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Most automotive perception systems leverage radar sensors for

their long-range measuring capability and weather robustness at eco-

nomic costs. A downside is the rather low spatial resolution. It com-

plicates the estimation of pose and size of an extended object. High-

resolution sensors facilitate techniques like shape recognition based

on a single measurement. But even these sensors only provide sparse

measurements at larger distances, which makes instantaneous object

detection highly ambiguous. We propose an approach that incorpo-

rates the current state estimate to probabilistically identify the true

origin of a detection and thereby decreases its association ambiguity.

It uses all given measurement data, including the radial speed. This

improves the information gain for mass-market sensors with a high

measurement uncertainty. We first perform a parametrization of the

object using a set of components. They describe the characteristics of

a detection in dependency of the current state estimate and various

physical relations. Their superposition resembles the spatial detection

likelihood of the entire object. Subsequently, we perform a computa-

tionally efficient state update that exploits the probabilistic association

of the detection to the components. All steps take about 20µs of com-

puting time. In this article, we demonstrate this technique in an ap-

plication that tracks vehicles with radar detections. Besides providing

details on the algorithm and a formal description of the components,

we also illustrate the probabilistic association with examples. Finally,

we discuss the performance in real-world tracking scenarios and out-

line interfaces tomulti-hypotheses andmulti-sensor fusion algorithms.

This paper is accompanied by an exemplary MATLAB implementa-

tion and a demonstration video.
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I. INTRODUCTION

Advanced automotive perception systems have to
meet high expectations in terms of cost-effectiveness,
performance,and robustness.The fusion of different sen-
sor types accommodates these requirements by exploit-
ing the cumulative strengths. Monocular cameras are
widely used to identify objects as they provide semantic
information. However, they do not provide range mea-
surements. This impairs the immediate estimation of the
position and the extent of objects and often requires the
incorporation of model knowledge. Stereo cameras are
typically limited to short ranges [11].On the other hand,
LiDAR sensors mainly capture high-resolution spatial
information on an object’s contour, which encapsulates
the pose and the extent of an object. Radar sensors also
provide full spatial information, but with a lower reso-
lution.However, their major advantages are their ability
to directly measure radial speed and their resistance to
tough weather conditions due to their lower frequency
range.

The nature of extended objects states that multiple
detections might be caused by arbitrary parts of the ex-
tent of the object. High-resolution sensors provide such
a large quantity of detections that the contour of ob-
jects can be spotted in a single measurement [8]. The
thereby captured object instances can be directly filtered
to their corresponding tracks [28]. However, these ap-
proaches are not feasible if only sparse measurement
data are available, resulting in few or no resolved de-
tections per object. This issue is not necessarily limited
to mass-market sensors; also high-performance sensors
only provide sparse measurement data at respective dis-
tances. At this point, a contour (or structure) extraction
from a single measurement is no longer possible. To sus-
tain the tracking, the detections need to be directly fil-
tered to their tracks. The arising challenge is the correct
determination of the origin of each detection without
any structural information from the current measure-
ment data. Especially in the case of a radar sensor, the
association problem is tough: The lateral measurement
noise is substantial due to its measurement principle [25]
and depends on the complexity of the surrounding.

We propose a filtering approach that tackles this
association problem. First, it splits the object in com-
ponents with individual, physically deduced detection
characteristics. Second, it incorporates the current ob-
ject state estimate to model the current statistical ap-
pearance of these components. We apply this approach
to radar sensors for vehicle tracking in this work. The
utilized radar sensors provide a set of points, which is
called scatter data. Each point represents a so-called
detection, which represents a maximum of local reflec-
tivity and is given by measurements of position, radial
speed, and amplitude. Our approach not only uses the
position measurement but also exploits the radial speed
measurement. This shifts the association problem to a
space of higher dimension and improves its resolution.
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A. Related Work

Adaptive cruise control has been one of the first pop-
ular automotive radar applications.The radar detects ve-
hicles in direction of travel and returns their distance
and speed. For this application, it is sufficient to obtain
a single measurement for an object. Modern advanced
driver assistance systems like the lane change assistant
require pose and extent information. Filter techniques,
which use radar measurements to estimate both pose
and extent of objects, can be grouped into four cate-
gories. In 2017, Granström et al. [14] defined three cat-
egories: generic spatial models, set of points on a rigid
body (SPRB) models, and physical models. In the past
few years, however, machine learning approaches have
also been adopted in this area and represent a popular
fourth category.

Spatial models define the extent by a shape or
function. Popular approaches incorporate ellipse-based
models [24], probabilistic density fields given by Pois-
son processes [12], [13], radius functions [14], [38], or
any kind of functional shape descriptions by Gaussian
processes [27], [35]. As these approaches can be ex-
pressed in closed functions, they show high runtime
performance. Additionally, they do not require explicit
model knowledge and are therefore suitable for a wide
spectrum of objects. However, the lack of model knowl-
edge impairs the extent estimation accuracy and, con-
sequently, also the estimation of the pose and the kine-
matics. The impact of the observation perspective and
model-specific features like micro-Doppler cannot be
exploited.

SPRB models use discretized spatial model descrip-
tions instead of continuous ones. According to SPRB,
the object can be modeled by a set of discrete scatter-
ing points. The location of these points can be estimated
online [16], or by incorporating some model knowledge.
In this manner, Bühren et al. [9] place the points on
typical reflection sources of vehicles like wheels and
corners. They also consider some visibility constraints.
Hammarstrand et al. [17] propose an adequate SPRB fil-
tering approach.Amajor downside of SPRB is the miss-
ing ability to model continuous, extended parts of the
object.

Physical models are powerful and accurate in de-
scribing the object and predicting its expected measure-
ments. They are often composed of an object model and
ameasurement model.The accuracy of the object model
varies from geometric shapes to 3D computer models.
The measurement model is an inference of physical con-
siderations. Ray tracing methods [23] incorporate any
desired level of model knowledge and achieve high re-
production accuracy. The prevalent downside is a sub-
stantial runtime overhead, which often renders them fu-
tile in real-time multi-object tracking applications. The
poor runtime performance is not only due to the de-
manding modeling computation but also due to the
tracking itself that often requires particle filters.

A both new and by now very popular approach to
model radar detections is machine learning. It correlates
the state of objects to their obtained detection charac-
teristics in annotated training data. These approaches
vary from variational Gaussian mixtures (VGM) [19],
[21], [30], [37] to deep neural networks [10], [36]. The
latter was facilitated by the recent progress in 4D high-
resolution imaging radars that provide a large number
of detections per target in a single measurement frame
[41]. Machine learning approaches allow accurate mea-
surement reproductions and circumvent expensive man-
ual statistical studies on the sensor model. The sensor-
specific measurement characteristics are learned from
the measurement data. Their overall performance de-
pends on the spectrum of the scenarios in the training
data. If the training data does not contain more complex
scenarios like different kinds of occlusion, then the out-
come is undefined. Additionally, the network needs to
learn new training data to adapt to new sensors or object
types; it cannot be parametrized easily.However, thanks
to recent advances in GPU development, their runtime
performance allows real-time usage.

B. Previous Research

With the exception of some machine learning ap-
proaches, most of these models do not really match our
observed data. This seems to be mainly due to oversim-
plification or incomplete modeling of the objects, i.e., ve-
hicles.As a result, our aim is the development of amodel
that is physically derived to ensure generalizability. Its
abstraction is chosen at a level that allows for its real-
time usage in tracking applications, but without sacrific-
ing performance potential.

Our work has began with a radar measurement anal-
ysis. In [2], we performed measurement campaigns to
record the reflection characteristics of vehicles. These
campaigns cover a spectrum of relative poses between
the radar sensor and the target vehicle. An algorithm,
which sorts, accumulates, and statistically re-weighs the
measurement data, extracts a detection probability map
in target coordinates for any desired relative observation
pose. These results reveal a high impact of the observa-
tion angle. Unsurprisingly, the outer parts of the vehicle,
which are oriented perpendicular toward the radar sen-
sor, cause the most significant portion of the object’s re-
flectivity. Moreover, the corners are highly reflective as
a part of the round curve is always perfectly orthogonal
toward the sensor. Next to the vehicle sides and corners,
the wheels are also significant reflection sources.Wheels
that are facing toward the radar reflect well due to the
wheel rim. But the measurement analysis reveals that
the opposite wheels are also often spotted in the radar
measurement data. The low mounting height of series
radars often causes a line of sight between the sensor
and the opposite wheels.Opposite-wheel visibility is also
given by underbody reflections, i.e., depending on the el-
evation angle of incidence, the beam is reflected by the
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ground surface and the vehicle underbody. This effect
causes a slight spatial detection probability for the com-
plete underbody extent of the vehicle. On the contrary,
inner parts of the vehicle are rarely visible. Varnish and
windows heavily attenuate the beam amplitude. Roof
structures are visible if the vertical field of view of the
sensor is sufficiently large.

In [3],we complemented this work with a radar mea-
surement model. Its primary aim is the preferably ac-
curate probabilistic prediction of measurement data for
any given target state.Themeasurementmodel is a phys-
ical one. It achieves a generic measurement reproduc-
tion and an inherent incorporation of effects like mu-
tual occlusion. Typically, the latter is hard to accomplish
when dealing with statistical or oversimplified models.
Our model separates the generation process of detec-
tion measurements in abstraction layers like physical
wave distribution, signal reception, and peak detection.
We utilize this measurement model to evaluate models
against real-world data,but its runtime performance hin-
ders an immediate usage in multi-hypotheses tracking
applications.

In [4], we enhanced both the measurement analysis
and the measurement model with the Doppler-derived
radial speed measurement. The radial speed measure-
ment provides valuable information as it is directly mea-
sured and subject to only low measurement noise. Be-
sides, it plays a crucial role in determining the angle
of the detections. The radial speed measurement can
be predicted for any point of the rigid object body as
long as the relative kinematics of the object and the
radar sensor are known. Parts like legs or wheels that
move relative to the rigid body span a range of poten-
tial Doppler measurements. The radial speed measure-
ments of moving parts of a moving object are known as
micro-Doppler measurements and are subject to ongo-
ing research [18], [32]. Current approaches [20] explic-
itly detect micro-Doppler measurements of vehicles in
imaging radar data, extract the wheels by exploiting the
Doppler spectrum [39], and use their position to track
their pose.

C. Our Contribution

While our previous work has primarily elaborated a
preferably precise and well-founded but computation-
ally expensive physical model, this article presents its
abstraction that can be utilized in real-time tracking ap-
plications. As far as possible, its functional structure is
derived from physical and technical interrelations. Ac-
cording to our findings, the division of an object into dif-
ferent components yields a good modularizability and
allows for individual measurement characteristics. The
proposed abstracted model uses this mechanism and
therefore resembles primarily the SPRB approaches.
The main differences are that our model also supports
and utilizes spatially extended, continuous components.
Besides, we exploit the kinematic measurement of a

Fig. 1. The expected spatial detection likelihood of a moving vehicle
in a left turn. The measurement space consists of the two-dimensional

Euclidean position in target coordinates T(x, y) and the
Doppler-deduced radial speed measurement vr shown in the z-axis.
To illustrate the three-dimensional detection likelihood, this plot
shows the isosurface of an examplary detection likelihood. The

vertically extended tubes are caused by the micro-Doppler effect of
the wheels. The azimuth view angle corresponds to the observation

angle of the radar sensor. Due to the left turn, the front of the vehicle
moves away faster than the rear.

detection, e.g., the radial speed, to improve the origin
search and to perform a direct kinematic state update.
Figure 1 outlines the modeled joint measurement space
and illustrates the expected multidimensional detection
likelihood of a moving vehicle. The state of the compo-
nents is linked to the state vector using type-dependent
definitions. Concerning the components themselves, we
consider not only angular visibility regions (similar as
proposed by [9]) but also the reflectivity, the kinematic
Doppler properties, and physical effects like scattering.
This addition of features, though, requires more model-
ing effort. The proposed spatial measurement function
described in this article can be used independently from
the proposed tracking approach in any Bayes-based fil-
ters. It also outputs the expected number of detections
for any given object state.

Learning-based approaches have the essential ad-
vantage that learning the reflectivity of an object does
not require expert knowledge. However, learning meth-
ods usually learn the complete stack of measurement
generation and cannot split different components, e.g.,
sensor model from object model. The proposed ap-
proach aims for parameterability and exchangeability
of all relevant modules. New object types can be sup-
ported by partial adjustments of the object model on
the basis of a datasheet, for example. There is no need
for gathering and annotating new training data and re-
learning, especially if only partial properties have to be
adjusted. Physical effects like scattering are mathemati-
cally described and therefore generically utilizable, and
it is possible to apply assumptions like symmetry for a
subset of the object model. Another drawback is the
computing effort that comes, i.e., with the high dimen-
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sionality of the VGM. Scheel et al. [30] still manage,
though, to incorporate the radial speed profile of an ob-
ject. The origin association and object tracking is com-
monly performed using probabilistic multi-hypothesis
tracking (PMHT) [33], particle filters or labeled multi-
Bernoulli filter (LMB) [30]. In case of PMHT applica-
tions, the computation of the association probabilities
[7, eq. (19)] is similar to our approach. The subsequent
tracking, however, optimizes the association cost using
the expectation-maximization algorithm.We use a prob-
abilistic Kalman-based approach [5]: The usage of ex-
plicit mathematical functions allows for a very fast ex-
ecution time of our approach. The complete state up-
date takes about 20µs, rendering it suitable for multi-
hypotheses tracking applications. Besides, our approach
inherently supports and utilizes extended structures of
the object model like vehicle sides. This avoids their ap-
proximation with a large number of Gaussian mixture
components and reduces both computing effort and bias
effects.

Another key functionality of the proposed filter is
its treatment of sparse measurement data. In contrast to
applications requiring imaging or high-resolution data,
where, e.g., wheels can be spotted in a single measure-
ment, this filter is suitable for radars receiving about two
detections per target and measurement epoch on aver-
age. It performs a probabilistic association and uses the
state estimates to infer the origin of the detections.

We provide an implementation of the proposed fil-
tering approach for vehicle tracking and finally a dis-
cussion of its tracking performance based on real-data
examinations. We also provide a MATLAB code that
implements the proposed object modeling and state up-
date.1

D. Structure

The goal of the presented approach is to update the
state x using radar detection measurements y at times-
tamp k:

p(xk|y1:k) ∝ p(yk|xk) · p(xk|y1:k−1). (1)

To solve the origin search problem, we model the tar-
get object as a complex of spatially distributed scatter-
ing sources (components). They show different statisti-
cal properties in terms of detection rates and kinematic
measurements. We exploit this heterogeneity to obtain
statistical inference regarding the possible origin of the
detection. The division of the object into these compo-
nents j ∈ J resembles Gaussian mixtures, allowing the
marginal measurement likelihood to be specified in the
following format, where o( j) is the mixture weight:

p(yk|xk) ∝
∑
j∈J

o( j)(x) · N (·) . (2)

1Available at
https://github.com/UniBwTAS/sparse_radar_tracking.

Table I
The Notation and Some Variables of This Article

Symbol Description

x (target) state vector
y single detection measurement
x� predicted state (prior)
y� predicted measurement (given x�)
x̂ updated state (posterior)
x, y scalar Euclidean coordinates
(x, y) Euclidean position vector (2D)
F (·) reference coordinate frame F ∈ { world frame W, ego

vehicle frame E, sensor frame S, target object frame
T}

(·)(K) component identifier K

Each component thereby abstracts technical principles
that strongly depend on the object type and its current
state.

This article is structured bottom-up: Section II spec-
ifies the notation and the utilized variables. Section III
states our sensor model. Section IV denotes the object
modeling concept and its implementation for a vehicle.
The fundamental technical properties for each compo-
nent are stated.SectionV carries this on to a spatialmea-
surement function that resembles themarginal measure-
ment likelihood. It is given for each component; the su-
perposition of all likelihoods describes the spatial mea-
surement function for the complete object. This mea-
surement function can be used in Bayes filters. In Sec-
tion VI, we utilize the predictive measurement likeli-
hood p(yk|y1:k−1) based on the state prediction to deter-
mine the origin for a given detection measurement y in a
probabilisticmanner.SectionVII proposes ourBayesian
filtering approach. It explains the state update of a sin-
gle state hypothesis.The performance of the algorithm is
then examinedwith real-world tracking scenarios in Sec-
tion VIII. We briefly outline interfaces to multi-object
multi-sensor tracking frameworks in Section IX and fi-
nally discuss the filter in Section X. This article is con-
cluded in Section XI and provides an outlook for future
work in Section XII.

II. NOTATION, VARIABLES, AND COORDINATE
FRAMES

Table I briefly outlines frequently used variables and
the notation of this article. The therein referenced co-
ordinate frames are required for coordinate transforma-
tions of the detection measurements and illustrated in
Fig. 2.A detection measurement y is initially obtained in
polar sensor coordinates and consists of

� range measurement r with measurement noise σr,
� angle measurement α with measurement noise σα ,
� Doppler measurement ṙ with measurement noise σṙ,
� amplitude or radar cross section measurement a.
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Fig. 2. The coordinate systems. The odometry provides a
time-variant transform WHE(t) from the world coordinates W to the
ego vehicle coordinates E. The static mounting location EHS of the
treated sensor establishes the sensor coordinate system S. These
transforms project the detection measurement D given in sensor
coordinates S(xD, yD) into world coordinates W(xD, yD). The state
estimate x provides the reference point of the target T in world

coordinates.

The position of the detection in Cartesian sensor co-
ordinates S(xD, yD) is given by

S(xD, yD) :=
S [
xD
yD

]
=

S [
r · cosα

r · sinα

]
, (3)

and the Cartesian measurement noise matrix in sensor
coordinates SRxy is

SRxy = R(α) ·
[
σ 2
r 0
0 (2r · tan(σα/2))2

]
· R(α)ᵀ, (4)

where R(·) is the two-dimensional rotation matrix.
These conversions are subject to bias effects when used
in state filters. Dedicated compensation techniques are
provided by Bordonaro et al. [6], but these effects are
negligible compared to real-world measurement phe-
nomena the filter has to deal with in this application. A
transformation matrix EHS from sensor coordinates S
to ego coordinates E, which reflects the mounting posi-
tion, and a time-variant egomotion transformation ma-
trix WHE(t) from ego toworld coordinates convert these
parameters into world coordinates. The position of the
detection in world coordinates W(xD, yD) is given by

W [
xD
yD

]
= WHE(t) · EHS ·

S [
xD
yD

]
. (5)

Therefore, its measurement noise in world coordinates
can be derived as
WRxy = R

(WϕE(t) + EϕS
) · SRxy · R (WϕE(t) + EϕS

)ᵀ
,

(6)
with the mounting yaw EϕS being deduced from EHS

and the heading of the ego vehicle WϕE(t) provided by
WHE(t).

Further variables in this article, like the state vectors,
are explained when they are introduced.

III. SENSOR MODEL

This section briefly denotes some sensor-specific pa-
rameters and their derivations.Given a specific target re-

flector, the radar sensor will measure a detection with a
particular detection probability. It manifests in the de-
tection rate o, which describes at which rate a detec-
tion is invoked by a specific reflectivity at a certain dis-
tance r. As this rate depends both on the sensor and
the individually measured reflectivity, we factor out the
sensor-specific part: the reference rate oR(r).We address
not only the resolution ability of the sensor but also
firmware-sided tuning. In fact, the signal strength of a
radar echo decreases with the fourth power of the dis-
tance, but the firmware often neutralizes this effect by
applying adapted trigger and noise thresholds in the con-
stant false alarm rate algorithms [29]. This way, the de-
tection rate of an object keeps almost constant over
the distance, until the maximum measurement range of
the sensor is reached. At this point, the detection rate
drops rapidly.However, the exact effect should be deter-
mined by measurement analysis for each sensor model.
We model the reference rate oR(r) of our sensor with

oR(r) = a · erf ((rmax − r)/d) , (7)

using the error function erf(·)

erf(x) = 2√
π

∫ x

0
e−t2dt, (8)

and the parameters effective maximum range rmax (e.g.,
40m), decay magnitude d (e.g., 10m) and amplitude a,
which depends on the reference reflectivity. The refer-
ence reflectivity can be chosen arbitrarily here; we have
selected the corner of a car. If the amplitude a is de-
termined by measurement analysis, then the reference
rate already incorporates the ratio for false negative
and true positive detections. The false positive detection
rate causes clutter measurements and needs to be deter-
mined independently.

The detection measurement is spread around the
true position of the target according to its measurement
noise characteristics. They are mostly given in sensor co-
ordinates to match the physical measurement process
and are described by the scalar uncertainties introduced
in Section II. Some sensors provide these uncertainties
for each measured detection themselves. This allows for
the incorporation of certain ambiguities in the sensor-
internal preprocessing that depend on the environment
[4].

Another important parameter is the bandwidth of
the sensor. It affects the resolution capability. Besides
the number of resolved detections, it also determines a
kind of longitudinal “penetration” depth: The larger the
range resolution is, the more reflections of a larger depth
of the object (e.g., caused by vertical tapers) are received
inseparably. The peak detection of the sensor then sig-
nals a longitudinal measurement, which is smeared over
the penetration depth, and therefore needs to be consid-
ered as an additive term of the range measurement. The
actual incorporation of this term is firmware-specific and
depends on the structure of the target.
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These parameters describe the radar sensor and aim
for its exchangeability without the need to touch the ob-
ject model. However, if a sensor is utilized that changes
the relative detection rate ratio between the individual
components of the object, an adjustment of the object
model might be required, since this ratio is primarily ex-
ploited in the presented approach.Wehave not observed
such a behavior in comparable sensor series, though.Ob-
taining the extrinsic and intrinsic sensor parameters by
dedicated measurement campaigns and ground-truth-
assisted analysis is often not trivial despite automation,
as it requires manual effect decomposition and can take
several days.

IV. OBJECT MODEL AND A VEHICLE
IMPLEMENTATION

The abstraction of the physical model (i.e., [3], [4])
has to meet diverse requirements. Its usage in a multi-
hypotheses tracking framework must meet real-time
constraints, although an oversimplification of the pre-
cise physical model impairs the tracking performance.
A major criterion is the correct reproduction of the ob-
ject contour, since any deviation causes a position bias
of the object estimate. The measurement data show a
strong impact of the viewing angle, which thus needs to
be modeled accordingly. Additionally, the data does not
only show a dependency on occlusions by other objects
but also on self-occlusions. For instance, wheels that are
facing the sensor might shadow opposite wheels.

Our approach is to model an object by the super-
position of a certain number of components: the object
is split into a set of separate, individually, and formally
described parts. This method gives the opportunity to
use different measurement models, visibility constraints,
and detection likelihoods for each component. The
number of components should preferably be small to
achieve fast computation times, but sufficiently large to
allow a precise representation of the object. In the ex-
ample of our vehicle model, suitable component classes
are wheels, corners, sides, and the body. A component
class can have multiple instances. Physical effects like
the micro-Doppler can be specifically implemented for
each class and can be exploited to tightly associate a
detection to a component. The visibility constraint of
a component class can also depend on other compo-
nents in advanced models. This enables the modeling of
self-occlusions or, in multi-object tracking applications,
occlusions by other objects.

The following describes a set of components that
jointly define the measurement characteristic of a ve-
hicle. This set and its configuration have been obtained
by recording and analyzing the reflection characteristics
of various vehicles, among them a compact class vehi-
cle and a sport utility vehicle in particular as edge cases
[2].Besides, short-range and far-range sensors have been
utilized. According to our findings, the set of compo-
nents comprising wheels, corners, sides, and the body

is a good compromise between precision and complex-
ity regarding the utilized radar sensors. This set results
in 4 component classes and 13 component instances.
Each component class is defined by a set of attributes
A(·) = { position T(xC, yC)(·)(x), position uncertainty

Cov
(
T(xC, yC)(·)

)
, detection rate o(·)(x), radial speed

model v
(·)
r (x)}. The position T(xC, yC)(·)(x) denotes the

position of the component in the target frame T. The

position uncertainty Cov
(
T(xC, yC)(·)

)
describes the un-

certainty of this position and can also be used to model
a slight extent with an additive noise term. The detec-
tion rate o(·)(x) describes the expected number of de-
tections this component invokes. It depends mainly on
the reflection characteristics of the component and its
visible angular extent. The visible angular extent is usu-
ally estimated using the target state and the pose of the
radar sensor toward the object. The radial speed model
v
(·)
r (x) denotes the measurement model of the radial
speed measurements for the given component. We de-
duce the mathematical correlation of these attributes
to the state vector using the physical relations found in
[3], and parametrize those accordingly to match the ob-
served data. In this work, we use the plain extent state
vector xext = [l,w]ᵀ to estimate the length l and the
width w of the object to preserve a low computing ex-
pense. As a result, all remaining required information,
like the wheel positions, is statistically derived from both
variables. Alternatively, any desired parameter can also
be included in the state vector. Apart from that, the fol-
lowing component descriptions are based on a constant
turnrate and velocity (CTRV) state model, which de-
scribes the position (x, y) and heading ϕ of the object
along with its kinematical properties translational speed
v and yaw rate ω. The state vector is finally given as

xkin = [x, y, ϕ, v, ω]ᵀ, (9)

x = [xᵀkin, x
ᵀ
ext]

ᵀ. (10)

The kinematic transition matrix yields [31], [34]:

xkin,k+1 =

⎡
⎢⎢⎢⎢⎣
xk + vk/ωk · (+ sin(ωk�t + ϕk) − sin(ϕk))
yk + vk/ωk · (− cos(ωk�t + ϕk) + cos(ϕk))

ϕk + ωk�t
vk
ωk

⎤
⎥⎥⎥⎥⎦ ,

(11)
and predicts the state epoch k + 1 from epoch k by in-
tegrating the sample time �t. When the yaw rate ω is
close to zero, the transition matrix should be simplified
to avoid numeric issues:

xkin,k+1 =

⎡
⎢⎢⎢⎢⎣
xk + vk · cos(ϕk)�t
yk + vk · sin(ϕk)�t

ωk�t + ϕk
vk
ωk

⎤
⎥⎥⎥⎥⎦ . (12)

The transition matrix of the extent state vector xext for
rigid objects is the unit matrix 12×2.
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In the following, the attributes for the four compo-
nent classes—corners, wheels, sides, and body—are de-
clared.

A. Vehicle Corners

The corners of a vehicle benefit from a good reflec-
tion effect. As discussed in Section I-B, the curvature of
a visible corner exposes a spot that is perfectly perpen-
dicular to the line of sight of the radar sensor. This spot
reflects electromagnetic waves back to the radar sensor
with only minimal deflection and thereby obtains an ex-
cellent visibility in themeasurement data.Consequently,
we model the corner as a point target. The exact posi-
tion of the reflective spot depends on the shape of the
vehicle and is empirically derived from the extent state
vector. We model the uncertainty of the position with
an additive Gaussian noise term. The resulting descrip-
tion is noted in Table II and graphically represented in
Fig. 3.

The detection rate depends on several factors, where
each models a specific influence on the detection rate.
The corner detection rate o(C) depends here on three
factors. The first one is the reference rate, oR(r), as dis-
cussed in Section III. The second factor, the component
base rate oC, now puts the reflectivity of a component
into relation to the reference reflectivity. The product of
both factors thus resembles the detection rate of a spe-
cific component. In the case of the corners, o(C)

C is con-
sequently 1, and the amplitude a of the reference rate
has been adjusted to our findings. The third factor o(C)

V is

-1 0 1 2 3 
Tx in m

-1

0 

1 

T
y 

in
 m

Corners Wheels Sides Body

Fig. 3. The location of the components of the reflection model. The
dots and lines denote the location of the components in the target
frame; the gradients in the background the uncertainty of their
location. The contour of a vehicle is overlayed for illustration

purposes (gray).

a simple visibility constraint that checks if the corner is
visible:

o(C)
V (x) =

{
1 if adjacent vehicle sides are visible,
0 otherwise,

(13)

which implies that a corner is considered visible if both
adjacent sides of the vehicle are visible.The resulting de-
tection rate o(C)(x) of a corner is the product of all fac-
tors:

o(C)(x) = oR(r) · o(C)
C (x) · o(C)

V (x). (14)

Table II
The Component Parametrization for Our Vehicle Model

Components
Position

T(xC, yC)(·)(xext)
Position uncertainty

Cov
(
T(xC, yC)(·)

) Detection rate
o(·)(x)

Doppler
model

Corner front
{left, right}

(
0.65 · l

±0.25 · w

)
R(∓45◦) ·

(
(0.15m)2 (0m)2

(0m)2 (0.05m)2

)
· R(∓45◦)ᵀ Reference Rate × Base Rate

(1) × Visibility Constraint
CTRV

Corner rear {left,
right}

( −0.2 · l
±0.35 · w

)
R(±45◦) ·

(
(0.15m)2 (0m)2

(0m)2 (0.05m)2

)
· R(±45◦)ᵀ Reference Rate × Base Rate

(0.66) × Visibility Constraint
none

Wheel front {left,
right}

(
0.5 · l

±0.5 · w ∓ 0.15m

) (
(0.2m)2 (0m)2

(0m)2 (0.1m)2

)

Wheel rear {left,
right}

(
0m

±0.5 · w ∓ 0.15m

) (
(0.2m)2 (0m)2

(0m)2 (0.1m)2

)

Side {left, right}
(−0.15 · l → 0.6 · l

±0.5 · w ∓ 0.15m

) (
(0m)2 (0m)2

(0m)2 (0.05m)2

)
Reference Rate × Base Rate
(0.29/1◦) × Angular Width ×

Visibility Constraint ×
Scattering

CTRV

Side front
(

0.67 · l
−0.125 · w → 0.125 · w

) (
(0.05m)2 (0m)2

(0m)2 (0m)2

)

Side rear
( −0.2 · l

−0.15 · w → 0.15 · w

) (
(0.05m)2 (0m)2

(0m)2 (0m)2

)
Body - - Reference Rate × Base Rate

(0.11)
CTRV

The coordinates are given in the target frame T. The predicted state estimate x� provides the length l and the width w of the vehicle. R(·) is the
two-dimensional rotation matrix.
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Fig. 4. The computation of the expected radial speed measurement.
The velocity vector over ground of the radar sensor is the sum of the
translational speed of the ego vehicle vE and the rotary movement of

the sensor caused by the yaw rate ωE . The velocity vector of the
requested point z on the target vehicle is similarly computed using v

and ω. The radial speed measurement vr of this point is the projection
of the difference of both velocity vectors along the line of sight

(dashed line).

The expected radial speedmeasurement is computed
using the CTRV model [22]. Figure 4 accompanies the
following calculation. Firstly, the velocity vector of the
radar sensor over ground vS is computed:

vS =
(
cosϕE · vE − ωE · (yS − yE )
sinϕE · vE + ωE · (xS − xE )

)
. (15)

This requires the longitudinal speed of the ego vehi-
cle vE , its heading in world coordinates ϕE , its yaw rate
ωE := ϕ̇E , its pivot point (xE, yE ), and the position of the
sensor (xS, yS) in world coordinates. Secondly, the veloc-
ity vector vz of the requested point z, which lies on the
target vehicle, is determined analogously:

vz(z) =
(
cosϕ · v − ω · (yz − y)
sinϕ · v + ω · (xz − x)

)
, (16)

where the speed v, heading ϕ, yaw rate ω, and position of
the target (x, y) are obtained from the target state esti-
mate, while (xz, yz) are the world coordinates of the re-
quested point. Thirdly, the orientation to the detection
originating from the sensor 	 is determined:

	(z) = atan2(xz − xS, yz − yS). (17)

And fourthly, the difference of both velocity vectors is
rotated to the radar frame:

vr(z) = (
cos	(z), sin	(z)

) · (vz(z) − vS). (18)

vr returns the longitudinal velocity component or rather
the radial speed. These equations are outlined in detail
in [4, Section II.C].

B. Vehicle Wheels

Thewheels of a vehicle are good reflectors, especially
due to the metal rim and the suspension. We model the
wheels as point targets, as their extents are also rather
small. The rotating wheels cause radial speed measure-
ments that do not match the body of the vehicle and
cause the micro-Doppler effect. Thus, the radial speed
measurement cannot be used for the kinematic state es-

timate of the vehicle. However, the radial speed mea-
surement can be exploited to associate a nearby strong
detection to a wheel: If the radial speed measurement
mismatches the expected radial speed measurement of
the body, then the wheel gains a high association proba-
bility. The component base rate o(W )

C is 0.66 according to

our measurement analysis. The visibility constraint o(W )
V ,

however, is more complex to model. For example, if the
sensor is mounted at a typical low height, then the op-
posite wheels are in line of sight to it. Although the vis-
ible area of an opposite wheel can be computed, neces-
sary parameters like the underbody height of the target
are still unknown, and the estimation of it can be chal-
lenging. As a result, we reduce this problem to an em-
piric constant that corresponds to the average detection
rate of opposite wheels according to our measurement
analysis:

o(W )
V (x) =

{
1 if the corresponding side is visible,
0.3 otherwise.

(19)

The detection rate o(W ) is again the product of all
factors:

o(W )(x) = oR(r) · o(W )
C (x) · o(W )

V (x). (20)

C. Vehicle Sides

The sides of a vehicle resemble the largest part of
the shape of the vehicle. Therefore, they are a signif-
icant source of detections. Their extent no longer jus-
tifies a point target approximation. Especially, in static
scenarios, where a specific part of a side has the highest
reflectivity and causes nonuniformly distributed detec-
tions along the side, a bias occurs. It shifts the center, or
mean, of the side toward that part. Instead, each point of
the side has to be regarded as a potentially independent
detection source. As a result, we consider each point of
the line as a subcomponent of the side of the car, with
each point having an independent measurement func-
tion to obtain the expected position and radial speed
measurements. The detection rate o(S) for the complete
side consists of multiple factors. Figure 5 outlines the
calculation of these factors. The first ones are again the
reference rate oR(r) and the component base rate o(S)

C .
The latter must now be referenced to a certain angu-
lar width like 1◦ to consider the actual observed width.
Multiplying this reference angular width with the actual
observed angular width, ψ , then gives the final compo-
nent base rate. The observed angular width,ψ , depends
on the distance, the absolute length, and the orientation
of the side. It is computed using the edge points of the
side A = (xA, yA) and B = (xB, yB), which are defined
in a counter-clockwise order around the center of the
vehicle:

ψ = ∣∣∠(−→SA,
−→
SB)

∣∣. (21)
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Fig. 5. The computation of the detection occurrence likelihood for
the vehicle sides. The rear and right side of the target vehicle T are
considered as visible because the sensor S is “right” of the respective
vector

−→
AB. The observed angular width ψ and the angle of incidence

δ are drawn for the right side.

When measuring o(S)
C , the vehicle side needs to precisely

face the sensor. According to our evaluation, this factor
is 0.29/1◦.

The next factor is the visibility constraint qv(S),which
checks if the side is oriented to the radar sensor. This
is mathematically performed by computing the non-
normalized signed distance d(S)

S of the radar sensor S =
(xS, yS) toward the side:

d(S)
S = (xS − xA) · (yB − yA) − (yS − yA) · (xB − xA) .

(22)
The boolean visibility constraint o(S)

V is then given by a
sign check:

o(S)
V (x) =

{
1 if d(S)

S > 0,
0 otherwise.

(23)

The last factor represents the scattering effect.The reflec-
tions of the radar waves are scattered depending on the
angle of incidence δ:

δ = atan2(yB − yA, xB − xA) − ∠(−→SM,
−→
AB), (24)

where the point M is the midpoint of the side and used
as approximative reference:

M = 1/2(
−→
A + −→

B ). (25)

This approximation is required as each point of the line
has a different angle of incidence. It is fully sufficient for
vehicles that are not in the immediate vicinity. Later, in
the state update,

−→
SM can also be replaced by the actual

orientation of the radar toward the detection.
The steeper the angle between the vehicle side and

the radar, the more signal power is scattered and the less
signal power is reflected back to the sensor. This damp-
ing factor o(S)

S is provided by a model proposed in [15]
and [3]:

o(S)
S (x) = sin(δ)2. (26)

The detection rate finally results in

o(S)(x) = oR(r) · o(S)C (x) · ψ

1◦ · o(S)
V (x) · o(S)

S (x). (27)

D. Vehicle Body

Finally, a portion of detections is caused by arbitrary,
model-specific parts of the vehicle body. It is not possible
to perform a position update of the estimate as the ori-
gin of the detection is unknown. However, a kinematic
update is conceivable for the current position of the de-
tection.We derived the component base rate o(B) of the
vehicle body from the measurements (i.e., 0.11):

o(B)(x) = oR(r) · o(B)C (x). (28)

At this point, all relevant components of a vehicle
have been abstracted to a set of generic functions.

V. EXPECTED SPATIAL DETECTION LIKELIHOOD

This section depicts the computation of the expected
spatial detection likelihood based on the generic com-
ponent descriptions.The expected spatial detection like-
lihood serves as a measurement function for an arbi-
trary object state x and indicates the expected number
of detections for any point in the measurement space
z. Thereby, it also takes into account the expected state
uncertainty P. The spatial detection likelihood can also
be interpreted as the detection rate or frequency for a
given point, or as a probabilistic detection density. The
spatial sum of the detection likelihood corresponds to
the expected number of detections the complete object
presumably invokes.

The following equations are given for a single time
step. Hence, the corresponding indices are omitted for
the sake of simplicity. As a prerequisite, the algorithm
requires the component locations (xC, yC)

(·) to be trans-
formed from target coordinates T to world coordinates
W. The mean transformation is given by

W [
xC
yC

](·)
=

[
x�

y�

]
+ R(ϕ�) ·

T [
xC
yC

](·)
, (29)

and its uncertainty transformation by

Cov
(
W(xC, yC)(·)

)
= R(ϕ�)·Cov

(
T(xC, yC)(·)

)
·R(ϕ�)ᵀ.

(30)
In the following, we perform all computations in world
coordinates and omit the coordinate frame indexW and
time indices to simplify the formal representation.

The spatial detection likelihood indicates the chance
of obtaining a detection for any desired point in the
measurement space.The likelihood is computed for each
component and depends on the object state, the position
of the component, its extent model, and also on the un-
certainties of both the state and the measurement.

124 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 17, NO. 2 DECEMBER 2022



A. Vehicle Corners

The expected measurement vector of a corner con-
sists of a position and radial speed measurement:

y�(C) =

⎡
⎢⎣

x(C)
C (x�)
y(C)
C (x�)

vr

(
(xC, yC)

(C)(x�)
)
⎤
⎥⎦ . (31)

The measurement matrix C(C) for a corner can be deter-
mined using linearization:

C(C) =

∂

⎡
⎢⎣

x(C)
C (x)
y(C)
C (x)

vr

(
(xC, yC)

(C)(x)
)
⎤
⎥⎦

∂x

∣∣∣∣∣
x�

. (32)

Subsequently, the innovation covariance matrix S(C)

yields

S(C) = C(C)P�C(C)ᵀ +
[
Cov

(
(xC, yC)

(C)
)

+ Rxy 0

0 σ 2
ṙ

]
,

(33)
which treats the location uncertainty Cov((xC, yC)

(C)) of
the corner as an additive measurement uncertainty. At
this point, the spatial detection likelihood caused by a
corner γ (C)(z) can be computed using the Gaussian dis-
tribution N (·):

γ (C)(z) = o(C)(x�) · N
(
x=z, μ=y�(C), σ 2=S(C)

)

= o(C)(x�)√
(2π )3det

(
S(C)

) ·

exp
(

−1
2

(
z − y�(C)

)ᵀ
S(C)−1

(
z − y�(C)

))
.

(34)

B. Vehicle Wheels

The spatial detection likelihood of the wheels is sim-
ilar to the corners, but the micro-Doppler effect pre-
vents the usage of the radial speed measurement. The
expected measurement y�(W ) is given by

y�(W ) =
[
x(W )
C (x�)
y(W )
C (x�)

]
, (35)

and the measurement matrix C(W ) is given by

C(W ) =
∂

[
x(W )
C (x)
y(W )
C (x)

]

∂x

∣∣∣∣∣
x�

. (36)

The innovation covariance matrix S(W ) is

S(W ) = C(W )P�C(W )ᵀ + Cov
(
(xC, yC)

(W )
)

+ Rxy. (37)

Therefore, the spatial detection likelihood can be de-
scribed by

γ (W )(z) = o(W )(x�) · N
(
x=z, μ=y�(W ), σ 2=S(W )

)
.

(38)

C. Vehicle Sides

As discussed, the length of the vehicle sides demands
amore sophisticated handling than the approximation as
a point target. Instead, we model a vehicle side as a line.
Each point of the line can be the possible source of a de-
tection.As a result, the uncertainties of the state and the
measurement reveal a subordinated, continuous associa-
tion ambiguity for a given detection, as there is a span of
possible point sources for a given detection.We aim for
a continuous approach [5,Section II.B] to solve the asso-
ciation ambiguity: splitting the line into segments would
result in more runtime efforts and only attenuate the
bias effect that is evoked by discretized sampling points.
To begin, we consider a point s(S)(u) ∈ S,u ∈ [0; 1]. Its
parametrization can be formally represented as

s(S)(u) =
[
xA(x�) + u · (xB(x�) − xA(x�))
yA(x�) + u · (yB(x�) − yA(x�))

]
, (39)

by utilizing both end points of the side (xA(x�), yA(x�))
and (xB(x�), yB(x�)) in world coordinatesW.This allows
for the denotation of the expected measurement vector
as

y�(s)(u) =
[

s(S)(u)
vr

(
s(S)(u)

)] , (40)

the measurement matrix as

C(s)(u) =
∂

[
s(S)(u)

vr(s(S)(u))

]
∂x

∣∣∣∣∣
x�

, (41)

the innovation covariance matrix as

S(s)(u) = C(s)(u)P�C(s)ᵀ(u)

+
[
Cov

(
(xC, yC)

(S)
)

+ Rxy 0

0 σṙ

]
,

(42)

and finally, the spatial detection likelihood as

γ (s)(u, z) = o(S)(x�) · N
(
x=z, μ=y�(s)(u), σ 2=S(s)

)
.

(43)
The spatial detection likelihood invoked by the com-
plete vehicle side can be computed by summing up the
detection likelihoods of all the points:

γ (S)(z) =
1∫

0

γ (s)(u, z) du. (44)

This integral is known as stick model in the literature.
Some simplifications of the stick model and the follow-
ing integrals yield short closed functions. As the com-
putation of the expected radial speed measurement is
rather complex, we approximate it by a linear function.
This approximation is only used for the association steps
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and uses both end points as sampling points. The mea-
surement matrixC(s)(u) is different for all points,mainly
because of the altering impact of the uncertainty of the
yawof the state estimate.Due to its symmetric character-
istic, we consider a static innovation covariance matrix,
which is either sampled for the center of the line or for
the nearest point of the line from the detection.

D. Vehicle Body

The last component class represents arbitrary detec-
tions on the body of the vehicle. As the actual source is
unknown, a position update is not feasible.However, the
expected radial speed measurement can be computed
for any point z. This allows for purely kinematic asso-
ciation hypotheses and state updates. The latter is viable
by filtering the radial speedmeasurement at the position
of the measured detection. The measurement vector for
the body component consequently consists only of the
radial speed measurement ṙ:

y(B) = ṙ, (45)

while the corresponding expected measurement is given
by

y�(B) = vr (z) . (46)

By considering the partial derivative, the body measure-
ment matrix C(B) yields

C(B) = ∂vr(x)
∂x

∣∣∣∣
x�

, (47)

and the innovation covariance matrix S(B) yields

S(B) = C(B)P�C(B)ᵀ + σ 2
ṙ . (48)

With these equations,we can compute the detection like-
lihood γ (B):

γ (B)(z) = o(B)(x�) · N
(
x=z, μ=y�(B), σ 2=S(B)

)
, (49)

which indicates the likelihood that the body component
is the source of the detection.

E. Clutter (Optional)

Similar to probabilistic data association filter
(PDAF) applications, a clutter hypothesis can be
added to the association problem. Clutter is caused
by false positive detection measurements and part of
the sensor model (Section III). The clutter likelihood
γ (0) can be modeled with a Poisson distribution. Its
parameters usually depend on the distance and the en-
vironmental complexity and are firmware-specific. They
can be determined with an appropriate measurement
analysis. Clutter is not part of the object model itself.
However, for single-object tracking applications, it can
be interpreted as an additional virtual component that
does not invoke a state innovation.

Figure 6 shows the spatial detection likelihoods for
different observation angles. Besides, the superposition
of all expected spatial detection likelihoods γ (J)(z) =∑

j∈J γ ( j)(z) is illustrated and compared with the mea-
surement data.As the measurement data can only be vi-
sualized for a span of observation angles, the superposed
spatial likelihoods are sampled and averaged over this
span tomatch the data visualization.Note that Fig.6 only
shows the position components (x, y) of the measure-
ment space vector z = (x, y, ṙ = 0). A dynamic scenario
is shown in Fig. 1 and rendered in the full measurement
space.

At this point, our proposed (spatial) measurement
function for an extended object is available. It can be
used in a Bayes filter like a particle filter to judge
state hypotheses and thereby to estimate the state of an
object.

VI. DETECTION-TO-COMPONENT ASSOCIATION
PROBABILITY

This section outlines the computation of the asso-
ciation probability β ( j) of a single detection measure-
ment y toward any component j. This is done by nor-
malizing their detection likelihoods γ (·) for the given
detection y:

β ( j) = γ ( j)(y)∑
k∈J γ (k)(y)

. (50)

Figure 7 illustrates the prior detection likelihoods and
the association hypotheses for an example target state
estimate with a realistic state and measurement uncer-
tainty.The target is positioned at W(0m, 0m) and parked
at a heading of 30◦. The radar sensor is positioned at
W(0m,−10m). At this distance, the (Euclidean) lateral
measurement noise of the radar sensor is significantly
higher than the longitudinal one. First, the priors are
computed. The visibility constraints predict visibility for
the rear and right vehicle sides, the rear right corner, and
all wheels. The a priori detection likelihood of the right
vehicle side is higher than the detection likelihood of the
rear side because the angle of incidence causes a signif-
icantly higher scattering effect at the rear side. The sum
of all a priori detection likelihoods is approximately two,
i.e., themeasurementmodel expects two detections to be
obtained in this scenario.The prior spatial detection like-
lihood takes all uncertainties into account and predicts
the occurrence of detections in the measurement space.
It is visualized in the background (gradients).As it is not
possible to print the three-dimensional detection likeli-
hood, the gradients are rendered for the sectional plane
given by z = (x�, y�, ṙ� = ṙ), i.e., the plane in the z-axis
of Fig. 1 that corresponds to the actually measured radial
speed.This foreknowledge about the detectionmeasure-
ment at this point is limited to this illustrative purpose.
According to the illustrated spatial detection likelihood,
there is a high probability that these are located on the
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α = 0◦ (←) α = 0◦ ± 15◦ α = 0◦ ± 15◦

α = 45◦ (↙) α = 45◦ ± 15◦ α = 45◦ ± 15◦

α = 90◦ (↓) α = 90◦ ± 15◦ α = 90◦ ± 15◦

α = 135◦ (↘) α = 135◦ ± 15◦ α = 135◦ ± 15◦

Fig. 6. Comparison of the approximated model and the measurement data: The left column shows the spatial prior detection likelihood for
various observation angles α. The middle column shows their superposition for a certain range of observation angles, for which the

measurement data on the right column have been respectively recorded. The resolutions are adjusted. The colors of the spatial detection
likelihood plots correspond to Fig. 3. The data histograms are collected over several minutes.

rear right corner or on the right vehicle side. The likeli-
hood that a detection is measured at the back side or the
rear right wheel is lower.

As the illustrated detection measurement (blue
point) is received, the association probabilities can be
computed. The detection results in a high association
probability of the right side, a moderate probability of
the back side, but a low probability of the rear right
corner (primarily due to the lower longitudinal mea-
surement uncertainty). The shown orange arrows repre-
sent the association hypotheses. In case of the sides, they
point to their mean origin point s̄(S). This point is the
average of all points on the side, but weighted by their
individual association likelihood:

ū =
⎛
⎝ 1∫

0

u · γ (s)(u, y) du

⎞
⎠ / ⎛

⎝ 1∫
0

γ (s)(u, y) du

⎞
⎠ , (51)

s̄(S) =
[
xA(x�) + ū · (xB(x�) − xA(x�))
yA(x�) + ū · (yB(x�) − yA(x�))

]
. (52)

The obtained mean origin point s̄(S) can be used to re-
compute the measurement matrix C(s)(u) in a recursive
approach.As the lateral innovation uncertainty is higher
than the longitudinal uncertainty, the mean origin points
of the sides are mainly laterally shifted from the detec-
tion measurement.

Figure 8 introduces dynamics in the scenario: The
target drives in a curve to the left. The radial speed
measurement is set in a manner that it matches the
expected radial speed measurement of the rear side.
As the rear slightly moves toward the sensor in a
left curve, the radial speed measurement is negative.
Given the low uncertainty of the radial speed measure-
ment, the detection is now associated with the rear side
with high significance. Additionally, the hypothesis that
the detection originates from the wheel emerges as its
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Fig. 7. Association probabilities of a static scenario. The orange
arrows denote the association probabilities. The probabilities for the

body (18.0%) and clutter (3.6%) are not shown.

association ignores the mismatching radial speed differ-
ences due to the micro-Doppler effect. The estimated
mean origin of the right side is shifted to the left to bet-
ter match the radial speed measurement, but it still loses
any significant association likelihood.

The association probabilities β ( j) can now be used
to obtain a probabilistic indication about the origin of a
detection.

VII. STATE UPDATE

This section describes the filter principle and its ac-
tual implementation to update the state and uncertainty
of a single-object state hypothesis x.

A. Principle

Each component is a possible source of a detection.
Especially when considering the uncertainty of both
measurement and state, a given detection could orig-
inate from multiple components. A particle filter that
matches the complete spatial detection frequency or a
multiple hypothesis tracking (MHT)-adapted approach
that tracks the associations of the detections to the com-
ponents over time is not feasible in an application where
a multi-hypotheses tracking is run upstream. A sim-
ple maximum a posteriori estimate, or hard association,
though, does not establish a robust tracking due to the
high ambiguity of the association problem. We aim for
a soft association approach, which represents a suitable
compromise according to our findings. The association
ambiguities are resolved probabilistically and are still
encased in aGaussian state formulation.Association un-
certainties are thereby incorporated in the state uncer-
tainty. The utilized association and tracking algorithm
has been developed previously [5] as preparation for this
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Fig. 8. Association probabilities of a dynamic scenario. The
probability for the body is ∼0% and for the clutter is 10.9%. The gray
arrows denote the radial speed measurement of the detection and the

expected radial speed measurements of all components
(1m =̂ 1ms−1).

work. It shares its basic principles with the PDAF [1] and
is briefly stated in the following.

Every component j has a state-dependent associ-
ation likelihood γ ( j). It denotes the presumption that
component j has caused a given detectionmeasurement.
The absolute association probability, β ( j), is determined
by computing the association likelihoods for all compo-
nents J and by normalizing them, as done in equation
(50).At this point, clutter measurements are not yet con-
sidered. As each component description correlates the
object state with the component, it can also provide a
state update x̂( j) of the predicted target state x�. This up-
date is conditioned on the assumption that the detection
is actually caused by the component j:

x̂( j) = x� + K( j) ·
(
y − y�( j)

)
, (53)

where K( j) is the Kalman gain of component j, y is the
detection measurement, and y�( j) is the expected mea-
surement if component j is assumed to be the origin of
the detection. In a last step, the conditional state updates
x̂( j) are fused according to their association probabilities
β ( j) to obtain the updated state x̂:

x̂ =
∑
j∈J

β ( j) · x̂( j). (54)

The updated state uncertainty P̂ is calculated similarly
by

P̂ =
∑
j∈J

β ( j)
(
(1 − K( j)C( j))P� + (x̂( j) − x̂)(x̂( j) − x̂)ᵀ

)

(55)
and depends on the predicted state uncertainty P� and
measurement matrices C( j) for all components j ∈ J.
The term marked with a dashed underline represents
the uncertainty of the association, the so-called spread
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of means. This term carries the information how certain
the association search is. It increases according to the car-
dinality, the likelihood, and the impact of alternative as-
sociation hypotheses.

This probabilistic association requires a far lower
computing expense than multi-hypotheses trackers,
which resolve the combinatorial association problem
over time. The downside of probabilistic associations is
that evenwrong associations are filtered in with a certain
weight. In this application, significant association proba-
bilities are only invoked by components that are of com-
parable likelihood to have caused the detection. Such
components are mostly close together, and their state
updates are similar as they are part of a rigid body. This
is a major difference to PDAF applications where multi-
ple, independent object tracks are updated with a single
measurement.

B. Implementation

In the following, a Kalman filter update of the tar-
get state, considering a single-object hypothesis, is per-
formed.

The update of the target state is composed of update
steps for each single component. According to the prin-
ciple of the probabilistic origin association, each individ-
ual component update step is performed in the assump-
tion that the respective component is the origin of the
given detection, regardless of its actual association prob-
ability. For every component j ∈ J, the Kalman gainK( j)

is computed as

K( j) = P�C( j)ᵀS( j)−1 (56)

and utilized for the component-wise state updates x̂( j)

according to equation (53), and subsequently for the
fused posterior state estimate x̂ according to equation
(54) and the posterior state uncertainty P̂ according to
equation (55). While the state updates x̂( j) can be di-
rectly obtained for the other components, the vehicle
sides require a more elaborate treatment. Their native
posterior state estimates x̂(S) yield

x̂(S) =
1∫

0

β (s)(u) · x̂(s)(u) du

=
1∫

0

β (s)(u) ·
(
x� + K(s)(u) · (

y − y�(s)(u)
))

du.

(57)

The recursive approximation of the measurement ma-
trixC(s)(u) for a static replacementC(s)(s̄(S)), previously
discussed in Section VI, simplifies the posterior state es-
timate to

x̂(S) = x� + K(s)(ū) ·
⎛
⎝y −

∫ 1

0
β (s)(u) · y�(s)(u) du

⎞
⎠ ,

(58)

where the dashed underlined term represents the mean
of the origins. This mean has already been computed in
equation (51) and yields

x̂(S) = x� + K(s)(ū) ·
(
y − y�(s)(ū)

)
. (59)

This approximation implies that the Kalman gain of the
expected mean origin is applied to the nearby, less likely
origins in a symmetricmanner.Therefore, the native pos-
terior state uncertainty of a vehicle side P̂(S) is given by

P̂(S) =
1∫

0

β(u)
((

1 − K(s)(u)C(s)(u)
)
P�

+
(
x̂(s)(u) − x̂(S)

)(
x̂(s)(u) − x̂(S)

)ᵀ)
du

(60)

and can be simplified with the same approximation
C(s)(u) ≈ C(s)(ū) to obtain a closed equation, albeit too
long to be printed here. Details on the analytic solution
can be found in the supplied MATLAB code. Similar
to the discrete association problem, this term incorpo-
rates the uncertainty of the association search into the
resulting innovation uncertainty. In this way, high state
or measurement uncertainties increase the possible as-
sociation range and are—in contrast to pure greedy de-
cision approaches—probabilistically resolved.

Another implementation issue concerns the compu-
tation of the expected radial speed measurement. In the
association step, it is computed for the mean position
of the respective component (xC, yC). Its advantage is
the improved search for the origin of a detection by
comparing it with the precise radial speedmeasurement.
However, the actual origin of the detection can be lo-
cated anywhere on the extent of the component; it is
spatially distributed according to its position mean and
uncertainty parametrization in Table II. Depending on
the size of the respective extent, this discrepancy might
cause a pseudo-systematic bias in the state update, espe-
cially when perceiving the component repeatedly from
a similar angle. An alternative is the usage of the mea-
sured position of the detection (xD, yD): It is instead sub-
ject to (zero-mean) measurement noise. The choice de-
pends on the magnitude of the estimated uncertainties,
the measurement noise and the extent of the compo-
nents.We have performed an ablation study and gained
the result that both variants perform almost identical,
primarily because the Gaussian extents are minor rela-
tive to the Doppler gradient [4]. We utilize the second
option for (and only for) the state update to achieve
higher generality with respect to extent sizes. This re-
quires the reprocessing of equations (31) and (40) to use
vr

(
(xD, yD)

)
, and subsequently the reprocessing of their

respective measurement and innovation covariance ma-
trices described by equations (32), (33), (41), and (42).
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Fig. 9. Country road trailing: Exemplary measurement time steps
and their respective true target positions in the ego frame. The blank
circles denote the reference points of the ego vehicle (black) and the
target vehicle (colored according to the timestamp). The filled circles
denote the respective detection measurements. No detections were

obtained in t1 and t5.

VIII. SINGLE-OBJECT TRACKING PERFORMANCE

This section focuses on single-object tracking and
illustrates three different tracking scenarios. The mea-
surement data has been recorded with low-resolution
radar sensors, which are mounted on the corners of the
ego vehicle.We utilize aRTK-GNSS/IMU-based ground
truth with centimeter-level accuracy for both the gating
of the radar detections (within a radius of 4m to the cen-
ter of the target) and the evaluation of the tracking per-
formance. Figure 9 shows the measured detections and
the ground-truth-provided true object state of some rep-
resentative measurement frames of the first curve of the
first scenario. This illustration reveals the challenge that
the tracking algorithm has to tackle. On the one hand,
the number of detections is low, the detections are gen-
erated at unknown positions and are subject to signif-
icant measurement noise. On the other hand, the dy-
namic variables of the object state can change abruptly.
Wrong associations would directly impair the tracking
robustness. The association algorithm primarily exploits
the statistical detection characteristic, provided by the
object model, and the radial speed measurements to
solve the association problem. These difficulties should
be considered when assessing the resulting tracking per-
formance.

All scenarios use the same parametrization.The pro-
cess noise of the CTRVmodel has been obtained by the
inspection of a larger dataset and regards slight model
inconsistencies concerning unpaved roads, slopes, and
varying driving styles.We parameterize it by

σ 2
kin = diag

(
[(4.5 cm)2, (4.5 cm)2, (61)

(1.1◦)2, (0.67ms−1)2, (6.3◦s−1)2]
)
. (62)

There is no process noise modeled for the extent state
model. The initial CTRV position is roughly set to the
first encounteredmeasurement.All kinematicmeans are
zero. All CTRV state parameters are initialized as ex-
tremely uncertain. The initialization of the extent state,
though, depends on the application. In general, the low
number of detections obtained in the usual observation
time,as in urban scenarios,does not permit a very precise
extent estimation. In such applications, the extent state
should be initialized with an average extent state (like
xᵀext,0 = [4.85m, 1.85m]) and with a low uncertainty.
Longer observation times, as given in the presented sce-
narios, render extent estimation feasible. The initial ex-
tent is set to xᵀext,0 = [4.7m, 1.75m]. The length of the
utilized target vehicles exceeds this by up to ∼0.6m:
This initial mismatch additionally challenges the compo-
nent association search. The initial extent uncertainty is
set to σ 2

l,0 = 0.1 m2 and σ 2
w,0 = 0.015 m2 . Especially the

variety of the width among typical vehicles is obviously
bounded by regulations [21].

To deal with clutter in the single-object tracking
(without a track management that handles clutter it-
self), we utilize the clutter hypothesis from Section V-E.
We set γ (0) = 0.01. This implies that roughly 1% of
all detection measurements in immediate proximity of
the target are clutter. This value is conservatively mod-
eled without dependency to distance or signal strength,
as such factors are already regarded in the clutter sup-
pression of the sensor firmware. The clutter hypothesis
has a certain “association” probability in equation (50)
depending on the matching of a detection measurement
to the real components.The clutter is then ignored in the
subsequent state updates [equations (54) and (55)].Con-
sequently, the clutter detection is resolved probabilisti-
cally.A detection measurement that does not match any
component at all (after consideration of all uncertain-
ties), will not invoke a state update.

A. Country Road Trailing

In this scenario, the ego vehicle follows the target (a
mid-class sedan) in a winding round trip. Clutter mea-
surements are obtained fromvegetation on the road side.
The short-range mass-market, 77GHz radar sensors uti-
lized in this scenario have a substantial lateral measure-
ment noise. A sensor is mounted at each corner of the
vehicle, although only the front two sensors perceive the
target. Each sensor provides measurements at a rate of
roughly 20Hz.

Figure 10 outlines the path of the ego vehicle (both
by estimate and ground truth) in world coordinates,
while Fig. 11 illustrates the accumulation of detection
measurements and position estimates over time in the
target frame (based on the ground truth). The lateral
measurement noise also manifests itself in a lateral po-
sition estimate error.Moreover, Fig. 12 provides the yaw
estimate over time, while Figs. 13 and 14 outline the es-
timation errors of the dynamic states. Their estimation
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Fig. 10. Country road trailing: Position estimate in world
coordinates.
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Fig. 11. Country road trailing: Position estimates in target
coordinates (accumulation over whole dataset). The rectangle

resembles the true extent of the vehicle.
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Fig. 12. Country road trailing: Yaw estimate.
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Fig. 13. Country road trailing: Speed estimate.

is subject to higher noise as they are the highest-order
states of theCTRVmodel.Figure 15 shows the length es-
timation.After the first curve and progressing kinematic
estimation, it is steadily improving. An error of roughly
5% remains. The repository referred in Section I-C con-
tains a video that illustrates the association technique
based on the first curve of this scenario.

B. Circling

In this scenario, the target is a long-wheelbase lux-
ury sedan. Its extent exceeds the dimensions of the vehi-
cles used as reference in themodeling.Besides, the radar
sensors of the ego vehicle are slightly more recent and
provide more detections but also more clutter measure-
ments than the ones used in the first scenario. In addi-
tion, two additional sensors are mounted near the cen-
ters of the left and right vehicle side. The target vehi-
cle drives circles around the parked ego vehicle, and is
thus perceived by all sensors in rotating manner. How-
ever, only one side of the target vehicle is observed. Al-
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Fig. 14. Country road trailing: Yaw rate estimate.
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Fig. 15. Country road trailing: Length estimate.

though the lateral measurement noise is lower than in
the previous example, the lateral association problem
arises for the entire vehicle side. The longitudinal move-
ment of the car is mainly inferred by detections at the
ends of the side because they restrict the possible longi-
tudinal position. In this scenario, the tracking algorithm
benefits from the different component characteristics for
the association and subsequent position estimation. Fig-
ures 16 and 17 show the position estimates, while Figs.
18–20 outline the estimation of the yaw, the speed and
the yaw rate over time. Figure 21 shows the length es-
timation. It has settled from the 20th second. This sce-
nario shows an interesting effect. Although the sensors
only observe the left side of the target, a width estima-
tion is feasible if the initial extent uncertainty is cho-
sen accordingly: The filter inherently exploits the visi-
bility of the opposite wheels to directly infer the width
state. Figure 22 shows its estimation over time, although
the resulting accuracy is attributable to the long obser-
vation time. This specific figure has been obtained by
utilizing an initial width uncertainty of σ 2

w,0 = 0.2 m2 .
This parametrization, though, is far higher than the sta-
tistical variety of typical vehicles and needlessly reduces
the robustness of the filter especially in challenging
situations.

C. Urban Trailing

The ego vehicle follows the target vehicle again in
this scenario.The target vehicle and the sensors are iden-
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Fig. 16. Circling around the ego: Position estimate in world
coordinates.

Fig. 17. Circling around the ego: Position estimates in target
coordinates.

tical to the those utilized in the second scenario. Nearby
metallic containers and buildings on this narrow track
cause mirrored (ghost) detections and signal overexpo-
sures. They lead to biased detections and the loss of
detections from the target vehicle. The estimation per-
formance decreases, especially concerning the yaw due
to the biased detections, but the tracking stays robust.
Figures 23–27 show the respective tracking performance.
Figure 28 illustrates the length estimate.Again, after the
kinematic quantities have roughly been estimated, it is
able to resolve the initial extent error. It is steadily im-
proving as the vehicle is mostly observed from behind.

Table III depicts a root-mean-square error (RMSE)
comparison of all scenarios.Changes of the parametriza-
tion of the CTRV process noise in the range of ±20%
(standard deviation) have not shown a worse degrada-
tion than 6% of the RMSE of any state variable; some
state variables also show better accuracy. The position
of features like the wheels is yet purely statistically de-
rived, and its modeling error and the extent are mod-
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Fig. 18. Circling around the ego: Yaw estimate.
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Fig. 19. Circling around the ego: Speed estimate.

0 10 20 30 40 50 60 70
t in s

-20

0

20

40

60

ya
w

ra
te

 in
 °

/s

Estimate
Groundtruth

0 10 20 30 40 50 60 70
t in s

-10

-5

0

5

10

ya
w

ra
te

 e
rr

or
 in

 °
/s

Fig. 20. Circling around the ego: Yawrate estimate.
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Fig. 21. Circling around the ego: Length estimate.
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Fig. 22. Circling around the ego:Width estimate.
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Fig. 23. Urban trailing: Position estimate in world coordinates.

Table III
Tracking Performance

RMSE Tx Ty Wϕ Wv Wω

1) Country road 0.34m 0.66m 4.3◦ 0.25ms−1 5.4◦s−1

2) Circling 0.60m 0.18m 3.2◦ 0.39ms−1 2.3◦s−1

3) Urban trailing 0.30m 0.69m 5.1◦ 0.15ms−1 4.3◦s−1

The Position Error References the CTRV Pivot Point and is Given in

Target Coordinates T,While the Other Errors are Given in World Co-

ordinates W.

eled with a Gaussian noise term. A possible improve-
ment is to correlate this noise term with the estimated
extent size. However, the induced change is negligible
considering typical vehicles.The incorporation of the po-
sition of such features in the state vector and their ex-
plicit estimation support the extent estimation, as the
individual modeling error can be corrected over time.
However, their precise estimation requires an observa-
tion time that exceeds typical urban scenarios (consider-

Fig. 24. Urban trailing: Position estimate in target coordinates.
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Fig. 25. Urban trailing: Yaw estimate.

ing sparse measurements). Next to groundtruth-assisted
scenarios, our dataset also contains urban scenarios with
numerous vehicles. As no ground truth is available for
those vehicles, only a qualitative evaluation of the ro-
bustness using LiDAR scans could be performed there.

IX. TRACKING FRAMEWORK INTERFACES

This section outlines interfaces which integrate the
proposed filter into larger tracking frameworks.

A. Interfaces to Low-Level Fusion Algorithms

The abstraction of an object to its physical compo-
nents offers a convenient opportunity to fuse heteroge-
neous sensor data. Camera sensors and their process-
ing chains often utilize semantic segmentation to de-
tect features of objects. Following the example of vehi-
cles, these are wheels, lights, license plates, and corners.
Furthermore, LiDAR sensors detect license plates par-
ticularly well due to their reflectivity. If mounted closer
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Fig. 26. Urban trailing: Speed estimate.
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Fig. 27. Urban trailing: Yaw rate estimate.

to the ground, they also obtain pointmeasurements from
opposite wheels.

Those features are either already directly observable
with the radar sensor (e.g.,wheels and corners) or can be
added as additional components. The description of ad-
ditional components with the parameter setA correlates
them to the state vector. The abstraction of objects into
components is thus a suitable interface for a low-level or
feature-level fusion.

B. Interfaces to Multi-Object Trackers

We use this radar tracker in interaction with a multi-
hypotheses track management in a C++/ROS-based
real-time tracking application. Although the tracking
shows robustness against local optima like turned ve-
hicles or wrong wheel associations, a multihypotheses
tracker speeds up the correction.The track management
usually requires some additional interfaces to the under-
lying trackers in addition to the actual state updates of
the hypotheses. Due to the size of this article, an actual
implementation of a multi-target tracking and the inter-
action of objects cannot be covered here.

1) Track Initialization: When a track for a new object
is created, either because it enters the range of visibility
or it leaves an occluded area, the first obtained measure-
ment is usually a single detection y.The center of the new
object is normally set to the position of the detection as
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Fig. 28. Urban trailing: Length estimate.
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its orientation, and therefore its side facing the sensor, is
unknown. Instead, we exploit the radial speed measure-
ment to obtain a first rough velocity vector vW in world
coordinates. Subsequently, we derive the orientation of
the object ϕ (by assuming that it moves forward), deter-
mine the facing side, and place this side on the obtained
detection.The velocity vector vW is the sum of the veloc-
ity vector of the radar sensor vS (see equation (15)) and
the rotated radial speed measurement ṙ, which is trans-
formed to world coordinates:

vW = vS + R (	(y)) · [ṙ, 0]ᵀ, (63)

and results in the initial yaw ϕ and speed v estimate:

ϕ = atan2(vW ), (64)

v = ‖vW‖. (65)

The orientation to the detection originating from the
sensor 	(y) is provided by equation (17). The radar-
facing side of the object is now determined and placed
in the position of the detection. If no additional informa-
tion on the lateral position is available, then the center
of the side can be simply placed on the detection posi-
tion. Although only one component of the velocity vec-
tor of the target can be measured, this approach reduces
the initialization time significantly. If further detections
aremeasured, then a complete velocity vector can be ob-
tained [22].

We also use the radial speed measurement to deter-
mine if an unassociated detection belongs to a dynamic
object. If the longitudinal component of vS, regarded in
the sensor frame S, plus the radial speed measurement ṙ
is above a noise-dependent threshold, a new object hy-
pothesis is created.

2) Expected Number of Detections: Track existence
checks require the expected number of detections N
that an object presumably generates. This number cor-
responds to the sum of the detection occurrence likeli-
hoods of all components:

N =
∑
j∈J

o( j). (66)

3)Detection-to-TrackAssociationLikelihood: The cru-
cial problem multi-object trackers deal with is the asso-
ciation of a detection to multiple plausible objects. This
process demands the association likelihoods of one de-
tection to all of these objects. The association likelihood
for a complete object γ and a given detection measure-
ment y is the sum of the association likelihoods of all
components for this detection:

γ (y) =
∑
j∈J

γ ( j)(y). (67)

The radial speed measurement appears here as a
valuable support for the detection-to-track association.

X. DISCUSSION

The focus of this work is the both precise and fast
filtering of sparse radar detections. The problem is split
into two parts: an accurate modeling and prediction of
measurement data, and the respective state update us-
ing this representation.The usage of a set of components
to model the measurements is conformable and predicts
all relevant measurement effects. The noise of the mea-
surement data does not justify any further particulari-
ties in our case. The state update is performed with a
probabilistic association approach, which shows robust
results and demands far less computing resources than
combinatorial approaches. The computing time is a cru-
cial factor as the upstream track management itself usu-
ally utilizes multi-hypotheses approaches. A single Intel
i7-4790k (2014) core performs a typical complete state
update in MATLAB within 2ms, and in automatically
generated C within 20µs.

However, a difficulty results from the base point er-
ror. Besides the measurement matrices, also the visibil-
ity computations rely on the current state estimate. Es-
timates always differ from the true state. Assuming an
example vehicle that is observed from the front, slight
changes in the yaw estimate predict either a good visi-
bility of the left or the right corner of the vehicle (simi-
lar to the actual physical characteristic). A workaround
is to exploit multiple samplings and evaluations of the
measurement functions in relation to the uncertainty of
the estimate.However, this effect plays a minor role and
workarounds are not necessarily required according to
our findings: If a component is wrongly assumed to have
just become visible, then its estimated angular extent is
still small and invokes a weak, thus insignificant detec-
tion likelihood.

A major benefit is the inherent dealing with the er-
ror in variables. The filter considers all the uncertain-
ties of both the state and measurements, as well as all
possible sources of origin. This is in contrast to models,
which assume that the regression variables can be de-
termined in an exact manner. For example, most radial
functions determine and apply the difference between
measurement and contour solely in radial direction and
ignore any measurement errors in the tangential direc-
tion.Dedicated precautions [26], [40] have to be applied
to circumvent this issue.

To use this approach for different objects, component
descriptions need to be modeled and parametrized sta-
tistically.Machine learning approaches,which derive the
object characteristics frommeasurement data,can be de-
ployed more quickly and are easier to implement. On
the other hand, our proposed algorithm offers a low run
time. Its parameterability allows the exchange of sen-
sors without extensively recording new data. As the al-
gorithm is based on physical relations, the model is scal-
able for any desired precision.The behaviour of the algo-
rithm is deterministic and predictable. It can bemodular-
ized and extended with interfaces for a low-level fusion.
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XI. CONCLUSION

This work deals with the filtering of sparse measure-
ment data. When techniques like feature recognition in
measurement data are no longer conceivable, the mea-
surements need to be associated with their estimated
origins that are derived from the state vector. We split
the object into a set of different components with dif-
ferent measurement characteristics to compute the asso-
ciation more robustly. Association uncertainties are re-
solved probabilistically to achieve a low computing ex-
pense. This approach shows remarkable results in the
prediction of measurements according to real-data com-
parisons. It also places a low demand on computing re-
sources. A tracking evaluation proves the possibility of
robust tracking with a low number of measurements.
This low number of detections would usually not allow
an accurate object state estimation with a single mea-
surement epoch or a even few of them—the estimation
is achieved by the filtering over time. The proposed al-
gorithm is developed to be utilized in interaction with
a multihypotheses track management and a heteroge-
neous low-level sensor fusion.

XII. FUTURE WORK

This article outlines the usage of the probabilistic
component association with sparse radar measurement
data and applies it for vehicle tracking. Further works
can focus on other objects like pedestrians, cyclists, and
trucks. After an evaluation of the usage of camera and
LiDAR sensors, the algorithm can be extended with
heterogeneous sensor data fusion. With the availability
of radar sensors with an adequate elevation measure-
ment performance, the component descriptions can be
extended to 3D models.

The extension of the PDAF adaption to a joint prob-
abilistic data association filter (JPDAF) variant might
further improve the performance when obtaining dense
measurement data [17].

A statistical study on the structure of objects and/or
their measurement characteristics based on a large sam-
ple with spatial and kinematic reference data can im-
prove the generality of the component descriptions.

Our current work, though, continues the proposed
approach to support (and exploit) mutual occlusion.
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