A Market-based Approach to
Sensor Management

VISWANATH AVASARALA
TRACY MULLEN
DAVID HALL

Given the explosion in number and types of sensor nodes, the
next generation of sensor management systems must focus on iden-
tifying and acquiring valuable information from this potential flood
of sensor data. Thus an emerging problem is deciding what to pro-
duce, where, for whom, and when. Identifying and making trade-
offs involved in information production is a difficult problem that
market-based systems can ‘“‘solve” by allowing user values, or util-
ities, to drive the selection process. Essentially this transforms the
traditional ‘““data driven” approach (in which multiple sensors and
information sources are used, with a focus on how to process the
collected data) to a user-centered approach in which one or more
users treat the information collection and distribution system as a
market and vie to acquire goods and services (e.g., information col-
lection, processing resources and network bandwidth). We describe
our market-based approach to sensor management, and compare
our prototype system to an information-theoretic system in a multi-
sensor, multi-user simulation with promising results. This research
is motivated in part, by rapid technology advances in network tech-
nology and in sensing. These advances allow near universal instru-
mentation and sensing with worldwide distribution. However while
advances in service-oriented architectures and web-based tools have
created “the plumbing” for data distribution and access, improve-
ments in optimization of these distributed resources for effective
decision making have lagged behind the collection and distribution
advances.
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1. INTRODUCTION

With the advent of small, inexpensive, low-power
sensor nodes that can provide sensing, data processing,
and wireless communication capabilities, sensor net-
works can potentially generate huge amounts of diverse
data. However, just because the data can be produced,
does not mean that it should be. Sensor networks are
constrained by limits on sensor “attention” that include
limitations on battery power, bandwidth, and the num-
ber and type of measurements that the sensor can handle
at any one time. In addition, sensor networks can in-
clude data collection entities that operate on very differ-
ent timescales, from human reports to high-speed video-
frame collection of images. System users (who may be
human, software agents or data fusion processes) each
have their own individual tasks and priorities, but share
a common sensor resource pool. The sensor manager’s
job is to efficiently allocate sensors to end-user tasks
so as to maximize end-user utility while simultaneously
minimizing the cost of collecting, storing, and process-
ing the data. Sensor managers must also consider the
interplay between various network resources, weighing
tradeoffs between resource constraints such as battery
power, bandwidth, and sensor accuracy.

For our current work, we assume that end users be-
long to a common overarching non-commercial institu-
tion. Example application areas for such networks in-
clude: (1) network-centric warfare, in which multiple
sensing platforms, sensor nets, and individual soldiers
with sensors interact to allow rapid tactical situation as-
sessment and threat assessment [11, 12], and (2) mon-
itoring of the environment via ground-based, airborne
and space-based sensing systems.

In recent years, information-theoretic approaches
have emerged as a promising paradigm for the develop-
ment of a comprehensive sensor management for multi-
task, multi-sensor networks. These techniques rely on
optimization of a certain information-theoretic measure
like cross-entropy [5, 20] or information gain [6, 27].
Kastella [18] used cross-entropy to determine the opti-
mal search order for detection and classification prob-
lem. Kolba et al. [20] extended this framework to per-
mit operation with uncertain sensor probabilities. McIn-
trye et al. [25, 26] used information gain (the entropy
change in environment for a given sensor allocation
as the predicate for their hierarchical sensor manage-
ment architecture. A valuable advantage of information-
theoretic approaches is that they are highly flexible
and can be easily adapted to new problems. However,
information-theoretic sensor management is concerned
primarily with scheduling the data-collecting entities
(sensors) and other network resources such as energy
usage and communication bandwidth have to be consid-
ered separately. Additionally, information-theoretic sen-
sor management approaches are myopic in nature, since
they optimize some measure of the “quantity of infor-
mation” obtained during a particular round of schedul-
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ing and neglect the “value of information” to the mission
objectives.

Non-myopic sensor managers need to solve a highly
complex multi-period scheduling problem, since most
network tasks like target tracking occur over multiple
periods of scheduling. Techniques based on approxi-
mate dynamic programming have been developed for
this problem. In [5], Castanon considered a multi-grid,
single sensor detection problem. Under certain assump-
tions about the target distributions and probability dis-
tribution of sensor measurements, Castanon proved that
the optimal allocation policy would be to search ei-
ther of the two most likely target locations during each
round of scheduling. In [6], Castanon considered the
problem of dynamic scheduling of multi-mode sensor
resources for the classification of multiple unknown ob-
jects. To solve this problem, the author proposed a hier-
archical algorithm based on a combination of approxi-
mate dynamic programming and non-differentiable op-
timization techniques. Washburn et al. [43] formulate
a single-sensor, multi-target scheduling problem as a
stochastic scheduling problem and use the Gittin’s in-
dex rule to develop approximate solutions. Williams
et al. [44] consider a single-target, multi-sensor alloca-
tion problem with communication constraints and use
adaptive Lagrangian relaxation to solve the constrained
dynamic programming problem. Schedier et al. [37]
have used approximate dynamic programming to allo-
cate gimbaled radars for detecting and tracking targets
over a multi-horizon time period. The authors use a
three-phase rollout algorithm with the following stages
a. generation of candidate sensor allocations b. gener-
ation of alternate sensor plans based on results from
the first component c. evaluation of the alternate sensor
plans to calculate an approximation of the reward func-
tion. The details of the implementation of these compo-
nents are not explained in the original paper. However,
for the three-sensor simulation that was presented in
their paper, simple heuristics to generate feasible solu-
tions and to evaluate solution performance would have
sufficed. These approaches for non-myopic sensor man-
agement are pioneering, but substantial further research
is required to adapt them to the generic multi-sensor,
multi-task sensor management problems.

The network-centric environments that we are in-
terested in also must consider issues related to privacy
and communication costs. For example, in network-
centric warfare applications, multiple distributed enti-
ties accomplish different tasks by connecting decision
makers, effectors, and information sources to a common
network [27]. Therefore, task information may be local-
ized across individual users. Allowing all required task
information to be accessed by an optimization routine
is communication-intensive and may violate privacy is-
sues in a distributed environment. Pricing mechanisms
can be designed to address privacy issues and minimize
communication requirements [42]. Also, market-based
approaches offer an inherently distributed mechanism
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that can compare “apples” and “oranges” using the com-
mon numeraire of money, thus reducing communication
overhead to the single dimension of price. Under certain
assumptions, price systems have been proven to provide
the minimum dimensionality of messages necessary to
determine Pareto-optimal allocations [16].

For the above reasons, we believe markets based
on combinatorial auction mechanisms are a promis-
ing paradigm for a comprehensive sensor management.
A combinatorial auction is an auction based on ex-
changing item bundles (e.g., sensor readings+channel
transmission) rather than single items. In earlier work
on distributed multi-agent sensor management, Lesser
et al. [22] surmised that combinatorial auctions could
be a promising path for market-based sensor alloca-
tion. Shortly after our initial work on combinatorial
auctions for sensor management [2], Ostwald et al. [32]
also published preliminary work on using combinatorial
auctions to find optimal sensor settings in a distributed
radar array. The authors optimize a domain-specific and
myopic utility function using a combinatorial auction
mechanism during each round of scheduling. Resource
constraints other than the sensor schedules are not con-
sidered.

A generic market-oriented approach to sensor man-
agement that is customizable for different sensor net-
work scenarios must address several key issues. The
first issue is the mismatch between what users want
to buy (e.g., tracking and identifying a target with a
specified accuracy) and what network resources are of-
fering (e.g., cpu, battery power, bandwidth, and sensor
directivity and operation mode). The problem becomes
even more complicated when we consider that different
combinations of sensors can be used to track a target,
but each combination of sensors may give a different
quality of service (QoS). To accurately assess and bid
for different sensor combinations, users would need to
know the operating parameters of each sensor, and to
calculate the QoS for various combinations of sensors.
This leads to the second issue of preference elicitation,
or eliciting user valuations for all possible combina-
tions of resources to different tasks/users. Clearly in this
setting, preference elicitation can be computationally
and/or communication intensive. For example, if there
are n sensors and m tasks, ((2" — 1)m + 1) utility valua-
tions must be acquired by the sensor manager from the
user to calculate an optimal allocation. The third issue
is that winner determination, or determining an optimal
allocation given all bids, is an NP-hard problem [35].
Although fast algorithms have been developed, thanks
in part to ecommerce-driven advances, these algorithms
may not always meet real-time requirements.

To address the above issues, we proposed a frame-
work for sensor management using a market-based ar-
chitecture called MASM (Market-Architecture for Sen-
sor Management) [15, 30, 33]. The sensor manager han-
dles the mismatch between what providers (i.e., sen-
sors) offer and consumers (i.e., end users) want by
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Fig. 1.

providing a mapping between user tasks and network
resources. Users bid on high-level tasks, while ser-
vice mapping components convert the high-level user
tasks to low-level sensor tasks and finally to actual
bids. Once the necessary bids are created, an auc-
tion winner determination algorithm computes the fi-
nal resource allocation. Both the bid formulation and
winner determination steps are computationally ex-
pensive. Traditionally, humans have been mainly re-
sponsible for the bid formulation step, with compu-
tational auctions focusing on the winner determina-
tion step. One of our contributions has been to de-
velop an approximate algorithm, called Seeded Ge-
netic Algorithm (SGA) [29], that combines these two
steps and achieves polynomial run times with a mod-
est loss of optimality. Our earlier work [2, 3, 28, 29]
described a high-level framework for MASM, but did
not provide any implementation details. This paper de-
scribes the implementation of MASM, including the
auction protocol, pricing algorithms for network re-
sources and heuristics for avoiding myopic scheduling
behavior.

We currently focus on a single-platform design, al-
though we plan to extend this model to multiple plat-
forms and sensor network environments. While we
draw from recent advances in ecommerce-based mar-
ket research, we describe the significant challenges in
adapting this approach to reflect typical sensor man-
agement environments. We test our prototype sensor
management system using a multi-sensor, multi-user
simulation framework that models bandwidth and bat-
tery power constraints. Comparisons to a priority-based
information-theoretic system show that market-based al-
gorithms hold promise for developing comprehensive
sensor management systems.
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Single-platform market architecture for sensor management.

It should be noted that the present approach has lim-
ited applicability to smart dust environments, where the
number of sensors could be on the order of few hundred
thousands. In these environments, the communication
costs of relaying sensor measurements to the sink are
the dominant costs of network operation. For these en-
vironments, a centralized auctioneer cannot be used be-
cause of the communication costs involved. Instead, task
utility information and price information should perco-
late to the node level, where individual nodes decide
on what actions to perform. Mainland et al. [24] have
proposed a price-based decision system for smart dust
environments, and Padhy et al. [33] have proposed a
utility-based model.

Our paper is organized as follows. In Section 2, we
describe the MASM architecture and provide an illus-
trative scenario in Section 3. Section 4 talks about our
continuous combinatorial auction (CCA) protocol de-
veloped to minimize communication involved in market
operations. Section 5 describes the pricing mechanisms
that have been developed to enforce resource constraints
in the market. Section 6 introduces an agent learning
scheme for market agents to assist users in formulating
optimal bidding parameters for different tasks. Section 7
describes our simulation environment, while Section 8
describes our results. We summarize our findings and
discuss future work in the last section.

2. MASM

Our current single platform design for MASM is
shown in Fig. 1, and derives from the sensor manage-
ment architecture proposed by Denton et al. [8]. The
mission manager (MM) assesses mission-level decisions
(e.g., assigning task priority to a mission goal), allo-
cates tasks and budgets to end-users. Within the mis-
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sion manager, approaches such as goal lattices (which
relate high-level mission goals to lower-level actionable
tasks) can be used to measure the criticality of vari-
ous low-level goals to the overall mission goals, and
thus help to determine their respective budgets. Kenneth
Hintz and Gregory Mclntyre [14] used goal lattices to
compute the relative weights of actionable tasks (such
as tracking) on the basis of high-level mission goals. Ra-
jani Muraleedharan and her colleagues [30] used goal
lattices to determine weights for combining various ob-
jectives to optimize routing in a sensor network. Newer
developments include dynamic goal lattices [15] that
can support more dynamic goal generation from a set
of predefined goals.

The sensor manager (SM) acts as a competitive mar-
ket for buyers and sellers of sensor resources. Sensors
and transmission channels are modeled as sellers. Sen-
sors sell their sensor schedule (i.e., their “attention’) and
transmission channels sell raw bandwidth. End users,
or consumers, of the sensor network are interested in
higher-end products such as target tracks, environmen-
tal searches, and target identification. MASM maps be-
tween these high-level tasks and actual resources avail-
able in the market using its combined service chart/bid
formulator functionality.

MASM provides this functionality in two different
modes, either exact service mappings (E-MASM) or
approximate service mappings (A-MASM). When the
number of sensors is small and the real-time constraints
are relaxed, E-MASM mode provides an exact service
mapping. In other words, given a task and a set of pos-
sible resource combinations that can be used for that
task, E-MASM will explicitly calculate the utility of
assigning each combination to the task using domain
information and task-specific utility functions provided
by a service chart. Given n sensors in the network, and
m tasks, then in the worst case, (2" — 1)m bids on re-
source combinations might have to be formulated. A
standard combinatorial auction winner determination al-
gorithm [1] then determines the optimal allocation. One
approach used to speed up the bid formulation auctions
and the winner determination optimization is to gener-
ically restrict the type of bids considered for resource
allocation. For example, one could place a bound on
the maximum number of items in a bid. Polynomial
algorithms for bids with certain special structures [35]
are available. However, imposing generic constraints on
bid types can lead to market inefficiency. An alternate
approach is to use domain-specific knowledge to in-
telligently restrict the number of resource bids formu-
lated. For example, if the types or locations of sensor
resources that can be used to accomplish a particular
task are limited, the combinations of resources that need
to be considered can be reduced.

When the number of sensors is large and real-time
constraints are strict, explicit mappings are no longer
feasible, and the A-MASM mode, with approximate ser-
vice mappings, is used. Instead of the bid formulator
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explicitly formulating combinatorial bids for each user
task, MASM searches the search space of useful sen-
sor combinations directly using a polynomial, anytime
evolutionary algorithm [29].

3. SCENARIO EXAMPLE

To illustrate the MASM system, we describe a sim-
ple scenario with two users and two sensors. Assume
that a particular user is interested in searching and iden-
tifying reconnaissance drones approaching from a cer-
tain region R,. Let the task that the user wants to ac-
complish using the sensor network resources be the re-
duction of entropy of the probability distribution of the
existence of reconnaissance drones in region R, to less
than a threshold ¢, (task A).

The user should submit a bid to MASM in the
following format:

(type: search/identify
entity: reconnaissance drone x
region: R,
quality: (entropy < )
price: P,)
where P, is the user’s bid price.

Assume that another user is interested in estimating
accurately the position of an already identified slower
moving reconnaissance drone. Let the task that this user
is trying to accomplish using the sensor network re-
sources be the reduction of the track uncertainty (as
measured by some reasonable metric such as state vec-
tor covariance error) to less than e,. The user should
submit a bid to MASM in the following format:

(type: track
entity: reconnaissance drone y
quality: (covariance error < &,)
price: Fy)

where F; is the user’s bid price.

Assume that two sensors, a forward looking infrared
(FLIR), or infrared camera, and a radar are available to
the SM for accomplishing these tasks. Note that any
two sensors will generally have different abilities to lo-
cate and identify targets depending on characteristics
such as environment conditions, target characteristics,
and target-sensor geometry. In other words, certain sen-
sors, or combinations of sensors, can provide more or
less value for task completion, and thus the bid values
for different sets of sensors may also vary. To express
this, MASM generates combinatorial bids in exclusive-
or format for each user’s task as shown in Table I during
each of scheduling. The exclusive-or format ensures that
task A can win either bid 1 or bid 2, but not both. For
each bid in Table I, the bid amount is represented using
the format F; ;, where U is the task identification, S
is the given sensor combination number and ¢ indicates
the scheduling round. This notation is used to indicate
that bid prices depend on sensor combination and user
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TABLE I
Bids Generated by MASM for Sample Scenario During the First Round of Scheduling

Task A’s XOR bids

Task B’s XOR bids

Bid 1 Bid 2

Bid 3 Bid 4

(type: search/id (type: search/id

(type: track (type: track

entity: reconnaissance drone x  entity: reconnaissance drone x

entity: reconnaissance drone 3 entity: reconnaissance drone 3

region: R, region: R,

sensors requested: FLIR sensors requested: FLIR and Radar

sensors requested: FLIR sensors requested: FLIR and Radar

quality: (entropy < ¢,) quality: (entropy < &)

quality: (covariance error < e,) quality: (covariance error < ¢,)

price: PA,S,,I) price: PA’SZJ)

price: PB,S],I) price: qusz,l)

task. The value of B g, is calculated by the SM using
the bid prices of the original consumer bids (see Sec-
tion 4 for details). Until the tasks are complete, the SM
monitors the progress of the tasks and adjusts the bids
accordingly.

We describe the methodology used by MASM to
generate the bids for resources during each round of
scheduling in the next section. The combinatorial auc-
tion winner determination algorithm is then used to cal-
culate the optimal resource allocation, given the MASM
bids.

4. CCA PROTOCOL

In this section, we describe our continuous combi-
natorial auction (CCA) protocol. The CCA protocol was
designed to increase the computational and communi-
cation efficiency of our market-based scheduling algo-
rithm. Since MASM uses discrete time slots to sched-
ule resources, most user tasks, like tracking a target,
require acquiring resources over multiple time slots.
Each round of scheduling can either occur periodically
at fixed times, or randomly. A simplistic allocation of
resources across multiple time slots can occur in two
ways: 1) Users send in a bid that covers resource needs
across multiple time slots. The SM updates the schedule
upon receiving each new user bid. ii) Users send in a bid
for the current time slot only. After each round, users
update their requirements based on what was received
in the last scheduling round, and send in an updated bid
for the next time slot.

The first approach is computationally expensive. De-
termining the optimal scheduling for n sensors over a
time horizon T is exponentially complex in n and 7.
Clearly, the second approach is communication inten-
sive. We designed the CCA protocol to avoid the com-
munication and computation requirements of using mar-
kets for sensor management. Below, we describe the
CCA protocol in detail.

CCA executes each of the following steps (except
initialization, which is executed once at the start of
operations) during each round of scheduling.
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4.1. Initialization

Auctioneer initializes the prices for all the resources.
It informs the users about the set of tasks that it will
accept bids for.

4.2. Update Bids

At the beginning of each round, users can i) send
new bids, ii) remove their current bids from the auction,
iii) modify the parameters of their existing bids. User
bids are of type (t,p) where ¢ is the task description,
which includes the task type, and final task quality
desired by the user and p is the price that the user is
willing to pay. For example, the task description for
a bid to track a target x such that the trace of the
covariance matrix of the target estimate is less than
0.001 is as follows:

(type: track
entity: target x
quality: (trace of covariance matrix < 0.001))

The auctioneer predefines the set of tasks that the
user can bid for and the bid format. Here we make the
standard assumption that a scalar valued “quality” mea-
sure can be calculated using the various task parameters.
For example, for target tracking, the trace or the deter-
minant of the covariance matrix can be used as one mea-
sure of target track quality [13, 31, 36]. However, under
certain circumstances, it is advantageous to use more
elaborate task descriptions (see [17] for related discus-
sion). For example, the requirement to identify a target
with a given level of specificity and level of confidence
may require extensive models of multi-sensor perfor-
mance in complex observation environments. These are
application-specific, and would need to be developed
for the particular application being considered.

4.3. Update User Requests

Auctioneer accepts new bids or updates to existing
bids during each round of scheduling. If the auctioneer
receives no message regarding a particular bid, the bid
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stays active and competes for resources in the current
auction round.

4.4. Resource Bid Formulation

Since user bids are for high-level tasks, the auc-
tioneer needs to compose bids for actual resources
from them. This responsibility is handled by the bid-
formulator module in E-MASM (explicit formulation
of bids for resources is not required in A-MASM). Let
the user bid on a high level task T at time f; with price
Pr. A high level task, such as tracking a target to a re-
quired accuracy, might require resources over multiple
rounds of scheduling. For each time slot ¢, the auction-
eer constructs bids on each resource set, S, that can be
allotted to task 7'. The auctioneer needs to calculate the
price associated with resource set S for task 7 during
each round of scheduling, based on the user bid price
Py. To correctly align task priorities with bidding price,
we have devised a novel mechanism for resource price
determination. For a resource set S, the auctioneer com-
putes the bid price for a resource set as the percentage
of the user task completed by the resource set given the
current task status. To determine the percentage of task
completed by a resource set S, we cast the problem in
terms of optimally scheduling sufficient readings from a
canonical sensor A to meet the quality of service (QoS)
task parameters. Let the task 7 require on average n,
consecutive schedules of the standard sensor A to be
completed (task is considered complete, when the task
quality meets the QoS threshold in the task bid). Sup-
pose a resource bundle § is used when the task quality is
g, and the expected number of standard sensor readings
required is reduced to n, Then fg ;. , or the percentage of
the task completed by resource set § when the current
task quality is ¢, is equal to the percentage savings in
the required number of canonical sensor readings.

fS’,T,q = (na - ﬁa)/na’

There is a possibility that fgr, is negative (n, <n,).
For example, in spite of allocating sensing resources,
the inaccuracy associated with a target estimate might
increase with time. To avoid negative prices for bundles
of resources, the bid price for P, (bid price for
allocating resource set S to task 7" during a particular
round of scheduling when the current task quality is gq)
is calculated as

Brg=Brxfsrg —Orlory

where ¢ is the null set.

The auctioneer uses this price to prioritize between
different tasks during a particular schedule. However,
this price is not charged to the user. Users are charged
only at the end of a successful task completion, or if
they choose to withdraw a bid before the task could be
completed by the SM (see the round termination step).
Calculation of n, and 7, can be made faster, by storing
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using QoS chart.

task specific performance data for the canonical sensor
as QoS charts. For example, consider a user bid for
searching a particular grid for potential threats, when
QoS is measured in terms of entropy. A sample QoS
chart is given in Fig. 2, and shows the expected fall in
entropy with standard sensor readings. Let a user bid
specify a task for reduction of entropy of a particular
grid from e; to e,. If a resource bundle S is expected to
reduce the entropy from e; to e; after the next reading,
then

Js1e = (n;— ”i)/(”f —n,).

Creating a QoS chart for a sample task is illustrated
in Section 7.

Resource formulation is the slowest link in CCA
protocol, but heuristics can speed this step up. For ex-
ample, for certain tasks, it may be feasible to use only
a few kinds of resources. Thus, if a task requires only
acoustic data, then only the acoustic radar sensors need
to be considered. However, in the worst-case scenario,
the number of bids is exponential in the number of
sensors. This is clearly infeasible in case of large sys-
tems and thus E-MASM is not scalable to large sys-
tems, limiting its effectiveness. The A-MASM formu-
lation avoids explicit bid formulation, and hence main-
tains polynomial run-times, both in number of resources
and users by using our SGA algorithm, an approximate
polynomial-time algorithm. For a detailed description
of this algorithm, and a comparison of A-MASM and
E-MASM time performance, see [34].

4.5. Resource Allocation

Resource bids, obtained from step 3 are exclusive-

OR bids in the form (S,,P,)xor(S,,B)...xor(S,,B,).
This bid indicates that during the current round of
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scheduling, the user is willing to pay a price P, for the
resource bundle S, and a price B, for S,, but only the
maximum of P, and B, for §; US,. The auctioneer needs
to translate these bids to OR bids, so that standard inte-
ger programming formulations [1] can be used. An OR
bid of the form (S,,P)or(S,.B,)...or(S,,P,) indicates
that the user is willing to pay P, + P, for the bundle S, U
S,. This can be done by the addition of phantom items
[9]. The idea is to translate an exclusive-OR bid B-xor
of the form (S,, P, )xor(S,,P,)...xor(S,,P,) into a B-OR
bid of the form (S,, Ub,P,)or(S, Ub,B,)...or(S,Ub,P,),
where b is a phantom item. The phantom item b ensures
that a maximum of only one bid from the OR bids can
be labeled as winner (since each item can be allocated
to maximum of one bids). Once the bids are translated
into the “OR” format, the winner determination problem
becomes a standard integer programming (IP) problem,
that can be characterized as

maprjxjvt Zx <1 v

Jlies;

ie{l...m}

where x; is 1 if the bid is accepted in the final allo-
cation and O otherwise. The IP problem can be solved
using a commercial software package like CPLEX. The
winner determination problem is NP-hard [18] and in
theory, this resource allocation step could prove compu-
tationally expensive for E-MASM. Performance of the
IP formulation depends greatly on the characteristics of
the probability distribution from which bids are gener-
ated. For example, the time taken by a problem with
one thousand bids and hundred items on a 2.8 GHz
Pentium IV processor varied between 0.001 seconds to
5000 seconds, depending on the bid distribution. How-
ever, we found that the problems generated by the sen-
sor network simulation are relatively easy for CPLEX
(see Section 4).

4.6. Round Termination

The auctioneer updates the costs of resources ex-
pended on a particular bid by adding the price of its
allocated bundle. For each user bid b, the cost of re-
sources allocated to the bid is updated as

C, =C, +

where §; is the bundle allocated to b during the ¢th round
of scheduhng and ¥ is the price of the bundle S; during
the rth round of scheduhng This is calculated as the sum
of the prices of the individual resources comprising S,
(see Section 5 for explanation of resource pricing).

Also, the auctioneer verifies if the task quality re-
quired by each user bid was achieved. When a task is
complete, the bids for that task are removed from the
auction and the corresponding user is sent the completed
task details. The bidding user is charged the minimum
of his bid price B, or the cost of resources spent on the
task by SM, C,.

payment,, = min(C,, P,)
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where payment, is the fee charged to the user, F, is
the bid price, and C, is the total cost of the resources
allocated to the bid. This fee structure ensures that
no user is charged more than their bid price for any
task. When C, < F,, the user has a positive surplus
of B, —C,. An alternate fee structure that divides the
surplus between the SM and user is as follows:

payment, = min(C,,,B) + H(F, — Cp).xy* (B, —C})

where H(x) is the Heaviside step function and ~ is the
percentage of surplus given to SM. If the user withdraws
a bid before the task demanded in the bid is completed,
the SM charges the user

payment,, = min(Cy, f,.F,) + H(f,, .B, — C}).

*'7*(]0,1;*});;_(:1,)

where f, is the percentage of the task that is already
completed by the SM. This is calculated using QoS
charts (as described in the resource bid formulation
step). This fee structure has been designed to mitigate
the impact of dishonest user behavior (see Section 8 for
details).

Finally, the auctioneer updates the prices of the
resources based on the demand in the current round.
We describe how prices are updated in the next section.
The auctioneer then updates the resources about their
schedules during the current round and sleeps until the
next round of scheduling begins.

5. PRICING MECHANISMS

To set prices for individual resources, we use a pric-
ing protocol similar to the tatonnement process. Taton-
nement is an iterative procedure for finding equilibrium
prices based on the search parameter (e.g., price or
quantity) [21, 34, 40]. The price adjustment process
starts with an auctioneer communicating an arbitrary
price set to the users. The users compute their demand
for the first good at the given prices and communicate it
to the auctioneer. Depending on whether the aggregate
demand for the first good is positive or negative, the
auctioneer either increases or decreases its price. This
process continues until a price at which aggregate de-
mand for the first good equals zero is reached. This
process is then repeated for the second good and so
on. At the end of the first cycle, only the last good is
guaranteed to have a zero demand, but assuming gross
substitutability (i.e., when the price of good j goes up,
there is a positive increase in the demand for every other
good by each user) the price set arrived at after each
cycle is closer to equilibrium than the previous one.
More refined algorithms using partial derivatives of the
demand functions have been developed to search for
equilibrium in parallel [38, 45]. Though the gross sub-
stitutability assumption is often violated (as in sensor
networks), the tatonnement process has been found to
give satisfactory results [7].
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To use the tatonnement process in MASM, we model
the supply and demand functions for a resource at a
particular price. MASM estimates these functions using
the current resource usage rate. Prices for individual re-
sources are initialized to zero during the sensor network
initialization. After each round of scheduling, the prices
(19’5”) for the resource S for the next round of schedul-
ing are calculated based on the current usage rate of the
resource (r§) and the available usage rate of af.

I = max (0,95 + 7% (rh, — df))
99=0

where 7 is the constant which determines the rate at
which prices are updated.

The definition of r{ and df is dependant on the
resource being modeled. For example, for sensors, we
have used the available battery power. Let sensor A be
endowed with initial battery power b; and assume that
Sensor A needs to be available for a total operating time
of T. At time ¢, if the available battery power is b,, then

ri=(b;,—b,)/t
dy = (b)/(T ~1)

Ideally, the tatonnement process would update the price
of one resource, run the winner determination algorithm
to find the new demand for resources, then conduct
price updates for the second resource, and so on. How-
ever, because of time and communication constraints,
all the price updates are conducted simultaneously us-
ing the current rate of utilization, during every round.
We expect that the results between the two approaches
will not be very different, since the usage rates are mov-
ing averages and do not vary significantly based on the
usage during the current time slot.

if t>0, O otherwise;

if t<T, O otherwise.

6. AGENT LEARNING

In MASM, the SM accepts bids only on a set of
pre-defined tasks. The user agent is responsible for de-
composing the high level tasks or goals that it has a
utility for into a sequence of SM acceptable subtasks
on which it can bid. Also, the user agent has to assign
appropriate priorities or bid prices to these sub-tasks, so
that its overall performance is optimized. Appropriate
assignment of priorities to these sub-tasks has a signif-
icant impact on agent performance in the market. As
an initial exercise, we experimented with agent learning
that uses a simple, greedy Widrow-Hoff based learning
to optimize bid parameters based on current market data.
For reasons of brevity, the details of this approach are
not provided here, but readers are directed to [42]. A
more rigorous learning method will be the subject of
future research.

7. SIMULATION ENVIRONMENT

A simulation environment consisting of a two-
dimensional search area involving multiple targets,
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multi-user and multiple sensors was developed for test-
ing MASM and comparing its performance with other
sensor management approaches. The design of the sen-
sor network, including the communication channel, is
inspired by the DARPA sensor network implemented to
carry out research in sensor management domain [22].
These sensor networks are more platform-based and dif-
fer from the emerging field of “smart dust,” where the
sensor network could consist of millions of sensors.

Our simulation environment is representative of the
types of sensors, communications resources, and mis-
sion objectives for a tactical military environment. The
various sensor parameters we used are based on real-
istic sensor models and are obtained from [26]. While
this is a basic scenario, with a limited number of sen-
sors and targets, it is representative of the types of non-
commensurate sensors that would be available for other
applications such as environmental surveillance and cri-
sis management systems (e.g., for homeland security).
We make a few simplifying assumptions about sensor
models since our main purpose is to test SM perfor-
mance rather than absolute fidelity to field conditions.
Below we describe our simulation model.

7.1. Users

Users consist of a set of software market agents that
search for and destroy targets. These agents have the
ability to attack any position within a range of r meters
and any target that falls within v meters of an attacked
position is destroyed. The agents are not provided with
any sensing resources and they depend on the sensor
network for obtaining information about the environ-
ment. They bid for sensor resources during each round
of scheduling and update their status based on informa-
tion provided by the sensor manager. Initially, agents
move along the simulation area with constant velocity
v,, searching for targets. They use the sensor network’s
resource to search for potential targets and if the prob-
ability of target existence within their range exceeds a
threshold py eshoig» 1Nitialize target tracks. Once a tar-
get track is initialized, agents can attack a target if the
99% confidence interval of the target’s position is less
than ~ meters. Hence, they are required to track the tar-
get to the required accuracy before attacking it. This is
again accomplished by buying sensing resources from
the sensor network. Agents are assumed to have a utility
u, for destroying a target. To divide the overall utility
into utilities for search and track tasks, agents initially
use equal priorities. During the simulation run, agents
update the search to track budget ratio using the learning
method, mentioned in Section 6.

7.2. Targets

Targets are randomly distributed throughout the
search area. They move randomly along the city roads
with constant velocity v,, corrupted by a Gaussian white
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TABLE II
Sensor Characteristics used in Simulation

Sensor No. Type Range Bearing Axis B Bea
1 Doppler 90 m+10% 1° =60 X 0.95 0.001
2 Radar 30 m+10% 0.1° = 60 X 0.95 0.001
3 FLIR NA 0.1° = 60 y 0.99 0.001
4 ESM NA 1° =60 X 0.5 0.01
5 IR NA 100 prad = 60 X 0.99 0.01
6 Radar 30 m+ 10% 0.1° = 60 y 0.95 0.001
7 Doppler 90 m =+ 10% 1° =60 y 0.95 0.001
8 Radar 30 m+10% 0.1° = 60 y 0.95 0.001

noise with variance Q. Two different types of targets
are modeled (7} and T7,). Users have greater utility for
destroying 7, targets. Only 7, targets were used in the
simulation experiments, unless otherwise specified.

7.3. Sensors

The simulation models several different kinds of
sensors, including sensors that provide range and bear-
ing, bearings-only sensors, and Electronic Support Mea-
sure (ESM) sensors. Measurements of two bearings only
sensors, which are not located at the same position,
can be combined to create both range and bearing es-
timates and can be used as a pseudo-sensor. A for-
mal way of modeling sensors is to model their proper-
ties, such as bandwidth, wavelength, duration of wave-
form, signal power per pulse, receiver noise strength
diameter of radar aperture. A much simpler model-
ing technique, in which a sensor’s characteristics are
characterized by three parameters, its probability of de-
tection F,, probability of false alarm F;, and bearing
[6], is used in this simulation. The simulation envi-
ronment has eight different sensors of five different
types that are located on two different platforms or-
thogonal to each other. The operating characters of the
various sensors are given in Table II. Both the plat-
forms are 100 km away from the search area. Since
the distance of the sensors from the simulation area
is large, small angle approximation s =rxdf, where
s is the length of area that falls under the sensor’s
beamwidth, df is a beamwidth of the sensor in radi-
ans and r is the distance of the sensor platform to the
city (100 km). For a detailed description of the sensor
modeling techniques adopted in the simulation, refer to
[25, 26]. Each sensor has a battery with e;;;, units
of energy. For the purpose of brevity, all the sensor
tasks are assumed to cost zero energy, except the task
of transmitting messages. The energy spent in trans-
mitting a message of m bytes over a distance of d
meters is calculated as ad’m where & is a constant
(see Table III).

7.4. Communication Channel

For communication purposes, a RF communication
channel with capacity C is used. All the messages are
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assumed to be of uniform size M bytes. The commu-
nication protocol used is a contention-based protocol
(like CSMA/CD) where each agent with a message to
communicate senses to see if the channel is busy and
transmits if it is not. If two entities start transmitting
at the same time, they back off and wait for a random
amount of time. The time taken for communication, via
this channel, for a fixed number of messages is stochas-
tic. SM enforces the bandwidth constraint by restricting
the probability that the time taken for communication is
greater than 7z, to less than 3%.

7.5.  Sensor Manager (SM)

Since the number of sensors is not large, E-MASM
formulation is used. Bids on two types of tasks, search
and track, are accepted by SM. The QoS for search tasks
is in terms of entropy and for the tracking tasks, the
norm of the estimate covariance is used. To create the
QoS mapping shown in Fig. 2 for the detection task, the
following procedure is used. Let the initial probability
of target presence in a particular cell be 7, = 0.5. (with
my = 0.5, the cell has the highest possible entropy). The
initial entropy of the grid H, is calculated as

H, = g(my)
— 7 xlog(m) — (1 — ) xlog(l — m).

where g(m) is defined as

Assume that the canonical sensor A with probability of
detection A, and Ag, is used for verifying the presence
of the target in this cell. Assume that a target is present
in the cell. Then, the estimated probability 7/, of target
presence in the cell after n consecutive readings of A,
can be calculated using Bayesian analysis. Similarly, let
the estimated probability after n consecutive readings
by A, if the target is not present in the cell be 7. The
expected entropy of the cell after n consecutive readings
of Ais

H, = moxg(mh) + (1 — mo)xg(mi).
The plot of P_In vs. n is used as the QoS mapping for the
detection task.

7.6. Information-Theoretic Sensor Manager (ITSM)

To compare the performance of MASM, we needed
an alternate sensor manager that can handle multiple
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TABLE III
Parameter Values used in Simulation

Parameter Value Description
Total no of time slots 500 Total number of resource allocation schedules

n, 5 No of consumers

n, 10 No of targets

n, 2 No of targets with offensive capabilities

v, 50 mps Velocity of consumers

Pihreshold 0.99 Detection threshold

v, 50 mps Velocity of targets

0 0.01 Variance of Gaussian white noise of target motion
r 50 m Maximum distance that consumers can attack
y 1.5m Radius of destruction around attacked position
p 99% Required confidence interval length of target's position estimate

u, 1.0 m Utility for destroying a target
T 0.005 Tatonement factor

C 2 Mbps Bandwidth of communication channel

M 1 Kb Size of communication message

Lcom 2 millisec Maximum time allowed for communication

53 0.01 Required probability that time taken for communication is greater than tcom
e 1 pJ/bit/m2 Energy required to send messages per unit distance per unit message size
e 25KJ Initial energy of sensor batteries

heterogeneous tasks and multiple heterogeneous sen-
sors. As explained in Section 1, the currently available
approximate dynamic programming based approaches
were not directly applicable to this problem without
substantial additional work. For this purpose, we im-
plemented an information theoretic sensor manager
(ITSM). Hint and Mclntrye [25] used information gain
(the entropy change in the environment for a given sen-
sor allocation) as the predicate for their hierarchical sen-
sor management architecture. The amount of informa-
tion gained can be measured by the change in entropy
prior to and preceding a sensor measurement. ITSM
calculates the information gain, associated with each
possible allocation and schedules the resources as per
the allocation with the highest information gain. To en-
sure that ITSM considers the “value of information,”
we optimized a weighted measure of information gain,
instead of relying on the raw information gain. We
used the formulation in Kalandros et al. [17] for pri-
ority based information-theoretic based sensor manage-
ment. Instead of multiplying the information gain by the
corresponding task weight, the authors use the formula
I, = I, +1og(0;) where I, is the weighted information
gain, [, is the information gain obtained from allocating
sensor suite s to task 7 and 6 is the priority of task 7. A
key issue in the use of ITSM is the priorities that need
to be assigned to the various tasks. We exhaustively
tested the performance of ITSM by varying the track
and search budget ratios and found that the optimal user
performance was obtained when a track to search bud-
get ratio of 0.9 : 1 was used. To enforce the bandwidth
constraint, ITSM does not consider allocations that re-
quire bandwidth, which has more than 0.01% chance
of crossing the 7, limit. The expected time taken for
a particular bandwidth consumption was determined by
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using monte-carlo simulations. ITSM does not model
energy constraints and these are handled in the experi-
mental setup as explained in the results section.

8. RESULTS

8.1. ITSM vs. MASM Experiments

Information-theoretic sensor managers schedule sen-
sors to minimize the entropy of the environment. How-
ever, incorporating battery power constraints into [ITSM
is not straightforward since most systems either use ad-
hoc metrics or else do not address power constraints
explicitly. Instead of initially testing against multiple ad-
hoc solutions, we compare the ITSM system using two
sets of experiments: 1) all the energy requirements of
the sensor network are assumed to be zero, and 2) ITSM
and MASM consume the same amount of energy for
different tasks (as shown in Table III), but ITSM does
not use any explicit policy for allocating battery power
across the mission. Once a sensor has exhausted its bat-
tery, it is not considered in future allocations. In the
simulation, the user’s primary goal is to destroy as many
targets as possible. Therefore, we evaluate sensor man-
agement performance by calculating the average num-
ber of targets destroyed by ITSM and MASM, as shown
in Fig. 3. The left bar graph shows experiments where
energy constraints are zero, while the right bar graph
shows experimental results when energy constraints are
enforced. In both cases, MASM was more successful in
meeting user objectives (i.e., in destroying the targets)
than ITSM. However, in the second set of experiments,
some of MASM’s success can be attributed to a better
energy enforcement policy and it is not clear from these
experiments whether MASM will outperform ITSM for
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Fig. 3. Comparison of MASM with ITSM (averaged over 100 runs). Left bar graph shows experiments where energy constraints are
neglected. Right bar graph shows experiment results when energy constraints are enforced.

any given energy usage policy. We note however, given
that MASM does achieve a higher number of targets
killed even when the sensor network battery power is
“free” for both systems, that this would appear to indi-
cate that MASM'’s superior performance is not entirely
due to a better energy enforcement policy.

Two reasons that MASM outperforms ITSM in
meeting user objectives may be that MASM 1) oper-
ates to maximize user utility rather than to maximize
the information content, and 2) uses prices to prioritize
tasks. We discuss these two reasons below.

1) MASM acts to allocate resources to maximize user
utility (as indicated by their bid prices). Since a user’s
utility depends on how well the allocated resource set
contributes to the user’s goals, market-based resource
allocation automatically takes goal-related parameters
directly into consideration. On the other hand, ITSM
concentrates on maximizing information content, ne-
glecting the value of the information to the goals. The
priority-based ITSM does a better job than the stan-
dard ITSM at incorporating user goals (as priorities) but
the system itself has no means of considering a task’s
progress toward the goal. As an example of why track-
ing progress toward a goal can be useful, consider the
following simple scenario. A single sensor is used to
track two targets 7; and 7, with equal priority simulta-
neously. For the first reading, ITSM gets the most in-
formation content from tracking 7, then for the second
reading, ITSM gets the most information from track-
ing 7,. When the confidence interval necessary to attack
these two targets is tight, ITSM will never get enough
sequential readings to lower the uncertainty sufficiently
and will oscillate between the two targets. On the other
hand, MASM has equal likelihood for choosing either
of the two targets, in any round of scheduling. This hap-
pens because the fraction of task completed per reading
for either of the target tracks remains constant. There-
fore, MASM finishes the tasks in a finite time.
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To ensure that our intuition about ITSM vs. MASM
was accurate, we implemented the following simple
experiment, based on the above scenario, where a single
sensor tracks the two targets 7; and 7, simultaneously.
Target motion is simulated by the equation:

xp(t + 1) =xp(2) + wyp

where x,(¢) is the target position at time ¢ and w;
is white Gaussian noise with constant covariance Q =
0.005. Targets can be attacked and destroyed if the
99% confidence interval of their position is less than
Bihreshoid = 0.5 unit. The sensor makes one measurement
during each time period, and the measurement equation
is:
z(t) = x(t) + v(?),

where x(t) is the state vector, and v(¢) is zero mean white
noise with constant variance, R = 0.03. Let the initial
uncertainties in the position of 7, and 7,, 8, and [, are
equal to 1 unit.

Two sensor-scheduling approaches were imple-
mented. The first approach schedules the sensor to max-
imize the information gain from the sensor measure-
ment. The second approach schedules the sensor to
maximize the utility of measurements, which is defined
as the inverse of the total number of sensor measure-
ments required for bringing the targets to threshold un-
certainty. The optimal measurement is determined using
exhaustive enumeration techniques. The change in un-
certainty of the two approaches is shown in Fig. 4 and
Fig. 5. ITSM oscillates between the two targets without
collecting enough information on any one target long
enough to successfully destroy either. The above exper-
iments give an unfair advantage to the utility-based ap-
proach since the optimization routine considers multiple
sensor schedules simultaneously. In spite of this bias,
these experiments offer an insight into the handicap suf-
fered by ITSM due to its inability to take goal related
parameters, like By .oq» and utility-based calculations
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Fig. 5. Change in uncertainty of target tracks, while using a utility-based approach.

directly into consideration. On the other hand, markets
provide a principled way to take the utility of a given
allocation to high-level goals directly into considera-
tion during scheduling. These results are analogous to
those obtained by Castanon [5]. Operating under some
assumptions, Castanon considered the problem of de-
termining the optimal sequence of measurements of a
single sensor such that the probability that at-least one
target is successfully located in a multi-cell grid is max-
imized. Results demonstrated that the greedy approxi-
mation to the optimal solution performed vastly better
than an algorithm based on entropy minimization.

2) MASM prioritizes using prices. Another advan-
tage of MASM may be due to its use of prices to pri-
oritize tasks while ITSM schedules sensors so as to op-
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timize the information gain from the environment. Al-
though both ITSM and MASM used the same weights
to prioritize between tasks in the environment, price-
based task prioritization has some inherent advantages.
This is because a price-oriented approach has the ability
to implicitly reserve resources for future use by high
priority tasks, even if no high priority tasks are cur-
rently in progress. For example, consider a situation
where the first user is tracking a target and the rest of
the users are in search mode. Both MASM and ITSM
give highest priority to the track task. The first user
has a high-budget for a track-bid and bids accordingly.
However, during the tracking task, the prices associated
with the sensing resources increases since the rate of
their battery power usage during tracking is high (refer
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Fig. 6. A comparison of the number of sensors used for measurements, based on whether target tracks are currently in progress or not.

to Section 5 for a description of how prices vary with
rate of utilization). After the tracking task is completed
and only when detection tasks are in progress, prices
of the sensor schedules would have increased. Conse-
quently, sensors will be used at a slower rate during the
detection phase, effectively reserving sensors for future
higher-priority tasks. However, ITSM has no method of
prioritizing between two tasks, except when both the
tasks are currently in progress. Fig. 6 shows the num-
ber of sensors used during different rounds of schedul-
ing using MASM, where the number of sensors used
when tracking tasks are in progress is higher than the
number of sensors used when only detection tasks are
in progress. When only detection tasks are present, a
significant percent of sensors are resting, thereby pre-
serving their battery power for future use.

8.2.  MASM-Specific Performance Measures

In addition to our comparison with ITSM, we
discuss other MASM-specific performance measures,
namely managing resource constraints, task deadlines,
scalability, and surplus sharing. The purpose of these
experiments is to show how the various “knobs” of a
market-based approach can be adjusted to affect perfor-
mance.

8.2.1. Resource Usage

As explained in Section 5, MASM uses a taton-
nement process for enforcing resource constraints such
as battery power constraints’ using current and avail-
able rates of utilization. Fig. 7 shows the price varia-
tions of the first three batteries using a tatonnement rate
7 =0.005. Figs. 8 and 9 show the fall in the energy of
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the first three sensors’ battery with successive schedules
with 7 =0.005 and 7 = 0 respectively. It is clear that
tatonnement process is successful in ensuring uniform
usage of sensors and in keeping them functional till the
end of network operation. For bandwidth also, a similar
procedure is adopted. The supply of capacity is con-
stant and is proportional to #,,. During round ¢ + 1, if
the price of channel is p, units/sec and bandwidth con-
sumption is w, then the bound of the 1 — 3 one-sided
upper confidence interval of the expected time taken
to communicate, 7, is calculated based on monte-carlo
simulations. The demand at p, is proportional to 1. Val-
ues of 7 for different bandwidth usages are calculated
at the start of network operations and stored. The price
of a channel during the current round is

Py =Pt 7_(77 - tcom)'

The price updates for process works as a soft constraint
on channel capacity. That is, if the channel is too con-
gested, then prices of the channel will increase till de-
mand for channel capacity decreases. However, it is pos-
sible that during certain schedules, the actual time taken
for communication is more than the prescribed limit.
Figs. 10 and 11 show the time taken for communica-
tion for two sample simulation runs with 7 = 0.005 and
7 = 0 respectively.

For the run in Fig. 10, the number of time slots
when time taken to communicate crossed the specified
threshold is 5. This is within the 0.01% tolerance limit
specified by the SM. For the run in Fig. 11, the number
of time slots where time taken to communicate crossed
the specified threshold is 124. After the 250th sched-
ule, all batteries are exhausted, and the time taken to
communicate drops to zero.
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Fig. 8. Energy usage for the first three sensors for a sample run with tatonement 7 = 0.0059.

8.2.2. Task Deadlines

For some high-value targets, users have a strict
deadline to destroy targets after initiating target tracks
within f,;, schedules. We conducted experiments where
a certain fraction of the targets are high-valued. We
implemented a user policy of increasing track bids by
a factor k, if the detected targets are high-value. For
our initial experiments, we used a constant value of
3. However, in the future, optimal k values could be
calculated by using the market data. Users recorded an
average track time of 7.1 schedules for 7, versus an
overall average of 15.3 schedules, showing how markets
can be used to enforce task deadlines.
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8.2.3. Scalability Analysis

For the current simulation environment, the IP-based
E-MASM formulation can optimally solve problem
sizes of up to 10,000 resource bids within a threshold of
10 cpu-seconds on 2.3 GHz PIV processor. Using the
SGA-based A-MASM approach, problem sizes of up to
50,000 resource bids can be solved to more than 98%
optimality under the same conditions. Larger networks
can be accommodated by the approximate technique by
compromising on the final optimality. This capability
indicates that MASM can be used for fairly large net-
works, since spatial restrictions often mean that even if
a sensor network has thousands of sensors, only a few
can be used for a given task at a time.
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Fig. 9. Energy usage for the first three sensors for a sample run with tatonement 7 = 0.
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Fig. 10. Time taken for communication for a sample run vs. schedule number for a sample run with tatonnement 7 = 0.005.

8.2.4. Surplus Sharing

It is possible that sensor networks could have users
in a non-cooperative environment, where each agent
has an interest only in maximizing its own utility. For
example, two different organizations could be sharing
the same sensor network resources. Such scenarios re-
quire an incentive compatible auction methodology, to
make truth revelation the dominant strategy, and thus to
make the allocations optimal. For example, a payment
mechanism based on General Vickrey Auctions (GVA)
[39] might be used to make truth revelation a weakly
dominant strategy. GVA involves computation of n + 1
winner determination problems for every combinatorial
auction to calculate the agent payments. In addition to
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the computational complexity, the unique pricing mech-
anism used by the CCA protocol to ensure real-time re-
sponse precludes direct adaptation of GVA mechanisms.

To understand the effect of strategic bidding, a pre-
liminary analysis can be conducted by formulating some
simple strategic bidding formulations and conducting
simulation experiments. For example, Walsh et al. [41]
have analyzed the effects of strategic bidding on a com-
binatorial auction based supply chain formation algo-
rithm. It is important to note that the difficulty of analyz-
ing the effects of strategic bidding actually undermines
the benefits of lying about true utilities for users. An
added advantage with MASM is that there is disengage-
ment between the users and the actual sensor network.
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Though the users use the sensor network, the various
network parameters including the prices of individual
resources (which might indicate network bottlenecks)
and the actual network parameters, like position of sen-
sors, etc. is invisible to the individual user. Hence, the
threat presented by malicious entities that have clan-
destinely gained access to use the sensor network is
minimal. To analyze the effect of strategic bidding, it
can be assumed that agents play Bayes-Nash strategies
[19]. However, calculation of Bayes-Nash equilibria is
difficult, except for the simplest of markets. An easier
method for analyzing market behavior is to devise a
reasonable strategic bidding policy for users and study
resulting market behavior.

A simple strategic bidding policy for MASM users
is to overstate their task utilities. To understand the logic
behind this policy, the pricing policy of CCA should be
considered. If a MASM user bids a price P for a partic-
ular task, the price it has to pay for resources allocated
to its bid is not directly based on P. Instead, for any
resource bundle allocated to the task during resource
allocation, the user usually pays only the sum of the
prices of the resources comprising the resource bundle
(see round termination step in CCA). Therefore, a user
that overstates its utility has the advantage of getting
preferential treatment during resource allocation, while
not having to pay any additional value for resources
as compared to honest users. To analyze the impact of
strategic bidding, experiments were conducted where a
certain number of agents overstated their utility by a
factor, k. The number of targets successfully destroyed
by the users during the simulation experiment reflects
the global performance of the market-based resource al-
location. An individual user’s performance is measured
by its surplus defined as the difference between the to-
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Time taken for communication for a sample run vs. schedule number for a sample run with tatonnement 7 = 0.

TABLE IV
Market Performance with Strategic Agent Behavior

Number of strategic agents 0 2
Honest consumer surplus 1.22 —-.012
Strategic consumer surplus NA 2.3

tal utility it obtained from destroying the targets and the
total price it paid to SM for buying resources during the
simulation.

Two sets of experiments were conducted. In the first
set of experiments, all the users bid honestly. In the
second set of experiments, two out of the five users
overstated their utilities by a factor of two. The average
surplus achieved by the honest and strategic agents
is shown in Table IV. As expected, strategic agents
benefited from overstating their bid prices and their
average surplus increased from 1.22 to 2.3. The average
surplus of the honest agents has decreased from 1.22 to
—0.012 as a result of strategic bidding.

As shown by the preliminary analysis, CCA proto-
col encourages strategic behavior in a non-cooperative
environment. However, the benefits of strategic bidding
can be mitigated by using surplus sharing mechanisms
where the SM charges the users a fixed percentage of
their surplus on each task bid. For example, a variant of
CCA, CCA-SS (Combination Auction Algorithm with
Surplus Sharing) has been implemented where users are
levied an additional charge of fifty percent of their ex-
pected surplus as calculated from their task bids. Under
this mechanism, the overall surplus to the strategic agent
decreased to —1.83. That is, they fare worse than the
honest users.

Though surplus sharing provides an effective mech-
anism that works as a disincentive against overstating
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task utilities, detailed experimentation is required to an-
alyze the complete implications of strategic behavior for
some particular environment.

9. CONCLUSION

Market-based approaches provide a valuable frame-
work for designing systems that must consider com-
plex tradeoffs in their decision-making. Although much
work has been done on individual aspects of market-
based systems (e.g., auction algorithms, agent bidding
strategies, etc.), there is very little work on developing a
complete system in a complex real-world domain such
as sensor management. Therefore, one of our contribu-
tions is to assess the design implications and compo-
nents involved in building such a system. To address
the issues that in the past have prevented the use of
market algorithms use for sensor networks, we have de-
veloped techniques including auction mechanisms for
aligning scheduling with mission objectives, approxi-
mate techniques for handling computational complexity
(A-MASM), pricing mechanisms for enforcing resource
constraints and surplus sharing mechanisms to reduce
the impact of strategic behavior. We have also shown
the system’s efficiency in a simulation environment, by
comparing with a weighted information-theoretic sensor
manager. A crucial advantage of the proposed mech-
anism is its flexibility. The proposed mechanism can
be easily adapted to an alternate sensor network sce-
nario without much additional work by suitably creat-
ing QoS charts for relevant network tasks (see Fig. 2)
and by adapting price equations to reflect utilization of
the appropriate network resources (see Section 5). This
contrasts with the current approaches based on approx-
imate dynamic programming that are based on domain-
specific and cumbersome formulation.

We are currently working on implementing these
mechanisms using real-world sensor data. We are also
working on developing an alternate non-myopic sen-
sor management approach for comparison with MASM.
Two possible choices are i) Maximum marginal return
(MMR) [4] sensor management approach that is ex-
tended to incorporate non-myopic scheduling behavior
and ii) an approximate dynamic programming based ap-
proach, similar to [37, 43, 44], that can handle multi-
sensor, multi-task sensor management problems. In fu-
ture, we plan to extend our market-based approach to
smart dust environments, which do not have a cen-
tralized sensor manager. We also plan to extend our
infrastructure to more effectively allocate information
goods and develop a market-based situation assessment
component. Current auction algorithms are generally
designed to handle the allocation of tangible goods.
However, we must adapt these e-commerce algorithms
to deal with information goods in the sensor-fusion
domain. Information goods (e.g., observations/reports),
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and the sensors/processes that generate them, may be
shared between agents to effectively complete compat-
ible tasks, where applicable. For example, if two users
are engaged in the same sub-goal, and want the same
information, then a single commodity can be commu-
nicated to both agents and will satisfy both of them.
We plan to make use of the current research in digital
auctions [10], but will need to apply it appropriately to
our domain.

We would also like to develop a market-based sit-
uation assessment component that learns valuable sit-
uation assessment cues from the market bids and price
information in the system. The situation assessment that
users perform typically relates only to their immedi-
ate surroundings and pertains to local information only.
A global perspective can be obtained by observing the
overall market trends in the sensor manager’s situation
assessment module. For example, a sudden increase in
the volume of bids from the users in one particular re-
gion of the environment could suggest an impending
enemy attack in that region. Current prices can convey
information about when resources are in high demand
and/or scarce. As part of this effort, collaborative filter-
ing approaches, similar to those used by Amazon [23],
could mine information from a combination of goal and
bid behaviors to detect strategic patterns. Eventually,
one could imagine a sensor management system that
recommends a new information product (e.g., a target
track) based on what previous users in similar situations
have selected.
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