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Uncertainty is the essential attribute of target tracking. 
It needs to be included in mathematical modelling of 
all aspects of a target tracking system, such as target 

dynamics, the target birth/disappearance process, measurement 
characteristics (probability of detection, characterisation of 
false alarms, and measurement noise), and prior contextual in-
formation (domain knowledge, such as maps and corridors, and 
historical data). The vast majority of target tracking algorithms 
are formulated as Bayesian inference problems, with uncertain-
ty characterised by probabilistic models.

In practical real-world applications of target tracking, how-
ever, the specification of these (precise) probabilistic models for 
all uncertain aspects of this complex problem is often difficult. 
For example, the probability of detection as a function of range 
would depend on many unknown factors (e.g., environmental 
conditions, object size, and its reflective characteristics); hence, 
a precise trustworthy model would be almost impossible to put 
forward. This inherent misspecification often implies that sev-
eral heuristics have to be introduced to compensate for the dis-
crepancies between the model and the real data. It also relates 
to the common aphorism in statistics: all models are wrong, but 
some are useful.

In technical terms, probability theory deals with only one 
aspect of uncertainty involved in modelling complex systems 
(such as target tracking): uncertainty due to randomness [1]. 
This relates to the known unknowns feature of a model, where 
the probability function is known but the actual realisation is 
random (and hence unknown). Arguably, there is another layer 
of uncertainty involved in modelling, the unknown unknowns 
factor, often referred to as epistemic uncertainty. The existence 
of epistemic uncertainty has been the motivation behind several 
recent theories for quantitative modelling of uncertainty, such 
as possibility theory, Dempster-Shafer theory, and imprecise 
probability theory [2]. The focus in this article is on possibility 
theory, because (1) the standard probabilistic concepts can be 
(relatively easily) extended to this context and (2) at present, 
the last two aforementioned theories are primarily developed 
for and limited to discrete state spaces.

THEORETICAL FOUNDATIONS

UNCERTAIN VARIABLE
The concept of uncertain variable, in the adopted framework 
of possibility theory, plays the same role as a random variable 
in probability theory. The main difference is that the quanti-
ties of interest are not random but simply unknown, and our 
aim is to infer their true values out of a set of possible values. 

The theoretical basis of 
this approach can be found 
in [3], [4]. Briefly, the un-
certain variable is a func-
tion :X , where Ω is 
the sample space and  is 
the state space (the space 
where the quantity of interest lives). Our current knowledge 
about X can be encoded in a function : [0,1] X  , such that 
πX(x) is the possibility (credibility) for the event X = x. Func-
tion πX is not a density function; it is referred to as a possibility 
function, being the primitive object of possibility theory [5]. It 
can be seen as a membership function that determines the fuzzy 
restriction of minimal specificity (in the sense that any hypoth-
esis not known to be impossible cannot be ruled out) about x 
[6]. Normalisation of πX is sup ( ) 1 Xx x  if  is uncountable 
and max ( ) 1 Xx x  if  is countable.

The objective is to carry out inference on dynamical systems 
in a manner analogous to the Bayesian formulation. Then, it is 
natural to consider sequences x1, x2, …, xk ≡ x1:k of uncertain 
variables, with k being a discrete-time index and xk representing 
the state of the target of interest in  at time k. Such a sequence 
of uncertain variables is an uncertain process (chain) [4]. An un-
certain process is Markovian if |1: 1 1: 1 | 1 1( | ) ( | )    k k k k k k k kx x x x , 
for any 1, , kx x .

NONLINEAR FILTERING
Nonlinear filtering in the framework of possibility theory is 
formulated next. Let the target dynamics be specified by the 
transition possibility function | 1( | )  k k x x , which specifies the 
uncertain evolution of the state from time k − 1 to time k. Let 
the uncertain relationship between the target-originated mea-
surement z  and the (hidden) target state x at time k be speci-
fied by the likelihood function gk(z|x), expressed as a possibility 
function. Here,  is the measurement space. Given the dynamics 
model ρk|k−1(x|x′) and the measurement model gk(z|x), the goal 
of the possibilistic nonlinear filter is to estimate recursively the 
posterior possibility function of the state, denoted πk|k(x|z1:k), 
where z1:k is the sequence of target-originated measurements up 
to time k. Assuming the initial π0(x) at k = 0 is known, the solu-
tion can be presented in two stages: prediction and update [7], 
[8]. The prediction equation is given by

| 1 1: 1 | 1 1| 1 1: 1( | ) sup ( | ) ( | ),       


  k k k k k k k k
x

x z x x x z


 (1)

and it represents the possibilistic analogue of the Chapman-
Kolmogorov equation. The update equation is given by
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and it represents the possibilistic analogue of the Bayes update. 
The only difference between the (standard) probabilistic for-
mulation of nonlinear filtering [9, Ch.1] and the possibilistic 
formulation expressed by (1) and (2) is that integrals in the for-
mer are replaced with supremums in the latter. The possibilistic 
nonlinear filter is a special instance of an outer measure class of 
nonlinear filters defined in [7].

Application of the possibilistic nonlinear filter to spa-
tiotemporal tracking using natural language statements was 
studied in [3]. The filter was implemented using a grid-based 
method. Application to target motion analysis (TMA) using 
bearings-only measurements was presented in [8]. The filter 
was implemented using a particle filter. The conclusions of 
[8] are noteworthy: in the absence of a model mismatch, the 
probabilistic TMA and the possibilistic TMA filters perform 
identically. However, if there is a model mismatch, either in the 
dynamic model or in the measurement model, the possibilistic 
TMA filter is more robust, resulting in a significantly lower 
rate of filter divergences. Application to space object tracking 
was presented in [10].

AN OVERVIEW OF RECENT DEVELOPMENTS

The Bernoulli filter for single-target joint detection and track-
ing in the presence of false detections and misdetections was 
developed in the possibilistic framework for two cases: for a 
point target in [11] and for an extended target in [12]. In both 
cases, it was demonstrated that the possibilistic approach is 
more robust if the probability of detection is known only as an 
interval value.

The analogue of the probability hypothesis density (PHD) fil-
ter, for joint estimation of the number of targets and their states, 
was derived in the framework of possibility theory in [4]. This 
filter provides modelling flexibility in terms of facilitating the in-
troduction of measurement-driven birth schemes and modelling 
the absence of information on the initial number of targets. How-
ever, it loses the ability of the standard PHD filter to estimate the 
number of targets by integration of the intensity function.

The first multitarget tracking algorithm in the probabilistic 
framework was reported in [13]. It was developed as a possi-
bilistic analogue of the δ-generalised labelled multi-Bernoulli 
(δ-GLMB) filter. As such, it inherits all the capabilities of the 
standard probabilistic δ-GLMB filter, with the additional abil-
ity to deal with partial knowledge of dynamic model param-
eters, measurement model parameters, and the initial number 
and states of newborn targets. The possibilistic δ-GLMB filter 
is implemented using the concept of a Gaussian max-mixture (a 
weighted combination of Gaussian possibility functions).

A reward function for sensor control using the possibilis-
tic nonlinear filter was studied in the context of bearings-only 
tracking in [14]. The reward was defined as the uncertainty re-

duction, where a measure of uncertainty contained in a poste-
rior πk|k(x|z1:k) is defined as the volume under πk|k(x|z1:k).

SUMMARY

The formulation of target tracking algorithms in the framework 
of possibility theory is an exciting recent development. How-
ever, one should see it not as a ‘silver bullet’ for all situations but 
rather as an alternative to the standard Bayesian framework, with 
the potential to provide an additional layer of robustness due to 
epistemic uncertainty. Although early studies suggest promising 
results, further work is necessary to establish in a more universal 
context the benefits and pitfalls of the proposed framework.
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