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Abstract—In tracking and sensor data fusion applications, the full information on kinematic 
object properties accumulated over a certain discrete time window up to the present time is 
contained in the conditional joint probability density function of the kinematic state vectors 
referring to each time step in this window. This density is conditioned by the time series of all 
sensor data collected at the present time and has accordingly been called an accumulated state 
density (ASD). ASDs provide a unified treatment of filtering and retrodiction insofar as by mar-
ginalizing them appropriately, the standard filtering and retrodiction densities are obtained. In 
addition, ASDs fully describe the posterior correlations between the states at different instants 
of time. Therefore, the closed-form solution of ASDs are directly connected to many real-world 
problems. This article presents an overview of the applications such as out-of-sequence process-
ing, smoothing, distributed filtering, and batch processing.

ON THE PROBLEM OF TRACKING OBJECTS

To a degree never known before, decision makers in a net-cen-
tric world have access to vast amounts of data. For effective use 
of this information potential in real-world applications, how-
ever, the data streams must not overwhelm the decision makers 
involved. On the con-
trary, the data must 
be fused in such a 
way that high-quality 
information for situ-
ation pictures results, 
the basis for decision 
making.

Situation pic-
tures are produced 
by spatiotemporally 
processing various 
pieces of sensor in-
formation that in 
themselves often 
have only limited val-
ue for understanding 
the underlying situa-
tion. In this context, 
object “tracks” are of 
particular importance [1], [2], [3]. Tracking faces an omnipres-
ent aspect in real-world application insofar as it is dealing with 
fusion of data produced at different instants of time; i.e., track-
ing is important in all applications in which a particular empha-
sis is placed on sensor data given by time series.

In most tracking algorithms, the characteristics of condi-
tional probability densities p(xl | Z

k) of (joint) object states xl are 
calculated, which describe the available knowledge of the ob-
ject properties at a certain instant of time tl, given a time series 
Zk of imperfect sensor data accumulated up to time tk. In certain 
applications, however, the kinematic object states xk,…,xn, n 

≤ k,1 accumulated 
over a certain time 
window from a past 
instant of time tn up 
to the present time 
tk is of interest. The 
statistical proper-
ties of the accumu-
lated state vectors 
are completely de-
scribed by the joint 
probability density 
function (pdf) of 
them, p(xk,…,xn | Z

k), 
which is conditioned 
by the time series 
Zk. These densities 
may be called accu-
mulated state densi-
ties (ASDs) [4]. By 

marginalizing them, the standard filtering and retrodiction den-
sities directly result; in other words, ASDs provide a unified 
description of filtering and retrodiction as shown schematically 
1 Note that in the notation used here, the newest state xk comes first, then 

older states in time-reversed order.

State and trajectory eStimation 
USing accUmUlated State denSitieS

Figure 1  
Schematic comparison of ASD and Kalman filter fusion.
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in Figure 1. In addition, ASDs fully describe the correlations 
between the state estimates at different instants of time.

In [5], for example, ASDs are considered to provide a more 
comprehensive treatment of issues in particle filtering. To some 
extent, the notion of ASDs might be considered as a step back-
ward insofar as in the old days of object tracking it was known 
that one could express a linear-Gaussian estimation problem in 
a joint, i.e., “accumulated” fashion, while Kalman's approach 
was a way to find a recursive solution. Nevertheless, as shown 
in this article, it is useful for various tracking applications to 
have a recursive algorithm to find the parameters of an ASD.

In this article, the closed-form solution for the ASD poste-
rior density is provided together with a couple of algorithms 
for various applications. The applications discussed in this ar-
ticle are processing of out-of-sequence (OoS) measurements, 
smoothing, batch processing of measurements, and distributed 
estimation.

This article is organized as follows. The Bayesian Track-
ing Paradigm section summarizes basic facts of the Bayesian 
tracking paradigm. In the Notion of ASD section, the ASD is 
introduced along with a discussion of closed formulae for the 
parameters of the ASD in the case in which Kalman filtering 
can be applied to tracking. The use of ASDs for solving the 
various applications, such as OoS processing, smoothing, batch 
processing, and distributed tracking, are the topic of Selected 
Applications of ASDs section. Algorithms are provided within 
each section.

THE BAYESIAN TRACKING PARADIGM
A Bayesian tracking algorithm is an iterative updating scheme 
for calculating conditional pdfs p(xl | Z

k) that represent all 
available knowledge on the object states xl at discrete in-
stants of time tl. The densities are explicitly conditioned by 
the sensor data Zk accumulated up to some time tk, typically 
the present time. Implicitly, they are also determined by all 
available context knowledge on the sensor characteristics, the 
dynamical object properties, the environment of the objects, 
topographical maps, or tactical rules governing the objects' 
overall behavior.

With respect on the instant of time tl at which estimates of 
the object states xl are required, the related density iteration pro-
cess is referred to as prediction (tl > tk), filtering (tl = tk), or ret-
rodiction (tl < tk). The propagation of the probability densities 
involved is given by three basic update equations.

PREDICTION
The prediction density p(xk | Z

k–1) is obtained by combining the 
evolution model p(xk | xk–1) with the previous filtering density 
p(xk–1 | Z

k–1):

( ) ( )1 evolution model 1
1 constraints| |k k

k kp Z p Z− −
− ⎯⎯⎯⎯⎯→x x  (1)

( ) ( ) ( )1 1
1 1 1

evolution model previous filtering

| |d . |k k
k k k k kp Z p p Z− −

− − −= x x x x x  

FILTERING
The filtering density p(xk | Z

k) is obtained by combining the sen-
sor model p(Zk | xk), also called the “likelihood function,” with 
the prediction density p(xk | Z

k–1) according to

( ) ( )1 current sensor data 
sensor model| |k k

k kp Z p Z− ⎯⎯⎯⎯⎯⎯→x x  (2)

( ) ( ) ( )
( ) ( )

1

1

sensor model prediction

| |
| .

| |d

k
k k kk

k k
k k k k

p Z p Z
p Z

p Z p Z

−

−
=


x x
x

x x x
 

RETRODICTION
The retrodiction density p(xl | Z

k) is obtained by combining the 
object evolution model p(xl+1 | xl) with the previous prediction 
and filtering densities according to:

( ) ( )filtering, prediction
1evolution model| |k k

l lp Z p Z+←⎯⎯⎯⎯⎯⎯x x  (3)

( ) ( ) ( )
( ) ( )

prev. filteringevolution

1
1 1

1
prev. retrodiction

prev. prediction

| |
|

|
d| .

l
l l lk k

l l ll
l

p p Z
p Z p Z

p Z
+

+ +
+

= 
x x x

x x x
x






 

Being the natural antonym of prediction, the technical term ret-
rodiction was introduced by Oliver Drummond in a series of 
papers [6]. Adopting the standard terminology [7], we could 
speak of fixed-interval retrodiction.

According to this paradigm, an object track represents all 
relevant knowledge on a time varying object state of interest, 
including its history and measures that describe the quality of 
this knowledge. As a technical term, “track” is therefore either 
a synonym for the collection of densities p(xl | Z

k), l = 1, …, k, 
…, or of suitably chosen parameters characterizing them, such 
as estimates related to appropriate risk functions and the cor-
responding estimation error covariance matrices.

NOTION OF ASD

All information on the object states accumulated over a time 
window tk, tk–1, …, tn of length k – n + 1,

( ): , ,k n k n= …x x x
   (4)

that can be extracted from the time series of accumulated sensor 
data Zk up to and including time tk is contained in a joint density 
function p(xk:n | Z

k), which may be called ASD. Here, tk typically 
denotes the current time, and tn ≤ tk is the time of initialization 
or the lower bound of a sliding time window. Via marginalizing 
over xk, …, xl+1, xl–1, …, xn,
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( )
( )

1 1| , , , , ,

, , |

d d d

,

dk
l k l l n

k
k n

p Z

p Z

+ −= … …

…

x x x x x

x x
 (5)

the filtering density p(xk | Z
k) for l = k and the retrodiction densi-

ties p(xl | Z
k) for l < k result from the ASD. ASDs, thus, in a way 

unify the notions of filtering and retrodiction. In addition, ASDs 
also contain all mutual correlations between the individual ob-
ject states at different instants of time. Bayes' theorem provides 
a recursion formula for updating ASDs:

( ) ( ) ( ) ( )
( ) ( ) ( )

1
1 1:

: 1
: 1 1:d

| | |
| .

| | |

k
k k k k k nk

k n k
k n k k k k k n

p Z p p Z
p Z

p Z p p Z

−
− −

−
− −

=


x x x x
x

x x x x x
 (6)

The sensor data Zk from time tk explicitly appears in this rep-
resentation. A little formalistically speaking, “sensor data pro-
cessing” means nothing else than to achieve by certain reformu-
lations that the sensor data is no longer explicitly present.

Under conditions in which Kalman filtering is applicable 
(perfect data sensor-data-to-track association, linear Gaussian 
sensor, and evolution models), a closed-form representation of 
p(xk:n | Z

k) can be derived. In this case, let the likelihood func-
tion be given by

( ) ( ); ,,|k k k k k kp Z z=x H x R  (7)

where Zk = zk denotes the vector of sensor measurements at 
time tk, xk = xk the kinematic state vector of the object, Hk the 
measurement matrix, and Rk the measurement error covariance 
matrix, while the Markovian evolution model of the object is 
represented by

( ) ( )1 | 1 1 | 1; ,|k k k k k k k kp − − − −=x x x F x Q  (8)

with an evolution matrix Fk|k–1 and a corresponding evolu-
tion covariance matrix Qk|k–1. For given initial knowledge 

( ) ( )| |   ; ,| n
n n n n n np Z =x x x P  and for k = 1, 2, …, the filtered 

parameters are the result of the well-known prediction-filtering 
recursion given by

( ) ( )1 1 1| 1|;| ,k
k k k k k kp Z+ + + +=x x x P  (9)

1| 1| |k k k k k k+ +=x F x  (10)

1| 1| | 1| 1| ,k k k k k k k k k k+ + + += +P F P F Q  (11)

and

( ) ( )| |;| ,k
k k k k k kp Z =x x x P  (12)

( )
( )

| 1 | 1 | 1

| 1 1
| | 1 | 1

k k k k k k k k

k k

k k k k k k k k k

− − −

− −
− −

 + −= 
+

x W z H x
x

P P x H R z
 (13)

( )
| 1 | 1 | 1 | 1

1| 1 1
| 1 .

k k k k k k k k

k k
k k k k k

− − − −
−− −

−

 −= 
+

P W S W
P

P H R H




 (14)

There exist two equivalent formulations of the Kalman update 
formulae according to the two versions of the product formula 
(74). The innovation covariance matrix Sl|l–1 and the Kalman 
gain matrix at some given time tl are given by

| 1 | 1 . l l l l l l l− −= +S H P H R  (15)

1
| 1 | 1 | 1.l l l l l l l

−
− − −=W P H S  (16)

Because ASD states xk,…xn are conditioned on the full data Zk 
up to time tk, its mean and covariance is directly related to the 
result of the well-known Rauch–Tung–Striebel (RTS) recursion

( )| | | 1 1| 1|l k l l l l l k l l+ + += + −x x W x x  (17)

( )| | | 1 1| 1| | 1,l k l l l l l k l l l l+ + + += + −P P W P P W  (18)

and a “retrodiction gain” matrix

1
| 1 | 1| 1| .l l l l l l l l

−
+ + +=W P F P  (19)

Now, using the abbreviation

| | | 1 1| | 1.l k l k l l l k l l+ + += −D P W P W  (20)

the closed-form solution of the ASD posterior in the linear-
Gaussian case is given by the multivariate normal distribution

( ) ( ): : : | : |; ,| ,k
k n k n k n k k n kp Z =x x x P  (21)

with a joint expectation vector xk:n|k defined by

( ): | | 1| |, , , ,k n k k k k k n k−= …x x x x
    (22)

while the corresponding joint covariance matrix Pk:n|k can be 
written as an inverse of a tridiagonal block matrix that is given 
in (23). The tridiagonal structure is a consequence of the Mar-
kov property of the underlying evolution model. This represen-
tation of the inverse of Pk:n|k is useful in practical calculations.

By a repeated use of the matrix inversion lemma (see the 
Appendix) and an induction argument, the inverse of this tridi-
agonal block matrix can be calculated. The resulting block 
matrix is given in (24). For this representation, the following 
abbreviations were used:
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(23)

| | 1| | 2| | |

1| | 1| 1| 2| 1 1| | 1

: | 2| | 2| 1 1| 2|

1| | 1

| | | 1 1| | 1 1| |

*
,*

* * *

k k k k k k k k k k k k n k

k k k k k k k k k k k k n k

k n k k k k k k k k k k k

n k n n

n k k k n k k k n n n k n k
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− − − − − − −

− − − − −
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− − + +

 
 
 
 =
 
 
 
 

P P W P W P W
W P P P W P W

P W P W P P
P W

W P W P W P P








  

 



 
(24)

1 1
1

| | 1 | 1| 1| .
k k

l k
l l

λ λ λ λ λ λ λ λ
λ λ

− −
−

+ + +
= =

= =∏ ∏W W P F P
 (25)

The densities ( ){ }| |; ,
k

l l k l k
l n=

x x P  are directly obtained via mar-
ginalizing, because the covariance matrices Pl|k, n ≤ l ≤ k, ap-
pear on the diagonal of this block matrix. Note that the ASD is 
completely defined by the results of prediction, filtering, and 
retrodiction obtained for the time window tk, …, tn, i.e., it is a 
by-product for Kalman filtering and RTS smoothing. It is not 
surprising that the smoothed estimates and the error covari-
ances appear as the block entries in the mean and the block 
covariance, respectively. However, the interesting result is to 
have a closed-form solution for the structure of the joint co-
variance matrix. In particular, the cross covariances of states 
at different instants of time can be taken from the off-diagonal 
entries of Pk:n|k.

RECURSIVE ASD FILTER IMPLEMENTATION
The following sections show how to iteratively calculate the 
parameters xk:n|k and Pk:n|k. A short summary for a straightfor-
ward implementation is provided in Table 1. Assume the pos-
terior ASD at time tk–1 is given in terms of xk–1:n|k–1 and Pk–1:n|k–1. 
The prediction of the state is straightforward due to the Markov 
proposition:

( ): | 1 | 1 1| 1 | 1 ,k n k k k k k n k− − − − −=x x x x
    (26)

where xk|k–1 = Fk|k–1xk–1|k–1 is equivalent to a Kalman filter predic-
tion. For the ASD covariance prediction, a recursive formula-
tion of the ASD covariance in (24) is used:

| 1 | 1 1:
: | 1

1: | 1 1: | 1

,k k k k k n
k n k

k n k k k n k

− − −
−

− − − −

 
=   
 

P P W
P

W P P



 (27)

where

| 1 | 1 1| 1 | 1 | 1,k k k k k k k k k k− − − − − −= +P F P F Q  (28)

1|
1:

2: 1|
.k k

k n
k n k k

−
−

− −

 
=   
 

W
W

W W  (29)

The expression in (27) can be simplified to

( )( 1)
| 1 | 1 1: | 1

: | 1 ( 1)
1: | 1 | 1 1: | 1

,
k

k k k k k n k
k n k k

k n k k k k n k

−
− − − −

− −
− − − − −

 
 =
 
 

P F P
P

P F P




 (30)

where ( )1
1: | 1
k
k n k

−
− −P  represents the (k–1)th block column for n = 1.

For the filtering step, it is assumed that the prior param-
eters xk:n|k–1 and Pk:n|k–1 are given. As the measurement error is 
assumed to be independent from the past, the sensor likelihood 
function can be expressed by an application of projections Πk 
onto the current state:

( ) ( ):| |k k k k k np p= Πz x z x  (31)

Table 1 

Recursive ASD Algorithm

Initialization Set  0|0 0|0,x P  .

Prediction  →0 1t t  
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=

= +

=
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1|0 1|0 0|0

1|0 1|0 0|0 1|0 1|0

1:0|0 1|0 0|0
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0|0 1|0 0|0

x F x
P F P F Q

x x x

P F P
P

P F P  

Filtering z
1
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1
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1

1 1 1 1:0|0 1 1 1

1
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=
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| 1 | 1 1| 1
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:0| 1 | 1 1:0| 1

1| 1

2| 1 1| 11
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0| 1 1| 1
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| 1 | 1 1: | 1

: | 1
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k k k k k k

k k

k k k kk
k n k
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k
 at t
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= + − Π
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:0| 1
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:0| 1 :0| 1

:0| :0| 1 :0| 1 :0| 1
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x x W z H x

P P

I O O
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Sliding Window
Prune estimate for t

n
 from x

k:n|n
.

Prune column and row for t
n
 from P

k:n|n
.
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( ): ,; ,k k k k n k= Πz H x R  (32)

where

).kΠ = I O, ,( …,O  (33)

In the previous notation, I is an identity matrix in the dimension 
of the state, and O is the corresponding zero matrix. Then, the 
posterior parameters are obtained by the multiplication of the 
local prior density and the likelihood function. An application 
of the product formula in the Appendix yields

( ): | : | 1 : | 1 : | 1 ,k n k k n k k n k k k k k n k− − −= + − Πx x W z H x  (34)

: | : | 1 : | 1 : | 1k n k k n k k n k k k n k− − −= −P P W S W  (35)

1
: | 1 : | 1 ,k n k k n k k k k

−
− −= ΠW P H S   (36)

: | 1 .k k k k n k k k k−= Π Π +S H P H R   (37)

Note that the dimension of Sk is in the dimension of zk, which is 
small in most applications. Moreover, as stated previously, the 
smoothed states and covariances, respectively, are obtained by 
a single update step.

SELECTED APPLICATIONS OF ASDS

SMOOTHING
If the estimation of the trajectory of all states at multiple in-
stants of time is of interest, smoothing or retrodiction has to be 
applied. The updated states conditioned on the complete set of 
sensor data up to time tk can be obtained by the RTS equations 
(17) and (18). This, however, requires a second recursion that 
has to be initiated after each filtering step. By using the block 
line version of the ASD update in (34) and (35), it can easily be 
seen that the smoothed state that refers to time tl is given by the 
equations

( )| | 1 | | 1 | 1 ,l k l k l k k k k k k k− − −= + −x x W W z H x  (38)

| | 1 | | 1 | 1 | 1 | .l k l k l k k k k k k k l k− − − −= −P P W W S W W   (39)

Because Wk|k–1(zk – Hkxk|k–1) is part of the Kalman filter update 
and that

| | 1 1| ,l k l l l k+ +=W W W  (40)

this smoothing algorithm was shown to be significantly faster 
than the standard RTS retrodiction [8], [9], [10].

BATCH PROCESSING
If initial conditions are given by the pdf ( ) ( )0|0|; ,n n n np =x x x P  
and a set of measurements zk:n = {zk,zk–1,…,zn} is to be pro-
cessed, the ASD formulae directly provide the means to esti-

mate the trajectory xk:n on the basis of the sensor data. This can 
easily be seen by an application of the Bayes' theorem:

( ) ( ) ( )
( ) ( )
: : :

:
: : : :d

|
| ,

|
k n k n k nk

k n
k n k n k n k n

p p
p Z

p p
=


z x x
x

x z x x
 (41)

where p(xk:n) is conditioned on the initial knowledge on xn. 
Therefore, it can be obtained by a successive application of the 
ASD prediction (26) and (30) on the initial pdf. This yields a 
Gaussian density

( ) ( ): : : |0 : |0; ,k n k n k n k np =x x x P  (42)

where the mean is given by

( ): |0 |0 1|0 |0k n k k n−= …x x x x
    (43)

and Pk:n|0 is given in (47) and the following abbreviations

|0 |0 |0 | 1 1|0l l n l l l− −= =x F x F x  (44)

|0 |0 |0 |0 |0l l n l l= +P F P F Q  (45)

     | 1 1|0 | 1 | 1l l l l l l l− − − −= +F P F Q  (46)

|0 | 1 1|0 | 1 1| |0

1|0 | 1

2|0 2| 1 1|0 2| 1 1| |0: |0

1|0 2| 1 1|0 1| |0

|0 1| | 1 |0 1| 2| 1 |0 1| |0

k k k k k k n n n

k k k

n n n n n n n n nk n

n n n n n n n

n n n k k n n n n n n n n n

− − − +

− −

+ + + + + + +

+ + + + +

+ − + + + +

… 
 
 
 =
 
 
 … 

P F P F F P
P F

P F P F F PP
P F P F P

P F F P F F P F P












    

 
(47)

were used. Because the measurements are mutually condition-
ally independent, the likelihood of the accumulated measure-
ment set zk:n is given by

( ) ( ): : : : : :| ; ,k n k n k n k n k n k np =z x z H x R  (48)

where

( ): ,k n k n= …z z z
   (49)

( ): blkdiag ,k n k n= …R R R  (50)

( ): blkdiag .k n k n= …H H H  (51)

According to Bayes' theorem an application of the product for-
mula directly yields the fully filtered and smoothed trajectory is 
given by the posterior ASD

( ) ( ): : : | : |; ,| ,k
k n k n k n k k n kp Z =x x x P  (52)

where
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( ): | : |0 : |0 : : : |0 ,k n k k n k n k n k n k n= + −x x W z H x  (53)

: | : |0 : |0 : : |0 ,k n k k n k n k n k n= −P P W S W  (54)

1
: |0 : |0 : : ,k n k n k n k n

−=W P H S  (55)

: : : |0 : : .k n k n k n k n k n= +S H P H R  (56)

This algorithm is summarized in Table 2. Moreover, for each 
instant of time tl, there exists a weighting matrix l n←K  and a set 

of matrices { }kl j j n← =
L  such that the smoothed estimate for time 

tl is given by

| |0 .
k

l k l n n l j j
j n

← ←
=

= +x K x L z  (57)

This can be considered as the block line version of the ASD 
update in (53). The proof and all details can be found in [11].

OOS PROCESSING
In many real-world applications of sensor data fusion, one has 
to be aware of OoS measurements. Due to latencies in the un-
derlying communication infrastructure, for example, such mea-
surements arrive at a processing node in a distributed data fu-
sion system “too late,” i.e., after sensor data with a later time 
stamp have already been processed.

Consider a measurement zm produced at time tm with n ≤ 
m, i.e., possibly before the “present” time tk, where the time 
series Zk is available and has been exploited. It is now required 
to compute the impact of this new but late sensor information 
has on the present and the past target states xl, l ∈ {n, …,k}, i.e. 
on the accumulated target state xk:n. Let zm be a measurement of 
the target state xm at time tm characterized by a Gaussian likeli-
hood function, which is defined by a measurement matrix Hm 
and a corresponding measurement error covariance matrix Rm. 
Furthermore, it is useful to renumber the target states xk, …, xn 
such that xk, …, xm, …,xn = : xk:m:n are consistent with their time 
stamps (tl)l=k, …,m,…,n.

To process the measurement zm, the prior ASD

{ }( ) ( ): : : : : : | : : |; ,| \kk m n m k m n k m n k k m n kp Z =x z x x P  (58)

is required. The parameters of this density are given by the 
closed-form formulae for ASDs by using the continuous-time 
retrodiction [10] for the mean and covariance of the state at 
time tm:

( )| | 1 1| 1| 1| 1 ,m k mm m m m k m m− + + + −= + −x x W x x  (59)

( )| | 1 1| 1| 1| 1 1| ,m k mm m m m k m m m m− + + + − += + ⋅ −P P W P P W  (60)

| 1 | 1 1| ,mm mm m k− − −=x F x  (61)

| 1 | 1 1| | 1 | 1.mm mm m k m m mm− − − − −= +P F P F Q  (62)

In terms of the ASD state, the measurement zm now is “in se-
quence” and can be processed by means of the ASD update 
equations (34) and (35). To this end, the projection onto state xk 
has to be replaced by a projection onto xm.

The block line approach for the exact OoS processing is de-
scribed in [11]. In this article, it is shown that the estimate for 
time tl, l ∈ {n,…,k} is given by

{ }
1

, | | | |max , | .l m k l m m l m m kl m k
−=W W P W H S 

 (63)

( )| , | , | | ,l k m l k l m k m m m k= + −x x W z H x  (64)

| , | , | | , | .l k m l k l m k m k l m k= −P P W S W
 (65)

Here, the notation is extended such that Wl|j is the identity ma-
trix for j ≤ l.

DISTRIBUTED ASD FUSION
Often in multisensor applications, it is required to preprocess 
data at each sensor node to economize on bandwidth. The pre-
processed parameters are then fused to the global estimate. In 

Table 2 

Batch Processing Algorithm

Initialization Set  { } =|0 |0, ,gather k
n n l l n

x P z  

Prior up to Time t
k

For l = n + 1, …, k compute

x
l|0

 = F
l|l–1

x
l–1|0

 − − − −= +
|0 | 1 1|0 | 1 | 1l l l l l l l lP F P F Q  

End for

 ( )−= …
  

: |0 |0 1|0 |0k n k k nx x x x  

P
k:n|0

 as in (47).

Batch Likelihood

 ( )= …
 

: ,k n k nz z z  

 ( )= …: blkdiag ,k n k nR R R  

 ( )= …: blkdiag .k n k nH H H  

Processing

 ( )= + −: | : |0 : |0 : : : |0 ,k n k k n k n k n k n k nx x W z H x  

 = − 
: | : |0 : |0 : : |0,k n k k n k n k n k nP P W S W  

 
−=  1

: |0 : |0 : : ,k n k n k n k nW P H S  

 = +
: : : |0 : : .k n k n k n k n k nS H P H R  
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the literature, there exist plenty of algorithms, many of which 
are derived from different approaches. To provide an entire 
overview of those is beyond the scope of this article; therefore, 
we refer the reader to [2] and [3] for examples. An exact meth-
od for the linear-Gaussian case is the distributed Kalman filter 
(DKF) [12] and [13], i.e., the resulting fused track is equiva-
lent to a centralized Kalman filter processing all measurements 
from every sensor.

The DKF, however, requires sensor models to be known to 
each processing node. In [14] and [15], it is shown that ASDs 
can be used for exact distributed fusion without the sensor pa-
rameters being globally known. This is of particular importance 
for applications with nonlinear measurement functions, because 
the linearized measurement error becomes data dependent. This 
is achieved by exploiting the fact that for S sensors it holds that

( ) ( )| 1 1 | 1 | 1 1 | 1 .; , ; ,
S

k k k k k k k k k k k kS− − − − − −∝x F x Q x F x Q   (66)

By means of a “spread” process noise covariance matrix SQk|k–1, 
one achieves a product representation of local ASDs:

( ) ( ): : : | : |
1

| ; , .
S

k s s
k n k n k n k k n k

s
p Z

=

∝ ∏x x x P  (67)

Here, the parameters : |
s
k n kx  and : |

s
k n kP  are obtained from the closed-

form solution for ASDs by using the relaxed evolution model 
on the right side of (66) and local data from sensor s only [14]. 
As a consequence, the fusion of these local parameters becomes 
an almost trivial convex combination:

( ) 1

: | : | : | : |
1

S
s s

k n k k n k k n k k n k
s

−

=

= x P P x  (68)

( )
1

1

: | : |
1

.
S

s
k n k k n k

s

−
−

=

 =  
 
P P  (69)

This fusion rule is exact whenever the full ASD parameters are 
transmitted to the fusion center. By truncating the time series of 
estimates, an approximation is achieved that yields close to op-
timal results [13]. For the implementation, the interested reader 
can easily follow the summary in Table 3.

ASDs can also be used to perform multistep tracklet fusion 
[13]. Because the equivalent measurements

( ) ( )1 1

: : | : |
s s s
k n k n k k n n

− −
= −Y P P  (70)

( ) ( )1 1

: : | : | : | : |
s s s s

k n k n k k n k k n n k n n

− −
= −y P x P x  (71)

are mutually independent when conditioned on the ASD state, 
they can be used to update a centralized ASD track:

( )
1

1

: | : | :
1

,
S

s
k n k k n n k n

s

−
−

=

 = + 
 

P P Y  (72)

( ) 1

: | : | : | : | :
1

.
S

s
k n k k n k k n n k n n k n

s

−

=

 = + 
 

x P P x y  (73)

Note that the ASDs in (70) and (71) are not based on the relaxed 
evolution model, i.e., they are optimal with respect to the local 
sensor data.
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k n k k n kx P  
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l|l–1
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SQ
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Fusion Rule
 ( )−

=
= 

1
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P P
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APPENDIX: PRODUCT FORMULA

For matrices of suitable dimensions, the following formula for 
products of Gaussians holds:

1 1

( ; , )
( ; , ) ( ;

( )
, ) ( ,

( ; ,
; )

)
ν

− −

 + −= 
+

x y W P WSz Hx R x y P z Hy S
x Q y z Q

W
P H R






 




 
(74)

with the following abbreviations:

ν = −z Hy (75)

= +S HPH R  (76)

1−=W PH S  (77)

1 1 1 .− − −= +Q P H R H  (78)
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