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Distributed estimation addresses the problem of com-
bining local estimates that are based on measurements 
of individual sensors. This setup is particularly useful 

in spatially distributed applications, since data transmitted over 
potentially low-bandwidth communication links is reduced 
and the computational burden is shared among multiple nodes. 
Since local estimates have errors that are correlated over time 
for the same sensor, and across sensors at the same time, most 
distributed estimation research has focused on how to address 
this correlation [1], either by removing double counting to re-
construct the centralized estimate, or using the correlation to 
find the best linear estimate given the local estimates.

FUSION BY DECORRELATION

Early research on distributed estimation aims at reconstructing 
the centralized Kalman filter estimate x̂ and error covariance P̂ 
from local Kalman filter estimates ˆix  with covariances iP, for i = 
1,..,S. The fusion equation [2] is:
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P x P x P x P x  (1)

where x , P, ix , iP  are the global and local predictions. There is a 
similar equation for the error covariances.

Eq. (1) is sometimes called information matrix fusion be-
cause it is based on the information matrix form of the Kalman 
filter. It is also known as tracklet or equivalent measurement fu-
sion [3] because the summand in (1) represents the new informa-
tion in the measurements in the local estimates between fusion 
times. Because of its intuitive form and simple implementation, 
it is widely used in track fusion, and shown to have good perfor-
mance even when the underlying assumptions of zero process 
noise or full-rate communication are violated.

Since a set of measurements is conditionally independent 
given the states at multiple observation times, optimal state es-
timate fusion can be achieved by using an augmented state that 
consists of the states at multiple times. The fusion equations 
have the same form as (1) except that x is the augmented state. 
Good estimation performance can be obtained using a small 
number of augmented states but the main benefit of using aug-
mented state estimates is in track association [4].

FUSION OF PSEUDO ESTIMATES
Fusion of local estimates to compute the exact Kalman filter 
estimate in the presence of process noise and non-full-rate 

communication had been 
a challenging research 
problem for many years. 
This solution to this prob-
lem was published as the 
distributed Kalman filter 
(DKF) [5]:

 (2)

where x̌i and error covari-
ance  P̌i are pseudo esti-
mates different from the 
local Kalman estimates because either the prediction or update 
equations use global information. If the local knowledge devi-
ates from the actual model, then the fusion equation will not 
produce the global estimate. The performance of DKF with 
pseudo estimates is compared with tracklet fusion in [6]. The 
distributed accumulated state density (DASD) filter [7] has a 
similar fusion equation but uses the ASD, which is the density 
of the augmented state.

The DKF and DASD filter can compute the optimal global 
estimate with no assumptions on the process noise and com-
munication rate. However, the local estimates are pseudo-
estimates and not Kalman estimates. Furthermore, the local 
pseudo-estimates are computed with global models; thus, these 
algorithms are more suitable for distributed processing and not 
for distributed estimation or fusion of local tracks.

ESTIMATE FUSION USING CROSS-COVARIANCE

Another popular fusion approach does exactly the opposite of 
decorrelation by exploiting the covariances and cross-covari-
ances of the local estimates. This has advantages such as ignor-
ing the dependence of the estimates due to prior communica-
tion and process noise, and the need to identify additional local 
estimates for decorrelation. However, the result is a constrained 
estimate which may be different from the centralized estimate 
given all the measurements.

The earliest work using this approach is the Bar-Shalom 
Campo rule [8]. Since the late 1990s, estimate fusion given 
the cross covariance has become a very active area of research 
because of its general applicability. Two popular ones are the 
maximum a posteriori (MAP) estimation [9], and the best linear 
unbiased estimation (BLUE) or weighted least-squares (WLS), 
[10], both first presented at FUSION 1999.

DistributeD estimation
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Distributed Estimation

For two sensors, the MAP estimate has the same form as (1):

   1 1 2 2ˆ ˆ ˆ    x x L x x L x x  (3)

However, the gain matrix 1 2,   L L L  is calculated from the 
covariance matrix between the state x and the local estimates 

1 2ˆ ˆ,   x x . The BLUE or WLS [10] is a generalization of the MAP 
approach and can handle arbitrary correlations in the local esti-

mates. For estimates   1
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BLUE is very flexible because it can handle all types of lo-
cal inputs and arbitrary correlations as long as the covariance 
between the inputs are known. The performance of BLUE fu-
sion rules depends on the choice of the local inputs, and im-
plementation requires knowing all the covariances. If the local 
inputs are chosen properly, the BLUE fusion rule can generate 
the centralized estimate given the measurements in the local 
estimates, such as augmented state estimate fusion. However, 
BLUE does not provide guidelines for selecting the local state 
estimates.

COVARIANCE INTERSECTION

The covariance intersection (CI) algorithm [11] was motivated 
by map building, where the cross-covariance between the thou-
sands of variables is hard to model. CI assumes no knowledge 
of cross covariance. For two local estimates 1̂x  and 2x̂  with error 
covariances P11 and P22, the CI algorithm is:

 1 1 1
11 1 22 2ˆ 1ˆ ˆ     CI CIP x P x P x  (5)

where 0,1   is a parameter to be chosen such that the fused 
covariance 1

CIP  is minimal. CI produces a consistent estimate 
with a conservative error covariance. It is very popular when 
very little information on correlation in the estimates is avail-
able. The recently developed inverse covariance intersection 
[12] yields a good compromise between the conservative CI 
and other optimistic fusion rules such as naïve fusion. This is 
achieved by an application of the CI rule on the joint informa-
tion of local estimates.

CONSENSUS FILTERS FOR SENSOR NETWORKS

Distributed estimation over a sensor network is difficult because 
the local estimates have correlations that depend on the infor-
mation path. Fusion by decorrelation or using cross-invariances 
requires communication to share model and network informa-
tion. Since communication is expensive, distributed estimation 
requires robust algorithms that assume only local network in-

formation, with performance measured by other metrics besides 
estimation accuracy. When distributed estimation is used to 
support distributed control, consensus in the estimates is more 
important than estimation accuracy. Thus, consensus filtering 
has become a very active area of research since the early 2000s 
[14]. It is based on the principle that a consensus estimate can 
be obtained by exchanging local information between observa-
tion times.

CONCLUSIONS

Much progress has been made in advancing the state of the art 
in distributed estimation over the past 25 years. However, not 
much has been done to provide guidance on selecting the ap-
propriate algorithm for a particular problem. Further research 
to characterize the estimation performance, communication and 
computation requirements, and robustness of the algorithms is 
needed. Standard data sets and performance metrics will facili-
tate algorithm development and testing.
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