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Abstract—The ISIF community has a long heritage in research directed to situation assessment. 
That research traces to the earliest days of the International Society of Information Fusion (ISIF) to 
include the first few conferences. Well thought out ideas and models of situation analysis/situation 
assessment/situation projection processes were developed across the international community. 
Companion efforts grew out of the Cognitive Situation Management (CogSIMA) community in the 
context of cognitive situation control that are complementary to the ISIF papers. However, contin-
ued maturation and integration of those ideas toward designing and developing prototype integrated fusion processes have not been 
realized. This paper offers some additional ideas that we call an expanded framework for situation control that will require such inte-
grated and managed processes. At its heart, the paper is a call for the ISIF community to move away from functionally isolated research, 
and to develop a more systemic view of its research that will offer opportunities for more impactful roles in the research community.

PERSPECTIVES ON SITUATION ASSESSMENT

T here is an extensive body of literature on the topic of es-
timating situational states in applications ranging from 
cyber-defense to military operations to traffic situations 

and autonomous cars. In the military/defense/intelligence litera-
ture, “situation assessment” seems to be the sine qua non for any 
research on surveillance and reconnaissance, command and con-
trol, and intelligence analysis. Virtually all of this work focuses 
on assessing the situation-at-the-moment; many if not most of the 
estimation techniques are based on data and information fusion 
(DIF) approaches, with some recent schemes employing artificial 
intelligence (AI) and machine learning (ML) methods. But esti-
mating and recognizing situational conditions are processes often 
couched in a decision-making, action-taking context, implying 
that actions may be needed so that certain goal situations will 
be reached as a result of such actions, or at least that progress 
toward such goal states will be made; that is, situations are gen-
erally not being estimated just to be observed. This context thus 
frames the estimation of situational states in the larger context 
of a control-loop, with a need to understand the temporal evolu-
tion of situational states, not just a snapshot at a given time. Esti-
mating situational dynamics requires the important functions of 
situation detection, situation recognition, situation understand-
ing, situation prediction, and situation comparison that are also 
central to such an integrated estimation + action-taking control 
process architecture. The varied processes for all these combined 
capabilities lie in a closed-loop “situation control” framework, 
where the core operations of a stochastic control process move 
the situation to a desired goal state; see an earlier paper on this 
topic [1] and a longer version of this paper in [2].

SYSTEMIC VIEWPOINTS

The issues described above are DIF system-boundary issues in 
the systems-engineering sense. Much DIF research is couched in 

the sense of DIF as a value-adding but isolated process: e.g., how 
many papers on tracking, the most-studied function in the com-
munity, address the details of and synergies with multisensor 
operations or other system-level functions? Proportionally, very 
few, and virtually all rely on the sensing system somehow pro-
ducing observations that satisfy the Mutual Exclusion criterion1, 
among other assumptions about observational data. This paper 
suggests that more systemically expansive research is needed in 
the DIF community and is a paper that looks at some of the in-
terdependencies among DIF situation-estimating processes and 
decision-making. Minimally, the DIF “Black Box” should be 
extended to synergies with Sensing and with Response Systems, 
and with Humans. In adversarial and many civilian situations, 
the core purpose of DIF will be to deliver information needed for 
optimal action-taking of some kind; fusion for disaster-response 
is a good example [3], involving situation assessment to enable 
coupled life-saving operations as a major purpose.

We propose several additional functionalities for this closed-
loop control process as an expansion of some prior work on the 
situation-control topic and include remarks on the integration of 
some control-theoretic principles. Some remarks are also made 
on the state of the art of the schemas and computational tech-
nologies for situation detection, recognition, prediction, and 
understanding, as well as the roles for human intelligence in 
this larger framework. Our intent in this paper is to expand the 
framework of situation control in terms of our views of several 
other component processes briefly described herein, and in dis-
cussing these additional processes, to relate them to research 
and capabilities in the DIF domain.

INTRODUCTION

The concept of a “situation” can be thought of as describing 
a portion of a real-world that is of interest to a participant in 

1 One measurement per single target per sensor.
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that portion of the world; see “Situation Estimation” for some 
details. An understanding of a situation is needed and useful to-
ward guiding or assessing the need for possible assessment and 
action of the participant in that situation. Action of a participant 
may also be needed to possibly alter the situation if it is in an 
undesirable state (assuming resources capable of affecting the 
situation in known ways are available, and that a goal state can 
be specified), or for the participant to alter his position in the 
situation. For a human participant, the mental faculties of hu-
man cognition, such as consciousness (awareness), reasoning, 
formation of beliefs, memory, adaptation, and learning, frame 
the functional aspects of a process of cognitive situational un-
derstanding, related to the notion of “sensemaking” (see, e.g., 
[4], [5], [6])2. Acting on the situation, however, leads to the need 
for a process of cognitive situation control (or management), as 
well described in various of Jakobson’s papers [7]–[10] that, in 
part, motivated this work and provided its foundation. We build 
on and recognize Jakobson’s work especially in [10]. We also 
recognize and draw on Roy’s Fusion 2001 paper on Situation 
Analysis that also brought forth many of the ideas discussed 
herein [11]. Similar ideas were also described in Lambert’s 
2001 paper as well [12]. In our Frontiers publication [2], we 
offer an expanded view of the issues discussed here, including 
aspects of cognitive/neural situational understanding.

SITUATION ESTIMATION

Our abstraction of the notion of a situation is as “a set of en-
tities in a set of relations”. If this characterization is accept-
able, then situation estimation (SE) involves inferencing about 
the existence of relations across entity sets. Philosophers have 
generally agreed that “relation-making characteristics” derive 
from certain types of “monadic” properties of entities, e.g., the 
heights of people form the basis of possible relations (“taller-
than”, etc.). In this view, such properties enable inferencing 
about the existence of relations. These shared properties that 
enable the existence of relations are called the “relata” (of re-
lations), or “relative-making characteristics” [13]. This line of 
thought also suggests that relations are the result of a process of 
some type of comparison, i.e., [14], “an act of reasoning”. Fur-
ther, sensors and associated processing (feature/attribute extrac-
tion) provide “relata” or entity properties that would support 
reasoning from which inter-entity relations could be asserted, 
but sensors do not provide “observations” of relations; those 
need to be inferred from the relata, as just stated. Importantly, 
situation estimation is also complicated by the combinatorics of 
relations among entities and entity-sets in complex real-world 
cases; sets of relata and sets of entities impute these inherent 
combinatorics. We have not seen much continued research fo-
cused along the lines of these remarks, yet Roy [11] pointed out 
as far back as in Fusion 2001 the need to develop estimates of 

2 Sensemaking is not the same as understanding; sensemaking involves in-
terplay between foraging for information and abstracting the information 
into a representation called a schema that will facilitate a decision or so-
lution (http://www.peterpirolli.com/Professional/Blog__Making_Sense/
Entries/2010/8/16_What_is_sensemaking.html).

sets of relations among entities in a process he called “Situation 
element contextual analysis”, as part of his situation analysis 
model. That contextual analysis “… thus develops a description 
of all sorts of relationships among situation elements: physical 
(is composed of), spatial, proximity, temporal, structural, orga-
nizational, perceptual, functional (involves/requires/provides), 
functional (e.g., supply, communications), process (performs 
the process of), causal, informational source/recipient, influ-
ence source/recipient, sequential dependency (occurs condi-
tional upon), temporal dependency (occurs when), etc.”, from 
[11]. Research directed to the complex machinery needed to es-
timate the component relations and relation-sets and their inte-
gration remains fairly absent in the fusion community at large.

SEMANTIC LABELING, MODELING, AND ONTOLOGIES
The entities at higher levels of DIF processing are not just the 
physical objects but can be actions, events, behaviors, and other 
things that may be of concern. Specifying the appropriate Lev-
el 1 entities requires looking ahead to Levels 2 and 3 because 
these inferencing/estimation processes are interdependent. In 
turn, these entities can have combinatoric sets of relations to 
each other, as just mentioned, but now across fusion Levels. 
Some type of semantic labeling of the entities and their rela-
tional constructs must be established to have a “language” with 
which to discuss and label DIF-produced estimates of situation-
al conditions.3 There are various ways to address this language 
requirement: examples are the use of a situation modeling 
language, e.g., [15], or the use of an ontology, e.g., [16], [17]. 
The situation modeling approach typically employs a graphi-
cal language for situation modeling (such as Frames), allowing 
the expression of primitive situations and complex situations 
involving the composition of situations (with temporal or other 
constraints when required). In an ontological approach, along 
with the entity ontology, a relation ontology is also needed so 
that the specifics of a labeled, specific situational state can be 
assembled from these components. That assembly requires a 
higher level of abstraction in inferencing. Thus, a situation de-
tection or recognition process will need to be supported by an 
ontological foundation where entities, relations, and labeled 
situational states are coupled to the fusion and recognition pro-
cesses that will have to assemble the recognized, labeled situ-
ational state by exploiting this framework and all of the relata. 
Steinberg [18] offers one example of the inferencing machinery 
for these operations, building on the situation logic processes of 
Barwise and Perry [19]. These processes also need to account 
for the various uncertainties in the integrated observational and 
inferential processes. Jousselme et al. [20] provide an overview 
of the principal typologies of uncertainty employed in situation 
analysis and inferencing and suggest that addressing reasoning 
and uncertainty in situation assessment will require frameworks 
having capabilities to integrate qualitative and quantitative pro-

3 The Level 1 state estimates have a relatively simple set of semantic labels 
drawn from common language and not needing formalisms of ontology, 
or at least less so. Those labels provide enough semantic specificity from 
which to engineer solutions to required processes; e.g., what a “track” is and 
how to form an estimate of it–this is not the case for Level 2 and 3 processes.

http://www.peterpirolli.com/Professional/Blog__Making_Sense/Entries/2010/8/16_What_is_sensemaking.html
http://www.peterpirolli.com/Professional/Blog__Making_Sense/Entries/2010/8/16_What_is_sensemaking.html
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cesses. The modeling and relational specificity described here 
would also be needed if labeled training data were to be used 
in an AI/ML-based approach to situation estimation. There has 
been a fairly large number of publications that offer represen-
tational schemes for situations, some labeled as ontologically-
based, but those models have not been broadly applied (see 
[16], [21]–[26], that are just a sampling).

PROPOSED FUNCTIONAL EXPANSION OF THE 
BASELINE FRAMEWORK: OVERVIEW
While Jakobson provides a sound initial foundation for a pro-
cess description of situation control, we suggest various en-
hancements of this process description; our discussion is linked 
to Figure 1 below. The paragraph titles below are shown in the 
figure for clarity in following the discussion.  Fusion-based 
situational processing begins with the flow of inputs from hard 
and soft sensors or sources and from incorporation of contex-
tual information, in the lower-left of Figure 1.

SITUATION DETECTION (SD)
Our view of detection relates to prior knowledge and the aspect 
of observing the occurrence of something or some part of some-
thing that is known a priori (elsewise the process is discovery); 
integrated detection and discovery processes may very likely be 
needed in some applications, as bounded by prior knowledge 
but we do not address that issue. For a state such as a situation, 
an entity-relation complex, detection may relate to observing 
or measuring some parts of the relational complex. Thus, to 
detect a situation requires deciding if any entity or relation of 

a situational complex is of equal value for asserting the detec-
tion of the entirety of the situational state. On the other hand, 
if a situational complex is of large dimensions, detecting small 
components might lead to many false alarms. Construction of a 
detection methodology therefore requires setting thresholds and 
labels of a) numbers of things that need to be detected, and b) 
which of those things are most indicative of an evolving situ-
ational state. Notions of detection probability and probability of 
false alarm are present here in the same way as for a hard or soft 
sensor. There are various papers in the literature on this topic, 
e.g., using Bayes Nets and Fuzzy Logic for Situation Detection 
but it is rarely presented in the context of an integrated system 
approach or as a detection theory for situations.

SITUATION RECOGNITION (SR)
Given that a situation has been detected, situation estimation 
processes can begin toward estimation of the existence of some 
Particular Situations. In some works, these processes are as-
serted to be “the” Situation Estimation process. But we choose 
to call this the Particular Situation, arguing that it is just that, 
the collection of situational elements at any given moment, for 
a dynamic evolution process that has some time to completion. 
In the same way as for SD, methods for SR have to decide on 
the issue of “completeness” and set notions of thresholds toward 
asserting the existence of any particular situation. An issue that 
arises here is the degree to which particular situations in the situ-
ation ontology are similar to each other. If the “truth” situations 
specified in the ontology are not sufficiently disparate, label-
ing of particular situations will be yet more difficult because of 
overlapping similarities.

Figure 1
Fusion processes in situation control.
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ESTIMATING SITUATIONAL RATE: “OPTEMPO”
We introduce a new requirement for DIF that we have not seen 
in the literature: the estimation of a factor that will be very im-
portant in determining the process context for Situation Man-
agement and Control: the assessed rate at which the situation 
is unfolding; that is, the Operational Tempo (“OpTempo”) of 
the situation. This factor needs to be estimated early in the SR 
process and weighed in relation to both the scanning/sampling 
rate of the observational resources, the prediction interval, sen-
sor resolution factors, and in fact the viability of the overall DIF 
process (again indicating the need for systems-level thinking). If 
the situation is unfolding at a rate faster than it can be feasibly 
observed (or perhaps acted upon), forming dependable situation 
estimates going forward will be very difficult, and situational 
predictions will be equally hard.4 OpTempo can be roughly 
thought of as related to the hard sensor Nyquist-type sampling 
rate to capture sufficient information for estimation. This bal-
ance changes the dependencies of the Learning/Understanding 
process (see below) between a priori knowledge and real-time 
observational data; uncertainties in the consequent estimated 
situation will also be affected. Estimating situational OpTempo 
should therefore be a fundamental requirement of the SR func-
tion, as it is a critical process design and management parameter, 
setting the overall “clock” for this control process. The notion 
of OpTempo is also in the fashion of a meta-metric, since any 
situation will be comprised of multiple component multi-entity 
relational processes unfolding at varying rates (the combinator-
ics mentioned previously). Note too that there are optimization 
issues lurking here, as regards defining how optimal co-employ-
ment of bounded observational resources (OR) and situation 
processing (SP) will be managed across these process needs. 
That is, there will be competition between the use of OR and SP 
computational resources for situational state development and 
for co-estimating its evolution-rate/OpTempo that will for ex-
ample require temporal comparison processes to be developed.

NATURAL AND ADVERSARIAL ENVIRONMENTS
In any setting involving situation state estimation, an early ques-
tion has to do with whether the setting is a natural one where 
phenomena are driven by natural causes or whether the setting 
comprises a two-sided, adversarial context. The case involving 
adversaries can be related to the case of “Information Warfare”, 
where the two sides are manipulating information, the bases for 
perception and inference, to their advantage. The larger pur-
pose of these operations is to manage adversarial perceptions 
by structuring the information available to an adversary to be 
compliant with intended perceptual constructs. Another topic 
related to deception is denial of information by covertness, cam-
ouflage, jamming, and other means. Deception and denial strate-
gies work because of exploitation of reasoning errors, cognitive 
limitations, and cognitive biases [27]. It can be argued then that 
4 This same concern certainly applies at Level 1 (L1) fusion and again is 

often not an issue coupled to L1 tracking and classification operations 
because, in much of the community research, they are not couched in the 
systemic sense as influencing or controlling sensing operations. In the 
same way as for the Mutual Exclusion issue, “adequate” sensor sampling 
rates are typically assumed.

another early function for SE is to assess and filter out any ad-
versarially related data or states and make an early assessment 
of the quality and reliability of the data (“garbage-in/garbage-
out”). For both natural and adversarial cases, situational models 
will need to be posed as bases for framing all situational esti-
mates. Thus, as can be said for all DIF processes, process design 
will require making choices on issues of Data Quality; this is 
also a factor not seen very much in the SA literature; see [28].

SITUATIONAL UNDERSTANDING (SU)
While the particular situation estimate may be helpful to certain 
analytical or even decision-making purposes, in many applica-
tions, it is desirable or possibly necessary to know or estimate 
the class or type of situation the particular one is an instance of. 
One notion of understanding can be said to relate to an ability to 
“generalize from the particulars”. Generalization allows the rec-
ognition of the similarities in knowledge acquired in one circum-
stance, allowing for transfer of knowledge onto new situations. 
A challenge now receiving considerable attention with the new 
thrusts into AI is to understand how humans are able to general-
ize from very limited sampling, as well as the issue of “transfer 
learning”. In defense contexts, this type of generalization is often 
directed to gaining or asserting a “mission” context for the par-
ticular situation (the mission class that this situation is an instance 
of). For example, surveillance is a mission class, comprising 
phases such as ingress, tactics such as evading, and actions such 
as attacking; a type of taxonomy of mission-to-situations could 
help in the generalizations proposed here. Generalizing then al-
lows estimation of a broader type and can also trigger layered es-
timates (e.g., particular-to-mission-to-tactics-to-strategic). Such 
broader, generalized views require application of prior knowl-
edge, tacit knowledge, and contextual influences. Ideas along 
these lines are also seen in [11], where he asserts a need for a 
“Situation element interpretation” process that similarly focuses 
on forming a higher, generalized view of the fused results. Gener-
alization can be done by exploratory excursions from the particu-
lar situation at the moment as a kind of extended induction, and 
also by methods drawn from argumentation. Similar techniques 
are employed in Sensemaking models where “Foraging” is a pro-
cess that searches for related data and for plausible extensions to 
the current data set, related to “inductive generalization”. Fol-
lowing [29], methods of elaboration and reframing are frequently 
employed by humans when people are confronted with, or dis-
cover, new information from developing situations. Other meth-
ods that may offer ways to generalize could come from Bayes-
ian network-based probabilistic generative frameworks that, for 
example, employ Allen’s interval relation network to represent 
local temporal dependencies in a generative way. These probabi-
listic generative methods may offer some possible approaches to-
ward “generalizing from the particulars”. Probabilistic generative 
methods have been successfully employed in data fusion-based 
classification and may offer methods extendable to Level 2 situ-
ational understanding. Generalization is also a rather pervasive 
topic in psychology. In [30], Austerwell et al. discuss the issue 
of learning how to generalize, which suggests that generalization 
requires postulating “overhypotheses” or constraints in effect on 
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the hypothesis domain to be nominated. Some assert that such 
overhypotheses are innate but Austerwell et al. argue that they 
can be learned. In either case, the generalization framework is 
said to be Bayesian-based. Generalization has also been studied 
in [31] that suggests an exponential metric distance between the 
stimuli as a basis to assert similarity, and in [32] that discusses the 
overhypotheses issue. If a priori models of general/mission-level 
situations of interest can be formulated, then notions of “degree” 
to which the current, particular situation matches that model can 
be estimated. As situational elements are of natural graph form 
(nodes as entities, arcs as relation-models), graph-based methods 
can be applied toward assessing the degree to which the current 
situation is close to a generalized class of situation. Gross et al. 
[33] explore such an application and study various ways to make 
probabilistic-type comparisons between such graph structures.

SITUATION PREDICTION (SP)
The main requirement for a DIF-based situation prediction (SP) 
process is driven by another system boundary issue, in cases 
where the DIF SE processes are linked to action-taking and as-
sociated decision-making operations; see [1] for an early paper 
on this topic. This interdependency is driven by the need for syn-
chronizing action-taking such that the action is being taken on 
the best-estimated situation at the time of the action. If that syn-
chronization is not achieved, the acting resources will be acting 
on an incorrect situation and/or the incorrect entities. This issue 
also relates to the OpTempo issue; if the situation change rate is 
slow, some degree of mismatch in SP-action-taking synchroni-
zation may be tolerable, and also errors in SP are more tolerable. 
The opposite is true if the OpTempo is high. Further, as for most 
prediction, projection, or extrapolation processes, the difficulty 
and accuracy of such processes is linked to the temporal degree 
of projection (how far ahead) and the rate of observation and 
input of any data that the projections depend on; this is not just 
sensor/observational data but contextual and soft data as well. 
Some resources that act on situations may be more or less time-
sensitive, and this also changes the SP requirement. Thus, syn-
chronization across several interdependent processes may be of 
concern in this context; a mission goal-based analysis of these 
dynamics is needed to guide overall processing.

The degree to which an SP needs to predict ahead is related 
to the expected delay in the combined time it takes to a) decide 
to act and b) the action-time of any actionable resources. Pre-
suming decision-making precedes action-taking, these projec-
tion requirements can also depend on the type of decision-mak-
ing style being employed (see also [1]). That is, it is well-known 
that there are many variants of decision-making processes that 
humans and machines may make (see [34]), and so this projec-
tion-time estimate may also need to know the decision-making 
modality being employed.

SITUATION GOAL AND SITUATION COMPARISON (SC)
At some point in time or as part of an ongoing process, an assess-
ment of whether the situation is satisfactory or not is typically 
carried out; this requires a specification of some desired or goal 
situational state that is the basis for comparison to real-time esti-

mates. We note that the existence of a goal state is crucial to the 
overall process, and the placement of comparative operations. 
It is possible that Goal-to-Estimated SCs could be done quite 
early in these operations, such as at the moment of Situation De-
tection or Situation Recognition. Such comparisons, no matter 
where they occur, are the triggering process for decision-making 
if the situation is not somehow acceptable. But executing this 
step thus requires a process for SC. Goals may also change over 
situation development time, and thus multiple comparisons may 
be required, in a somewhat ongoing process. However executed, 
the SC process yields what could be called an “error signal” as 
would exist in any control process, as Jakobson [10] also points 
out. We assert that this error signal will have stochastic proper-
ties, since the estimated situational state, and perhaps the goal 
state as well, will have stochastic-type error factors embedded 
in the calculations. The error signal requires assessment as to 
whether any action is required, and so there is a question as to 
“degree” of error, and if the error is stochastic, issues of variance 
in this error variable will factor into the severity assessment. For 
example, if that error has “three-sigma” variance, no action may 
be decided, as the situation error estimate is poor. We see almost 
no research addressing these concerns.

SUMMARY

This article is intended to create discussion in the Informa-
tion Fusion (IF) community about taking broader and systemic 
views of fusion process designs and addressing the consequent-
ly more-systemic impacts of such views on process designs. 
Here, we have probed into the Level 2 Situation Estimation 
space with some ideas on this type of thinking and about im-
pacts to IF-based process designs. A main motivation here is 
toward realization of new opportunities and challenges for the 
IF community, and that addressing such challenges broadens 
the impact that this community can have across a very wide 
range of applications. We need to step away from functionally 
isolated data fusion R&D.
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