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This paper addresses the problem of designing a fused scalar
objective function for autonomous surveillance—target search and
tracking (S&T)—by unmanned aerial vehicles (UAVs). A typical
S&T mission includes multiple, most often inherently conflicting,
objectives such as detection, survival, and tracking. A common
approach to coping with this issue is to optimize a fused scalar
objective—a convex combination (weighted sum) of the individual
objectives. In practice, determining the fusion weights of a mul-
tiobjective combination is, more or less, a guesswork whose suc-
cess is highly dependent on the designer’s assessment and intuition.
An optimal (trade-off) point in the performance space is hard to
come up with by varying the weights of the individual objectives.
In this paper the problem of designing optimal fusion weights is
treated more systematically in a rigorous multiobjective optimiza-
tion (MOO) framework. The approach is based on finding a set of
optimal points (Pareto front) in the performance space and solving
the inverse problem—determine the fusion weights corresponding
to a chosen optimal performance point. The implementation is done
through the known normal boundary intersection (NBI) numerical
method for computing the Pareto front. The use of the proposed
methodology is illustrated by several case studies of typical S&T

scenarios.
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1. INTRODUCTION

Due to the significant advancement of the unmanned
vehicle (UV) technologies in recent years, a great deal
of research effort has been devoted to the problem of
path optimization (planning and dynamic replanning)
of a single or multiple UVs in uncertain and possibly
hostile environments. While various UV mission sce-
narios have been considered in the literature, this paper
is focused on UAV surveillance missions which typi-
cally include search (detection and localization) of new
targets and possibly tracking of detected targets. The
techniques considered, however, can be easily applied
to other types of missions as well.

Most of the literature on autonomous UAV surveil-
lance deals with search oriented systems, e.g., [8], [7],
[4], [15], [14]. Multiple-UAV tracking has been ad-
dressed in [9], [12], and tracking combined with de-
tection has been dealt with in [10], [11]. In all of its
variations an S&T mission includes multiple objectives,
often conflicting to each other. At a high level these
objectives can be grouped into several different types
including, but not limited to, target detection, target
tracking (classification, recognition), UAV survivability,
UAV cooperation, UAV efficiency, and possibly others
[7]. Quantifying various objectives and defining a fused
scalar mission objective function to be optimized dur-
ing a mission is a crucial issue in the design of S&T
systems. Commonly, search-only systems use mission
objective functions made up of, most often probability-
based, gain/loss functions—e.g., cumulative detection
probability, survival probability, etc. [8], [7], [4], [15],
[14]. The tracking oriented systems of [9], [12] use in-
formation gain based mission objectives, in terms of the
Fisher information matrix (FIM) of the tracking filters,
and [10], [11] further include the detection objective
measured also in terms of FIM. This makes it possible to
use standard estimation fusion techniques [1] to fuse the
detection and estimation objectives into a scalar objec-
tive. However, expressing all objectives through FIMs is
difficult to extend to more complicated practical scenar-
ios, e.g., to include efficiency (UAV flight regime cost)
or other objectives.

Achieving the mission goal is inherently a multi-
objective optimization (MOQO) problem and in this pa-
per the problem of designing a mission objective func-
tion is treated as such—within the framework of the
MOO methodology. There are two issues associated
with the MOO formulation. First, due to the conflict
among the individual objectives the solution in general
is not unique. There is a set of optimal points (referred
to as Pareto front) such that, loosely speaking, each
optimal point corresponds to a certain trade-off among
the values of the objective functions. A decision has to
be made as to which Pareto optimal point provides the
“best trade-off”” among all the alternatives. The second
issue is implementational—solving an MOO problem
by the known computational methods is usually asso-
ciated with solving a great number of single nonlinear
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optimization problems and thus is not feasible in “real-
time” for an S&T mission.

A natural approach that circumvents these issues is
to optimize a weighted sum (WS)—convex combination
—of the individual objectives as a fused scalar mission
objective. Any unique solution of a WS optimization
problem is Pareto optimal, and for each Pareto opti-
mal point there exists a set of weights such that solving
the WS problem yields this point if the MOO problem
is convex. These properties as well as its simplicity is
what makes the WS objective attractive for online im-
plementation in S&T problems. It should be noted that
WS objectives have been used in a number of algo-
rithms for cooperative UAV target search systems [8],
[7], [15]. In the sequel we also assume that the mis-
sion objective function used for online optimization,
referred to as a fused mission objective, is a WS of
the individual mission objectives. Our focus is on the
problem of determining the fusion weights in an op-
timal manner when a WS fused mission objective is
designed.

Implementing a WS as a fused mission objective for
online UAV flight path optimization presumes knowl-
edge of the fusion weights and its effectiveness de-
pends heavily on these weights. In practice, their spec-
ification is done a priori, based on subjective consid-
erations about, e.g, the importance of the individual
objective functions. It is more or less a guesswork
whose success is highly dependent on the designer’s
assessment and intuition, and other uncertain factors.
For example, [8], [7], [15] state that priorities to the
specific individual objectives can be achieved by “ad-
justing” the values of the weights. However, to make
such an adjustment optimally is a nontrivial task for
the designer. The problem is that the choice of the
weights based on importance or priorities is not made
in the feasible objective space—the real performance
space. For complicated nonlinear and conflicting ob-
jective functions (such as in an S&T mission), a “rea-
sonable choice” of importance weights may lead to
a rather unacceptable trade-off (Pareto optimal point)
in the performance space. At the same time accept-
able trade-offs may be available for other, non-obvious
choices of fusion weights. In addition a trade-off point
in the performance space is hard to come up with by
simply varying the weights of the individual objec-
tives.

We argue that a more systematic and rigorous
way for designing the fusion coefficients that achieve
the “best trade-off” among the possible alternatives is
needed. Our approach is based on finding a set of
optimal points (Pareto front) and solving the inverse
problem—determine the fusion weights corresponding
to a chosen optimal performance point. The implemen-
tation is done through the normal boundary intersection
(NBI) numerical method of [3] for computing the Pareto
front.

The underlying idea for application of our method-
ology is to design the weights of the fused criterion for
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path optimization such that an acceptable trade-off is
achieved by this criterion when applied online to real-
life scenarios. This can be done by a comprehensive
trade-off analysis through Monte Carlo simulation of an
ensemble of typical S&T mission scenarios with differ-
ent detection maps, threat models, efficiency functions,
etc. Overall, the approach proposed in this paper is in-
tended to facilitate the design of fused mission objective
functions through more insightful determination of the
fusion coefficients of the individual objectives.

The mathematical formulation of the problem is
given in Section 2. Section 3 provides some necessary
background information about MOO and describes an
algorithmic solution. Results of several case studies,
illustrating the use of the proposed methodology, are
presented in Section 4. Conclusions are provided in
Section 5.

2. PROBLEM FORMULATION

We consider a team of UAVs engaged in searching
a given surveillance region for new (undetected) tar-
gets and tracking of detected targets in an uncertain,
dynamic, and risky environment. A UAV (sensor suite,
or just sensor for short) is denoted by s, s = 1,2,...,N,;
a (detected) target that is being tracked is denoted by
t, t=1,2,...,N,. The 2D surveillance region is parti-
tioned into N, cells numbered by n=1,2,...,N, and
p, = (x,,y,) denotes the center location of the nth cell
in Cartesian coordinates. n will also stand for indexing
a new (undetected) target at position p, = (x,,y,), 1.€.,
in cell n.

Next we present modeling of several objective func-
tions involved in typical UAV S&T mission scenarios,
and then we discuss the multiple objectives of a single
UAV.

2.1. Detection

For a sensor s, a detection event is modeled through
the detection probability wy, = mp(p,,p), where p, =
(x,,y,) and p = (x,y) denote sensor and target locations,
respectively. In general =}, is a function of the sensor
type and parameters, target type and parameters, sensor-
target geometry, environment, etc. Here for simplicity
we consider the dependence of 7}, only on the distance
between p, and p. For example, for a ground mov-
ing target indicator (GMTI) sensor a typical detection
function 7 = 7(p,.p) = mp[lp, — pl)) With [[p, — pl =
\/(x; —x)2 + (y, — y)?, similar to the one used in [10],
is shown in Fig. 1.

The probability of detecting a target ¢, known to
exist, by sensor s is 7 = 7p(p,,p,) = 7p(||p, — p,I)- If
a new target n exists at a given location p, = (x,,y,)
with probability 7. (p,,), then the probability of detection
by sensor s is 7" = 7,(||ps — p,|D7(p,). The target

existence' probabilities {m;(p,)}™ | are assumed known

"More precisely, it should be target perceivability [5], which is, how-
ever, beyond the scope of this paper.
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Fig. 1.

to the UAVs during the S&T mission via a map of
the expected distribution of targets over the surveillance
region.

2.2. Survivability

It is assumed that each target (either new or being
tracked) poses a threat to a UAV. The event that a sensor
s will survive a fire from a given threat 6 located at
py is modeled through the survival probability function®
m(|[ps — Pyll)- The probability of surviving the threat
from an existing target 7 is 7§’ = 7¢(||p, — p,|)). If a threat
(new target n) exists at location p, with probability
m(p,) then the probability of survival is

(1)

A survival probability function, assumed in the simula-
tion, is shown in Fig. 1.

" = 1= (1 = 75(|p, = PaD)7e(p,).

2.3. Tracking

For simplicity we assume that a Kalman filter is
used for tracking. The tracking objective of a UAV s
that tracks a target ¢ can be quantified through the filter
information matrix (IM) I = P~! where P is the filter
covariance matrix.> We adopt In|/| as a scalar measure*
of I, and the following approximate relationship for

2For simplicity, collision with other UAVs is ignored here but it can
be easily modeled in a similar manner.

3The superscript indices s, f and the subscript time index k are dropped
here to simplify notation.

4An alternative scalar measure that can be used is tr(J).

Detection and survival probabilities.

updating the expected IM [10]

I =1+ngrp H'R'H )
where I is the predicted IM, H is the measurement
matrix, and R is the measurement error covariance.
Thus the expected tracking information gain (TIG) ~,
is measured by

vy =In|I| =In|I| = In|l + ngm,H'R"'H| —In|1|.
3)

The expected TIG for sensor target pair (s,?) is a func-
tion of the distance |p,—p,|. i.e.. ¥ =~v(lp, — Pl
through 7§’ = ms(||p, — pilDs 7 = mp(|lpy — pil)), and
R = R(||p; — p,||) since the observation error depends on
the distance. The tracking objective of s is to maximize

~vr(|p, — p,||) with respect to p..

2.4. Other Objectives/Constraints

There are a number of other relevant objectives, such
as cooperation, engagement, efficiency, whose detailed
analysis is not needed for the description of our ap-
proach. The reader is referred to, e.g., [7], [15] for a
formulation and a more detailed analysis of other ob-
jectives. We limit our consideration here to the above
three objectives since they are the most significant for
an S&T mission but our approach is not limited to these
objectives—it allows other objectives to be easily incor-
porated.

2.5. Fusion of Multiple Objectives

We explain the approach and formulate the problem
for a generic single UAV S&T mission scenario since
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the mission objectives of a group of UAVs strongly de-
pend on many other factors such as the overall system
network architecture (distributed or centralized), co-
operation strategy, communication capabilities, whose
consideration is beyond the scope of this paper. The ap-
proach is, however, directly applicable to such multiple
UAV scenarios as well.

Denote by s the sensor under consideration, by
ny,Ny,..., g the cells that can be reached by the sensor
in the next time step, and by t,,7,,.. ol the targets that
are being tracked by s. Let ‘

= [my" .1y

"D
s,n SHR\ st Sty-
TrS - [ﬂ— ls ° S ’ S ls S]
s _ st Sh 8,17
PYT - [’YT ”YT L 7’YT S]

be the vectors of the detection, survival and tracking
objective functions of s.

Given target locations p, ., i=1,...R; and p,, j =
1,...T;, the immediate (one time-step ahead) goal of s
can be rigorously formulated as the following MOO
problem

7p(py)
max | w(p,)
pS
1r(ps)
where p, is the sensor position at the next time.

The dimension of the vector problem (4) can be sig-

nificantly reduced if the threats are assumed indepen-

dent. In this case the vector objective w{(p,) can be
replaced by the scalar objective

“

T;

7T5(p ) — Hﬂ_sn, H

As motivated in Section 1, in order to avoid the prob-
lems associated with a complete mathematical solution
of (4) for online implementation we assume that the
mission objective for online optimization is formulated
as the following WS single objective optimization prob-
lem

max[wpmh(p,) + Wss(py) + Wi (p)l - (5)
where w = [w},,w, w;.]" is a fusion weight vector with
components w; >0 and > ;w; = 1.

We aim at finding numerically (off line) the Pareto
front for problem (4) and for each point (7}, (p;), 75(p5),
~5(p;)) on the front determining the fusion weight vec-
tor w* such that the solution of (5) is p}, where w* is the
“best” fused combination of objectives given the trade-
off point in the performance space (wy(p;),75(p;),

¥+ (Py))-
3. SOLUTION METHODOLOGY

3.1.  MOO Background Concepts

Here we provide brief information about some basic
concepts of the MOO needed later. For details the reader
is referred to [6], [13].
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A multiobjective optimization problem in mathemat-
ical notation is posed as follows

f1 (x)
HX)

minimize f(x) = ) s

Ju(X)
subject to x € C = {x: h(x) = 0,g(x) <0}

where f;:R" =R, i=1,...,M, are the objective func-
tions, x is the decision variable vector, C is the feasible
set, and h(x) and g(x) are the constraint functions. Usu-
ally f(x), g(x), and h(x) are assumed twice continuously
differentiable. The image of the feasible set f(C) C RM
is referred to as feasible objective set, which is a subset
of the objective space RM .

In general, no single x exists that minimizes every
f; simultaneously. A common concept of optimality for
MOO problems is that of Pareto optimality. A decision
vector x* € C is Pareto optimal (PO) if there does not
exist another decision vector x € C such that f(x) <
fix*) for alli=1,...,M and 1;(x) < f(x) for at least
one index j. An objective vector y* = f(x*) is PO if its
corresponding decision vector x* is PO. Simply put,
an objective vector is PO if any attempt to improve a
component (individual objective) will deteriorate at least
an other component (individual objective). The set of all
PO objective vectors is referred to as the Pareto optimal
set, or Pareto front (PF). The complete mathematical
solution is to find the PF.

There are usually infinitely many PO solutions. In
practice solving an MOO means finding a PO solution
that satisfies the needs and requirements of a decision
maker. This is usually a person (e.g., a designer or end-
user) that supposedly has an insight into the problem,
can express preference relations between different so-
lutions, and can select a final, “best,” single solution.
Such an approach has been used in engineering appli-
cations to facilitate solving complex design problems.
The power of using the PF stems from the fact that it
reveals the entire spectrum of efficient alternatives for
a particular practical problem and allows to select the
“best” among them.

Perhaps the most natural approach to the MOO
problem is that of the weighted sum (WS): minimize
a convex combination of the individual objectives

M
minimize w'f(x) = Zwi fi(x)
i=1 )

subject to x € C

where w; >0 and - w, = 1. Any unique solution of
(7) is PO for the problem (6), and for each PO point
of (6) there exists a weighting vector w such that solv-
ing (7) yields this point if the problem (6) is convex
[6]. Unfortunately, despite the above properties, finding

JUNE 2009



points on the PF by varying the weighting coefficients
w has been found to suffer serious drawbacks. It has
been observed that small changes in w may cause
dramatic changes in the objective vectors and large
changes in w may result in almost unnoticeable changes
in the objective vectors. This instability is due to the
fact that the WS is not a Lipschitzian function of w
[6]. Clearly, this makes the relation between weights
and performance very complicated and non-intuitive.
Obtaining a good approximation of the PF directly,
by uniform sampling of w, may be extremely ineffi-
cient since it may lead to very uneven sampling of the
PF [2].

An effective method for numerical computation of
evenly distributed points on the PF for the MOO prob-
lem (6) is the normal boundary intersection (NBI)
method of [3]. This method suits very well our “in-
verse” problem, formulated at the end of Section 3—
determine the fusion weights corresponding to a cho-
sen optimal performance point—since it provides a di-
rect link between the NBI computed PF points and their
corresponding weights in the problem (7).

3.2. Fusion Weights Determination via NBI

A formal description of the algorithm that we use
for determination of the fusion weights through the NBI
computed PO points is given below. Its validity follows
from Claims 1 and 2, Section 6 of [3].

ALGORITHM

(I) NBI WEIGHTS: Generate 3 =
that 3, >0 and Y1, 3; = 1.

(II) NBI MINIMIZER: Obtain a point X* =X} by
solving (numerically) the nonlinear optimization problem

[Bys-.-.0]) such

min —¢
X,t

s.t. ®8 +m = f(x) — f*

xeC

®)

determined by computing the following:

1) x{ = argming . f;(x), i = 1,...,M—minimizers of
the individual objectives of (6);

2) £ = [[1(X), (X)), ..., fu (X)) —vector of indi-
vidual minima (utopia point) of (6);

3) @ = [f(x)) — 1, 1(x3) —1,... £(x},) — £ |—pay-off
matrix of (6);

4) n=—®[1,1,...,1)—quasi-normal search direc-
tion for (8).

(IIT) FUusION WEIGHTS: Obtain w* = [w],...,wy, I’
which corresponds to X* as

(1
wi = Z)\ NUR i=1,....M
i=1"%

ifall )\El)*, i =1,...,M have the same signs, where X" =
[)\(11)*,...,)\2,1,)}]’ is the vector of the Karush-Kuhn-Tucker
(KKT) multipliers for the equality constraint ®3 +tm =
f(x) —f*.

REMARK 1 In our Matlab program implementation
of the above algorithm, in Step II, we used the stan-
dard function for nonlinear constrained minimization
fmincon from the Matlab optimization toolbox for min-
imizing the individual objectives of (6) and solving the
problem (8). This function provides the KKT multipliers
A (" i=1,...,M, needed in Step 111, as output parame-
ters

REMARK 2 As shown in [3], the WS problem (7) with
w = w* determined in Step III has the solution x* = x;
determined in Step II. If w* cannot be determined in
Step III, i.e., some )\(1)* has a sign which is different

from the sign of S lAfl) # 0 then either the NBI
computed point X* = xj is not PO or x* is PO but lies
in a nonconvex part of the PF and cannot be obtained
by minimizing a WS of the objectives. For convex
problems (as most real problems are) such an issue does
not exist.

REMARK 3 An even spread of NBI points {x} })_,

will be obtained if the set of points {®3,}V_, forms
an uniformly-spaced grid on the simplex {®3} 4. This
is due to the fact that, according to (8), the points
obtained by the NBI are restricted to lie on a set of
parallel vectors (all parallel to the normal n) emanating
from the uniformly spread points {®3,}"_,. A simple
algorithm to achieve this is to generate the NBI weights
{B,}V_, uniformly, i.e., each component of 3, has a
value in [0,1/p,2/p,...,1] where p > 2 is an integer and
all components sum up to 1. This yields an uniform grid
with a total of N = (¥ +}f*1) points.

4. CASE STUDIES

As formulated in Section 2, a WS single objective
optimization problem given by (5) is to be solved on-
line during an S&T mission. The fusion weights w =
[wp, W, W] are designed (determined off-line) based
on a comprehensive trade-off analysis such that an ac-
ceptable trade-off will be achieved by the WS crite-
rion when applied online to real-life scenarios. As il-
lustrated below, such an analysis can be done through
Monte Carlo simulation of an ensemble of typical S&T
mission scenarios with different detection maps, threat
models, efficiency functions, etc. It includes obtaining a
representative set of trade-off points {(7},, 75, ~v;)} for
the problem (4), along with their corresponding weights
{w} in the problem (5), and can be done efficiently by
means of the NBI-based algorithm of Section 3.2. A
decision upon the “best” trade-off point (7}, 7", v5),
made by the designer, gives in turn the “best” fusion
weights w* to be implemented in the online optimiza-
tion problem (5).

To illustrate the use of the proposed technique in the
trade-off analysis for determination of the “best” fusion
weights we present next four case studies of UAV S&T
scenarios.
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Fig. 2. PF generated by NBI.

4.1. Detection vs. Survivability

1) Single target search: For a trade-off analysis
between the detection and survivability objectives we
consider first a simple scenario of one sensor s and
one new target n located at p, = (x,,y,). The UAV s
aims at solving the following two-objective optimization

problem
|:7TD(|ps — Py |):|
max .
s WS(”px_pn”)

By using the algorithm of Section 3.2 we obtain a
uniform representation of the Pareto front

C))

7rD(”ps _an) VS. 7TS(||ps _pn”)

and for each trade-off point (m,(||pi — p,ID.7s(||pi —
p,|)) of the PF we determine the corresponding weights
wp, and w such that the solution of the single-objective
optimization problem

n})ax[wEﬂ-D(pr_an)+W;7TS(||ps_pn||)] (10)

is ps.

The simulated scenario parameters are as follows.
The assumed detection and survival functions, shown
in Fig. 1, are

Tp(d) = exp(—(d/20)*)
ms(d) = 1 —exp(—(d/10)*)

(11D
(12)

where d = ||p, — p,| is the distance. Without loss of
generality it is assumed that p, = (0,0).

The Pareto front generated by the algorithm of Sec-
tion 3.2 is shown in Fig. 2. Its computation required

32
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solving 24 nonlinear single objective optimization prob-
lems of the type (8). For a rough comparison, the di-
rect “bruteforce” WS method for PF determination re-
quired a dramatically larger number of problems (5)
in order to provide a comparable representation of
the PF.

Next, for each optimal point on the PF (7, (|| pi—p, |1,
ms(||pk—p,l)) we determined the corresponding fu-
sion weights wj, and wg for the equivalent WS single
objective optimization problem. The results are given
in Table I. It reveals the available trade-offs between
the detection and survival probabilities and includes
the corresponding weights that yield these trade-offs
through maximizing the WS objective. What is left to
the user (or designer) is to choose one or more prefer-
able trade-off points and they will be automatically
achieved through the corresponding weights. For exam-
ple, if the selected trade-off performance from Table 1
is 7, = 0.8665 and 75 =0.899 (line 12) then the fu-
sion weights wj, = 0.651 and w§ = 0.349 are to be used
in (10). It should be also noted that Table I allows to
design a set of WSs corresponding to different tacti-
cal situations and thus give the UAV a capability to
operate in different modes depending on the situation
by simply switching the weights of the WS objective
function.

2) Multiple target search: Next we present a trade-
off analysis of the detection and survival objectives of
a sensor s in a search scenario with two targets n; and
n, known to exist at p, = (x,,y,), i = 1,2.

For simplicity it is assumed that the threats are
independent, and thus the joint survival probability
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TABLE II
Trade-Off Points & Fusion Weights

D s Yp Ws 77?)] 77?)2 T3 WZ] WZZ wy
0.9916 0.1256 0.9338 0.0662 0.98 0.98 0.04 0.4240 0.4240 0.1520
0.9818 0.2541 0.9240 0.0760 0.95 0.95 0.27 0.4466 0.4466 0.1068
0.9764 0.3172 0.9180 0.0820 0.92 0.92 0.50 0.4383 0.4383 0.1234
0.9643 0.4406 0.9027 0.0973 0.88 0.88 0.72 0.4112 0.4112 0.1776
0.9575 0.5006 0.8930 0.1070 0.83 0.83 0.89 0.3298 0.3298 0.3404
0.9419 0.6161 0.8670 0.1330 0.73 0.73 0.98 0.1130 0.1130 0.7740
0.9329 0.6711 0.8494 0.1506 0.59 0.59 0.99 0.0059 0.0059 0.9882
0.9228 0.7237 0.8273 0.1727 0.44 0.44 1.00 0.0001 0.0001 0.9998
09114 0.7735 0.7991 0.2009
0.8984 0.8198 0.7624 0.2376
0.8836 0.8619 0.7143 0.2857 . .

0.8665 0.8990 0.6510 0.3450 the thastnw1th0ut stile above threat 1nc.16pendenc.e as.—
0.8468 0.9301 0.5690 0.4310 sumption 7g¢"' and 7g"* should be considered as indi-
0.8241 0.9548 0.4677 0.5323 vidual objectives (as in the general MOO problem for-
0.7984 0.9727 03534 0.6466 mulation (4)), which would lead to a four dimensional
0.7701 0.9847 0.2412 0.7588

0.7396 0.9920 0.1478 0.8522 problem.

0.7077 0.9960 0.0822 0.9178 The parameters of the simulation are the same as in
0.6749 0.9981 0.0421 0.9579 the previous scenario. In addition, the second target n,
0.6417 0.9992 0.0202 0.9798 is 1 d —(10.0

0.6081 0.9996 0.0091 0.9909 is located at p, = (10,0).

is

S,

7T§ = 7TS ﬂ-;"nz = 7T-S(”ps _pnl ||)7TS(||ps _pn2||)

where the function 7¢(d) is given by (12).
The UAV s aims at solving the following three-
objective optimization problem

max

Tp(lps = Py, 1D
Tp([Py = Py, 1D
m5((lps = pu, 15125 = Pa, D
where 7, (d) is given by (11).

(13)

Fig. 3 shows the feasible objective region for detec-
tion and survival, and Fig. 4 shows the obtained Pareto
front.

Table II gives the fusion weights wy)™, wji"
of the WS objective function

and wg'

ny*

nox
Wp

7TD(Hps_pnl”)-l_‘/VD 7TD(||ps_pn2H)
+wsms (1P = P, 1125 = Py )
corresponding to the obtained Pareto optimal points

(TP = P, D> 7125 = Py, D 75 25 = Py, s
125 = P, ID)-
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Pareto Front: Survival vs. Two Detections

Survival Probability

Detection Probability Target 1 1

0.2
0.6 0.4

Detection Probability Target 2

0.8

Fig. 4. PF generated by NBI.

p=

20

(Xs’ s

y.)

T

|

x [km]

Target 2

Fig. 5. Pareto optimal locations of the UAV.

In addition, Fig. 5 provides information about the
locations of the UAV p; = (x},y;) that achieve Pareto
optimal performance.

4.2. Detection vs. Survivability vs. Tracking

1) Single target tracking: This scenario includes
tracking a single target t by a UAV s. According to (4)

34
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the UAV aims at solving the following two-objective
optimization problem

max
p s

The parameters of the simulation are as follows. The
target is located at p, = (10,0). The assumed detection

ms(llps — pilD

(14)
Yr(lps — P ID

JUNE 2009



x 107 Pareto Front: Tracking vs. Survival

M"MF

Tracking Gain
~

0.75 0.8

0.85 0.9 0.95 1

Survival Probability

Fig. 6. PF generated by NBI.

and survival functions 7,(d) and 7y(d) are the same
as in Case A.l (see Fig. 1). It is assumed that the
measurement error covariance is R(d) = (o2, +d>],
with o2, =0.1, and I =1, where d = ||p,—p,|| and
I denotes the identity matrix. H =[I, O,] where O
denotes the null matrix. Under these assumptions it can

be calculated from (3) that

dyr(d
VT(d)=21n<1 +%Td<2>>

O min

where m¢(d) and 7,(d) are given by (12) and (11),
respectively (see Fig. 1).

Fig. 6 shows the obtained Pareto front. Table III

gives the fusion weights w§ and wy. of the WS objective

wsTs(|lps — pi|D) + wryr(llpg — pl)

corresponding to the obtained Pareto optimal points
(ms(lps = plD. (P = pylD)-

2) Joint search & tracking: This scenario includes
tracking a single target ¢ and detecting a new target n
by a UAV s. The UAV aims at solving the following
three-objective optimization problem

7rD(”ps _an)
l‘l‘}iix 7T§(Hps_pn‘|’”ps_pt”) (15)
s = pdD

where under the independent threats assumption

SN _S,t _

mg =7g'ng = mg(|lps — palD7s Py — Pl

The parameters of the simulation are as follows. The
targets’ locations are p, = (0,0) and p, = (10,0). For
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TABLE III
Trade-Off Points & Fusion Weights

s T Wg Wr
1.0000 0.0033 0.9013 0.0987
0.9997 0.0043 0.6154 0.3846
0.9985 0.0052 0.3278 0.6722
0.9957 0.0060 0.1742 0.8258
0.9904 0.0068 0.1028 0.8972
0.9824 0.0076 0.0672 0.9328
09715 0.0082 0.0475 0.9525
0.9579 0.0088 0.0354 0.9646
0.9420 0.0093 0.0274 0.9726
0.9239 0.0098 0.0218 0.9782
0.9038 0.0102 0.0175 0.9825
0.8819 0.0105 0.0142 0.9858
0.8584 0.0108 0.0115 0.9885
0.8332 0.0111 0.0092 0.9908
0.8065 0.0113 0.0073 0.9927
0.7784 0.0115 0.0056 0.9944
0.7488 0.0116 0.0040 0.9960
0.7177 0.0117 0.0026 0.9974
0.6852 0.0118 0.0013 0.9987

the target under track it is assumed that R = (02, +
Under these assumptions it can be calculated from (3)
that

by =2l <1 L msdlpg —pnll);rs(llps —p,ll)?(llps —p,|)>
Onin T Hp\ 7p1H

Fig. 7 shows the feasible objective region for detec-
tion, survival and tracking, and Fig. 8 shows the ob-
tained Pareto front.
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Fig. 8. PF generated by NBI.
Table IV gives the weights wj,, w¢ and w; of the WS In addition, Fig. 9 provides information about the
objective locations of the UAV p; = (x},y;) that achieve the Pareto
sk, optimal performance.
wpmp([|py = ) + Wi T5 |y = alls 12— il pHmatp
+wryr(llps — pilD) 5. CONCLUSIONS
corresponding to the obtained Pareto optimal points A systematic and rigorous multiobjective optimiza-

(mp(|Ps = p,IDs 7Pt — palls 1Ps — PIDs 47 (lPi — p,|])).  tion based approach for designing a fused scalar ob-
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Fig. 9. Pareto optimal locations of the UAV.
TABLE IV

Trade-Off Points & Fusion Weights

S S
o Ts T Yp Ws wr

0.9750  0.2455 0.0039 0.1352  0.0031 0.8617
0.9728 0.3117 0.0038 0.1886  0.0107  0.8007
0.9686  0.3763 0.0037 0.2579  0.0205 0.7216
0.9632  0.4397 0.0036 0.3466  0.0339  0.6195
0.9567 0.5023 0.0036 0.4495 0.0516  0.4989
0.9491 0.5639 0.0035 0.5526  0.0736  0.3738
0.9404  0.6246  0.0034 0.6387 0.0990  0.2623
0.9304  0.6841 0.0033 0.6967  0.1276  0.1757
0.9187 0.7422 0.0032 0.7239  0.1607 0.1154
0.9047 0.7984  0.0032 0.7217  0.2018  0.0765
0.8875 0.8517 0.0031 0.6899  0.2573 0.0528
0.8655 0.9009 0.0030  0.6222  0.3385 0.0393
0.8356  0.9434  0.0030  0.5037 0.4636  0.0327
0.7933 0.9754  0.0029 0.3220  0.6466  0.0314
0.7339 0.9929 0.0029 0.1297 0.8372  0.0331
0.6606  0.9987 0.0029 0.0299 09356  0.0345
0.5819 0.9998 0.0029 0.0045 0.9605 0.0350
0.5019 1.0000  0.0029 0.0005 0.9645 0.0350
0.4218 1.0000  0.0029 0.0001 0.9649  0.0350

jective function for search and track missions of un-
manned aerial vehicles through weighted combinations
of objectives has been proposed. It allows to obtain a
representative set of possible trade-off optimal alterna-
tives and determine the weights for the combination of
objectives that meets a selected “best” trade-off. The
proposed methodology can greatly facilitate the design
of mission objective functions through performing in-
sightful trade-off analysis. Its usefulness has been il-
lustrated by results from several case studies of typical
search and track mission scenarios.

It should be kept in mind that the method used as
well as all numerical methods for general multiobjec-
tive optimization can at best provide only local Pareto
optimality and thus it can be hard sometimes to find ini-
tial solutions leading to the trade-off region of practical
interest.

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

Y. Bar-Shalom, X. R. Li and T. Kirubarajan
Estimation with Applications to Tracking and Navigation:
Theory, Algorithms, and Software.
New York: Wiley, 2001.

I. Das and J. Dennis
A closer look at drawbacks of minimizing weighted sums
of objectives for pareto set generation in multicriteria opti-
mization problems.
Structural and Multidisciplinary Optimization, 14, 1 (1997),
63-69.

I. Das and J. Dennis
Normal-boundary intersection: A new method for generat-
ing Pareto optimal points in multicriteria optimization prob-
lems.
SIAM Journal on Optimization, 8, 3 (1998), 631-657.

M. Flint, E. Fernandez-Gaucherand and M. Polycarpou
Cooperative control for UAVs searching risky environments
for targets. In Proceedings of 42nd IEEE Conference on
Decision and Control, vol. 4, Maui, HI, Dec. 2003, 3567—
3572,

N. Li and X. R. Li
Target perceivability and its applications.

IEEE Transactions on Signal Processing, SP-49, 11 (Nov.
2001), 2588-2604.

K. Miettinen
Nonlinear Multiobjective Optimization.

Boston: Kluwer Academic Publishers, 1999.

ON FUSION OF MULTIPLE OBJECTIVES FOR UAV SEARCH & TRACK PATH OPTIMIZATION 37



(71

(8]

(9]

[10]

(11]

38

K. Passino, M. Polycarpou, D. Jacques, M. Pachter, Y. Liu,
Y. Yang, M. Flint and M. Baum
Cooperative control for autonomous air vehicles.
In Cooperative Control and Optimization, Kluwer, 2002,
233-269.
M. Polycarpou, Y. Yang and K. Passino
A cooperative search framework for distributed agents.
In Proceedings of 2001 IEEE International Symposium on
Intelligent Control (ISIC’01), Mexico City, Mexico, Sept.
2001, 1-6.
M. Ridley, E. Nettleton, A. Goktogan., G. Brooker, S. Sukkarich
and H. Durrant-Whyte
Decentralised ground target tracking with heterogeneous
sensing nodes on multiple UAVs.
In Second International Workshop on Information Processing
in Sensor Networks, vol. LNCS 2634, Springer, 2003, 545—
565.
A. Sinha, T. Kirubarajan and Y. Bar-Shalom
Autonomous ground target tracking by multiple coopera-
tive UAVs.
In Proceedings of 2005 SPIE Conference on Signal and Data
Processing of Small Targets, vol. 5913, 2005, 59131V.
A. Sinha, T. Kirubarajan and Y. Bar-Shalom
Autonomous search, tracking and classification by multiple
cooperative UAVs.
In Proceedings of SPIE Signal Processing, Sensor Fusion,
and Target Recognition XV, vol. 6235, May 2006, 623508.

[12]

(13]

[14]

(15]

A. Sinha, T. Kirubarajan and Y. Bar-Shalom

Optimal cooperative placement of GMTI UAVs for ground
target tracking.

In Proceedings of SPIE Signal Processing, Sensor Fusion and
Target Recognition, Orlando, FL, Apr. 2004.

R. E. Steuer

Multiple Criteria Optimization: Theory, Computation and
Application.
New York: Wiley, 1985.

J. Yan, L. Yan, A. Minai and M. Polycarpou

Balancing search and target response in cooperative un-
manned aerial vehicle (UAV) teams.

IEEE Transactions on Systems, Man and Cybernetics, Pt. B,
36, 3 (June 2006), 571-587.

Y. Yang, A. Minai and M. Polycarpou

Decentralized cooperative search by networked UAVs in an
uncertain environment.

In Proceedings of 2004 American Control Conference, vol. 6,
5558-5563.

JOURNAL OF ADVANCES IN INFORMATION FUSION  VOL. 4, NO. 1 JUNE 2009



Vesselin P. Jilkov (M’01) received his B.S. and M.S. degree in mathematics from
the University of Sofia, Bulgaria in 1982, the Ph.D. degree in the technical sciences
in 1988, and the academic rank Senior Research Fellow of the Bulgarian Academy
of Sciences in 1997.

He was a research scientist with the R&D Institute of Special Electronics, Sofia,
(1982-1988) where he was involved in research and development of radar tracking
systems. From 1989 to 1999 he was a research fellow with the Institute of Parallel
Processing—Bulgarian Academy of Sciences, Sofia, where he worked as a key
researcher in numerous academic and industry projects (including international) in
the areas of estimation, target tracking, sensor data fusion, and parallel processing.
In 1999 he joined the Department of Electrical Engineering, University of New
Orleans, as a visiting scholar and was an assistant professor from 2003 to 2009.
At present he is an associate professor. He has been engaged in teaching and
conducting research in the areas of hybrid estimation and target tracking. His current
research interests include stochastic systems, nonlinear filtering, applied decision &
estimation, target tracking, information fusion.

Dr. Jilkov is author/coauthor of over 75 journal articles and conference papers.
He is a member of IEEE, ISIF, and SIAM.

X. Rong Li (S’90—M’92—SM’95—F’04) received the B.S. and M.S. degrees from
Zhejiang University, Hangzhou, Zhejiang, PRC, in 1982 and 1984, respectively, and
the M.S. and Ph.D. degrees from the University of Connecticut, in 1990 and 1992,
respectively.

He joined the Department of Electrical Engineering, University of New Orleans
in 1994, where he is now University Research Professor, and Director of Information
and Systems Technology Research Center. During 1986—1987 he did research on
electric power at the University of Calgary, AB, Canada. He was an assistant
professor at the University of Hartford, West Hartford, CT, from 1992 to 1994.
He has authored or coauthored four books, seven book chapters, and more than
200 journal and conference proceedings papers. His current research interests
include signal and data processing, information fusion, target tracking, detection,
and classification, statistical inference, performance evaluation, stochastic systems,
and electric power.

Dr. Li was elected President of the International Society of Information Fusion as
in 2003 and a member of Board of Directors (since 1998); served as general chair for
2002 International Conference on Information Fusion, and steering chair or general
vice-chair for 1998, 1999, and 2000 International Conferences on Information
Fusion; served IEEE Transactions on Aerospace and Electronic Systems as an
associate editor (1995-1996) and as editor (1996-2003); served Communications
in Information and Systems as an editor since 2001; received a CAREER award and
an RIA award from the U.S. National Science Foundation. He received 1996 Early
Career Award for Excellence in Research from the University of New Orleans and
has given numerous seminars and short courses in North America, Europe, Asia,
and Australia. He won several outstanding paper awards, is listed in Marquis’ Who’s
Who in America and Who’s Who in Science and Engineering, and consulted for several
companies.

ON FUSION OF MULTIPLE OBJECTIVES FOR UAV SEARCH & TRACK PATH OPTIMIZATION 39



