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This work derives the Cramer-Rao lower bound (CRLB) for an

acoustic target and sensor localization system in which the noise

characteristics may depend on the location of the source. The sys-

tem itself has been previously examined, but without deriving the

CRLB and showing the statistical efficiency of the estimator used.

Three different versions of the CRLB are derived, one in which

direction of arrival (DOA) and (shockwave based) range measure-

ments are available (“local estimate” based CRLB), one in which

two types of DOA measurements and the time difference between

them is available (“native measurement” based CRLB), and one in

which only DOA measurements (bearing) are available (“bearings-

only” CRLB). In each case, the estimator is found to be statistically

efficient; but, depending on the sensor-target geometry, the range

measurements may or may not significantly contribute to the accu-

racy of target localization. Additionally, the native measurements

are found to result in superior localization when compared to the

use of the range estimates.
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1. INTRODUCTION

In any estimation system the ultimate goal is to ex-
tract the maximum information from the available data.
The Fisher information matrix (FIM) provides a mea-
sure of the total information available from the observa-
tions of the system, and its inverse provides the Cramer-
Rao lower bound (CRLB) [2]. A statistically efficient
estimator is one in which the (co)variance of the esti-
mation error meets the CRLB, and, therefore, extracts
all of the available information from the observations.
The CRLB and statistical efficiency of an acoustic

localization system will be examined here, based on the
system described in [9], [10], which is meant to esti-
mate the location of the source of a detected gunshot.
Each sensor node of the system is assumed to provide
an estimated bearing (direction of arrival–DOA) to the
target, and, if the sensor node lies within a certain field
of view (FOV) around the path of the bullet, a range es-
timate and bullet trajectory estimate as well. The range
and bullet trajectory estimates are provided via a non-
linear transformation of the “native” measurements con-
sisting of the bearing, a shockwave DOA measurement,
and a time difference of arrival (TDOA) between the
two DOA measurements. For those sensors that pro-
vide estimated range, the noise variance will be highly
dependent on the position of the source. Each sensor
node’s local estimates (or, alternatively, its native mea-
surements) are passed to a fusion center to perform the
overall estimation of the target position. The sensor lo-
cations can also be simultaneously estimated with the
target (source) location, but the improvement is negli-
gible. It is also possible to remove the sensor locations
from the estimation performed at the fusion center, but
the inaccuracy of the sensor locations must then be ex-
plicitly accounted for in the CRLB derivations.
A number of papers have examined the problem of

target localization in passive sensor environments, in-
cluding [3], [7], [8], [18], [22], [24], [25]. The work of
[24] generalizes the results of [7] to include sensor po-
sition uncertainty; however, neither paper examines the
CRLB to see whether the estimator is statistically effi-
cient. In [3], [8], [18], [25], different applications of lo-
calization with passive sensors are studied that also con-
sider the CRLB. However, in [25], no estimation scheme
is shown to meet the CRLB. In [8] the maximum likeli-
hood (ML) estimation scheme examined is shown to be
statistically efficient only when a significant number of
measurements are used. In none of the above-mentioned
papers were cases of position-dependent measurement
noise considered.
Specific research pertaining to the acoustic local-

ization of small-arms fire is examined in [1], [5],
[9]—[17], [20], [21], [23]. In most of these works,
CRLB/efficiency analysis is not performed. References
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[11], [23] use the “local estimates,” while the remain-
der use either “native measurements” or only time-
of-arrival (TOA) or TDOA measurements. Addition-
ally, [13], [14], [16], [17] employ a bullet decelera-
tion model. The work of [1] examined the effect of
assuming an (incorrect) constant velocity bullet model
and demonstrated modest localization errors for realistic
scenarios. Of the previously mentioned work, only [5],
[12], [16] perform any analysis of the CRLB. In [12],
the CRLB is examined, but only in the case of native
measurements. Reference [5] examines a method of lo-
calization using only TDOA measurements and derives
the CRLB; however, the CRLB is shown to provide only
a loose bound, with inaccurate cross-range performance
prediction. Reference [16] also used TDOA measure-
ments without DOA and derived the CRLB, but did
not present results statistically demonstrating efficiency,
though it was mentioned that simulations indicated their
estimator met the bound for TDOA accuracy below a
given threshold.
In this work, the CRLB of the central estimator

(fuser) is derived for three cases: a “bearings-only”
case, which assumes that only bearing measurements
are available from the sensor nodes; a “local estimate”
case, which assumes that range and bullet trajectory
estimates are available in addition to bearing; and a
“native measurement” case, which assumes that the two
previously mentioned types of DOA measurements (to
the shooter and the shockwave) and the TDOA are
available.
Section 2 provides an overview of the system in

question, and examines the probability distribution and
density of the range estimate errors from the individual
sensors. Section 3 provides the expressions necessary
to evaluate the CRLB for the problem in question,
both with and without the position-dependent noise
terms. Section 4 describes the simulation scenarios and
provides the results. Finally, Section 5 concludes the
paper.

2. LOCALIZATION SYSTEM OVERVIEW

The system to be examined here is the same as the
one described in [9], [10] except that we also consider
the use of native measurements. A brief overview of
the system is provided here, however, to introduce the
concepts and notations.
A number of acoustic sensors are placed throughout

a surveillance region with the intent of detecting gunfire
and estimating the position of the source. The target
(source) location will be denoted as

T = [Tx Ty]
0 (1)

and the ith sensor location is denoted as

Si = [Six Siy ]
0 (2)

The problem is assumed constrained to a two-dimen-
sional plane for simplicity.

Fig. 1. Geometry of the bullet trajectory and the DOA angles of
the muzzle blast and shockwave as seen by the ith sensor node.

2.1. Sensor Nodes

Each sensor will be assumed to provide at most five
native measurements

³i = [Á̂i '̂i ¿̂i]
0 (3)

and
Ŝi = [Ŝix Ŝiy ]

0 (4)

where Á̂i is the DOA angle to the shooter, based on
the detection of the muzzle blast; '̂i is the DOA angle
of the shockwave from the bullet; ¿̂i is the TDOA
between the muzzle blast and the shockwave; and Ŝi
is the noisy sensor location (obtained via a GPS sensor
at each node).1 The DOA measurements are assumed to
be measured counter-clockwise (CCW) from the x-axis
of a global reference coordinate system, to which each
sensor is assumed to be aligned. Each measurement
is assumed to be corrupted by zero-mean Gaussian
noise, with standard deviations of ¾Á, ¾', ¾¿ , ¾ix and
¾iy , respectively. The overall geometry of the various
angular measurements involved are depicted in Figure 1.
The shockwave (and therefore the TDOA measure-

ment) is only visible to sensor nodes that are within a
limited FOV around the path of the bullet, depicted in
Figure 2. The FOV is ¼¡ 2 [6], where

= sin¡1
1
m

¶
(5)

and m is the Mach number of the bullet, assumed here to
be m= 2 [12]. Note that in this work, a constant velocity
bullet model is considered.
The target bearing from the ith sensor node is

Ái = tan
¡1 Ty ¡ Siy

Tx¡ Six

¶
(6)

and the DOA angle of the shockwave is

'i =

8<:¡
¼

2
¡ +! if ¼+! < Ái <

3¼
2
¡ +!

¼

2
+ +! if

¼

2
+ +! < Ái < ¼+!

(7)

1We use similar notation and terminology as in [9], [10].
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Fig. 2. Field of view (FOV) of the muzzle blast and shockwave
DOA angles.

where! is the angle of the trajectory (counter-clockwise)
with respect to the x-axis.
Using the native measurements, the sensors can com-

pute the local estimates2

zi = [Á̂i r̂i !̂i]
0 (8)

where [9], [10]

r̂i =
c¿̂i

1¡ cos(Á̂i¡ '̂i)
(9)

is the estimated target range, c is the speed of sound
(assumed to be known perfectly), and !̂i is the estimated
bullet trajectory angle. In view of (7), the estimated
bullet trajectory can be obtained directly from '̂i and
the standard deviation of !̂i is ¾'.
Sensor i sends its measured location (4), and either

the native measurements (3) or the local estimates (8)
to a fusion center, to estimate the source location T.
The variance of the range estimate (which is location

dependent) can be approximated as (similar to [9], [10])

¾2ri(T, Ŝi,!)¼rri
·
¾2¿ 0

0 ¾2Á+¾
2
'

¸
rr0i (10)

where

rri =
·
@ri
@¿

@ri
@(Á¡')

¸
(11)

and

@ri
@¿
=

c

1¡ cos(Ái¡'i)
(12)

@ri
@(Á¡') =¡

ri sin(Ái¡'i)
1¡ cos(Ái¡'i)

(13)

2The angular measurements of (8) are also assumed to be measured
CCW from the x-axis of the global reference frame.

The likelihood function of T, Si, and ! given the
estimate zi is

¤zi (T,Si,!)
¢
=p(zi j T,Si,!)¼N (zi;¹zi ,§zi) (14)

where
¹zi = [Ái ri !]0 (15)

and, since the noise on ! is the same as the noise on '
in view of (7), and is the same for all i,

§zi (T, Ŝi,!) =

264
¾2Á cov(ri,Ái) 0

cov(ri,Ái) ¾2ri(T, Ŝi,!) cov(ri,!)

0 cov(ri,!) ¾2'

375
(16)

with (see Appendix A)

cov(ri,Ái) =¡
ri sin(Ái¡'i)
1¡ cos(Ái¡'i)

¾2Ái (17)

cov(ri,!i) =
ri sin(Ái¡'i)
1¡ cos(Ái¡'i)

¾2'i (18)

The errors in (14) are assumed to be uncorrelated across
the sensors.
The likelihood function of T, Si, and ! given the

native measurements ³i is

¤³i(T,Si,!)
¢
=p(³i j T,Si,!) =N (³i;¹³i ,§³i) (19)

where
¹³i = [Ái 'i ¿i]

0 (20)

and

§³i =

264¾
2
Á 0 0

0 ¾2' 0

0 0 ¾2¿

375 (21)

The likelihood function of Si is

¤Si (Si)
¢
=p(Ŝi j Si) =N (Ŝi;Si,§Si ) (22)

where

§Si =

"
¾2ix 0

0 ¾2iy

#
(23)

The sensors are assumed to obtain their locations,
albeit imperfectly, from GPS.3 Additionally, the sen-
sors are assumed to be aligned to a common reference
frame (e.g., via compass readings, where any error/bias
present is assumed to be identical across sensors due
to the small area involved). For the sensors, the GPS
localization serves as a prior and guarantees complete
observability for the target-sensor complex. The final
estimates of the sensor locations can be only slightly
improved over their initial GPS estimates, but the im-
provement this makes to the final target localization is

3If the sensor position estimates contain a common (slowly varying)
bias across sensors (a reasonable assumption since these sensors are
not too far from each other), the relative sensor registration will be
unaffected and the target estimate will exhibit the same bias.
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Fig. 3. Empirical pdf and cdf of r̃i for Sensor 1 of Scenario 3.

Fig. 4. Empirical pdf and cdf of r̃i for Sensor 2 of Scenario 3.

negligible. For that reason, the simultaneous estimation
of the sensor positions can reasonably be omitted from
the overall estimation, but the effect of the sensor local-
ization errors needs to be accounted for in the variances
of Ái and ri, particularly when calculating the CRLB for
use in determining the overall efficiency of the estima-
tion scheme.

2.2. Range Estimate Error Distribution
The preceding section followed the analysis of [9],

[10] with regards to the range estimation error

r̃i = r̂i¡ ri (24)

where the range estimation error was assumed to be
Gaussian distributed, i.e.,

r̃i »N (ri,¾2ri (T,Si,!)) (25)

where the variance is given by (10), or equivalently as

¾2ri (T,Si,!) =
c2¾2¿ + r

2
i (¾

2
Á+¾

2
')sin

2(Ái¡'i)
(1¡ cos(Ái¡'i))2

(26)

Fig. 5. Empirical pdf and cdf of r̃i for Sensor 3 of Scenario 3.

In order to examine the Gaussian assumption on the
range estimate errors, an empirical pdf and cdf (i.e.,
histograms) of the range estimate error was generated
from 105 Monte Carlo simulations. The range estimates
used to generate the empirical pdfs and cdfs were gener-
ated by (9) using the native measurements corrupted by
Gaussian noise. The nonlinearity of (9) is what causes
the range errors to be non-Gaussian.
The simulation parameters are set identically to Sce-

nario 3 of Section 4. The empirical pdfs and cdfs are
shown in Figures 3—5. Each figure, in addition to the
histograms, is overlaid with the Gaussian pdf of (25).
It is clear from these figures that the actual density of
the range errors is not symmetric, and there is a heavier
left tail than if the errors were indeed Gaussian.

2.3. Centralized Fusion
The estimates zi and Ŝi (or ³i and Ŝi) from each

sensor are passed on to a fusion center in order to
determine the estimate x̂ by means of the Iterated Least
Squares (ILS) estimator4 [2]. The parameter vector to
be estimated is

x= [Tx Ty ! S1x S1y ¢ ¢ ¢Snx Sny ]
0 (27)

with observations

y= [y01 ¢ ¢ ¢y0n]0 (28)

where
yi = [z

0
i Ŝ0i]

0 (29)

or with observations

´ = [´01 ¢ ¢ ¢´0n]0 (30)

where
´i = [³

0
i Ŝ0i]

0 (31)

depending on whether the native measurements (31) or
local estimates (29) are sent to the fusion center.

4Alternatively, Levenberg-Marquardt, or any other suitable nonlinear
least squares solver may be used.
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In order to use the ILS estimation algorithm, an
initial estimate of x is needed. It has been noted [9], [10]
that the ILS estimator is sensitive to the initial estimate
and may diverge if the initial estimate is too far from
the truth.
While the initialization of the target position could

be performed by using the bearing and range measure-
ments (from the nodes with range measurements), the
large variance of the range measurements was found to
occasionally cause divergence in the ILS algorithm. A
more robust initialization was found to follow a similar
method to that used in [4]. This method of initialization
utilizes only the available bearing measurements from
each sensor (6), which can be rewritten as266664

tanÁ1 ¡1
tanÁ2 ¡1
...

...

tanÁn ¡1

377775
| {z }

A

T =

2666664
S1x tanÁ1¡ S1y
S2x tanÁ2¡ S2y

...

Snx tanÁn¡ Sny

3777775
| {z }

b

(32)

and T is obtained as

T = A†b (33)

where A† is the (right) pseudo-inverse of A.
Also, note that (32) can be rewritten using the ex-

pression

Ái = cot
¡1
Ã
Tx¡ Six
Ty ¡ Siy

!
(34)

which is simply (6) rewritten using the cotangent func-
tion. As suggested in [4], use of the cotangent function
has been made when the measured bearing is between
45± and 135± or between ¡45± and ¡135±, in order
to avoid the singularity of the tangent function around
§90±.
To complete the initialization of x, ! can be taken as

the average of !̂i. If the native measurements are sent
to the fusion center, the DOA shockwave estimates '̂i
can be used to solve for the equivalent !̂i in order to
initialize in the same manner.
Due to the nature of the DOA shockwave estimates

(7) (which is one of two angles depending on which
side of the bullet trajectory the sensor is located on),
the predicted values of 'i that must be calculated for
the ILS algorithm may occasionally exhibit very large
errors. This will occur if the errors on Á̂i and !̂i are such
that the ith sensor is predicted to appear on the incorrect
side of the bullet trajectory. For this reason, when the
native measurements are sent to the fusion center, the
predicted value of 'i will be given as whichever of the
two possibilities is closest to the value of '̂i sent to the
fusion center. This is a reasonable solution to resolving
the ambiguity since the errors of '̂i will be assumed to
be much smaller than the difference between the two
values of 'i.

3. CRAMER-RAO LOWER BOUND

The CRLB provides a lower bound on the covari-
ance matrix of the estimate x̂ as

E[(x̂¡ x)(x̂¡ x)0]¸ J¡1 (35)

where J is the FIM

J = Ef[rx¸(x)][rx¸(x)]0g (36)

and ¸(x) is the negative log-likelihood function (NLLF).

3.1. Native Measurement Based FIM

The likelihood function of x based on ´, assuming
the sensor location estimate errors are independent of
the native measurement errors, is

¤´(x) =
nY
i=1

¤³i(T,Si,!)¤Si (Si) (37)

The NLLF corresponding to (37) is

¸´(x) =
1
2

nX
i=1

(´i¡¹´i (x))0§¡1´i (´i¡¹´i (x)) (38)

where

¹´i = [¹
0
³i

S0i]
0 (39)

§´i =
·
§³i 0

0 §Si

¸
(40)

and the unnecessary constant terms have been omitted.
In this case, the FIM can be shown to be

J́ =H 0´§
¡1
´ H´ (41)

where

H´
¢
=
@¹´(x)
@x

(42)

is the Jacobian matrix of the native measurements,

¹´(x) = [¹´1 (x)
0, : : : ,¹´n(x)

0]0 (43)

and

§´ =

2664
§´1 0 0

0
. . . 0

0 0 §´n

3775 (44)

3.2. Local Estimate Based FIM

The likelihood function of x based on y follows
similarly to (37). The corresponding NLLF is

¸y(x) =
nX
i=1

[ 12 (yi¡¹yi (x))0§yi (x)¡1(yi¡¹yi(x))

+ 1
2 ln j§zi (x)j] (45)

where

¹yi = [¹
0
zi

S0i]
0 (46)

§yi (x) =
·
§zi(x) 0

0 §Si

¸
(47)
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and the unnecessary constant terms have been omitted.
Note that some entries of §zi are dependent on the
target-sensor geometry. In this case, the FIM will be
more complicated.
The FIM for the case of a multivariate Gaussian

likelihood with parameter-dependent covariance is as
follows [19]. The gradient terms of the FIM are

@¸y(x)
@xj

=
1
2
tr

Ã
§¡1y (x)

@§y(x)
@xj

!

¡ 1
2
(y¡¹y(x))0§¡1y (x)

@§y(x)
@xj

§¡1y (x)(y¡¹y(x))0

¡
"
@¹y(x)
@xj

#0
§¡1y (x)(y¡¹y(x))

where xj is the jth entry of x. The (i,j)th entry in the
FIM Jy is then

Ji,j =
1
2
tr

Ã
§¡1y (x)

@§y(x)
@xj

§¡1y (x)
@§y(x)
@x`

!

+

"
@¹y(x)
@xj

#0
§¡1y (x)

·
@¹y(x)
@x`

¸
(48)

In order to compare bearings-only localization to
the localization schemes presented here, the “bearings-
only” FIM, Jb, must also be derived. It can be shown
that Jb follows identically to (41), but with (42) and (44)
modified to remove the portions dealing with 'i and ¿i.
In all, three versions of the CRLB are evaluated

in the sequel: the bearings-only CRLB, J¡1b , the local
estimate based CRLB, J¡1y , and the native measurement
CRLB, J¡1´ .
For the case of the local estimate based FIM Jy, ap-

propriate care should be taken to adjust ¹y(x) and §y(x)
for sensors that do not provide r̂i and !̂i. Additionally, in
order to calculate the FIM from (48), the partial deriva-
tives of ¾2ri , cov(ri,Ái), and cov(ri,!i) are needed, as well
as the partial derivatives of Ái, ri and !. The expressions
for the necessary partial derivatives can be found in Ap-
pendix B.

4. SIMULATION RESULTS

The simulation scenarios examined here include the
scenarios of [9], [10] and an additional modified sce-
nario with fewer sensors. For each scenario, the Mach
number of the bullet is assumed to be m= 2, and the
speed of sound is assumed to be c= 342 m/s. The mea-
surement noise standard deviations are ¾Á = ¾' = 4

±,
¾¿ = 1 ms, and ¾ix = ¾iy = 2 m. The simulations were
performed for 100 Monte Carlo runs for each scenario.
For each scenario, the fusion center estimates the

vector x of (27) via the ILS algorithm, using each of

the following sets of measurements:

(i) the bearings-only case, with Á̂i and Ŝi
(ii) and the local estimate case, with zi and Ŝi
(iii) the native measurement case, with ³i and Ŝi

When the ILS algorithm is performed at the fusion
center with the local estimates ẑi, the measurement noise
covariance was modified from that of (16). Namely, the
crosscovariance between Ái and ri, and the crosscovari-
ance between !i and ri are assumed to be zero. Even
though these terms were found to be reasonably good
approximations to the true crosscovariance between the
range and angular errors, the ILS algorithm performed
poorly when provided a measurement noise covariance
containing these terms (results demonstrating this can
be found in Figure 21).
In Scenarios 1 and 2, there are five sensor nodes

located at (all positions are in m)

S =
·
127 20 90 136 182

107 22 0 68 59

¸
(49)

In Scenario 1, the target is located at T = [50,50]0

and the bullet is fired at a trajectory of ! = 30± (counter-
clockwise from the x-axis). Due to the location of the
sensors and the trajectory of the bullet, only sensors 1, 4
and 5 receive the shockwave and are able to send range
and bullet trajectory estimates (or, equivalently, 'i and
¿i in the native measurement case) to the fusion center.
The results of Scenario 1 are shown in Figures 6—

8. Each figure shows the true locations of the target
and sensors, along with the corresponding 95% error
ellipses. Figure 6 shows the error ellipses correspond-
ing to the sample covariance matrix (dashed line) cal-
culated from the estimation errors over the 100 Monte
Carlo runs when only bearing measurements are sent to
the fusion center, and the covariance matrix from the
bearings-only CRLB (solid line, denoted as CRLBbo).
Figure 7 shows the covariance matrix calculated from
the estimation errors when the native measurements of
Á, ', and ¿ are available at the fusion center, and the
covariance matrix from the native measurement CRLB
(denoted as CRLBnm). Figure 8 shows the covariance
matrix calculated from the estimation errors when local
estimates of range and bullet trajectory are available at
the fusion center (in addition to bearing), and the co-
variance matrix from the local estimate based CRLB
(denoted CRLBle).
The covariance matrices from the CRLBs closely

match the covariances of the estimation errors calcu-
lated from the simulation. This first indicates that the
ILS estimation carried out by the fusion center is statis-
tically efficient. Additionally, the fact that the bearings-
only CRLBbo and local estimate based CRLBle matri-
ces closely match suggests that very little information
is gained from the range estimates sent from sensors
1, 4 and 5. The native measurement CRLBnm matrix,
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Fig. 6. Scenario 1, bearings-only CRLBbo, ellipses and error
ellipses of estimated target and sensor locations (all 95%).

Fig. 7. Scenario 1, native measurement CRLBnm ellipses and error
ellipses of estimated target and sensor locations (all 95%).

Fig. 8. Scenario 1, local estimate based CRLBle ellipses and error
ellipses of estimated target and sensor locations (all 95%).

however, shows there is room for improvement of the
target localization accuracy, which can be achieved by
sending the native measurements to the fusion center.
In Scenario 2, the target is located at T = [150,¡50]0

and the bullet is fired at a trajectory of ! = 170±. Due
to the location of the sensors and the trajectory of the
bullet, only sensors 2 and 3 receive the shockwave and
are able to send range and bullet trajectory estimates to
the fusion center.

Fig. 9. Scenario 2, bearings-only CRLBbo ellipses and error
ellipses of estimated target and sensor locations (all 95%).

Fig. 10. Scenario 2, native measurement CRLBnm ellipses and
error ellipses of estimated target and sensor locations (all 95%).

Fig. 11. Scenario 2, local estimate based CRLBle ellipses and error
ellipses of estimated target and sensor locations (all 95%).

The results of Scenario 2 are shown in Figures 9—
11. Each figure once again shows the various 95%
error ellipses. Figure 9 shows the error ellipses of the
bearings-only CRLBbo and the estimation errors, Figure
10 shows the error ellipses of the native measurement
CRLBnm and estimation errors, and Figure 11 shows
the error ellipses of the local estimate CRLBle and
estimation errors.
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Fig. 12. Scenario 3, bearings-only CRLBbo ellipses and error
ellipses of estimated target and sensor locations (all 95%).

Fig. 13. Scenario 3, native measurement CRLBnm ellipses and
error ellipses of estimated target and sensor locations (all 95%).

The covariance matrices for all versions of the
CRLB again closely match those obtained from the esti-
mation errors, indicating that the estimator is once again
efficient and the range estimates carry very little infor-
mation. In this scenario, the advantage of sending the
native measurements is minimal in comparison to Sce-
nario 1.
Scenario 3 consists of an identical situation to Sce-

nario 1, but with sensors 2 and 3 removed. In this case,
the geometry of the sensors and target is poor, with each
sensor having very similar line-of-sight (LOS) angles to
the target.
The results of Scenario 3 are shown in Figures

12—14. In this case, the local estimate CRLBle and
estimation errors are improved over the bearings-only
case, and the native measurement case is considerably
better than either of the alternatives. The covariance of
the estimation errors of the bearings-only case does
not match well to the corresponding CRLB, which
suggests that the estimator may not be efficient in this
case. A statistical hypothesis test for efficiency via the
normalized estimation error squared (NEES) is carried
out to more rigorously examine the statistical efficiency
of each case.

Fig. 14. Scenario 3, local estimate based CRLBle ellipses and error
ellipses of estimated target and sensor locations (all 95%).

The NEES for the source localization was examined
for each scenario, using the bearings-only CRLBbo, the
native measurement CRLBnm, and the local estimate
based CRLBle, to provide a statistical confirmation of
the efficiency of the estimator. In each case, the CRLB
was evaluated at the true x. The NEES was calculated
for the following:

(i) the fused position estimation errors using bearings-
only measurements with the bearings-only CRLB,

(ii) the fused position estimation errors using local
estimates with the local estimate based CRLB, and

(iii) the fused position estimation errors using native
measurements with the native measurement CRLB.

The NEES results (with the 95% probability re-
gion based on the chi-square distribution with two de-
grees of freedom and 100 Monte Carlo runs [2], being
[1:63,2:41]) are shown in Figures 15—17. Each scenario
was simulated with multiple levels of angular measure-
ment noise, namely, the standard deviations ¾Á and ¾'
were varied from 10% to 150% of their original value
of 4±. The remaining measurement noise standard devi-
ations remained the same as in the previous simulations.
The NEES results show that each estimation scheme

is statistically efficient, with the exception of the
bearings-only and local estimate based case of Scenario
3, and is “marginally” efficient for the local estimate
based case of Scenario 2. The confidence region for the
NEES assumes that the estimate errors are Gaussian dis-
tributed, which is an approximation in the local estimate
case (see Section 2.2). For the more difficult geometry
of Scenario 3, the bearings-only case loses efficiency for
higher levels of angular measurement noise. Likewise,
at very small levels of measurement noise, the local es-
timate scheme appears inefficient. This is likely due to
the approximations involved in the range variance, and
in the assumption that the range estimation errors are
Gaussian distributed.
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Fig. 15. Scenario 1, NEES for different levels of angular
measurement noise.

Fig. 16. Scenario 2, NEES for different levels of angular
measurement noise.

Fig. 17. Scenario 3, NEES for different levels of angular
measurement noise.

Figures 18—20 show the target position root mean
squared error (RMSE) (coordinate-combined) for Sce-
narios 1—3, along with the CRLB, for the bearings-only,
native measurement, and local estimate cases.

Fig. 18. Scenario 1, target position RMSE for different levels of
angular measurement noise.

Fig. 19. Scenario 2, target position RMSE for different levels of
angular measurement noise.

Figures 18 and 19 show that, over a range of an-
gular measurement noise levels, the favorable geometry
of Scenarios 1 and 2 provides for very little differenti-
ation in the performance of target localization between
the bearings-only and local estimate cases. Figure 20
shows that, for the less favorable geometry of Scenario
3, the inclusion of range estimates provides a significant
increase in the accuracy of target localization. In both
Scenarios 1 and 3, as seen in Figures 18 and 20, the na-
tive measurement case provides significantly improved
target localization accuracy over the local estimate based
case.
It should also be noted that Figure 20 appears to

show the local estimate case outperforming its CRLB
in Scenario 3. The CRLB in the local estimate case is
necessarily approximate due to two factors in particu-
lar: namely, that the local estimates are assumed to have
zero crosscovariances (because the use of approximate
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Fig. 20. Scenario 3, target position RMSE for different levels of
angular measurement noise.

crosscovariances can cause instability in the search),
even though the simulations result in non-zero cross-
covariances; and the range errors are assumed Gaus-
sian, which was demonstrated in Section 2.2 to be an
approximation. Additionally, the affect of this approx-
imation is not obvious when there is a more favorable
geometry (e.g., Scenarios 1 and 2, where there are more
(bearings-only) sensors present).
Note that in every case, CRLBnm is always lower

than CRLBle, and indeed the performance of the native
measurements is always better than the local estimates.
This is unsurprising as the local estimates are derived
from the native measurements, and as such, cannot add
any extra information beyond what exists in the native
measurements. A better model for the distribution of
the local estimates is likely needed to approach the
performance of the native measurements.
Figure 21 shows an example run which demon-

strates the reason for setting the crosscovariance terms
of (16) to zero, rather than the (approximate) expres-
sions provided in (17) and (18). Occasionally, when
using these crosscovariance terms, the ILS search will
diverge, whereas, this behavior is not observed when
assuming there is no correlation between the local esti-
mate errors. This divergence is caused by the crossco-
variance terms causing (16) to become ill-conditioned,
which causes difficulty in converging to the global max-
imum of the likelihood function (LF) surface. Note that
in both cases, the local estimates are formed from the
noisy native measurements, so there is indeed a corre-
lation between the local estimate errors. The ILS algo-
rithm must use the latest estimate to calculate the nec-
essary terms of the covariance matrix, however, and it
appears that the algorithm is more likely to diverge for
non-zero crosscovariance terms. In fact, no divergence
was observed in any run (in 3 scenarios, for 15 levels of

Fig. 21. Comparison of ILS iterations with and without
approximate crosscovariance terms (the overlapping square and

triangle represent the initial estimate).

measurement noise, with 100 runs each) when assuming
zero crosscovariance.
Additionally, the different versions of the CRLB can

be compared to gain insights into a particular scenario.
The ratio of the area of the bearings-only CRLBbo el-
lipse to the local estimate based CRLBle ellipse can
be calculated as j(J¡1b )T(J

¡1
y )¡1T j1=2, where (J¡1)T is the

portion of the CRLB that deals with the target localiza-
tion (as opposed to the entire vector x). This is plot-
ted over a two-dimensional (2-D) grid corresponding to
various shooter locations in Figure 22, for sensor loca-
tions identical to Scenario 3. Each point in the 2-D grid
corresponds to the ratio of the CRLB ellipse areas for
a shooter at that location, shooting toward the marked
aimpoint. Figure 22 clearly shows the shooter locations
where the range measurements are most beneficial and
the bearings-only localization will perform particularly
poorly. Figure 23 shows the same results, only this time
the native measurement CRLBnm is compared with the
bearings-only CRLBbo. Figure 23 shows a slightly dif-
ferent aimpoint in order to demonstrate the large dif-
ference in performance that is achieved when the bullet
trajectory passes between different sensors. When the
bullet trajectory passes on the same side of every sensor
(which amounts to every sensor seeing the same shock-
wave DOA ') the performance is not much improved
over either the bearings-only case or the local estimate
based case (this is further demonstrated by the results of
Scenario 2, which corresponds to such a sensor-target
geometry). When the bullet trajectory passes between
sensors (as in Scenario 1 and 3 above), the performance
of the target localization is greatly improved by using
the native measurements.

5. CONCLUSIONS

The CRLB and statistical efficiency were examined
for multiple scenarios of a localization system using
either native measurements or local estimates, where
there are position-dependent noise terms. The system
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Fig. 22. Comparison of local estimate based CRLBle and
bearings-only CRLBbo (j(J¡1b )T(J

¡1
y )¡1T j1=2) over a 2-D grid (E-N, in

m) of shooter position (for a fixed aimpoint at ?).

in question is a recently developed shooter localization
scheme using acoustic gunfire detection sensors [9],
[10]. The CRLB was derived for the cases of sensor
nodes which send the following:

(i) bearings only (CRLBbo)
(ii) bearing, range, and bullet trajectory estimates (“lo-

cal estimate” based CRLBle), and
(iii) bearing, shockwave angle, and TDOA measure-

ments (“native measurement” CRLBnm)

When range estimates are passed to the fusion cen-
ter in cases where the sensor-target geometry is favor-
able for angle-only localization, the bearings-only re-
sults (i) closely match the results of (ii), suggesting that
there is little, if any, information contained in the range
measurements in those cases. If the geometry is poor,
however, as in Scenario 3, there is a significant dif-
ference between the bearings-only results (i) and the
local estimate based results (ii). For each of the sce-
narios tested, when the native measurements are passed
to the fusion center (iii), the localization accuracy was
improved, with a significant improvement in Scenarios
1 and 3.
The distribution of the range estimate errors was

also examined in order to highlight the approximation
which is made when assuming the range errors to
be Gaussian distributed. This assumption is likely the
cause for the discrepancy in localization performance
between the local estimate based case (ii) and the native
measurement case (iii).
In each scenario, the NEES shows that the estima-

tion is statistically efficient (with the exception of the
bearings-only case with high measurement noise and
a poor sensor-target geometry). When native measure-
ments are passed to the fusion center, the localization
is performed particularly well for the poor geometry of
Scenario 3 and very closely matches the corresponding
CRLB. The results show both that the estimator used in
this particular acoustic localization system is efficient,

Fig. 23. Comparison of native measurement CRLBnm and
bearings-only CRLBbo (j(J¡1b )T(J

¡1
´ )¡1T j1=2) over a 2-D grid (E-N, in

m) of shooter position (for a fixed aimpoint at ?).

and that the CRLB can be used as an accurate means of
performance prediction for such a system (particularly
for the native measurement case).

APPENDIX A, COVARIANCE BETWEEN RANGE AND
ANGULAR MEASUREMENTS

The ith sensor’s range measurement error r̃i can be
approximated (via Taylor series expansion) as

r̃i ¼
c¿̃i

1¡ cos(Ái¡'i)
¡ ri sin(Ái¡'i)(Á̃i¡ '̃i)

1¡ cos(Ái¡'i)
(50)

where ¿̃ , Á̃i, and '̃i are the errors of ¿ , Ái, and 'i,
respectively.
In view of (50), the covariance between the ith

sensor’s range and bearing measurement is

cov(ri,Ái) = E[r̃iÁ̃i]

=¡ ri sin(Ái¡'i)
1¡ cos(Ái¡'i)

¾2Ái (51)

Similarly, the covariance between the ith sensor’s range
and shockwave angle measurement is

cov(ri,!) = E[r̃i'̃i]

=
ri sin(Ái¡'i)
1¡ cos(Ái¡'i)

¾2' (52)

APPENDIX B, PARTIAL DERIVATIVE TERMS FOR
LOCAL ESTIMATE FIM

In order to calculate the @¹(x) terms of (48), the
partial derivatives of (6), (9) and ! are needed. The
partial derivatives of (6) are

@Ái
@Tx

=¡
Ty ¡ Siy
r2i

(53)

@Ái
@Ty

=
Tx¡ Six
r2i

(54)
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@Ái
@!

= 0 (55)

@Ái
@Sx

=
Ty ¡ Siy
r2i

(56)

@Ái
@Sy

=¡Tx¡ Six
r2i

(57)

The partial derivatives of (9) are

@ri
@Tx

=
Tx¡ Six
ri

(58)

@ri
@Ty

=
Ty ¡ Siy
ri

(59)

@ri
@!

= 0 (60)

@ri
@Sx

=¡Tx¡ Six
ri

(61)

@ri
@Sy

=¡
Ty ¡ Siy
ri

(62)

The partial derivatives of ! are straightforward.
The @§(x) terms of (48) require partial derivatives

of (10), (17) and (18).
The partial derivatives of (10) are

@¾2ri
@!

=
2

sin(Ái¡'i)
·
¾2ri +

c2¾2¿ cos(Ái¡'i)
(1¡ cos(Ái¡'i))2

¸

=
2sin(Ái¡'i)
1¡ cos(Ái¡'i)

"
¾2ri ¡

(¾2Á+¾
2
')r

2
i cos(Ái¡'i)

1¡ cos(Ái¡'i)

#
(63)

@¾2ri
@Tx

=¡@Ái
@Tx

@¾2ri
@!

+
2(Tx¡ Six)(¾2Á+¾2') sin2(Ái¡'i)

(1¡ cos(Ái¡'i))2
(64)

@¾2ri
@Ty

=¡@Ái
@Ty

@¾2ri
@!

+
2(Ty ¡ Siy )(¾2Á+¾2') sin2(Ái¡'i)

(1¡ cos(Ái¡'i))2
(65)

@¾2ri
@Six

=¡@¾
2
ri

@Tx
(66)

@¾2ri
@Siy

=¡@¾
2
ri

@Ty
(67)

The partial derivatives of (17) are

@cov(ri,Ái)
@!

=¡ ri¾
2
Á

1¡ cos(Ái¡'i)
(68)

@cov(ri,Ái)
@Tx

=¡@Ái
@Tx

@cov(ri,Ái)
@!

+
@Ái
@Ty

cov(ri,Ái)

(69)

@cov(ri,Ái)
@Ty

=¡@Ái
@Ty

@cov(ri,Ái)
@!

¡ @Ái
@Tx

cov(ri,Ái)

(70)

@cov(ri,Ái)
@Sx

=¡@cov(ri,Ái)
@Tx

(71)

@cov(ri,Ái)
@Sy

=¡@cov(ri,Ái)
@Ty

(72)

The partial derivatives of (18) are

@cov(ri,!i)
@!

=
ri¾

2
'

1¡ cos(Ái¡'i)
(73)

@cov(ri,!i)
@Tx

=¡@Ái
@Tx

@cov(ri,!i)
@!

+
@Ái
@Ty

cov(ri,!i)

(74)

@cov(ri,!i)
@Ty

=¡@Ái
@Ty

@cov(ri,!i)
@!

¡ @Ái
@Tx

cov(ri,!i)

(75)

@cov(ri,!i)
@Sx

=¡@cov(ri,!i)
@Tx

(76)

@cov(ri,!i)
@Sy

=¡@cov(ri,!i)
@Ty

(77)

The @§(x) terms of (48) can now be constructed from
(63)—(77).
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