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PROBLEMS

W e often encounter problems where we need to 
process an incoming stream of data to make in-
ferences about a time-evolving quantity of inter-

est. Examples of such problems emerge in a diverse range of 
applications spanning tracking, GPS-free navigation, robotics, 
epidemiology, and finance.

To make statistical inferences in such contexts, we capitalise 
on models that capture our understanding of both the time-evo-
lution of the quantities of interest and the relationship between 
these quantities and the observed data. Were these models to be 
linear and Gaussian, the uncertainty can be exactly character-
ised using a sequence of analytic calculations. Unfortunately, the 
models are rarely linear or Gaussian. One widespread strategy is 
to approximate the models as being (locally) linear and Gaussian 
and/or to decompose the problem into a set of sub-problems each 
of which involves linear and Gaussian models: the result are ap-
proaches typified by the extended and unscented Kalman filters, 
multi-hypothesis tracker, and the interacting multiple model. 
Given that it is the models that capture our understanding, ap-
proximating the models necessarily compromises our ability to 
use that understanding to inform the inferences that we make. 
Particle filters adopt a different approach whereby we explicitly 
approximate the result of the inference but fully capitalise on the 
model fidelity when we do so. Particle filters achieve this via 
Sequential Monte Carlo, i.e., at each time step they characterise 
the uncertainty using a set of (weighted) sampled values for the 
inferred quantities of interest.

When the models concerned are well approximated as linear 
and Gaussian, particle filters may offer some benefit relative to 
alternative techniques, but this benefit is often (sensibly) argued 
to not be warranted by the computational expense required to 
propagate the (potentially large number of) samples over time. 
Perhaps as a result, while particle filters were initially hoped to 
offer improved performance in contexts where existing filters 
were struggling (typified by bearing-only tracking), they argu-
ably failed to make significant gains in these applications: it 
transpires that the problems were limiting performance in these 
contexts, not the filters.

However, there are many important problems where the 
models are not well approximated as linear or Gaussian. It is 
these contexts where particle filters have shone as a result of 
their ability to solve problems that other approaches simply 
cannot tackle. Examples are diverse and range from GPS-free 
navigation [1] to localising earthquakes using data extracted 
from social media [2].

PARALLELISM

A fundamental strategy 
when developing faster 
processors is to make the 
processors smaller. How-
ever, when processors 
switch state, they generate heat and it becomes increasingly 
challenging to dissipate this heat as the devices shrink in size. 
The result is that single processors have failed to deliver on 
Moore’s law since approximately 2013. Since then, increases 
in processing power (typified by the GPUs being used for deep 
learning) have been achieved by maximising the number of pro-
cessors on a chip. If algorithms are to exploit such hardware, 
parallelism is a necessity.

When a particle filter processes each datum, it propagates 
each particle and calculates each particle’s weight. These op-
erations are independent from one particle to another such that 
particle filters are often claimed to be readily parallelisable. 
However, there is an issue with this claim. As a particle fil-
ter iterates through time, a weight is recursively updated for 
each particle: this weight is the extent to which the particle 
will contribute to any inference. It is inevitable that the weights 
for different particles will come to differ significantly and in-
ferences will become dominated by a small subset of the par-
ticles. To address this wastefulness, particle filters employ a 
‘re sam pling’ step. This involves removing the particles with 
low weights and replacing them with replications of the parti-
cles with high weights. It is the introduction of resampling that 
gave rise to the first working particle filter [3]. However, this 
same resampling step is non-trivial to parallelise. This has mo-
tivated research into approaches to both modifying the resam-
pling step to make it amenable to parallel implementation [4] 
and approaches to defining a parallel implementation without 
such modifications [5].

PROPOSAL DISTRIBUTIONS

However much we exploit parallelism, we will be limited by 
how efficiently each particle is processed and, more specifi-
cally, the “proposal distribution”, how the state associated with 
each particle is proposed. Research has focused on how to de-
sign efficient proposals. One exemplar such approach is the use 
of Kalman filter techniques inside the proposal [6]. Another 
closely related approach, particle flow [7], involves defining a 
process that takes the place of the proposal, and is highly remi-
niscent of numerical approaches (e.g., Hamiltonian Monte Car-
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lo) that have proven both effective and popular in the context of 
other numerical Bayesian algorithms.

It transpires that one can achieve further improvements by 
proposing refinements to historic samples retrospectively in the 
light of recent data. Note that such an a fixed-lag approach [8] 
is also known as “blocking” in the context of particle filters.

PARAMETER ESTIMATION

As already explained, particle filters capitalise on models to 
make their inferences. Developing models and fine-tuning their 
parameters is time consuming. Techniques have been devel-
oped to learn such parameters from data: see, for example, [9].

As well as offering the potential to use high fidelity models, 
this capacity to learn models’ parameters from data also makes 
it possible to apply particle filtering with the models used by 
deep learning algorithms such as long short-term memory 
(LSTM) networks and transformers. In this context, particle 
filters can be seen as a machine learning approach that enables 
users to understand the uncertainty associated with such deep 
learning approaches.

PROSPECTS

It is currently challenging for an applied researcher to capitalise 
on the advances to particle filtering that have happened in the last 
25 years and are exemplified above. This contrasts with neigh-
bouring domains where probabilistic programming languages 
(PPLS) such as Carptenter et al. [10] have made it straightforward 
to define and then use probabilistic models to make inferences 
from (fixed) data. One exciting avenue for future research into 
particle filters is to extend such PPLS to make it straightforward 
to perform parameter estimation and use parallel implementations 
of particle filters with high-performance proposal distributions.
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