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If you have ever needed to determine causal effect without 
performing a randomized controlled trial or if you are tired 
of hearing statisticians say, “correlation is not causation”, 

then I highly recommend that you read Causal Inference in 
Statistics: A Primer [1] by Judea Pearl, Madelyn Glymour, and 
Nicholas P. Jewel.

Determining the causal effect of an action is something we 
do instinctively every day. We know from experience that put-
ting a lit match to a piece of paper will cause the paper to burn. 
If we do not eat, we will get hungry. When the temperature 
falls below 32 °F outside, ice may form. We determine causes 
to guide our actions. For example, determining that malaria is 
caused by a mosquito rather than “bad air”, as its name implies, 
tells us to use mosquito netting to avoid malaria rather than a 
gas mask. Knowing that smoking causes lung cancer, we can 
reduce our risk of getting cancer by not smoking.

Determining causal relationships between actions and re-
sults allows us to make intelligent decisions 
about the actions we should take to avoid risks, 
improve our health, or safeguard the health of 
our planet. In many cases, such as the match 
and the burning paper, the causal relationship 
is clear. In many others, such as smoking and 
lung cancer or global warming and extreme 
weather events, the causal relationship is not 
so clear.

Judea Pearl is one of the leading develop-
ers of the theory of causality, along with Don-
ald B. Rubin [2] and James M. Robins [3]. 
Pearl is also the recipient of the Association for 
Computing Machinery’s Alan Turing Award 
for fundamental contributions to probabilistic 
and causal reasoning. Causal Inference in Sta-
tistics: A Primer is, in effect, a textbook for a 
first course in causal inference, complete with 
study questions (problems) whose answers are available from 
an instructor’s companion website. In level of technical diffi-
culty, this book lies between [4], which is described as a com-
prehensive exposition of the modern analysis of causation and 
[5], which is a popular science presentation of Pearl’s theory of 
causal inference. We have used the primer for a study group at 
Metron (Reston, VA) in which we worked our way through most 
of the chapters and sections, discussing them and presenting 
solutions to some of the study problems. Although the presenta-
tion in this book is elementary and requires little background, 
we found it requires a lot of effort to understand the definitions 
of causality and the methods presented for performing causal 

inference. Nonetheless, this 
is an important and develop-
ing extension of statistical 
inference which will become 
an increasingly significant 
area of statistical analysis. 
The well-educated statistician or analyst should at minimum 
understand the concepts of causal inference and ideally be able 
to perform causal analysis.

Before reviewing the book, I present some background on 
causality to introduce the reader to this subject and provide 
some understanding of the long struggle to develop a satisfac-
tory definition of causality and methods for performing causal 
inference.

BACKGROUND

Neither classical nor Bayesian statistics provide methods for 
determining or estimating causality. Statistical methods can es-
timate correlation, but as we are continually reminded, correla-
tion is not causation. A classic example of this is the data Francis 
Galton collected on the heights of fathers and sons [6]. He de-

termined that every extra inch in height of the 
father produced (on average) an extra half-inch 
of height in the son. He called this relationship 
the correlation between the height of the father 
and that of his son. This type analysis was later 
formalized by Karl Pearson into a mathemati-
cal method for computing the slope of a (prop-
erly rescaled) regression line. Pearson called 
this slope the correlation coefficient. A peculiar 
feature of this correlation is that it goes both 
ways. Tall dads tend to have tall sons, and tall 
sons tend to have tall dads. The correlation coef-
ficient is the same both ways. Which is the cause 
and which the effect? Correlation and statistics 
have no way of telling us. However, we know 
that it is the father’s extra height that tends to 
produce a taller than average son, not the other 
way around. We know this because we have in 

our mind a simple causal model of inheritance which says that 
the father’s height is a cause of the son’s height, not the other 
way around. What Galton’s analysis does for us is to quantify 
the causal relationship. The notions of causality, causal model, 
and statistical estimates of causal effects have been developed by 
Pearl and his colleagues into a methodology which allows us to 
estimate, in certain circumstances, the causal effect of an action 
on an outcome. Before pressing on to explain Pearl’s definition 
of causality, I briefly review the history of attempts to define cau-
sality. Kleinberg and Hripcsak [7] provide an excellent overview 
of causal inference and various definitions of causality from the 
perspective of bioinformatics. Researchers in econometrics, bio-
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informatics, and epidemiology have been in the forefront of the 
development and use of causal inference.

DEFINITIONS OF CAUSALITY

REGULARITY DEFINITIONS
In 1739, David Hume proposed the regularity definition of cau-
sation which says, in effect, if one type of object (say a flame) 
always produces a second type of object (say heat), the first 
object (flame) is the cause of the second (heat). Of course, the 
difficulty with this definition is that it is really defining a corre-
lation not causation. In 1748, Hume [8] amended his definition 
to read:

We may define a cause to be an object followed by another, 
and where all the objects similar to the first, are followed 
by objects similar to the second. Or in other words, where 
if the first object had not been, the second never had 
existed.

This definition depends on the notion of counterfactuals—
“where if the first object had not been”. That is, it depends on 
imagining the result of something that did not happen, i.e., a 
counterfactual. In this definition, Hume assumes that people 
intuitively understand counterfactual reasoning and that it does 
not need to be defined. In fact, people often intuitively perform 
counterfactual reasoning to determine cause and effect in their 
everyday lives. In subsequent years, most people who consid-
ered the question of causality ignored the second sentence in 
Hume’s 1748 definition and concentrated on the first sentence, 
the regularity part.

INUS CONDITIONS
In many cases there may be multiple factors that produce an ef-
fect. Mackie [9] produced an updated version of Hume’s regu-
larity definition that allows for multiple causes. He defined a 
cause as some condition that is perhaps Insufficient by itself to 
produce the effect but is a Nonredundant part of a set of con-
ditions that may be Unnecessary but are Sufficient. These are 
termed the INUS conditions.

BRADFORD HILL CRITERIA
In 1965, the English statistician Bradford Hill [10] proposed 
a set of nine criteria to provide epidemiologic evidence of a 
causal relationship. These criteria were used to demonstrate the 
connection between cigarette smoking and lung cancer. At one 
time, these criteria were widely accepted as useful for identify-
ing causal relationships in epidemiological studies. However, a 
problem with the use of these criteria is that many of them rely 
on judgment rather than scientific verification.

PROBABILISTIC CAUSALITY
One of the difficulties with the above causality definitions is 
that they are deterministic. Specifically, they do not allow us 
to determine quantitatively what fraction of the effect is due to 
each cause. Probabilistic theories of causality [11], [12], and 
[13] have been proposed to deal with this problem. The basic 

idea of these theories is that a cause raises the probability of 
and occurs before its effect. The condition that a cause C raises 
the probability of an effect E is defined using conditional prob-
abilities as follows:

( )( | ) .P E C P E>  (1)

The difficulty with this definition is that the conditions of 
the cause being prior to the effect and the relationship in (1) 
being true are neither necessary nor sufficient for a causal rela-
tionship. A classic example is a falling barometer and rain. The 
falling barometer occurs before the rain and may be seen as in-
creasing the probability of rain, but it is actually the decreasing 
air pressure that causes both.

GRANGER CAUSALITY
This definition of causality is usually applied to time series. The 
approach attempts to find if one variable (coupled with the ap-
propriate time lag) is informative about another. Specifically, 
let Wt represent the knowledge that is available at time t. Then 
the time series X at time t is said to be a Granger-cause of the 
time series Y at some time t + s, where s > 0 if

( ) ( )| |t s t t s t tP Y W P Y W X+ +≠ −  (2)

where we use Wt − Xt to mean the information contained in Wt 
with that in Xt removed. The inequality in (2) indicates that Xt 
contains some information about Yt+s that is not in the rest of 
the set Wt. Although Granger causality may be useful for pre-
dictions, it is not suitable for causality or explanation. As an 
example, consider that smoking causes both lung cancer and 
stained fingers, and that the stained fingers usually occur before 
the cancer. However, we cannot prevent lung cancer by wearing 
gloves when smoking. The primary type of error that Granger 
causality produces is to mistake the correlation between com-
mon effects of a cause for a causal relationship.

POTENTIAL OUTCOMES AND COUNTERFACTUALS
Let Y represent an outcome such as that of a drug trial and 
Y(u) represent the outcome for single individual u. Let X be 
a variable that may affect the outcome of the trial, such as 
whether the individual u took a specific drug. For example, 
we could set X = 1 for taking the drug and X = 0 for not. The 
potential outcome of the variable Y(u) is the value Y(u) would 
have taken if X = x. This is denoted YX=x(u). If X ≠ x in the 
trial, then YX=x(u) is the value Y(u) would have had if (counter 
to the facts) X = x. The crucial assumption here is that such 
a value exists. Rubin’s theory [14] of potential outcomes as-
serts that this value does exist. The Rubin causal model treats 
counterfactuals as abstract mathematical objects not derived 
from a causal model (defined below). In the view of Pearl [5, 
280–281], using structural causal models to represent causal-
ity relations allows the analyst to clearly visualize and under-
stand their assumptions. By contrast, Pearl claims the purely 
mathematical assumptions required by Rubin can be difficult 
to understand and verify.
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PEARL’S DEFINITION OF CAUSALITY

In the 1980s, Pearl developed Bayesian Networks and wrote 
the influential book [15] which decades of analysts have used 
to model and reason about evidence and uncertainty. Unfortu-
nately, Bayesian networks can estimate only associations, not 
causality. To estimate causality, Pearl defined three additional 
notions, causal models, interventions, and counterfactuals.

LADDER OF CAUSATION
In Pearl’s ladder of causation [5, 28], he envisions three levels 
of causal reasoning.

LEVEL 1: ASSOCIATION
On this level, we identify and use regularities in observations. 
What events are associated with one another? This level allows 
us to make predictions. For example, what does this poll tell us 
about the chances of a certain candidate winning an election?

LEVEL 2: INTERVENTION
On this level, one can answer questions such as—If I give the 
patient a drug for a certain ailment, how much will that in-
crease his chances of being cured?

LEVEL 3: COUNTERFACTUALS
On this level, one can answer questions such as—If I had not 
taken an aspirin, would my headache have gone away? Recall 
that the notion of a counterfactual is crucial to Hume’s modified 
definition of cause: “where if the first object had not been, the 
second never had existed”.

Pearl considers intervention to be a step above association 
in causal reasoning and counterfactuals a step above that.

We are all familiar with the successes of machine learning 
algorithms, such as speech recognition and the development of 
systems such as AlphaGoPlus that can beat the best human Go 
players. These systems are estimating associations, not causa-
tion. For example, speech recognition software recognizes the 
meaning of ambiguous words by using the meaning associated 
to that word in the context of the previous words in a sentence. 
Strategy systems such as AlphaGoPlus are making moves that 
are associated with positive outcomes in its learning sessions. 
Thus, machine learning is on the first rung of the causality lad-
der.

Pearl’s insight is that to go up the ladder of causation and 
estimate the effects of interventions or counterfactuals, we 
must go beyond classical or Bayesian statistics and beyond 
systems such as Bayesian networks. To do this, Pearl defines 
structures called causal models and uses them to give a pre-
cise meaning to the terms intervention and counterfactual. A 
causal model must be added to a standard statistical model to 
perform causal inference at levels two and three of the ladder 
of causality. A causal model is an a priori assumption, just 
like a prior distribution distribution is in Bayesian statistics. 
Of course, the results of the causal inference will depend on 
the causal model, just as the results of Bayesian inference will 
depend on the prior distribution assumed. However, as with 

Bayesian analysis, the assumptions are explicit for everyone 
to see, understand, and question if they wish.

CAUSAL MODELS
STRUCTURAL CAUSAL MODEL (SCM)
A structural causal model (SCM) consists of two sets of vari-
ables, U and V, and a set F of functions f that assign to each 
variable in V a value based on the other variables in the model. 
The variables in U are exogenous; they do not depend on any 
other variables in the model. The variables in V are endogenous 
and must depend on (be a descendent of) one or more of the ex-
ogenous variables. The variables in V can also depend on other 
endogenous variables.

STRUCTURAL EQUATION MODEL (SEM)
If we know the functions f ∈ F explicitly, then the SCM be-
comes a structural equation model (SEM).

GRAPHICAL CAUSAL MODEL (GCM)
Every SCM, M, is associated with a graphical causal model 
(GCM). The GCM contains one node for each variable in M. If 
the variable Y in M depends on Z in M, then there is a directed 
edge from Z to Y. Causal Inference in Statistics deals only with 
SCMs that can be represented by directed acyclic graphs, i.e., 
directed graphs without loops.

The graphical causal model for ice cream sales given in Fig-
ure 1 appears in chapter 3 of [1] and is used to illustrate the 
concept of intervention and the difference between association 
and causation. This graph  represents an SCM in which

{ } { } ( ) ( ) ( ){ }, , , , , , , , , ,X Y Z Z Z X X Y YU U U U V X Y Z and F f U f U Z f U Z= = = 
 { } { } ( ) ( ) ( ){ }, , , , , , , , , ,X Y Z Z Z X X Y YU U U U V X Y Z and F f U f U Z f U Z= = =  (3)

where fZ , fX , fY are the functions (possibly unknown) that de-
fine Z, X, and Y. For this example, we assume the exogenous 
variables in U are independent random variables. Note that the 
temperature Z depends only on the exogenous variable UZ ; X 

Figure 1 
A graphical causal model representing the relationship between 
temperature Z, ice cream sales X, and crime rates Y. In 
this graph, X is not independent of Y, but it is conditionally 
independent of Y given Z.
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depends on the endogenous variable Z as well as UX ; and Y 
depends on Z as well as UY . However, there is no dependence 
of Y, crime rate, on X, ice cream sales. If one performed a sta-
tistical analysis of ice cream sales and crime rates, one would 
likely find a significant correlation between the two. However, 
from the GCM in Figure 1, we know this is an association not 
a causal relationship.

If we know the functions fZ , fX , fY explicitly, then the SCM 
in (3) becomes an SEM.

INTERVENTIONS AND COUNTERFACTUALS
In order to define interventions and counterfactuals, Pearl first 
defines the model Mx.

THE MODEL Mx
Suppose we have an SCM M. For defining both an intervention 
and a counterfactual, we use the SCM model Mx derived from 
M by setting the endogenous variable X in M to the fixed value 
x, which we indicate by writing X = x.

If M is specified by an SEM, we obtain Mx by replacing X by 
the fixed value x in all the equations of the model.

If M is specified by a GCM, Mx is obtained by setting the 
node X = x and removing all the arrows that lead into node X, 
as shown in Figure 2.

INTERVENTIONS
Pearl uses the notation ( )( )|P Y do X x=  to indicate the prob-
ability distribution on Y when we intervene to set X = x. He 
points out that this distribution is different than P(Y | X = x). He 
says, 

In the distributional terminology, P(Y | X = x) reflects 
the population distribution of Y among those individuals 
whose X value is x. On the other hand, ( )( )|P Y do X x=  
represents the population distribution of Y if everyone in 
the population had their X value fixed at x.

To understand what this means, let’s consider an SCM in 
which the variables in U are stochastic and in which we know 
their joint distribution. We write P(U = u) to denote the proba-

bility that the (vector) random variable U has the (vector) value 
u.

To calculate the effect of the intervention do(X = x) on Y, 
we compute:

( )| X xE Y do X x E Y = = ≡      (4)

where YX=x represents Y in the modified model Mx, but the ex-
pectation is taken over the unmodified (prior) distribution on U. 
For simplicity of notation we will often write YX for YX=x.

As an example, suppose we have an SEM where the func-
tions fZ, fX, fY are known explicitly and where:

( )Z Z ZZ f U U= =  

( ) ( ),X X X XX f Z U g Z U= = +  

( ) ( ), , , ,Y Y Y YY f Z X U g Z X U= = +  (5)

i.e., we assume the functions gX and gY are known explicitly. 
The GCM in Figure 3 shows a graphical version of this model 
in which Z represents gender, X drug usage, and Y recovery.

Figure 2 
The graphical causal model M

x
 representing the intervention 

X = x in the GCM in Figure 1.

Figure 3 
A graphical causal model representing the effects of a new drug, 
with Z representing gender, X drug usage, and Y recovery.

Figure 4 
The modified version M

x
 of the GCM in Figure 3 representing 

the intervention X = x.
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Figure 4 shows the graphical model Mx representing the in-
tervention X = x.

Using (5), we can calculate the expectation in (4) by

( ) ( ) ( ) ( )| , , .x Y Y Y Z YE Y do X x E Y E g Z x U g U x U P du     = = = + =  +         
(6)

In computing the expectation in (6), we have set X = x in the 
equation for Y and computed the expectation of Y over the prior 
distribution on U to obtain E[Yx] and the effect of the interven-
tion X = x.

To illustrate the difference between computing a conditional 
probability and a probability conditioned on an intervention, 
consider the question of whether a given vaccine tends to pro-
tect a person from contracting a disease. If we simply calculate 
the conditional probability of getting that disease given a per-
son was vaccinated, we are estimating only an association. If 
the probability is lower for vaccinated than for unvaccinated 
people, a reason could be that people who tend to get vaccinated 
are healthier than those who do not or that they tend to have 
some natural immunity.

A way around this problem is to conduct a randomized con-
trolled trial (RCT). In an RCT, two populations are selected at 
random. The first receives the vaccine, the other doesn’t. The 
purpose of the randomization is to obtain two populations that 
are as close to identical as possible so that the only difference 
between the two is whether people were vaccinated or not. In 
this case, we can ascribe the decreased chance of contracting 
the disease to the vaccine. However, in many cases it may be 
too costly, too difficult, or even unethical to conduct an RCT. 
For example, you would not want to perform an RCT to de-
termine if smoking causes cancer. For many questions, we are 
stuck with observational data.

In Causal Inference in Statistics, Pearl and his coauthors de-
scribe situations and methods by which we can perform causal 
estimation using observational data. This is the crucial capabil-
ity provided by Pearl’s model of causal inference that is not 
available from standard statistical techniques.

COUNTERFACTUALS
The counterfactual P(Yx = y | X = x′) is the probability of Yx = y 
in the model Mx conditioned on the counterfactual X = x′ ≠ x. 
Recall that Yx depends on the vector of random variables U. 
We indicate this by writing Yx(u) for the value of Yx when U=u.

Let P(U = u | X = x′) be the probability that U=u given 
X = x′, and let μX=x′ be the resulting probability distribution on 
U. Then:

( ) ( )( ) ( )( ) ( )| |
X xx x xP Y y X x E P Y u y P Y u y P du X xμ = ′

 = = = = =  = = ′ ′
 

(7)

where the subscript μX=x′ on E means that expectation is taken 
with respect to the measure μX=x′. More generally:

|
X xx xE Y X x E Yμ ′=

= =′       (8)

Furthermore, we can calculate the expectation of Yx under 
any counterfactual event E = e by

|
E ex xE Y E e E Yμ =

= =       (9)

COMMENTS ON INTERVENTIONS AND COUNTERFACTUALS
For both interventions and counterfactuals, we compute the ex-
pected value of Yx in model Mx. For interventions, the expecta-
tion of Yx is taken over by the unmodified (prior) distribution 
on U. For counterfactuals, the expectation of Yx is taken over 
by the distribution of U conditioned on the counterfactual, e.g., 
X = x′≠ x.

For counterfactuals, we are estimating the probability of 
outcomes in an alternate world that does not exist. Surprisingly, 
there are ways to do this. One way is to have a detailed and ac-
curate model of the system (world) you are analyzing and use 
that model to compute counterfactual probabilities. Consider the 
question of whether climate change has increased the probability 
of extreme weather events. Here we have to consider a counter-
factual: if the global average temperature had been 1.5 °F cooler 
than it is now, how would that have changed the probability of 
these extreme events occurring? Think about the recent wildfires 
in Australia at the end of 2019 and beginning of 2020. Is this ex-
treme event now more likely to occur because of climate change?

The special supplement to the Bulletin of the American 
Meteorological Society of January 2019 [16] includes climate 
change attribution assessments for seventeen different extreme 
events from around the world during 2017. For 16 out of those 
17 events, the assessments concluded that climate change 
(global warming) increased the probability of their occurrence. 
In one of most striking assessments, [17] found that the likeli-
hood of a heat wave at least as hot as the one that happened in 
the European-Mediterranean region in the summer of 2017 “is 
at least 3.5 times higher compared to 1950”. The probability of 
this event is now 10% per year.

How was [17] able to make this estimate? The authors 
developed a statistical model of temperatures in this region. 
This model depends on the global mean surface temperature 
(GMST). Using climate models with enough data to analyze the 
distribution of past and present temperatures, they verified that 
the GMST influences only the mean of the distribution not the 
shape. The authors used the temperature distribution resulting 
from the 2017 value of GMST to determine the probability of 
experiencing a heat wave in the European-Mediterranean re-
gion at least as hot as the one that occurred in 2017. They then 
compared this to the probability of this event occurring using 
the (counterfactual) temperature distribution based on the 1950 
GMST. The difference or ratio of these two probabilities pro-
vides an estimate of the effect of global warming on the prob-
ability of occurrence of this extreme event.

As well as providing a quantitative estimate of the effect 
of global warming on the occurrence of this extreme weather 
event, this analysis now changes the terms of discussion “from 
I do not believe in global warming” to “how good is the model 
that was used to estimate this effect”. The latter is a more di-
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rected and scientific question and more suitable to quantitative 
analysis.

Unfortunately, we do not always have a detailed model 
available to answer our counterfactual questions. Often, we 
have only observational data. This is where GCMs and Pearl’s 
theory of causality can help us out. If we have a GCM, then in 
some circumstances (identified in [1]), we can estimate coun-
terfactuals from observational data. Again, the GCM is an as-
sumption, but now the question of the validity of the estimate 
can be reduced to a more contained and scientific question of 
whether the GCM is a good model or not. In any case, the as-
sumptions under which the estimate is valid are clearly stated 
and generally easy to understand.

OUTLINE OF CAUSAL INFLUENCE IN STATISTICS

The book contains four chapters:

1. Preliminaries: Statistical and Causal Models

2. Graphical Models and Their Applications

3. The Effects of Intervention

4. Counterfactuals and Their Applications

CHAPTER 1
Chapter 1 begins with a discussion of why we should study cau-
sality and some examples of the fact that standard statistical 
methods can lead us astray when we use them to estimate cau-
sality. The examples are a form of Simpson’s paradox, which 
showed that a statistical association can hold over a whole 
population but be reversed in every subpopulation. The book 
presents several examples [1, 3–4] of this paradox, including a 
hypothetical study of the effects of exercise on cholesterol. If 
we segregate the data in this study by age, we see that exercise 
tends to reduce cholesterol levels in every age group; but, if we 
aggregate the data over all age groups, we find that more ex-
ercise tends to produce higher cholesterol levels. The problem 
here is that older people, who have higher cholesterol levels 
than younger people, also tend to exercise more. This highlights 
the question of when to segregate and when to aggregate data 
when estimating an effect. Statistics by itself has no satisfactory 
answer to this question. Chapter 1 promises that causal infer-
ence will provide an answer to this problem.

The remainder of the chapter covers basic probability, sta-
tistics, and graphs. It concludes by defining SCMs and GCMs. 
(See the section Causal Models.)

CHAPTER 2
Chapter 2 discusses how to use graphs to model dependencies 
in data. It discusses the notions of chains, forks, and colliders 
and their importance in causal estimation. It defines the notion 
of d-separation which is an important concept for perform-
ing causal estimates. The d-separation property allows one to 
estimate the effect of an intervention using observational data, 
i.e., without having to perform an RCT. This chapter also dis-

cusses ways in which one can use data to test the validity of 
a GCM.

CHAPTER 3
Chapter 3 discusses how to estimate the effect of an interven-
tion. Having defined SCMs and GCMs in chapter 2, [1] de-
fines intervention in terms of GCMs as we did in the section 
Graphical Causal Model (GCM) and defines the “do” op-
erator, e.g., do(X = x) to indicate an intervention. Recall that 

( )( )|P Y do X x=  is the distribution of the values of Y if every 
member of the population had their X value set to x. By con-
trast, P(Y | X = x) is the distribution of values of Y among those 
members of the population whose X value happens to equal x. 
The latter is an association; the former a causal estimate—what 
would be the effect on Y of setting X = x? The causal estimate 
is a prediction of the effect produced by the intervention X = x. 
An example is the estimate of the reduction in the probability of 
contracting a disease if someone is given a vaccination against 
that disease.

The notion of intervention, although simple to state, is cru-
cial to Pearl’s definition of causality. For convenience and em-
phasis, we repeat it here. First let us recall the definition of an 
SCM given in the section Structural Causal Model.

An SCM consists of two sets of variables, U and V, and 
a set F of functions f that assign to each variable in V a value 
based on the other variables in the model. The variables in U 
are exogenous, they do not depend on any other variables in the 
model. The variables in V are endogenous and must depend on 
(be a descendent of) one or more of the exogenous variables. 
The variables in V can also depend on other endogenous vari-
ables.

If the equations in F are known explicitly, then the SCM 
becomes an SEM. Even if we do not know the equations in 
the SCM explicitly, we can construct a GCM. For example, 
if we did not have explicit versions of the equations defining 
the SCM specified by (5), we could represent this SCM by the 
GCM in Figure 3. The specification of the variables upon which 
each equation in F depends tells us where to place arrows in the 
GCM representation of the SCM.

DEFINITION OF CAUSAL EFFECT
Suppose we have a model M specified by an SEM or GCM. 
(Note any SCM can be represented by a GCM, so we need only 
consider SEMs and GCMs). Then, Mx is the model obtained by 
setting the variable X = x in the SEM or the node X = x in the 
GCM and removing all arrows into X. To calculate the causal 
effect of the intervention do(X = x) on Y, we compute

( )| xE Y do X x E Y = ≡      (10)

Let X = 1 if a drug is given to a patient and X = 0 if not. 
Suppose Y is the outcome where Y = 1 if cured and Y = 0 if not. 
The book defines the average causal effect of the intervention 
X = 1 as

( ) ( )| 1 | 0E Y do X E Y do X   = − =    (11)
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In this case, we obtain an estimate of the increased prob-
ability of cure when a patient takes the drug compared to not 
taking the drug. More generally, (11) represents the average 
causal effect on Y of the intervention do(X = 1) whatever the 
intervention X represents.

Using the definition of intervention in (10), [1] is able to 
give guidance on when to segregate or adjust data when per-
forming statistical estimations.

As an example, consider the situation represented by Figure 3. 
To estimate the effectiveness of the drug, we imagine a hypotheti-
cal intervention in which the drug is administered uniformly to 
everyone in the population and compare the recovery rate to the 
situation where no one takes the drug. That is, we wish to estimate

( )( ) ( )( )1| 1 1| 0P Y do X P Y do X= = − = =  (12)

This is the average causal effect defined in (11). However, 
we cannot simply estimate this effect from observational data 
because, as we see from Figure 3, our GCM says that gender 
affects both drug usage and recovery. To estimate the average 
causal effect, we must change the model M given by Figure 3 to 
the model Mx given by Figure 4.

Using this model, [1] shows that

( )( ) ( ) ( )| | ,
z

P Y y do X x P Y y X x Z z P Z z= = = = = = =  (13)

Note that the right-hand side of (13) contains only probabili-
ties that can be estimated from observational data. This equa-
tion is the adjustment equation which says that in this case, we 
must adjust our estimates of the effectiveness of the drug condi-
tioned on sex and then produce an overall estimate by weight-
ing these estimates by the distribution of sex in the population 
under consideration. That is, we are adjusting our estimates by 
the marginal distribution of Z.

BACKDOOR AND FRONT-DOOR CRITERIA
This chapter defines the notions in GCMs of the backdoor and 
front-door criteria for a GCM which enable us to use observa-
tional data to estimate the effect of an intervention. The back-
door criterion is a special case of d-separation. When a GCM 
satisfies these criteria, [1] gives formulas for calculating the 
effects of interventions (e.g., the expectation in (10)) using ob-
servational data. This is particularly useful for situations where 
randomized controlled trials are not feasible or their data are 
not available. Since the backdoor and front-door criteria apply 
to GCMs, they give us a way to estimate causal effect when we 
do not have explicit formulas for the functions in F, i.e., when 
we do not have an SEM. The chapter describes other methods 
for estimating the effect of an intervention such as inverse prob-
ability weighting and mediation.

CAUSAL INFERENCE IN LINEAR SYSTEMS
The chapter finishes by illustrating causal inference in linear 
systems and discussing the difference between structural (caus-
al) coefficients in linear systems and regression coefficients. 
If one has an SCM and performs a regression in accordance 

with that, the resulting regression coefficients are structural co-
efficients allowing one to compute causal effects. By contrast, 
regression coefficients without the context of a SCM give esti-
mates of associations only.

CHAPTER 4
Chapter 4, which deals with counterfactuals, is the most chal-
lenging and difficult to absorb. One of the reasons that it was 
difficult for me is that the chapter does not provide a crisp math-
ematical definition of counterfactual, such as the one given in 
the section Interventions and Counterfactuals above.

DIFFERENCE BETWEEN COUNTERFACTUALS AND INTERVENTIONS
The crucial difference between the do operator and a counter-
factual is that the do(X = x) operator captures the behavior of 
a population under the intervention X = x, whereas Yx′(u) de-
scribes the behavior of the individual u under the condition 
X = x′. If it happens that X = x ≠ x′ in our data for u, then we are 
estimating a counterfactual, e.g., what would a person’s salary 
have been if she had gone to college rather than beginning work 
right after high school. We stated this difference in mathemati-
cal terms, in the section Interventions and the section Counter-
factuals.

COUNTERFACTUAL EXAMPLE
A simple example given in [5, 273–279] illustrates the con-
cept of counterfactuals and how they differ from interventions. 
Table 8.1 in [5] shows data listing employees, their salary S, 
education ED (= 0, 1, or 2 for high school, college, or graduate 
degree), and years of work experience EX. From this table one 
can perform a linear regression to obtain

$65,000 2,500 5000S EX ED= + × + ×  (14)

as the expected salary of a worker as a function of years of 
experience and education. In the data, Alice has 6 years of 
experience, a high school education (ED = 0), and a salary of 
$81,000. The counterfactual question is, what would Alice’s 
salary be if she had a college degree, i.e., what is the value of 
SED=1(Alice)? Using the regression in (14), we could answer 
this question by setting EX = 6 and ED = 1 to obtain $85,000. 
However, the regression in (14) does not account for the fact 
that education and experience are dependent. We know that 

Figure 5 
Effect of education (ED) and experience (EX) on salary S.
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that the number of years of education tends to lower the num-
ber of years of experience. With this in mind, we construct the 
GCM in Figure 5.

This GCM indicates that education has an effect on experi-
ence. It also says that salary does not affect education. We know 
that causal relationship goes the other way around, namely edu-
cation affects salary as shown. With this in mind, we rewrite 
(14) in terms of a SEM, specifically

$65,000 $2,500 5000 SS EX ED U= + × + × +  (15)

where US represent the individual factors that affect a person’s 
salary. Since Figure 5 says that education affects experience, 
we next perform a linear regression on the data to estimate that 
effect. By Figure 5, salary does not affect experience, so we set 
the coefficient of S to 0 in the regression. Suppose we obtain

10 4 EXEX ED U= − × +  (16)

To perform the counterfactual analysis to obtain 
SED=1(Alice), we first put Alice’s experience, education, and 
salary into (15) and (16) to obtain US(Alice) = $1,000 and 
UEX(Alice) = −4. We now erase any arrows pointing into ED 
and set ED=1. In this case there are no arrows pointing into ED, 
so this step is trivial. In many cases, there are arrows pointing 
into the counterfactual variable and these must be removed from 
the model. Finally, we put the values of US(Alice) = $1,000, 
UEX(Alice) = −4, and ED=1 into the model. First, we compute 
Alice’s experience if she had gone to college. From (16), we see 
that EXED=1(Alice) = 2. Then from (15) we compute

( )1 Alice $65,000 $2,500 2 $5,000 1 $1,000 $76,000EDS = = + × + × + =

as an estimate of Alice’s salary if she had gone to college. This 
is lower than the $85,000 estimate from the regression. The 
reason the counterfactual estimate is lower than the regression 
estimate is that it accounts for the fact that going to college 
would reduce the number of years of experience that Alice has. 
In addition, the counterfactual analysis accounts for the terms 
US(Alice) and UEX(Alice) unique to Alice.

As one can see even in this simple deterministic case, coun-
terfactual analysis is not simple.

CONTENTS OF CHAPTER 4
Chapter 4 examines both deterministic and probabilistic coun-
terfactuals. It also provides examples of practical uses of coun-
terfactuals, such as determining the effectiveness of a govern-
ment program or estimating the effect of sex discrimination 
in hiring. These examples give us a feeling for the important 
questions that counterfactual analysis can help us answer. The 
book finishes with a description of some mathematical tools for 
estimating probabilities of causation and mediation.

SUMMARY

Modern causal inference, which has developed methods for 
obtaining quantitative estimates of the effect of interventions 
and counterfactuals, is an important and relatively new area of 
analysis. Every analyst should be familiar with the concepts and 
definitions of causal inference. Causal inference represents a 
significant extension of standard statistical analysis that should 
become an increasingly important tool for answering questions 
about the effectiveness of interventions and for developing ar-
tificial intelligence (AI)-like systems that can reason and make 
decisions. Present AI systems don’t reason at the counterfactual 
level (causality level 3). They make decisions based only on 
association, unlike humans who can also make decisions based 
on counterfactual reasoning.

Causal Inference in Statistics is a good introduction to 
Pearl’s version of causal inference. Even though it is a “primer”, 
it requires substantial effort on the reader’s part to understand 
and to apply the concepts and tools presented. The presentation 
is informal and requires little background beyond basic prob-
ability, which is useful for an introduction but frustrating if you 
are looking for a more mathematical and rigorous approach. For 
that one has to delve into [4], which can be daunting.

In summary, I highly recommend this book as an introduc-
tion to this emerging and important area of analysis. Other in-
troductory texts on causal inference are [2], [3], and [18].
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