : : :, where ck, k =¡K, : : : ,K, are the
corresponding Fourier coefficients of C. Since C is

even, its Fourier coefficients satisfy ck = c¡k. Given x
(n),

the estimator that minimizes the Bayes risk, E[C(μ̂n¡
μn)], is obtained by minimization of the conditional

expectation

Q(ejμ̂n)
¢
=E[C(μ̂n¡ μn) j x(n)]: (9)

By substituting (8) in (9) and using the linearity of the

expectation operator, one obtains

Q(ejμ̂n) = E

"
KX

k=¡K
cke

jk(μ̂n¡μn) j x(n)
#

=

KX
k=¡K

ckm
(n)
¡k(x

(n))ejkμ̂n , (10)

where
m(n)k (x)

¢
=E[ejkμn j x] (11)

is the kth trigonometric moment of fμnjx (see e.g.

[14, p. 26], [32, pp. 28—29]), where x is a random vec-

tor. The term in (11) can be interpreted as a sample of

the conditional characteristic function of μn given x at an
integer k. Since fμnjx(n) is a real pdf, it can be verified that

m(n)0 (x
(n)) = 1 and m(n)k (x

(n)) = (m(n)¡k(x
(n)))¤, k = 1, : : : ,K.

In order to obtain the estimator that minimizes

Q(ejμ̂n) from (10), we first find stationary points of

Q(ejμ̂n) and then find the minimum point from the set

of stationary points. Since Q(ejμ̂n) is a real, smooth, and

2¼-periodic function w.r.t. μ̂n, it can be verified by us-

ing Rolle’s theorem (see e.g. [54, p. 132]) that it has at

least two stationary points in −μ. The stationary points

are obtained by equating the derivative of Q(ejμ̂n) w.r.t.

μ̂n to zero, which yields

KX
k=¡K

kckm
(n)
¡k(x

(n))ejkμ̄n = 0, (12)

where μ̄n is a stationary point of Q(e
jμ̂n). In general, (12)

cannot be analytically solved. Finding the stationary

points and consequently the minimum point of Q(ejμ̂n)

can be obtained by a grid-search method, whose draw-

backs are discussed in Section 2. An alternative ap-

proach is utilizing the PERF method [47].

In the PERF method, the term ejμ̄n in (12) is replaced

by a general complex scalar z 2 C, resulting in
KX

k=¡K
kckm

(n)
¡k(x

(n))zk = 0: (13)

Then, a polynomial root-finding algorithm is applied on

(13) and the 2K roots of (13), z̄1, : : : , z̄2K , are obtained.

Finally, the optimal estimator is obtained by computing

μ̂n,opt = 6 z̄opt = arg min
μ̂n2fμ̄n,1,:::,μ̄n,2Kg

Q(ejμ̂n), (14)

TABLE I

PERF method

Initialization:
² Choose a real, 2¼-periodic, and even cost function, C, with
Fourier series order K.

² Compute fckgKk=0, the Fourier coefficients of the periodic cost
function C.

Algorithm stages:
² Compute fm(n)

k
(x(n))gK

k=1
, the trigonometric moments of fμn jx(n) ,

as defined in (11).

² Find the roots of (13), z̄1, : : : , z̄2K , and compute their
corresponding phases, μ̄n,1, : : : , μ̄n,2K , respectively.

² Find μ̂n,opt using (10) and (14).

where μ̄n,1 = 6 z̄1, : : : , μ̄n,2K = 6 z̄2K . It should be noted that
as opposed to a grid-search method, which involves the

computation of conditional expectation for any point on

the grid (as mentioned in Section 2), the PERF method

involves the computation of only K conditional expec-

tations for derivation of the trigonometric moments in

(11). The PERF method is summarized in Table I.

It can be seen that in order to use the PERF method

in a circular stochastic filtering problem, the trigonomet-

ric moments, fm(n)k (x(n))gKk=1, from (11) should be com-

puted at each time step. The SB-SFRF and FB-SFRF

methods, derived in the following, enable the imple-

mentation of PERF method in a dynamic setting.

3.2. SB-SFRF method

In this subsection, we describe SB-SFRF method

that can be implemented by using any sample-based

filter. A sample-based filter, such as discrete filter and

particle filter [2], approximates the nth step posterior

pdf, fμnjx(n) , with a finite sum of weighted Dirac compo-

nents, f(S)n,SB : −μ !R, given by

f(S)n,SB(y)
¢
=

SX
s=1

!n,s±(y¡¯n,s), (15)

where y is the argument of f(S)n,SB, S is the number of

samples, ± is the Dirac delta function, ¯n,1, : : : ,¯n,S 2 −μ

are the Dirac positions, and !n,1, : : : ,!n,S are nonnegative

weights. The values of S, f¯n,sgSs=1, and f!n,sgSs=1 depend
on the chosen sample-based filter. In order to apply

the PERF method, the first K trigonometric moments

m(n)1 (x
(n)), : : : ,m(n)K (x

(n)) should be computed at each time

step. By substituting the pdf approximation from (15) in

(11), the approximations of the trigonometric moments,

fm(n)k (x(n))gKk=1, are

m
(n,S)
k,SB =

SX
s=1

!n,se
jk¯n,s , 8k = 1, : : : ,K: (16)

Thus, by substituting (16) in (10) and (13), the PERF

method can be applied to obtain an approximation for

the optimal estimator. We denote the resulting estimator
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TABLE II

SB-SFRF method

Initialization:
² Choose a real, 2¼-periodic, and even cost function, C, with
Fourier series order K .

² Compute fckgKk=0, the Fourier coefficients of the periodic cost
function C.

Algorithm stages for the nth time step:
² Compute the Dirac positions, ¯n,1, : : : ,¯n,S 2 −μ , and the

weights, !n,1, : : : ,!n,S , of the approximated posterior pdf, f
(S)
n,SB

,

from (15) by using a sample-based filter.

² Compute the approximated trigonometric moments, m(n,S)
k,SB

,

k = 1, : : : ,K, according to (16).

² Find the roots of (13), z̄1, : : : , z̄2K , and compute their
corresponding phases, μ̄n,1, : : : , μ̄n,2K , respectively.

² Find μ̂
(S)
n,SB

using (10) and (14).

as μ̂(S)n,SB. The complete SB-SFRF method at time step n

is summarized in Table II.

3.3. FB-SFRF method
In this subsection, we describe the FB-SFRF method

that is implemented by using a Fourier-based circular

filter, denoted as Fourier filter, which is proposed in

[44]. First, we define

f
(p)
μ0
(®0)

¢
=

1X
l=¡1

fμ0 (®0 +2¼l) (17)

and for any n= 1,2, : : :,

f
(p)

μnjμn¡1 (®n j ®n¡1)
¢
=

1X
l=¡1

1X
m=¡1

fμnjμn¡1 (®n+2¼l j ®n¡1 +2¼m),
(18)

f
(p)

xnjμn(¯n j ®n)
¢
=

1X
l=¡1

fxnjμn(¯n j ®n+2¼l), (19)

f
(p)

μnjx(n) (®n j ¯
(n))

¢
=

1X
l=¡1

fμnjx(n) (®n+2¼l j ¯(n)), (20)

f
(p)

μnjx(n¡1) (®n j ¯
(n¡1))

¢
=

1X
l=¡1

fμnjx(n¡1) (®n+2¼l j ¯(n¡1)), (21)

which are the 2¼-periodic extensions of the pdfs fμ0 ,

fμnjμn¡1 , fxnjμn , fμnjx(n) , and fμnjx(n¡1) , respectively, w.r.t.fμngn¸0.
Since f

(p)
μ0

is a 2¼-periodic function w.r.t. μ0 and

since f
(p)

xnjμn , f
(p)

μnjx(n) , and f
(p)

μnjx(n¡1) are 2¼-periodic functions
w.r.t. μn, it is assumed that they can be represented

via Fourier series with Fourier coefficients f´(0)l gl2Z,
fd(n)l (xn)gl2Z, f´(njn)l (x(n))gl2Z, and f´(njn¡1)l (x(n¡1))gl2Z,
respectively. That is,

f
(p)
μ0
(®0) =

1X
l=¡1

´(0)l e
jl®0 , (22)

f
(p)

xnjμn(¯n j ®n) =
1X

l=¡1
d(n)l (¯n)e

jl®n , (23)

f
(p)

μnjx(n) (®n j ¯
(n)) =

1X
l=¡1

´
(njn)
l (¯(n))ejl®n , (24)

and

f
(p)

μnjx(n¡1) (®n j ¯
(n¡1)) =

1X
l=¡1

´
(njn¡1)
l (¯(n¡1))ejl®n : (25)

Similarly, the function f
(p)

μnjμn¡1 is a 2¼-periodic function
w.r.t. both μn and μn¡1, and therefore, it is assumed that it
can be represented via a two-dimensional Fourier series

with Fourier coefficients fÁ(n)l,mgl,m2Z, i.e.

f
(p)

μnjμn¡1 (®n j ®n¡1) =
1X

l=¡1

1X
m=¡1

Á
(n)
l,me

jl®nejm®n¡1 : (26)

Based on the Fourier-based filters proposed in [7],

[44], [57], [58], we derive prediction and update stages,

which are applied on the Fourier coefficients of f
(p)

μnjx(n)
and f

(p)

μnjx(n¡1) .

² Prediction:
According to Chapman-Kolmogorov equation and by

using the Markovian nature of the state model in

(1), the predicted pdf fμnjx(n¡1) is given by (see e.g.
[2, Eq. (3)])

fμnjx(n¡1) (®n j ¯(n¡1)) =
Z
−μ

fμnjμn¡1 (®n j ®n¡1)

£fμn¡1jx(n¡1) (®n¡1 j ¯(n¡1))d®n¡1, 8®n 2−μ:

(27)

For μn,μn¡1 2−μ, the pdfs in the left hand side (l.h.s.)

and right hand side (r.h.s.) of (27) are equal to their

periodic extensions. Thus, (27) can be rewritten as

f
(p)

μnjx(n¡1) (®n j ¯
(n¡1)) =

Z
−μ

f
(p)

μnjμn¡1 (®n j ®n¡1)

£f(p)
μn¡1jx(n¡1) (®n¡1 j ¯

(n¡1))d®n¡1, 8®n 2−μ:

(28)

By substituting the corresponding Fourier series from

(22), (24), and (26) in the r.h.s. of (28), we obtain

the Fourier series representation of f
(p)

μnjx(n¡1) from (25),
whose lth Fourier coefficient is given by [7]

´
(njn¡1)
l (x(n¡1)) =

2¼

1X
m=¡1

´
(n¡1jn¡1)
¡m (x(n¡1))Á(n)l,m, (29)

8l 2 Z, n= 1,2, : : :, where ´(0j0)l (x(0))
¢
=´(0)l .

² Update:
According to Bayes’ rule, the posterior pdf fμnjx(n) is
given by (see e.g. [2, Eq. (4)])

fμnjx(n) (®n j ¯(n)) =
fxnjμn(¯n j ®n)fμnjx(n¡1) (®n j ¯(n¡1))R

−μ
fxnjμn(¯n j ®n)fμnjx(n¡1) (®n j ¯(n¡1))d®n

, (30)
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8®n 2 −μ. For μn 2 −μ, the pdfs in the l.h.s. and r.h.s.

of (30) are equal to their periodic extensions. Thus,

(30) can be rewritten as

f
(p)

μnjx(n) (®n j ¯
(n)) =

f
(p)

xnjμn(¯n j ®n)f
(p)

μnjx(n¡1) (®n j ¯(n¡1))R
−μ
f
(p)

xnjμn(¯n j ®n)f
(p)

μnjx(n¡1) (®n j ¯(n¡1))d®n
, (31)

8®n 2 −μ. By substituting the corresponding Fourier

series from (23) and (25) in the r.h.s. of (31), we

obtain the Fourier series representation of f
(p)

μnjx(n) from
(24), whose lth Fourier coefficient is given by [7]

´
(njn)
l (x(n)) =

°(n)l (x
(n))

2¼°
(n)
0 (x

(n))
, (32)

8l 2 Z, n= 1,2, : : :, where

°(n)l (x
(n))

¢
=

1X
m=¡1

´(njn¡1)m (x(n¡1))d(n)l¡m(xn):

Since fμnjx(n) from (30) is equal to f
(p)

μnjx(n) from (31)

for μn 2−μ, the Fourier series of f
(p)

μnjx(n) can be used to
represent fμnjx(n) . In practice, fμnjx(n) is approximated by a
finite Fourier series, f(D)n,FB : −μ !R, given by

f(D)n,FB(y)
¢
=

DX
l=¡D

´(n,D)l,FB e
jly , (33)

where y is the argument of f(D)n,FB and D is the cho-

sen Fourier series order. The series order, D, is deter-

mined by taking into account the trade-off between es-

timation quality and required rate of convergence. The

approximation accuracy, i.e. the distance between the

actual pdf and its Fourier series approximation, can

be measured for example by using Hellinger metric

[7] or Kullback-Leibler divergence [44]. At time step

n, ´
(n,D)
l,FB approximates ´

(njn)
l (x(n)), 8l =¡D, : : : ,D, and

for jlj>D, ´(njn)l (x(n)) is approximated by zero. The
Fourier series approximation of fμnjx(n) in (33) repre-
sents a pdf and thus, should be nonnegative and in-

tegrate to 1. In order to maintain the approximation

in (33) as a valid pdf, the approach in [44] that ap-

proximates
q
fμnjx(n) by a finite Fourier series, is ap-

plied. It should be noted that it is assumed in [44]

that f
(p)

μnjμn¡1 (®n j ®n¡1) = g(®n¡®n¡1),8®n,®n¡1 2−μ, for

some function g, which simplifies the prediction stage.

An explanation is added in the appendix for implement-

ing the prediction stage, under the approach of [44],

with a general f
(p)

μnjμn¡1 .
By substituting the pdf approximation from (33) in

(11) and since
R
−μ
ejl®d®= 2¼±kr(l), where ±kr is the

Kronecker delta function, the approximations of the

trigonometric moments, fm(n)k (x(n))gKk=1, are
m
(n,D)
k,FB = 2¼´

(n,D)
¡k,FB, 8k = 1, : : : ,K: (34)

TABLE III

FB-SFRF method

Initialization:
² Choose a real, 2¼-periodic, and even cost function, C, with
Fourier series order K.

² Compute fckgKk=0, the Fourier coefficients of the periodic cost
function C.

Algorithm stages for the nth time step:
² Compute the Fourier coefficients, ´(n,D)

l,FB
, l = 1, : : : ,D, of the

approximated posterior pdf, f
(D)
n,FB

, from (33) by using the

Fourier-based circular filter from [44].

² Compute the approximated trigonometric moments, m(n,D)
k,FB

,

k = 1, : : : ,K , according to (34).

² Find the roots of (13), z̄1, : : : , z̄2K , and compute their
corresponding phases, μ̄n,1, : : : , μ̄n,2K , respectively.

² Find μ̂
(D)
n,FB

using (10) and (14).

In case K >D, then m
(n,D)
k,FB = 0, 8k =D+1, : : : ,K. Thus,

by substituting (34) in (10) and (13), the PERF method

can be applied to obtain an approximation for the op-

timal estimator. We denote the resulting estimator as

μ̂
(D)
n,FB. The complete FB-SFRF method at time step n is

summarized in Table III.

3.4. SB-SFRF and FB-SFRF methods with a general
periodic cost function

Consider a 2¼-periodic cost function, C, with a con-

vergent infinite Fourier series representation. It is shown

in [47] that under some regularity conditions, PERF

method, applied on a truncated Fourier series represen-

tation of C with K <1, converges to the corresponding
optimal estimator in the limit K!1. For such cost
functions the SB-SFRF and FB-SFRF methods are ap-

plied on a truncated Fourier series.

In the following, we describe three examples for

periodic risks, the mean SPE (MSPE), mean APE

(MAPE), and MCE risks and discuss the implementa-

tion of SB-SFRF and FB-SFRF methods under these

risks. In order to apply SB-SFRF and FB-SFRF meth-

ods with the MSPE, MAPE, and MCE risks, their corre-

sponding Fourier coefficients should be computed. The

Fourier series order of the CE cost function is K = 1

and SB-SFRF and FB-SFRF methods can be directly

applied. As opposed to the CE cost function, the Fourier

series of the SPE and APE cost functions are infinite

and therefore, SB-SFRF and FB-SFRF methods are ap-

plied on their truncated Fourier series representations.

It is shown in [47] that under mild conditions PERF

method converges to the optimal estimators under the

MSPE and MAPE risks in the limit K!1, which jus-
tifies applying SB-SFRF and FB-SFRF methods under

these risks. The Fourier series, Fourier coefficients, and

explicit form of (13) for the SPE, APE, and CE cost

functions, are presented in Table IV.

It is shown in [47] that the optimal estimator under

first-order Fourier series approximation of the SPE and

the APE cost functions, i.e. for choosing K = 1, is given
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TABLE IV

The Fourier series of the cost functions

Cost function Squared periodic error (SPE) Absolute periodic error (APE) Cyclic error (CE)

Fourier series of C(") ¼2

3
+2

X
k2Z,k 6=0

(¡1)k
k2

eik"
¼

2
¡ 2
X
k2Z

1

¼(2k+1)2
ei(2k+1)" 2¡ ei"¡ e¡i"

Fourier coefficients ck

8<:
¼2

3
, k = 0

2(¡1)k
k2

, k 6= 0

8><>:
¼

2
, k = 0

0, k 6= 0 and even

¡ 2

¼k2
, k odd

8<:
2, k = 0

¡1, k =§1
0, otherwise

Explicit form of (13) at

nth time step

KX
k=¡K,k 6=0

(¡1)km(n)¡k(x(n))
k

zk = 0

b(K¡1)=2cX
k=¡b(K+1)=2c

m
(n)
¡2k¡1(x

(n))

2k+1
z2k = 0

m
(n)
¡1(x

(n))z+m
(n)
1
(x(n))z¡1 = 0

by the posterior circular mean estimator, which is the

MMCE estimator from (7). In addition, it is shown in

[47] and [30] that the posterior circular mean estimator

is optimal under the MSPE and MAPE risks, in case the

posterior pdf is unimodal and even (as a function sup-

ported on the circle). In the general case, where the pos-

terior pdf is not nesecarily unimodal and even, choosing

K > 1 for the SPE and APE approximations and apply-

ing SB-SFRF or FB-SFRF methods can improve the

performance, comparing to the posterior circular mean

estimator, under the MSPE and MAPE risks. We denote

SB-SFRF and FB-SFRF methods under the MSPE risk

as SB-SFRF-MSPE and FB-SFRF-MSPE, respectively.

Similarly, SB-SFRF and FB-SFRF methods under the

MAPE risk are denoted by SB-SFRF-MAPE and FB-

SFRF-MAPE, respectively.

Remarks:

1) Periodic cost functions: In the conventional Bayesian
framework, the SE and absolute-error (AE) cost

functions are commonly used for performance eval-

uation. One of the differences between these cost

functions is that the SE increases faster than the

AE and thus, the SE is more sensitive to outliers

[25, p. 51]. The SPE and APE are the natural pe-

riodic equivalents of the SE and AE, respectively.

They are obtained by periodically extending their

conventional counterparts. The CE can be viewed

as a smooth first order approximation, in terms of

Fourier series, of the SPE and APE [47]. In the small

error region, the APE and SPE coincide with the AE

and SE, respectively. Similar to the SPE, in the small

error region, the CE coincides with the SE.

2) Computational complexity: The additional run-time
complexity induced from using SB-SFRF and FB-

SFRF methods with K > 1 series order is domi-

nated by the polynomial root-finding applied on

(13). Since the order of the polynomial in (13) is

limited by 2K, the additional run-time at each time

step is of the order O(K3) [47]. The prediction and

update stages of SB-SFRF and FB-SFRF methods

are mainly affected by the chosen filter and chosen

number of samples/Fourier coefficients that are used

for approximating the posterior pdf. For FB-SFRF

method, the asymptotic run-time complexity of both

the prediction and update stages of the Fourier filter

is O(D logD) [44], where D is the chosen Fourier

series order of the approximated posterior pdf in

(33). For SB-SFRF method, the asymptotic run-time

complexity depends on the complexity of the chosen

sample-based filter.

3) Choosing the value of K: In general, for periodic
cost functions with infinite Fourier series, the value

of K can be determined by taking into account

the trade-off between the additional computational

complexity, induced from using SB-SFRF and FB-

SFRF methods, and the accuracy of approximating

the cost function Fourier series with a finite K.

In addition, the performance improvement with a

larger K depends on the posterior pdf approximation

accuracy. The periodic cost functions approximation

error can be assesed by using Parseval’s formula

[61, pp. 12—13].

4. EXAMPLE–DOA TRACKING

In this section, we consider the problem of single

source DOA tracking by using a uniform circular array

(UCA). At time step n, the measurement at the lth sensor

is modeled as (see e.g. [43])

xn,l = »e
j³ cos(μn¡(2¼l=L)) + ºn,l, l = 1, : : : ,L: (35)

where » is the signal complex amplitude, which is as-

sumed to be known, ³ = 2¼r=¸, where r is the UCA

radius and ¸ is the signal wavelength, μn is the signal

DOA, and fºng is an independent identically distributed
(i.i.d.) complex circularly symmetric zero mean Gaus-

sian noise vector sequence with known covariance ma-

trix ¾2IL, where IL is the identity matrix of size L. The
DOA state model is given by

μn = [μn¡1 +wn]2¼, (36)
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where fwng is an i.i.d. noise in which each element is
distributed according to a mixture of two von Mises dis-

tributions [14], [32] with known circular means ¹1,¹2
and concentration parameters ·1,·2, i.e.

fwn(v) =8<:²
e·1 cos(v¡¹1)

2¼I0(·1)
+ (1¡ ²)e

·2 cos(v¡¹2)

2¼I0(·2)
, v 2 [¡¼,¼)

0, otherwise

,

(37)

where Im is the modified Bessel function of order m and

0· ²· 1 is a parameter that determines the weights be-
tween the two von Mises distributions. The 2¼-periodic

extension of fwn w.r.t. wn is given by

f(p)wn
(v) = ²

e·1 cos(v¡¹1)

2¼I0(·1)
+ (1¡ ²)e

·2 cos(v¡¹2)

2¼I0(·2)
, 8v 2R:

The von Mises distribution is one of the most popu-

lar distributions for modeling random parameters with

circular nature and is analogous to the Gaussian dis-

tribution on the real axis (see e.g. [11], [14], [32],

[60]). Many noncircular distributions can be approxi-

mated to any desired degree of approximation in terms

of Kullback-Leibler divergence, using a finite mixture

of Gaussian distributions [19], [27], [46], [52]. Sim-

ilarly, it is claimed in [32, p. 90] that some circular

distributions are fitted well by mixtures of von Mises

distributions. In [9] and [34], mixtures of von Mises

distributions are used for modeling multimodal distribu-

tions on the circle. Multimodal state noise is considered

e.g. in [6], [18], [28] for modeling abrupt changes in the

state. It is assumed that the sequences fwng and fºng are
statistically independent as well as independent of past

and present states. In addition, it is assumed that the

prior distribution of μ0 is uniform, i.e. μ0 »U(¡¼,¼).
Under this model, the Fourier coefficients of f

(p)
μ0

and

f
(p)

μnjμn¡1 are given by

´(0)l =

( 1

2¼
, l = 0

0, otherwise

(38)

and

Á(n)l,m =μ
²
Ijlj(·1)

2¼I0(·1)
e¡jl¹1 + (1¡ ²) Ijlj(·2)

2¼I0(·2)
e¡jl¹2

¶
±kr(l+m),

(39)

8l,m 2 Z, n= 1,2, : : :, respectively. In this case,

f
(p)

μnjμn¡1 (®n j ®n¡1) = f(p)wn
(®n¡®n¡1), 8®n,®n¡1 2 −μ,

which simplifies the prediction stage. As proposed in

[44], the Fourier coefficients of fxnjμn are approximated
using the fast Fourier transform [42].

For this problem, the SB-SFRF and FB-SFRF meth-

ods are implemented under the MSPE and MAPE risks.

For computation of the approximated trigonometric mo-

ments in SB-SFRF method, the particle filter from [2]

with the state transition pdf as importance function, is

used. The root-finding step is employed by the function

‘roots’ of Matlab.

The SB-SFRF method is implemented with S =

500 samples (particles in this case) and the FB-SFRF

method is implemented with D = 40 Fourier coeffi-

cients. In addition, we assume L= 4, ³ = 10, ¾2 = 1,

¹1 = 0:95¼, ·1 = 20, ¹2 = 0, ·2 = 10, ²= 0:5, and » =

(1=
p
2)+ j(1=

p
2). The MSPEs and MAPEs of the con-

sidered methods are evaluated using 10,000 Monte-

Carlo trials. In the following, the posterior mean es-

timator obtained by particle filter is denoted as Particle-

PM. The posterior circular mean estimators obtained by
particle and Fourier filters are denoted as Particle-CM

and Fourier-CM, respectively. The proposed SB-SFRF-

MSPE and SB-SFRF-MAPEmethods implemented with

particle filter are denoted as Particle-SB-SFRF-MSPE

and Particle-SB-SFRF-MAPE, respectively.

In Figs. 2—3, the MSPEs of particle and Fourier

estimators are presented versus the time step n, where

the corresponding SB-SFRF and FB-SFRF methods are

evaluated with K = 2,12. It should be noted that for

K = 1, the proposed Particle-SB-SFRF-MSPE and FB-

SFRF-MSPE methods coincide with the Particle-CM

and Fourier-CM, respectively. It can be seen that in both

cases, the proposed SFRF-MSPE methods with K = 12

result in lower MSPEs than with K = 2 and that SFRF-

MSPE methods with K = 2,12 have lower MSPEs than

the MSPEs of the posterior mean and posterior circular

mean estimators.

Figs. 4—5 show the MSPEs of Particle-SB-SFRF-

MSPE and FB-SFRF-MSPE methods as a function of

the series order, K, averaged over all time steps n=

1, : : : ,30. It can be seen that in both cases, the MSPE de-

creases as K increases. The non-monotonic decrease can

be explained by the fact that the error is evaluated w.r.t.

the actual periodic cost function, while the minimization

is w.r.t. its truncated approximation, which suffers from

inaccuracies due to, for example, Gibbs phenomenon

[61]. It can be seen that for Particle-SB-SFRF-MSPE

and FB-SFRF-MSPE, the MSPEs with K = 20 are lower

than the MSPEs with K = 1 by approximately 16.4%

and 15.6%, respectively. For both methods, the MSPEs

with K ¸ 5 are very close to the MSPEs with K = 20.
Therefore, the choice K = 5 seems appropriate in this

case. The SPE cost function and its Fourier series ap-

proximations are depicted in Fig. 6, with series orders

K = 1,2,12.

In Figs. 7—8 the MAPEs of particle and Fourier

estimators are presented versus the time step n, where

the corresponding SB-SFRF and FB-SFRF methods are

evaluated with K = 3,23. Similar to the MSPE case,

for K = 1, the proposed Particle-SB-SFRF-MAPE and

FB-SFRF-MAPE methods coincide with the Particle-

CM and Fourier-CM, respectively. It can be seen that in

both cases, SFRF-MAPE methods with K = 23 result in

lower MAPEs than with K = 3 and that SFRF-MAPE
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Fig. 2. The MSPEs of Particle-PM, Particle-CM, and

Particle-SB-SFRF-MSPE method K = 2,12, with S = 500 samples,

versus the time step n.

Fig. 3. The MSPEs of Fourier-CM and FB-SFRF-MSPE method

K = 2,12, with D = 40 Fourier coefficients, versus the time step n.

methods with K = 3,23 have lower MAPEs than the

MAPEs of the posterior circular mean estimators.

Figs. 9—10 show the MAPEs of Particle-SB-SFRF-

MAPE and FB-SFRF-MAPE methods as a function

of the series order, K, averaged over all time steps

n= 1, : : : ,30. It can be seen that in both cases, the

MAPE decreases as K increases. For Particle-SB-SFRF-

MAPE and FB-SFRF-MAPE, the MAPEs with K = 39

are lower than the MAPEs with K = 1 by approximately

3.5% and 4.2%, respectively. For both methods, the

MAPEs with K ¸ 9 are very close to the MAPEs with
K = 39. Therefore, the choice K = 9 seems appropriate

in this case. It can be seen that the improvement in

MAPE is smaller for both methods in comparison to the

improvement in MSPE. The reason for this phenomenon

may be that the SPE increases faster than the APE and

thus, a low value of K is highly penalized by the SPE.

Fig. 4. The MSPE of Particle-SB-SFRF-MSPE method with

S = 500 samples versus K, averaged over time steps n= 1, : : : ,30.

Fig. 5. The MSPE of FB-SFRF-MSPE method with D = 40

Fourier coefficients versus K, averaged over time steps n= 1, : : : ,30.

Fig. 6. Fourier series approximations of SPE with K = 1,2,12.
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Fig. 7. The MAPEs of Particle-CM and Particle-SB-SFRF-MAPE

method K = 3,23, with S = 500 samples, versus the time step n.

Fig. 8. The MAPEs of Fourier-CM and FB-SFRF-MAPE method

K = 3,23, with D = 40 Fourier coefficients, versus the time step n.

In Figs. 11—12, the MSPEs of particle and Fourier

estimators are presented versus SNR
¢
= j»j2=¾2, averaged

over all time steps n= 1, : : : ,30, where the correspond-

ing SB-SFRF and FB-SFRF methods are evaluated with

K = 2,12. It can be seen that for both methods, SFRF-

MSPE methods with K = 12 result in lower MSPEs than

SFRF-MSPE methods with K = 2 and the correspond-

ing posterior circular mean estimators. In addition, it can

be seen that the difference between K = 2 and K = 12

is small.

As a comparison between SB-SFRF and FB-SFRF

methods, we examine their performance in terms of

MSPE for a similar number of samples or Fourier co-

efficients for the posterior pdf approximation, i.e. S =

F = 2D+1. In order to broaden the comparison, we

implemented a discrete filter [24], used in [44], which

is based on wrapped Dirac distribution. In the follow-

ing, the SB-SFRF-MSPE method implemented with dis-

crete filter is denoted as Discrete-SB-SFRF-MSPE. The

Fig. 9. The MAPE of Particle-SB-SFRF-MAPE method with

S = 500 samples versus K, averaged over time steps n= 1, : : : ,30.

Fig. 10. The MAPE of FB-SFRF-MAPE method with D = 40

Fourier coefficients versus K, averaged over time steps n= 1, : : : ,30.

MSPEs of the considered SFRF-MSPE methods with

K = 2, are presented in Fig. 13 versus the time step n.

It can be seen that for S = F = 9, FB-SFRF method sig-

nificantly outperforms SB-SFRF method with particle

and discrete filters in all time steps. For S = F = 201,

FB-SFRF method outperforms SB-SFRF method with

particle filter in all time steps and the difference between

FB-SFRF method and SB-SFRF method with discrete

filter is small for n¸ 7. In general, in the considered
scenario, the FB-SFRF method seems favouravle over

SB-SFRF method with both discrete and particle filters,

espcially in the case, in which only few samples/Fourier

coefficients are available. The reason for FB-SFRF ad-

vantage may be the discrete representation of the poste-

rior pdf in the frequency domain rather than parameter

domain.

Finally, we examine the performance of SB-SFRF

and FB-SFRF methods for unimodal state noise. Sim-

ilar to [11], the a priori pdf of μ0 is assumed to be a
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Fig. 11. The MSPEs of Particle-CM and Particle-SB-SFRF-MSPE

method K = 2,12, with S = 500 samples, versus SNR, averaged over

time steps n= 1, : : : ,30.

Fig. 12. The MSPEs of Fourier-CM and FB-SFRF-MSPE method

K = 2,12, with D = 40 Fourier coefficients, versus SNR, averaged

over time steps n= 1, : : : ,30.

mixture of two von Mises distributions, as in (37), with

known circular means ¹0,1 = 0:21, ¹0,2 = 1:91, concen-

tration parameters ·0,1 = 9, ·0,2 = 39, and weighting pa-

rameter ²0 = 0:3. The state-space model is assumed to be

as in (35) and (36), except that each state noise element

is assumed to be von Mises distributed with circular

mean ¹= 0 and concentration parameter ·= 3. In this

scenario, the discrete filter is also used for implemen-

tation of SB-SFRF method. In the following, the pos-

terior mean and posterior circular mean estimators ob-
tained by discrete filter are denoted as Discrete-PM and

Discrete-CM, respectively. In Figs. 14—16 the MSPEs

of particle, discrete, and Fourier estimators, are pre-

sented versus the time step n, where the correspond-

ing SB-SFRF and FB-SFRF methods are evaluated with

K = 2,12. It can be seen that in all cases, SFRF-MSPE

methods with K = 12 result in lower MSPEs than with

Fig. 13. The MSPEs of Particle-SB-SFRF-MSPE,

Discrete-SB-SFRF-MSPE, and FB-SFRF-MSPE methods with

K = 2, S = F = 9 and S = F = 201 samples/Fourier coefficients,

versus the time step n.

K = 2 and that SFRF-MSPE methods with K = 2,12

have lower MSPEs than the MSPEs of the posterior

mean and posterior circular mean estimators.

5. CONCLUSION

In this paper, we propose two methods, SB-SFRF

and FB-SFRF, for derivation of estimators under gen-

eral periodic Bayes risks in circular stochastic filter-

ing problems. Both methods utilize the PERF method

[47], which is based on Fourier series representation

of an arbitrary periodic cost function and polynomial

root-finding. The proposed methods are not based on

a grid search whose accuracy depends on the cho-

sen grid density. The SFRF methods use approximated

trigonometric moments. If the accurate trigonometric

moments are available, the SFRF methods coincide with

the optimal Bayes solution. Three examples of peri-

odic risks are considered, the MSPE, MAPE, and MCE

risks. It is shown that under the MCE risk there ex-

ist a tractable estimator. However, under the MSPE and

MAPE risks the corresponding estimators cannot be de-

rived analytically for the general case. The SB-SFRF

and the FB-SFRF methods can be applied in circu-

lar stochastic filtering problems under these risks or

any other periodic risk. The superiority of SB-SFRF

and FB-SFRF methods w.r.t. state estimation using

posterior circular mean is demonstrated in the prob-

lem of DOA tracking. A topic for future research is

derivation of a method for estimation of a mixed state

vector containing both circular and noncircular ele-

ments. Another topic is investigating the connection be-

tween the considered circular stochastic filtering prob-

lems and emerging new approaches, such as sequential

deep learning [4], learning of dynamical systems [29],

and novel methods for Bayesian filtering with discrete

states [41].
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Fig. 14. Unimodal state noise scenario: the MSPEs of Particle-PM,

Particle-CM, and Particle-SB-SFRF-MSPE method K = 2,12, with

S = 500 samples, versus the time step n.

Fig. 15. Unimodal state noise scenario: the MSPEs of

Discrete-PM, Discrete-CM, and Discrete-SB-SFRF-MSPE method

K = 2,12, with S = 500 samples, versus the time step n.

Fig. 16. Unimodal state noise scenario: the MSPEs of Fourier-CM

and FB-SFRF-MSPE method K = 2,12, with D = 40 Fourier

coefficients, versus the time step n.

APPENDIX GENERALIZATION OF THE PREDICTION
STAGE UNDER THE APPROACH OF [44] TO AN
ARBITRATY STRUCTURE OF f(p)

μnjμn¡1

In this appendix, we describe the implementation of

the prediction stage, under the approach of [44], with

a general f
(p)

μnjμn¡1 , which is not necessarily equal to a
function of μn¡ μn¡1. At each time step n, it is assumed

that the function
q
f
(p)

μnjμn¡1 can be represented via a
two-dimensional Fourier series with Fourier coefficients

fÁ(n,sqrt)l,m gl,m2Z, i.e.q
f
(p)

μnjμn¡1 (®n j ®n¡1) =
1X

l=¡1

1X
m=¡1

Á
(n,sqrt)
l,m ejl®nejm®n¡1 :

(40)

By using (40), it can be verified (see e.g. [8]) that the

Fourier coefficients of f
(p)

μnjμn¡1 =
q
f
(p)

μnjμn¡1

q
f
(p)

μnjμn¡1 from
(26) are given by the following two-dimensional dis-

crete convolution

Á
(n)
l,m =

1X
q=¡1

1X
r=¡1

Á(n,sqrt)q,r Á
(n,sqrt)
l¡q,m¡r, (41)

8l,m 2 Z. In practice, the Fourier coefficients in the r.h.s.
of (40) are usually computed numerically and the cor-

responding two-dimensional Fourier series is truncated.

Therefore, the two-dimensional discrete convolution in

(41) is finite, resulting in Á̃(n)l,m which approximates Ál,m,

8l =¡D, : : : ,D, m=¡D, : : : ,D. For jlj>D or jmj>D,
Ál,m is approximated by zero. The predicted pdf fμnjx(n¡1)
is approximated by f(D)

njn¡1,FB :−μ !R given by

f(D)
njn¡1,FB(y)

¢
=

DX
l=¡D

´
(njn¡1,D)
l,FB ejly , (42)

where y is the argument of f(D)
njn¡1,FB,

´
(njn¡1,D)
l,FB = 2¼

DX
m=¡D

´(n¡1,D)¡m,FB Á̃
(n)
l,m, 8l =¡D, : : : ,D:

(43)

Then, the Fourier series representation of
q
f(D)
njn¡1,FB is

derived by applying the procedure, proposed in [44],

for obtaining the Fourier coefficients of the square root

of a pdf from the Fourier coefficients of the actual pdf.
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