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This work considers filtering of uncertain data defined on peri-

odic domains, particularly the circle and the manifold of orienta-

tions in 3D space. Filters based on the Kalman filter perform poorly

in this directional setting as they fail to take the structure of the un-

derlying manifold into account. We present a recursive filter based

on the Bingham distribution, which is defined on the considered

domains. The proposed filter can be applied to circular filtering

problems with 180 degree symmetry and to estimation of orien-

tations in three dimensional space. It is easily implemented using

standard numerical techniques and suitable for real-time applica-

tions. We evaluate our filter in a challenging scenario and compare

it to a Kalman filtering approach adapted to the particular setting.
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1. INTRODUCTION

Tracking cars, ships, or airplanes may involve es-

timation of their current orientation or heading. Fur-

thermore, many applications in the area of robotics or

augmented reality depend on reliable estimation of the

pose of certain objects. When estimating the orientation

of two-way roads or relative angles of two unlabeled

targets, the estimation task can be thought of as estima-

tion of a directionless orientation. Thus, the estimation

task reduces to estimating the alignment of an axis, i.e.,

estimation with 180± symmetry.
All these estimation problems share the need for

processing angular or directional data, which differs in

many ways from the linear setting. First, periodicity of

the underlying manifold needs to be taken into account.

Second, directional quantities do not lie in a vector

space. Thus, there is no equivalent to a linear model, as

there are no linear mappings. These problems become

particularly significant for high uncertainties, e.g., as a

result of poor initialization, inaccurate sensors such as

magnetometers, or sparse measurements causing a large

integration error.

In many applications, even simple estimation prob-

lems involving angular data are often considered as lin-

ear or nonlinear estimation problems on linear domains

and handled with techniques such as the Kalman Filter

[19], the Extended Kalman Filter (EKF), or the Un-

scented Kalman Filter (UKF) [17]. In a circular set-

ting, most approaches to filtering suffer from assuming

a Gaussian probability density at a certain point. They

fail to take into account the periodic nature of the un-

derlying domain and assume a (linear) vector space in-

stead of a curved manifold. This shortcoming can cause

poor results, in particular when the angular uncertainty

is large. In certain cases, the filters may even diverge.

Fig. 1. Bingham probability density function with M= I2£2 and
Z= diag(¡8,0) as a 3D plot. This corresponds to a standard

deviation of 16±.

Strategies to avoid these problems in an angular set-

ting involve an “intelligent” repositioning of measure-

ments (typically by multiples of ¼) or even discarding

certain undesired measurements. Sometimes, nonlinear
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equality constraints have to be fulfilled, for example,

unit length of a vector, which makes it necessary to in-

flate the covariance [16]. There are also approaches that

use operators on a manifold to provide a local approx-

imation of a vector space [13]. While these approaches

yield reasonable results in some circumstances, they

still suffer from ignoring the true geometry of circular

data within their probabilistic models, which are usually

based on assuming normally distributed noise. This as-

sumption is often motivated by the Central Limit The-

orem, i.e., the limit distribution of a normalized sum of

i.i.d. random variables with finite variance is normally

distributed [42]. However, this motivation does not ap-

ply to uncertain data from a periodic domain. Thus,

choosing a circular distribution for describing uncer-

tainty can offer better results.

In this paper, we consider the use of the Bingham

distribution [5] (see Fig. 1) for recursive estimation. The

Bingham distribution is defined on the hypersphere of

arbitrary dimension. Here, we focus on the cases of

two- and four-dimensional Bingham distributed random

vectors and apply our results to angular estimation with

180± symmetry and estimating orientation in 3D space.
Estimating orientation is achieved by using unit

quaternions to represent the full 3D orientation of an

object. It is well known that quaternions avoid the

singularities present in other representations such as

Euler angles [25]. Their only downsides are the fact

that they must remain normalized and the property that

the quaternions q and ¡q represent the same orientation.
Both of these issues can elegantly be resolved by use

of the Bingham distribution, since it is by definition

restricted to the hypersphere and is 180± symmetric.
This work extends our results on Bingham filtering

[32] and the first-order quaternion Bingham filter pro-

posed in [11] in several ways. First of all, we present a

relationship between the two-dimensional Bingham dis-

tribution and the von Mises distribution and we show

how to exploit it to obtain a more efficient way of com-

puting the normalization constant and its derivatives.

Furthermore, we show a relation to the von Mises-Fisher

distribution, which can be used to speed up parameter

estimation and moment matching procedures in an im-

portant special case. In that situation, we avoid the need

for precomputed lookup tables. This is of considerable

interest because the computation of the normalization

constant plays a crucial role for the performance of the

Bingham filter. Finally, we perform a more thorough

evaluation of both two- and four-dimensional scenarios

using different types of noise distributions and different

degrees of uncertainty.

This paper is structured as follows. First, we present

an overview of previous work in the area of directional

statistics and angular estimation (Sec. 2). Then, we

introduce our key idea in Sec. 3. In Sec. 4, we give

a detailed introduction to the Bingham distribution and

in Sec. 5, we derive the necessary operations needed

to create a recursive Bingham filter. Based on these

prerequisites, we introduce our filter in Sec. 6. We

have carried out an evaluation in simulations, which is

presented in Sec. 7. Finally, we conclude this work in

Sec. 8.

2. RELATED WORK

Directional statistics is a subdiscipline of statistics,

which focuses on dealing with directional data. That is,

it considers random variables which are constrained to

lie on manifolds (for example the circle or the sphere)

rather than random variables located in d-dimensional

vector spaces (typically Rd). Classical results in direc-
tional statistics are summed up in the books by Mardia

and Jupp [37] and by Jammalamadaka and Sengupta

[15]. Probability distributions on the unit sphere are de-

scribed in more detail in [6].

There is a broad range of research investigating

the two-dimensional orientation estimation. A recursive

filter based on the von Mises distribution for estimating

the orientation on the SO(2) was presented in [3], [45].

It has been applied to GPS phase estimation problems

[44]. Furthermore, a nonlinear filter based on von Mises

and wrapped normal distributions was presented in [30],

[31]. This filter takes advantage of the fact that wrapped

normal distributions are closed under convolution and

the fact that von Mises distributions are closed under

Bayesian inference. This filter has also been applied to

constrained object tracking [29].

In 1974, Bingham published the special case for

three dimensions of his distribution in [5], which he

originally developed in his PhD thesis [4]. Further work

on the Bingham distribution has been done by Kent

[21], [22] as well as Jupp and Mardia [18], [35]. So

far, there have been a few applications of the Bingham

distribution, for example in geology [36], [28], [33].

Antone published some results on a maximum like-

lihood approach for Bingham-based pose estimation in

2001 [2]. However, this method was limited to offline

applications. In 2011, Glover used the Bingham distri-

bution for a Monte Carlo based pose estimation [10],

which he later generalized into a quaternion-based re-

cursive filter [11] and applied it to tracking the spin of a

ping pong ball [12]. Glover also released a library called

libbingham [9] that includes C and MATLAB imple-
mentations of some of the methods discussed in Sec. 4.

It should be noted that our implementation is not based

on libbingham. Our implementation calculates the nor-
malization constant online, whereas libbingham relies
on values that have been precomputed offline. In the

case of a two-dimensional Bingham-distributed random

vector, the computation of the normalization constant of

the corresponding probability density function reduces

to the evaluation of Bessel functions. In higher dimen-

sions, a saddlepoint approximation can be used [26].

In 2013, we proposed a recursive Bingham filter for

2D axis estimation [32], which serves as a foundation

for this paper. We also published a nonlinear general-

ization to the quaternion case in [8].
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3. KEY IDEA OF THE BINGHAM FILTER

In this paper, we derive a recursive filter based on

the Bingham distribution for two- and four-dimensional

random vectors of unit length, because they can be

used to represent orientations on the plane and in three-

dimensional space. Rather than relying on approxima-

tions involving the Gaussian distribution, we chose to

represent all occurring probability densities as Bingham

distributions. The Bingham distribution is defined on

the hypersphere and is antipodally symmetric. Our use

of the Bingham distribution is motivated by its conve-

nient representation of hyperspherical random vectors,

its relationship to the Gaussian distribution, and a max-

imum entropy property [35]. Although we restrict our-

selves to the two- and four-dimensional cases in this

paper, we would like to emphasize that some of the

presented methods can easily be generalized to higher

dimensions.

In order to derive a recursive filter, we need to

be able to perform two operations. First, we need to

calculate the predicted state at the next time step from

the current state and the system noise affecting the

state. In a recursive estimation problem in Rd with
additive noise, this involves a convolution with the

noise density. We provide a suitable analogue on the

hypersphere in order to account for the composition of

uncertain rotations. Since Bingham distributions are not

closed under this operation, we present an approximate

solution to this problem based on matching covariance

matrices.

Second, we need to perform a Bayes update. As

usual, this requires the multiplication of the prior density

with the likelihood density. We prove that Bingham

distributions are closed under multiplication and show

how to obtain the posterior density.

4. BINGHAM DISTRIBUTION

In this section, we lay out the Bingham distribution

and the fundamental operations that we use to develop

the filter and discuss its relation to several other distri-

butions. The Bingham distribution on the hypersphere

naturally appears when a d-dimensional normal random

vector x with E(x) = 0 is conditioned on kxk= 1 [26].
One of the main challenges when dealing with the Bing-

ham distribution is the calculation of its normalization

constant, so we discuss this issue in some detail.

4.1. Probability Density Function

As a consequence of the motivation above, it can

be seen that the Bingham probability density function

(pdf) looks exactly like its Gaussian counterpart except

for the normalization constant. Furthermore, the param-

eter matrix of the Bingham distribution appearing in the

exponential (which is the inverse covariance matrix in

the Gaussian case) is usually decomposed into an or-

thogonal and a diagonal matrix, which yields an intu-

Fig. 2. Bingham probability density function with M= I2£2 for
different values of Z= diag(z1,0) and x= (cos(μ),sin(μ))

T. These

values for z1 correspond to standard deviations of approximately 6
±,

16±, and 36±, respectively.

itive interpretation of the matrices. This results in the

following definition.

DEFINITION 1 Let Sd¡1 = fx 2 Rd : kxk= 1g ½ Rd be
the unit hypersphere in Rd. The probability density
function (pdf)

f : Sd¡1!R (1)

of a Bingham distribution [5] is given by

f(x) =
1

F
¢ exp(xTMZMTx), (2)

where M 2Rd£d is an orthogonal matrix1 describing
the orientation, Z= diag(z1, : : : zd¡1,0) 2Rd£d with z1 ·
¢¢ ¢ · zd¡1 · 0 is the concentration matrix, and F is a

normalization constant.

As Bingham showed [5], adding a multiple of the

identity matrix Id£d to Z does not change the distribu-
tion. Thus, we conveniently force the last entry of Z to

be zero. Because it is possible to swap columns of M
and the according diagonal entries in Z without chang-
ing the distribution, we can enforce z1 · ¢¢ ¢ · zd¡1.
The probability density function is antipodally sym-

metric, i.e., f(x) = f(¡x) holds for all x 2 Sd¡1. Con-
sequently, the Bingham distribution is invariant to ro-

tations by 180±. Examples for two dimensions (d = 2)
are shown in Fig. 1 and Fig. 2. Examples for three di-

mensions (d = 3) are shown in Fig. 3. The relation of

the Bingham distribution to certain other distributions

is discussed the appendix.

It deserves to mention that some authors use slightly

different parameterizations of the Bingham distribution.

In particular, the rightmost column of M is sometimes

omitted [11], because it is, up to sign, uniquely deter-

mined by being a unit vector that is orthogonal to the

1An orthogonal matrix M fulfills the equation MMT =MTM= Id£d .
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Fig. 3. Bingham pdf with M= I3£3 for values of Z= diag(¡1,¡1,0), Z= diag(¡5,¡1,0), and Z= diag(¡50,¡1,0).

other columns ofM. As a result of antipodal symmetry,

the sign can safely be ignored. Still, we prefer to include

the entire matrix M because this representation allows

us to obtain the mode of the distribution very easily by

taking the last column of M.

4.2. Normalization Constant

The normalization constant of the Bingham distri-

bution is difficult to calculate, which constitutes one of

the most significant challenges when dealing with the

Bingham distribution. Because

F =

Z
Sd¡1

exp(xTMZMTx)dx (3)

=

Z
Sd¡1

exp(xTZx)dx, (4)

the normalization constant does not depend onM. It can

be calculated with the help of the hypergeometric func-

tion of a matrix argument [14], [23], [40] according to

F := jSd¡1j ¢ 1F1
μ
1

2
,
d

2
,Z

¶
, (5)

where

jSd¡1j=
2 ¢¼n=2
¡ (N=2)

(6)

is the surface area of the d-sphere and 1F1(¢, ¢, ¢) is the
hypergeometric function of matrix argument. In the d-

dimensional case, this reduces to

F = jSd¡1j ¢ 1F1

0BBBBB@
1

2
,
d

2
,

2666664
z1 0 ¢ ¢ ¢ 0

0
. . .

. . . 0

...
. . . zd¡1 0

0 ¢ ¢ ¢ 0 0

3777775

1CCCCCA (7)

= jSd¡1j ¢ 1F1

0BB@12 , d2 ,
2664
z1 ¢ ¢ ¢ 0

...
. . .

...

0 ¢ ¢ ¢ zd¡1

3775
1CCA , (8)

so it is sufficient to compute the hypergeometric func-

tion a diagonal matrix of size (d¡ 1)£ (d¡ 1). If d = 2,
this is a hypergeometric function of a scalar argument,

which is described in [1]. We will later show how to

further reduce this to a Bessel function for d = 2.

A number of algorithms for computing the hyper-

geometric function have been proposed, for example

saddle point-approximations [26], a series of Jack func-

tions [23], and holonomic gradient descent [24]. Glover

has suggested the formula [11, (8)]

F = 2
p
¼

1X
®1=0

¢ ¢ ¢
1X

®d¡1=0

Qd¡1
i=1 ¡

μ
®i+

1

2

¶
z®ii
®i!

¡

μ
d

2
+
Pd¡1
i=1 ®i

¶ (9)

which should only be evaluated for positive z1, : : : ,zd¡1
to avoid a numerically unstable alternating series.2 Be-

cause of the computational complexity involved, lib-
bingham [9] provides a precomputed lookup table and
linear interpolation is used at runtime to obtain an ap-

proximate value. The technique of precomputed tables

has previously been used by Mardia et al. for the max-

imum likelihood estimate, which involves the normal-

ization constant [38].

To allow for online calculation of the normalization

constant, we use Bessel functions for d = 2 and the

saddle-point approximation by Kume et al. [26] for d >

2. The derivatives of the normalization constant, which

are required for the maximum likelihood estimation

procedure, can be calculated according to [27].

5. OPERATIONS ON THE BINGHAM DISTRIBUTION

In this section, we derive the formulas for multiplica-

tion of two Bingham probability density functions. Fur-

thermore, we will present a method for computing the

composition of two Bingham-distributed random vari-

ables, which is analogous to the addition of real random

variables.

5.1. Multiplication

For two given Bingham densities, we want to obtain

their product. This product is used for Bayesian infer-

ence involving Bingham densities. The result presented

below yields a convenient way to calculate the product

of Bingham densities.

2This can easily be achieved by adding a multiple of the identity

matrix to the concentration matrix Z.
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LEMMA 1 Bingham densities are closed under multipli-

cation with renormalization.

PROOF Consider two Bingham densities

f1(x) = F1 ¢ exp(xTM1Z1M
T
1x) (10)

and

f2(x) = F2 ¢ exp(xTM2Z2M
T
2x): (11)

Then

f1(x) ¢f2(x) = F1F2 ¢ exp(xT(M1Z1M
T
1 +M2Z2M

T
2| {z }

=:C

)x)

/ F ¢ exp(xTMZMTx) (12)

with F as the new normalization constant after renor-

malization, M are the unit eigenvectors of C, D has the

eigenvalues of C on the diagonal (sorted in ascending

order) and Z=D¡DddId£d where Ddd refers to the bot-
tom right entry of D, i.e., the largest eigenvalue.

5.2. Estimation of Bingham Distribution Parameters

Estimating parameters for the Bingham distribution

is not only motivated by the need to estimate distribu-

tion parameters of the process noise. It also plays a cru-

cial role in the prediction process when computing the

composition of two Bingham random vectors and reap-

proximating a Bingham distribution. This procedure is

based on matching covariance matrices. Be aware that

although the Bingham distribution is only defined on

Sd¡1, we can still compute the covariance matrix of a
Bingham-distributed random vector x 2 Sd¡1 according
to S= E(x ¢ xT) in Rd. Thus, we will present both the
computation of the covariance matrix of a Bingham dis-

tributed random vector and the computation of parame-

ters for a Bingham distribution with a given covariance

(which could correspond to an arbitrary distribution on

the hypersphere).

The maximum-likelihood estimate for the parame-

ters (M,Z) of a Bingham distribution can be obtained

from given or empirical moments (in the case of given

samples) as described in [5]. M can be obtained as the

matrix of eigenvectors of the covariance S with eigen-

values !1 · ¢¢ ¢ · !d. In other words,M can be found as

the eigendecomposition of

S=M ¢ diag(!1, : : : ,!d) ¢MT: (13)

To calculate Z, the equations

@

@zi
1F1

μ
1

2
,1,diag(z1, : : : ,zd)

¶
1F1

μ
1

2
,1,diag(z1, : : : ,zd)

¶ = !i, i= 1, : : : ,d (14)

have to be solved under the constraint zd = 0, which

is justified by the argumentation above and used to

simplify the computation. The actual computation is

performed numerically. In our case, the fsolve routine

from Matlab was used, which utilizes a trust region

method for solving nonlinear equations.

Conversely, for a given Bingham(M,Z)-distributed
random vector x 2 Sd¡1, the covariance matrix can be
calculated according to

E(x ¢ xT) =M ¢diag(!1, : : : ,!d) ¢MT (15)

=M ¢diag
μ
1

F

@F

@z1
, : : : ,

1

F

@F

@zd

¶
¢MT: (16)

Thus, the underlying distribution parameters of a Bing-

ham distributed random vector are uniquely defined by

its covariance matrix and vice versa. However, it is im-

portant to note that this covariance matrix is usually not

the same as the covariance matrix of a Gaussian random

vector which was conditioned to one in order to obtain

the Bingham distribution.

REMARK 1 For d = 2, there is an interesting relation of

the covariance matrix to the circular (or trigonometric)

moments

mn =

Z 2¼

0

exp(inx)f(x)dx 2C, i2 =¡1 (17)

that are commonly used for circular distributions. A

Bingham distribution with M= I2£2 and x= [cos(μ),
sin(μ)]T has covariance

S=

·
!1 0

0 !2

¸
=

·
E(x21) 0

0 E(x22)

¸
(18)

=

·
E(cos(μ)2) 0

0 E(sin(μ)2)

¸
, (19)

i.e., !1 = Rem2 and !2 = Imm2.

5.3. Composition

Now, we want to derive the composition of Bingham

distributed random vectors, which is the directional ana-

logue to addition of random vectors in a linear space.

Thus, the density of the random vector resulting from

this operation is the directional analogue to the convolu-

tion in linear space. First, we define a composition of in-

dividual points on the hypersphere Sd¡1, which we then
use to derive the composition of Bingham distributed

random vectors. We consider a composition function

© : Sd¡1£ Sd¡1! Sd¡1, (20)

where © has to be compatible with 180± degree sym-
metry, i.e.,

x© y =§((¡x)© y) (21)

=§(x© (¡y)) (22)

=§((¡x)© (¡y)) (23)

for all x,y 2 Sd¡1. Furthermore, we require the quotient
(Sd¡1=f§1g,©) to have an algebraic group structure.
This guarantees associativity, the existence of an identity

element, and the existence of inverse elements.
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REMARK 2 It has been shown that the only hyper-

spheres admitting a topological group structure are S0,

S1, and S3 [39]. Because S0 only consists of two ele-

ments, S1 and S3 (i.e., d = 2 and d = 4) are the only

two relevant hyperspheres. This structure is necessary

to obtain a suitable composition operation.

For this reason, we only consider the cases d = 2

and d = 4 from now on. These two cases are of practi-

cal interest as they conveniently allow the representation

of two-dimensional axes and three-dimensional orienta-

tions via quaternions.

5.3.1. Two-dimensional case:
For d = 2, we interpret S1 ½ R2 as elements in C

of unit length, where the first dimension is the real

part and the second dimension the imaginary part. In

this interpretation, the Bingham distributions can be

understood as a distribution on a subset of the complex

plane, namely the unit circle.

DEFINITION 2 For d = 2, the composition function ©
is defined to be complex multiplication, i.e.,·

x1

x2

¸
©
·
y1

y2

¸
=

·
x1y1¡ x2y2
x1y2 + x2y1

¸
(24)

analogous to

(x1 + ix2) ¢ (y1 + iy2) = (x1y1¡ x2y2)
+ i(x1y2 + x2y1): (25)

Since we only consider unit vectors, the composition

© is equivalent to adding the angles of both complex

numbers when they are represented in polar form. The

identity element is §1 and the inverse element for

(x1,x2)
T is the complex conjugate §(x1,¡x2)T.

Unfortunately, the Bingham distribution is not closed

under this kind of composition. That is, the resulting

random vector is no longer Bingham distributed (see

Lemma 3). Thus, we propose a technique to approx-

imate the composed random vector with a Bingham

distribution. The composition of two Bingham distribu-

tions fA and fB is calculated by considering the compo-

sition of their covariance matrices A,B and estimating

the parameters of fC based on the resulting covariance

matrix. Composition of covariance matrices can be de-

rived from the composition of random vectors. Note that

since covariance matrices are always symmetric, we can

ignore the bottom left entry in our notation and mark it

with an asterisk.

LEMMA 2 Let fA and fB be Bingham distributions with

covariance matrices

A=

·
a11 a12

¤ a22

¸
and B=

·
b11 b12

¤ b22

¸
, (26)

respectively. Let x,y 2 S1 ½ R2 be independent random
vectors distributed according to fA and fB. Then the

covariance

C=

·
c11 c12

¤ c22

¸
:= Cov(x© y) (27)

of the composition is given by

c11 = a11b11¡ 2a12b12 + a22b22, (28)

c12 = a11b12¡ a12b22 + a12b11¡ a22b12, (29)

c22 = a11b22 +2a12b12 + a22b11: (30)

PROOF See Appendix E.

Based on C, the maximum likelihood estimate is

used to obtain the parameters M and Z of the uniquely

defined Bingham distribution with covariance C as de-

scribed above. This computation can be done in an ef-

ficient way, even though the solution of the equation

involving the hypergeometric function is not given in

closed form. This does not present a limitation to the

proposed algorithm, because there are many efficient

ways for the computation of the confluent hypergeo-

metric function of a scalar argument [34], [41].

5.3.2. Four-dimensional case:
In the four-dimensional case (d = 4), we interpret

S3 ½ R4 as unit quaternions in H [25]. A quaternion q=
[q1,q2,q3,q4]

T consists of the real part q1 and imaginary

parts q2,q3,q4. It is written as

q= q1 + q2 i+ q3 j+ q4 k, (31)

where i2 = j2 = k2 = ijk =¡1 are the imaginary units.
A rotation in SO(3) with rotation axis [v1,v2,v3]

T 2 S2
and rotation angle Á 2 [0,2¼) can be represented as the
quaternion

q= cos(Á=2)+ sin(Á=2)(v1 i+ v2 j+ v3 k) (32)

and applied to a vector w = [w1,w2,w3] 2 R3 accord-
ing to

wrot = q(0+w1 i+w2 j+w3 k)q̄: (33)

Here, q̄= q1¡ q2i¡ q3j¡ q4k denotes the conjugate of
q and wrot quaternion containing the rotated vector

encoded as the factors of the quaternion basis elements

i, j, and k.

DEFINITION 3 For d = 4, the composition function ©
is defined to be quaternion multiplication, i.e.,26664

x1

x2

x3

x4

37775©
26664
y1

y2

y3

y4

37775=
26664
x1y1¡ x2y2¡ x3y3¡ x4y4
x1y2 + x2y1 + x3y4¡ x4y3
x1y3¡ x2y4 + x3y1 + x4y2
x1y4 + x2y3¡ x3y2 + x4y1

37775 , (34)

sometimes also referred to as Hamilton product.
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This definition corresponds to the composition of

rotations. The identity element is §[1,0,0,0]T and the
inverse element is given by the quaternion conjugate as

given above.

LEMMA 3 For all nontrivial hyperspheres that allow a

topological group structure (d = 2 and d = 4, see Re-

mark 2), the Bingham distribution is not closed under

composition of random variables.

PROOF We prove this Lemma by computing the true

distribution of the (Hamilton-) product © of two Bing-
ham distributed random vectors x» fx(¢) and y » fy(¢)
with respective parameter matricesMx,My, Zx, and Zy.

The true density f(¢) of x© y can be expressed in terms
of the densities of x and y by

f(z) =

Z
Sd¡1

fx(z© a¡1)fy(a)da: (35)

Inversion of unit quaternions and complex numbers

of unit length can both be obtained by conjugation.

Furthermore, complex numbers and quaternions can

both be represented by matrices. This can be used to

construct a matrix Qz such that z© a¡1 =Qza. Thus,
we obtain

f(z) =

Z
Sd¡1

fx(Qza)fy(a)da (36)

/
Z
Sd¡1

exp(aTQTzMxZxM
T
xQza+ a

TMyZyM
T
y a)da

(37)

/
Z
Sd¡1

exp(aT(QTzMxZxM
T
xQz +MyZyM

T
y )a)da:

Computation of the integral yields a rescaled hypergeo-

metric function of matrix argument. Therefore, the ran-

dom variable x© y does not follow a Bingham distribu-

tion.

LEMMA 4 Let fA and fB be Bingham distributions with

covariance matrices

A=

26664
a11 a12 a13 a14

¤ a22 a23 a24

¤ ¤ a33 a34

¤ ¤ ¤ a44

37775 ,

B=

26664
b11 b12 b13 b14

¤ b22 b23 b24

¤ ¤ b33 b34

¤ ¤ ¤ b44

37775 ,
respectively. Let x,y 2 S3 ½ R4 be independent random
vectors distributed according to fA and fB. Then the

covariance matrix

C=

26664
c11 c12 c13 c14

¤ c22 c23 c24

¤ ¤ c33 c34

¤ ¤ ¤ c44

37775=Cov(x© y) (38)

of the composition is given by

cij = E((x© y)i ¢ (x© y)j), i,j = 1, : : : ,4: (39)

PROOF Analogous to Lemma 2. The complete formula

for cij is given in [11, A.9.2].

6. FILTER IMPLEMENTATION

The techniques presented in the preceding section

can be applied to derive a recursive filter based on the

Bingham distribution. The system model is given by

xk+1 = xk ©wk, (40)

where wk is Bingham-distributed noise. The measure-

ment model is given by

zk = xk © vk, (41)

where vk is Bingham-distributed noise and xk is an

uncertain Bingham-distributed system state. Intuitively,

this means that both system and measurement model

are the identity disturbed by Bingham-distributed noise.

Note that the modes of the distributions of wk and

vk can be chosen to include a constant offset. This

can be thought of as a directional equivalent to non-

zero noise in the linear setting. For example, the mode

of wk can be chosen such that it represents a known

angular velocity or a given control input. Alternatively,

to avoid dealing with nonzero-mean noise distributions,

a rotation may be applied to xk first and zero-mean noise

added subsequently.

The predicted and estimated distributions at time k

are described by their parameter matrices (M
p
k ,Z

p
k ) and

(Me
k,Z

e
k), respectively. The noise distributions at time k

are described by (Mw
k ,Z

w
k ) and (M

v
k,Z

v
k).

6.1. Prediction Step

The prediction can be calculated with the Chapman-

Kolmogorov-equation

fp(xk+1) (42)

=

Z
Sd¡1

f(xk+1 j xk)fe(xk)dxk (43)

=

Z
Sd¡1

Z
Sd¡1

f(xk+1,wk j xk)dwkfe(xk)dxk (44)

=

Z
Sd¡1

Z
Sd¡1

f(xk+1 j wk,xk)fw(wk)dwkfe(xk)dxk
(45)

=

Z
Sd¡1

Z
Sd¡1

±(wk ¡ (x¡1k © xk+1))fw(wk)dwkfe(xk)dxk

=

Z
Sd¡1

fw(x
¡1
k © xk+1)fe(xk)dxk: (46)

This yields

(M
p
k+1,Z

p
k+1) = composition((M

e
k,Z

e
k), (M

w
k ,Z

w
k )), (47)
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which uses the previously introduced composition op-

eration to disturb the estimate with the system noise.

ALGORITHM 1 Algorithm for prediction step.

Input: estimate Me
k,Z

e
k, noise M

w
k ,Z

w
k

Output: prediction M
p
k+1,Z

p
k+1

/* obtain covariance matrices A,B */

AÃMe
k ¢ diag

μ
1

F

@F

@z1
, : : : ,

1

F

@F

@zd

¶
¢ (Me

k)
T;

BÃMw
k ¢ diag

μ
1

F

@F

@z1
, : : : ,

1

F

@F

@zd

¶
¢ (Mw

k )
T;

/* obtain C with to Lemma 2 or 4 */
cij Ã E((x© y)i ¢ (x© y)j), i,j = 1, : : : ,d;
C= (cij)ij ;

/* obtain Mp
k+1,Z

p
k+1 based on C */

M
p
k+1,Z

p
k+1ÃMLE(C);

6.2. Measurement Update

Given a measurement ẑk, we can calculate the up-

dated density f̂ of xk given zk from the density fv of vk
and the prior density fx of xk. This is performed using

the transformation theorem for densities and Bayes’ rule

f̂(a)/ fv(a¡1© ẑ) ¢fx(a): (48)

First, we make use of the fact that negation corresponds

to conjugation for quaternions and complex numbers

of unit length. Thus, we have a¡1© ẑ =D(ẑ¡1© a) with
D= diag(1,¡1) for d = 2 and D= diag(1,¡1,¡1,¡1).
As in our proof of Lemma 7, we can use a matrix

representation Q
ẑ
¡1 of ẑ

¡1
such that ẑ

¡1© a=Q
ẑ
¡1a.

Thus, we obtain

fv(a
¡1© ẑ) = fv(D ¢Qẑ¡1a): (49)

This yields

fv(D ¢Qẑ¡1 ¢ a) (50)

/ exp(aTQT
ẑ
¡1D

TMv
kZ

v
k(M

v
k)
TDQ

ẑ
¡1a) (51)

= exp(aTQẑDM
v
kZ

v
k(M

v
k)
TDQ

ẑ
¡1a): (52)

The last identity is due to DT =D and the fact that

the transpose of the usual matrix representations of

complex numbers and quaternions corresponds to the

representation of their conjugates.

Finally, the parameters of the resulting Bingham

distribution are obtained by

(Me
k,Z

e
k) = multiply((M,Z

v
k), (M

p
k ,Z

p
k )) (53)

with M= (ẑ© (DMv
k)), where © is evaluated for each

column of DMv
k and “multiply” denotes the procedure

outlined in Sec. 5.1. This operation can be performed

solely on the Bingham parameters and does not involve

the calculation of normalization constants (see Algo-

rithm 2).

ALGORITHM 2 Algorithm for update step.

Input: prediction M
p
k ,Z

p
k , noise M

v
k,Z

v
k,

measurement ẑk
Output: estimate Me

k,Z
e
k

/* rotate noise according to measurement */
MÃ ẑ© (DMv

k);

/* multiply with prior distribution */
(Me

k,Z
e
k)Ãmultiply((M,Zvk)), (M

p
k ,Z

p
k ));

7. EVALUATION

The proposed filter was evaluated in simulations for

both the 2D and 4D cases. In this section, all angles are

given in radians unless specified differently.

For comparison, we implemented modified Kalman

filters with two- and four-dimensional state vectors [19].

In order to deal with axial estimates, we introduce two

modifications:

1) We mirror the estimate ẑÃ¡ẑ if the angle between
prediction and measurement 6 (xpk , ẑ)> ¼=2.

2) We normalize the estimate xek after each update step

xekÃ (xek=kxekk).
It should be noted that in two-dimensional scenarios,

a comparison to a Kalman filter with a scalar state is

also possible. We previously performed this simulation

in [32] and showed that the Bingham filter is superior

to Kalman filter with scalar state in the considered

scenario.

7.1. Two-Dimensional Case

In our example, we consider the estimation of an

axis in robotics. This could be the axis of a symmetric

rotor blade or any robotic joint with 180± symmetry. We
use the initial estimate with mode (0,1)T

Me
0 =

μ
1 0

0 1

¶
, Ze0 =

μ¡1 0

0 0

¶
, (54)

the system noise with mode (1,0)T

Mw
k =

μ
0 1

1 0

¶
, Zwk =

μ¡200 0

0 0

¶
, (55)

and the measurement noise with mode (1,0)T

Mv
k =

μ
0 1

1 0

¶
, Zvk =

μ¡2 0

0 0

¶
: (56)

The true initial state is given by (1,0)T, i.e., the initial

estimate with mode (0,1)T is very poor.

To calculate the covariance matrices for the Kalman

filter we fit a Gaussian to one of the two Bingham

modes by means of numerical integration, i.e.,

C =

Z ®m+¼=2

®m¡¼=2
f([cos(Á),sin(Á)]T) (57)

¢
·
(cos(Á)¡m1)2 (cos(Á)¡m1)(sin(Á)¡m2)

¤ (sin(Á)¡m2)2
¸
dÁ,
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Fig. 4. RMSE from 100 Monte Carlo runs.

Fig. 5. Average error over time from 100 Monte Carlo runs.

where (m1,m2)
T is a mode of the Bingham distribution

and ®m = atan2(m2,m1). The original Bingham distribu-

tion and the resulting Gaussian are illustrated in Fig. 6.

We obtain the parameters

Ce0 =

·
3:8£ 10¡1 0

0 1:5£10¡1

¸
, (58)

Cwk =

·
4:7£ 10¡6 0

0 2:5£ 10¡3
¸
, (59)

Cvk =

·
8:8£ 10¡2 0

0 2:8£10¡1
¸
, (60)

which is equivalent to angular standard deviations of

43:9± for the first time step, 2:9± for the system noise

and 36:3± for the measurement noise.

7.2. Four-Dimensional Case

For the quaternion case, we use the initial estimate

with mode (0,0,0,1)T

Me
0 = I4£4, Ze0 = diag(¡1,¡1,¡1,0), (61)

the system noise with mode (1,0,0,0)T

Mw
k =

0BBB@
0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

1CCCA , (62)

Zwk = diag(¡200,¡200,¡2,0), (63)

and the measurement noise with mode (1,0,0,0)T

Mv
k =

0BBB@
0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

1CCCA , (64)

Zvk = diag(¡500,¡500,¡500,0): (65)

Fig. 6. The Bingham density with parameters Mv
k
,Zv
k
(on the

circle) and a Gaussian (in the plane) fitted to one of the modes with

the mean located at the mode and covariance computed according

to (57).

The true initial state is (0,1,0,0)T, i.e., the initial esti-
mate with mode (0,0,0,1)T is very poor. It should be
noted that the system noise is not isotropic, because the
uncertainty is significantly higher in the third dimension
than in the first two.
We converted the Bingham noise parameters to

Gaussians analogous to the two-dimensional case.

7.3. Results

We simulate the system for a duration of kmax = 100
time steps. For evaluation, we consider the angular
RMSE given by vuut 1

kmax

kmaxX
k=1

(ek)
2 (66)

with angular error

ek =min( 6 (x
true
k ,mode(Me

k)), (67)

¼¡ 6 (xtruek ,mode(Me
k)) (68)
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at time step k. Obviously, 0· ek · ¼=2 holds, which is
consistent with our assumption of 180± symmetry. This
error measure can be used in the two- and the four-

dimensional setting. As we have shown in [8], the angle

between two quaternions in four-dimensional space is

proportional to the angle of the corresponding rotation

between the two orientations in three dimensions, so ek
is a reasonable measure for quaternions.

The presented results are based on 100 Monte Carlo

runs. Even though our filter is computationally more

demanding than a Kalman filter, it is still fast enough

for real-time applications. On a standard laptop with

an Intel Core i7-2640M CPU, our non-optimized im-

plementation in MATLAB needs approximately 8 ms

for one time step (prediction and update) in the two-

dimensional case. In the four-dimensional case, we im-

plemented the hypergeometric function in C, but the

maximum likelihood estimation is written in MATLAB.

The calculations fore one time step require 13 ms on our

laptop.

We consider two different types of noise, Bingham

and Gaussian. Even though Bingham distributed noise

may be a more realistic assumption in a circular setting,

we do not want to give the proposed filter an unfair

advantage by comparing it to a filter with an incorrect

noise assumption. In the cases of Gaussian noise, we

obtain the parameters of the Gaussian as described in

(57) and convert the resulting Gaussians back to Bing-

ham distributions to account for any information that

was lost in the conversion from Bingham to Gaussian.

The results for all considered scenarios are depicted

in Fig. 4 and Fig. 5. It can be seen that the proposed

filter outperforms the Kalman filter in all considered

scenarios. Particularly, it outperforms the Kalman filter

even if Gaussian noise is used. This is due to the fact that

projecting the Gaussian noise to the unit sphere does not

yield a Gaussian distribution, which makes the Kalman

filter suboptimal. Furthermore, the Kalman filter does

not consider the nonlinearity of the underlying domain.

As expected, the advantage of using the Bingham filter

is larger if the noise is following a Bingham distribution.

8. CONCLUSION

We have presented a recursive filter based on the

Bingham distribution. It can be applied to angular

estimation in the plane with 180± symmetry and to
quaternion-based estimation of orientation of objects in

three-dimensional space. Thus, it is relevant for a wide

area of applications, particularly when uncertainties oc-

cur, for example as a result of cheap sensors or very

limited prior knowledge.

We have evaluated the proposed approaches in very

challenging settings involving large non-isotropic noise.

Our simulations have shown the superiority of the pre-

sented approach compared to the solution based on

an adapted Kalman filter for both the circular and the

quaternion case. This is true no matter if the noise is

distributed according to a Bingham or a Gaussian distri-

bution. Furthermore, we have shown that the proposed

algorithms are fast enough on a typical laptop to be used

in real-time applications.

Open challenges include an efficient estimator of

the Bingham parameters based on available data. This

makes an efficient evaluation of the confluent hyperge-

ometric function necessary. Furthermore, extensions to

nonlinear measurement equations and the group of rigid

body motions SE(3) may be of interest.
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APPENDIX A. RELATION TO GAUSSIAN
DISTRIBUTION

The Bingham distribution is closely related to the

widely used Gaussian distribution.

DEFINITION 4 The pdf of a multivariate Gaussian dis-

tribution in Rd is given by

fG(x) =
1p

(2¼)d det§
exp

μ
¡1
2
(x¡¹)T§¡1(x¡¹)

¶
with mean ¹ 2 Rd and positive definite covariance § 2
Rd£d.

If we require ¹= 0 and restrict x to the unit hyper-

sphere, i.e., kxk= 1, we have

fG(x) =
1p

(2¼)d det§
exp

μ
xT
μ
¡1
2
§¡1

¶
x

¶
, (69)

which is an unnormalized Bingham distribution with

MZMT =¡ 1
2
§¡1. Conversely, any Bingham distribu-

tion is a restricted Gaussian distribution with § =
(¡2MZMT)¡1 if MZMT is negative definite. This con-

dition can always be fulfilled by adding a multiple of

the identity matrix Id£d to Z. Modifying Z in this way
yields a different Gaussian distribution, but the values

on the unit hypersphere stay the same, i.e., the Bing-

ham distribution does not change. A graphical illustra-

tion of the relation between a Gaussian density and the

corresponding Bingham resulting from conditioning the

original Gaussian random vector to unit length is given

in Fig. 7.

Due to local linear structure of the underlying mani-

fold, each mode of the Bingham distribution defined on

this manifold is very similar to a Gaussian of dimen-

sion d¡ 1 if and only if the uncertainty is small. This
can be seen in Fig. 8, which shows the Kullback-Leibler
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Fig. 7. A two-dimensional Gaussian distribution, which is restricted

to the unit circle to obtain a two-dimensional Bingham distribution.

divergenceZ ¼

0

f([cos(μ),sin(μ)]T) log

μ
f([cos(μ),sin(μ)]T)

fG(μ,¹,¾)

¶
dμ

(70)

between one mode of a Bingham pdf for d = 2 and

a corresponding one-dimensional Gaussian pdf on the

semicircle.

APPENDIX B. RELATION TO VON MISES
DISTRIBUTION

The Bingham distribution for d = 2 is closely related

to the von Mises distribution. We can exploit this fact

at some points in this paper.

DEFINITION 5 A von Mises distribution [15] is given

by the probability density function

fVM(Á;¹,·) =
1

2¼I0(·)
exp(·cos(Á¡¹)) (71)

for Á 2 [0,2¼), location parameter ¹ 2 [0,2¼) and con-
centration parameter · > 0, where I0(·) is the modified

Bessel function [1] of order 0.

Based on this definition, we can show an interest-

ing relation between Bingham and von Mises distribu-

tions [35].

LEMMA 5 For the circular case, every Bingham density

is equal to a von Mises density rescaled to [0,¼) and

repeated on [¼,2¼).

PROOF We can reparameterize a Bingham distribution

with d = 2 by substituting x= [cos(μ),sin(μ)]T and

M=

·¡sin(º) cos(º)

cos(º) sin(º)

¸
, Z=

·
z1 0

0 0

¸
(72)

to attain the von Mises distribution. With

MZMT = z1

·
sin2(º) ¡cos(º) sin(º)

¡cos(º)sin(º) cos2(º)

¸
, (73)

Fig. 8. Kullback-Leibler divergence on the interval [0,¼] between a

Bingham pdf with M= I2£2, Z= diag(z1,0) and a Gaussian pdf
with equal mode and standard deviation. For small uncertainties

(z1 <¡15, which corresponds to a standard deviation of about 11±),
the Gaussian and Bingham distributions are almost

indistinguishable. However, for large uncertainties, the Gaussian

approximation becomes quite poor.

this yields the pdf

f(μ) =
1

F
exp([cos(μ),sin(μ)]MZMT[cos(μ),sin(μ)]T)

=
1

F
exp(z1(cos(μ) sin(º)¡ sin(μ)cos(º))2) (74)

=
1

F
exp(z1 sin

2(μ¡ º))) (75)

according to sin(a¡ b) = sin(a)cos(b)¡ cos(a)sin(b).
Now we apply sin2(a) = 1

2
(1¡ cos(2a)) and get

f(μ) =
1

F
exp

³z1
2

´
exp

³
¡z1
2
cos(2μ¡ 2º)

´
, (76)

which exactly matches a von Mises distribution with

Á= 2μ,¹= 2º, and ·=¡z1=2 that has been repeated
twice, i.e., μ 2 [0,2¼) and Á 2 [0,4¼).
This property can be exploited to derive a formula

for the normalization constant of the Bingham distribu-

tion.

LEMMA 6 For d = 2, the normalization constant is

given by

F = 2¼ ¢ I0
³z1
2

´
exp

³ z1
2

´
(77)

with derivatives

@

@z1
F = ¼ exp

³z1
2

´³
I1

³z1
2

´
+ I0

³z1
2

´´
(78)

@

@z2
F = ¼ exp

³z1 + z2
2

´
¢
μ
I0

μ
z1¡ z2
2

¶
¡ I1

μ
z1¡ z2
2

¶¶
(79)
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PROOF In order to consider the derivative with respect
to z2, we first consider a Bingham density with arbitrary
z2, which yields

f(x) =
1

F
exp

μ
xTM

·
z1 0

0 z2

¸
MTx

¶
(80)

=
1

F
exp

μ
xTM

·
z1¡ z2 0

0 0

¸
MTx+ z2 ¢ xTMMTx

¶
=
exp(z2)

F
exp

μ
xTM

·
z1¡ z2 0

0 0

¸
MTx

¶
: (81)

We use the formula for the normalization constant of a
von Mises distribution to obtain

exp(z2)

F
=

1

2¼I0

μ
z1¡ z2
2

¶ : (82)

Solving this equation for F and substituting z2 = 0
shows (77). The derivatives are calculated with
[1, eq. 9.6.27].

APPENDIX C. RELATION TO VON MISES-FISHER
DISTRIBUTION

The von Mises-Fisher distribution is a hyperspheri-
cal generalization of the von Mises distribution.

DEFINITION 6 A von Mises-Fisher distribution [7] is
given by the pdf

fVMF(x;¹,·) = Cd(·)exp(·¹
Tx) (83)

with

Cd(·) =
·d=2¡1

(2¼)p=2Ip=2¡1(·)
(84)

for x 2 Sd¡1, location parameter ¹ 2 Sd¡1 and scalar con-
centration parameter · > 0, where In(·) is the modified
Bessel function [1] of order n.

Unlike the Bingham distribution, the von Mises-
Fisher distribution is unimodal and not antipodally sym-
metric, but radially symmetric around the axis of ¹. We
note that by use of hyperspherical coordinates, we can
reformulate the pdf of the von Mises-Fisher distribu-
tion as

fVMF(¢;·) : [0,¼]!R+, (85)

fVMF(Á;·) = Cd(·)exp(·cos(Á)) sin
d¡1(Á), (86)

where Á= 6 (¹,x): (87)

The term sind¡1(Á) arises as a volume-correcting term
when the substitution rule is applied. Using this defini-
tion, we can show an interesting relation between certain
Bingham distributions and the von Mises-Fisher distri-
bution.

LEMMA 7 For a Bingham distribution with z1 = ¢ ¢ ¢=
zd¡1 with pdf f(¢), we have the relation

fVMF(μ;·) = (2cos(μ))d¡1 ¢f(μ) (88)

to the von Mises-Fisher distribution.

PROOF We consider Z= diag(z1 : : : ,z1,0) and M=

[¢ ¢ ¢ j ¹]. From the Bingham pdf, we obtain

f(x) =
1

F
exp(xTMZMTx) (89)

=
1

F
exp(xTMdiag(z1 : : : ,z1,0)M

Tx) (90)

=
1

F
exp(xTMdiag(0 : : : ,0,¡z1)MTx

+ z1x
TMMTx) (91)

=
exp(z1)

F
exp(¡z1xTMdiag(0 : : : ,0,1)MTx):

(92)

We use the fact that the last column of M contains the

mode ¹ and obtain

f(x) =
exp(z1)

F
exp(¡z1xT¹¹Tx) (93)

=
exp(z1)

F
exp(¡z1(¹Tx)2) (94)

=
exp(z1)

F
exp(¡z1(cos( 6 (x,¹))2): (95)

By using the trigonometric identity cos2(x) =

(1+cos(2x))=2, we obtain

f(x) =
exp

³z1
2

´
F

exp
³
¡z1
2
cos(2 6 (x,¹))

´
: (96)

Substitution of spherical coordinates as above yields the

pdf f : [0,¼=2]!R+,

f(μ) =
exp

³z1
2

´
F

exp
³
¡z1
2
cos(2μ)

´
sind¡1(μ): (97)

On the other hand, the von Mises-Fisher pdf can be

stated as

fVMF(Á;·) = Cd(·)exp(·cos(Á)) sin
d¡1(Á): (98)

We set ·=¡z1=2 and Á= 2μ, which yields
fVMF(μ;·) (99)

= Cd

³
¡z1
2

´
exp

³
¡z1
2
cos(2μ)

´
sind¡1(2μ)

(100)

=
sind¡1(2μ)
sind¡1(μ)

¢f(μ) = (2cos(μ))d¡1 ¢f(μ):(101)

This fact can be used to simplify the maximum like-

lihood estimation when the underlying samples are (or

can be assumed to be) generated by an isotropic Bing-

ham distribution, i.e., when the corresponding density

is circularly symmetric around the modes If the sam-

ples are reweighted by a factor of (2cos(μ))d¡1 and
their angle around the mean is doubled, a von Mises-

Fisher maximum likelihood estimate can be performed
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to obtain · and subsequently z1. This can be advan-

tageous, because the maximum likelihood estimate for

a von Mises-Fisher distribution is computationally less

demanding than for the Bingham distribution [43].

APPENDIX D. RELATION TO KENT DISTRIBUTION

Furthermore, it should be noted that the d-dimen-

sional Bingham distribution is a special case of the d-

dimensional Kent distribution [20]. The Kent distribu-

tion is also commonly referred to as the Fisher-Bingham

distribution because it is a generalization of both the von

Mises-Fisher and the Bingham distribution.

DEFINITION 7 The pdf of the Kent distribution is

given by

f(x)/ exp(·¹Tx+
dX
j=2

¯j(°
T

j
x)2), (102)

where x 2 Sd¡1, and ¹ 2 Sd¡1 is the location parame-
ter, ·¸ 0 is the concentration around ¹, the directions
°
2
, : : : ,°

d
2 Sd¡1 are orthogonal and have corresponding

concentrations ¯2 ¸ ¢¢ ¢ ¸ ¯d 2 R.
It can be seen that for ·= 0, this yields a Bingham

distribution. The vectors °
2
, : : : ,°

d
correspond to the M

matrix and the coefficients ¯2, : : : ,¯d correspond to the

diagonal of the Zmatrix. This fact allows the application

of methods developed for the Kent distribution such as

[24], [26] in conjunction with the Bingham distribution.

For ¯2 = ¢ ¢ ¢= ¯d = 0, the Kent distribution reduces to a
von Mises-Fisher distribution.

APPENDIX E. PROOF OF LEMMA 2.

PROOF The covariance of the composition

C=Cov(x© y) (103)

= Cov

μμ
x1y1¡ x2y2
x1y2 + x2y1

¶¶
(104)

=

μ
Var(x1y1¡ x2y2) Cov(x1y1¡ x2y2,x1y2 + x2y1)

¤ Var(x1y2 + x2y1)

¶
can be obtained by calculating the matrix entries indi-

vidually. For the first entry we get

c11 = Var(x1y1¡ x2y2) (105)

= E((x1y1¡ x2y2)2)¡ (E(x1y1¡ x2y2))2 (106)

= E(x21y
2
1 ¡2x1y1x2y2 + x22y22)

¡ (E(x1y1)¡E(x2y2))2 (107)

= E(x21)E(y
2
1)¡ 2E(x1x2)E(y1y2)+E(x22)E(y22)

(108)

¡ (E(x1)| {z }
0

E(y1)| {z }
0

¡E(x2)| {z }
0

E(y2)| {z }
0

)2 (109)

= a11b11¡ 2a12b12 + a22b22: (110)

We use independence of x and y in (107), linearity of

the expectation value in (108), and symmetry of the

Bingham in (109). Analogously we calculate

c22 = Var(x1y2¡ x2y1) (111)

= E((x1y2¡ x2y1)2)¡ (E(x1y2¡ x2y1))2 (112)

= E(x21y
2
2 ¡ 2x1y1x2y2 + x22y21)

¡ (E(x1y2)¡E(x2y1))2 (113)

= E(x21)E(y
2
2)¡ 2E(x1x2)E(y1y2)+E(x22)E(y21)

¡ (E(x1)| {z }
0

E(y2)| {z }
0

¡E(x2)| {z }
0

E(y1)| {z }
0

)2 (114)

= a11b22¡ 2a12b12 + a22b11: (115)

The off-diagonal entry can be calculated similarly

c12 = Cov(x1y1¡ x2y2,x1y2 + x2y1) (116)

= E((x1y1¡ x2y2) ¢ (x1y2 + x2y1))
¡E(x1y1¡ x2y2) ¢E(x1y2 + x2y1) (117)

= E(x21y1y2¡ x1x2y22 + x1x2y21 ¡ x22y1y2)
¡ (E(x1)E(y1)¡E(x2)E(y2))
¢ (E(x1)E(y2)+E(x2)E(y1)) (118)

= a11b12¡ a12b22 + a12b11¡ a22b12: (119)

Because C is a symmetrical matrix, this concludes the

proof of Lemma 2.

REFERENCES

[1] Abramowitz, M., and Stegun, I. A.

Handbook of Mathematical Functions with Formulas, Graphs,

and Mathematical Tables,

10th ed. Dover, New York, 1972.

[2] Antone, M., and Teller, S.

Scalable, Absolute Position Recovery for Omni-directional

Image Networks.

In Computer Vision and Pattern Recognition, 2001. CVPR

2001. Proceedings of the 2001 IEEE Computer Society Con-

ference on (2001), vol. 1, pp. I-398—I-405.

[3] Azmani, M., Reboul, S., Choquel, J.-B., and Benjelloun, M.

A Recursive Fusion Filter for Angular Data.

In IEEE International Conference on Robotics and Biomimet-

ics (ROBIO 2009) (2009), pp. 882—887.

[4] Bingham, C.

Distributions on the Sphere and on the Projective Plane.

PhD thesis, Yale University, 1964.

[5] Bingham, C.

An Antipodally Symmetric Distribution on the Sphere.

The Annals of Statistics 2, 6 (Nov. 1974), 1201—1225.

[6] Fisher, N. I., Lewis, T., and Embleton, B. J.

Statistical Analysis of Spherical Data.

Cambridge University Press, 1987.

[7] Fisher, R.

Dispersion on a Sphere.

Proceedings of the Royal Society of London. Series A, Math-

ematical and Physical Sciences 217, 1130 (1953), 295—305.

[8] Gilitschenski, I., Kurz, G., Julier, S. J., and Hanebeck, U. D.

Unscented Orientation Estimation Based on the Bingham

Distribution.

arXiv preprint: Systems and Control (cs.SY) (2013).

102 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 9, NO. 2 DECEMBER 2014



[9] Glover, J.

libbingham

Bingham Statistics Library, 2013.

[10] Glover, J., Bradski, G., and Rusu, R.

Monte Carlo Pose Estimation with Quaternion Kernels and

the Bingham Distribution.

In Proceedings of Robotics: Science and Systems (RSS 2011)

(Los Angeles, USA, 2011).

[11] Glover, J., and Kaelbling, L. P.

Tracking 3-D Rotations with the Quaternion Bingham Fil-

ter.

Tech. rep., MIT, Mar. 2013.

[12] Glover, J., and Kaelbling, L. P.

Tracking the Spin on a Ping Pong Ball with the Quaternion

Bingham Filter.

In IEEE Conference on Robotics and Automation (ICRA)

(2014). To Appear.

[13] Hertzberg, C., Wagner, R., Frese, U., and Schröder, L.

Integrating Generic Sensor Fusion Algorithms with Sound

State Representations Through Encapsulation of Manifolds.

Information Fusion 14, 1 (Jan. 2013), 57—77.

[14] Herz, C. S.

Bessel Functions of Matrix Argument.

Annals of Mathematics 61, 3 (1955), 474—523.

[15] Jammalamadaka, S. R., and Sengupta, A.

Topics in Circular Statistics.

World Scientific Pub Co Inc, 2001.

[16] Julier, S., and LaViola, J.

On Kalman Filtering With Nonlinear Equality Constraints.

IEEE Transactions on Signal Processing 55, 6 (2007), 2774—

2784.

[17] Julier, S. J., and Uhlmann, J. K.

Unscented Filtering and Nonlinear Estimation.

Proceedings of the IEEE 92, 3 (Mar. 2004), 401—422.

[18] Jupp, P. E., and Mardia, K. V.

Maximum Likelihood Estimators for the Matrix Von Mises-

Fisher and Bingham Distributions.

Annals of Statistics 7 (3) (1979), 599—606.

[19] Kalman, R. E.

A New Approach to Linear Filtering and Prediction Prob-

lems.

Transactions of the ASME Journal of Basic Engineering 82

(1960), 35—45.

[20] Kent, J. T.

The Fisher-Bingham Distribution on the Sphere.

Journal of the Royal Statistical Society. Series B (Method-

ological) 44, 1 (1982), 71—80.

[21] Kent, J. T.

Asymptotic Expansions for the Bingham Distribution.

Journal of the Royal Statistical Society. Series C (Applied

Statistics) 36 (2) (1987), 139—144.

[22] Kent, J. T.

The Complex Bingham Distribution and Shape Analysis.

Journal of the Royal Statistical Society. Series B (Method-

ological) (1994), 285—299.

[23] Koev, P., and Edelman, A.

The Efficient Evaluation of the Hypergeometric Function

of a Matrix Argument.

Math. Comp. 75 (2006), 833—846.

[24] Koyama, T., Nakayama, H., Nishiyama, K., and Takayama, N.

Holonomic Gradient Descent for the Fisher-Bingham Dis-

tribution on the d-dimensional Sphere.

ArXiv e-prints (Jan. 2012).

[25] Kuipers, J. B.

Quaternions and Rotation Sequences,

vol. 66. Princeton University Press, 2002.

[26] Kume, A., and Wood, A. T. A.

Saddlepoint Approximations for the Bingham and Fisher-

Bingham Normalising Constants.

Biometrika 92, 2 (2005), 465—476.

[27] Kume, A., and Wood, A. T. A.

On the Derivatives of the Normalising Constant of the

Bingham Distribution.

Statistics & Probability Letters 77, 8 (2007), 832—837.

[28] Kunze, K., and Schaeben, H.

The Bingham Distribution of Quaternions and Its Spherical

Radon Transform in Texture Analysis.

Mathematical Geology 36 (2004), 917—943.

[29] Kurz, G., Faion, F., and Hanebeck, U. D.

Constrained Object Tracking on Compact One-dimensional

Manifolds Based on Directional Statistics.

In Proceedings of the Fourth IEEE GRSS International Con-

ference on Indoor Positioning and Indoor Navigation (IPIN

2013) (Montbeliard, France, Oct. 2013).

[30] Kurz, G., Gilitschenski, I., and Hanebeck, U. D.

Recursive Nonlinear Filtering for Angular Data Based on

Circular Distributions.

In Proceedings of the 2013 American Control Conference

(ACC 2013) (Washington D. C., USA, June 2013).

[31] Kurz, G., Gilitschenski, I., and Hanebeck, U. D.

Nonlinear Measurement Update for Estimation of Angular

Systems Based on Circular Distributions.

In Proceedings of the 2014 American Control Conference

(ACC 2014) (Portland, Oregon, USA, June 2014).

[32] Kurz, G., Gilitschenski, I., Julier, S. J., and Hanebeck, U. D.

Recursive Estimation of Orientation Based on the Bingham

Distribution.

In Proceedings of the 16th International Conference on Infor-

mation Fusion (Fusion 2013) (Istanbul, Turkey, July 2013).

[33] Love, J. J.

Encyclopedia of Geomagnetism & Paleomagnetism.

Springer, Dordrecht, The Netherlands, 2007, ch. Bingham

statistics, pp. 45—47.

[34] Luke, Y.

Algorithms for the Computation of Mathematical Functions.

Computer science and applied mathematics. Academic

Press, 1977.

[35] Mardia, K.

Characterizations of Directional Distributions.

In A Modern Course on Statistical Distributions in Scientific

Work, vol. 17. Springer Netherlands, 1975, pp. 365—385.

[36] Mardia, K.

Directional Statistics in Geosciences.

Communications in Statistics–Theory and Methods 10, 15

(1981), 1523—1543.

[37] Mardia, K. V., and Jupp, P. E.

Directional Statistics,

1 ed. Wiley, 1999.

[38] Mardia, K. V., and Zemroch, P. J.

Table of Maximum Likelihood Estimates for the Bingham

Distribution.

Journal of Statistical Computation and Simulation 6, 1

(1977), 29—34.

[39] Megía, I. S.-M.

Which Spheres Admit a Topological Group Structure?

Revista de la Academia de Ciencias Exactas, Físico-Químicas

y Naturales de Zaragoza 62 (2007), 75—79.

[40] Muirhead, R. J.

Aspects of Multivariate Statistical Theory.

Wiley, 1982.

RECURSIVE BINGHAM FILTER FOR DIRECTIONAL ESTIMATION INVOLVING 180 DEGREE SYMMETRY 103



[41] Muller, K. E.

Computing the Confluent Hypergeometric Function,

M(a,b,x).

Numerische Mathematik 90, 1 (2001), 179—196.

[42] Shiryaev, A. N.

Probability,

2nd ed. Springer, 1995.

[43] Sra, S.

A Short Note on Parameter Approximation for von Mises-

Fisher Distributions: and a Fast Implementation of Is (x).

Computational Statistics 27, 1 (2012), 177—190.

Gerhard Kurz received his Dipl.-Inform. in computer science from the Karlsruhe

Institute of Technology (KIT), Germany, in 2012. Currently, he is working towards

a PhD degree at the Intelligent Sensor-Actuator-Systems Laboratory, Karlsruhe

Institute of Technology (KIT), Germany. His research interests are in the field of

medical data fusion, nonlinear estimation, and directional filtering.

Igor Gilitschenski is a research assistant at the Intelligent Sensor-Actuator-Systems
Laboratory, Karlsruhe Institute of Technology (KIT), where he is working towards

a PhD degree in computer science. Before joining the KIT, he obtained his diploma

degree in mathematics (Dipl.-Math.) from the University of Stuttgart. His research

interests include stochastic filtering theory and dynamic state estimation with a focus

on nolinear systems and nonlinear domains.

Simon Julier is a Reader in Situational Awareness Systems in the Department
of Computer Science. He received a DPhil in 1997 from the Robotics Research

Group, Oxford University on the role of process models in navigation and estimation

systems where he helped to developed the unscented Kalman filter and covariance

intersection. He has worked extensively on mapping, localization, user interfaces,

distributed data fusion and distributed multi-target tracking. These include a project

to use multiple UAVs for search and rescue in wilderness environments, the

development of distributed multi-target tracking algorithms (with the use of finite set

statistics), agent-based simulation models for logistics planning in construction and

the development of mobile augmented reality systems, with a major UK construction

company, to visualize construction sequencing in a station in London. In 2013

he was elected a Distinguished Lecturer for the IEEE Society on Aerospace and

Electronic Systems.

[44] Stienne, G., Reboul, S., Azmani, M., Choquel, J., and Benjel-

loun, M.

A Multi-sensor Circular Particle Filter Applied to the Fu-

sion of the GPS-L2C channels.

In Information Fusion (FUSION), 2011 Proceedings of the

14th International Conference on (2011).

[45] Stienne, G., Reboul, S., Azmani, M., Choquel, J., and Benjel-

loun, M.

A Multi-temporal Multi-sensor Circular Fusion Filter.

Information Fusion 18 (July 2013), 86—100.

104 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 9, NO. 2 DECEMBER 2014



Uwe D. Hanebeck is a chaired professor of Computer Science at the Karls-

ruhe Institute of Technology (KIT) in Germany and director of the Intelligent

Sensor-Actuator-Systems Laboratory (ISAS). Since 2005, he is the chairman of the

Research Training Group RTG 1194 “Self-Organizing Sensor-Actuator-Networks”

financed by the German Research Foundation.

Prof. Hanebeck obtained his Ph.D. degree in 1997 and his habilitation degree

in 2003, both in Electrical Engineering from the Technical University in Munich,

Germany. His research interests are in the areas of information fusion, nonlinear

state estimation, stochastic modeling, system identification, and control with a strong

emphasis on theory-driven approaches based on stochastic system theory and un-

certainty models. Research results are applied to various application topics like

localization, human-robot-interaction, assistive systems, sensor-actuator-networks,

medical engineering, distributed measuring system, and extended range telepres-

ence. Research is pursued in many academic projects and in a variety of cooperations

with industrial partners.

Uwe D. Hanebeck was the General Chair of the “2006 IEEE International Con-

ference on Multisensor Fusion and Integration for Intelligent Systems (MFI 2006),”

Program Co-Chair of the “11th International Conference on Information Fusion

(Fusion 2008),” Program Co-Chair of the “2008 IEEE International Conference on

Multisensor Fusion and Integration for Intelligent Systems (MFI 2008),” Regional

Program Co-Chair for Europe for the “2010 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS 2010),” and will be General Chair of

the “19th International Conference on Information Fusion (Fusion 2016).” He is

a Member of the Board of Directors of the International Society of Information

Fusion (ISIF), Editor-in-chief of its Journal of Advances in Information Fusion

(JAIF), and associate editor for the letter category of the IEEE Transactions on

Aerospace and Electronic Systems (TAES). He is author and coauthor of more than

300 publications in various high-ranking journals and conferences.

RECURSIVE BINGHAM FILTER FOR DIRECTIONAL ESTIMATION INVOLVING 180 DEGREE SYMMETRY 105


