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Data Association With Radar
and Target-Provided
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Target tracking algorithms are usually based on exteroceptive

measurements obtained from sensors placed in the center of some

surveillance area. However, information transmitted from surround-

ing targets will often also be available. This information, here dubbed

target-provided measurements, will often include valuable informa-

tion for a tracking system. We present a multitarget tracking algo-

rithm utilizing such measurements using a framework of joint inte-

grated data association. The use case we consider is maritime target

tracking using radar measurements combined with messages from the

automatic identification system. The full details of the tracking algo-

rithm are presented, including implementation-specific considerations

to account for the different natures of the incomingmeasurements.We

detail three different methods of handling the target-provided mea-

surements: one processing them as they arrive, i.e., sequentially, and

the others collecting and processing them at fixed intervals. The results

show that all three improve over the pure radar tracking algorithm and

similar state-of-the-art methods.

I. INTRODUCTION

One of the many important puzzle pieces for in-
creased degrees of autonomy in the maritime sector
is the ability of a ship to observe its surroundings.
To avoid collisions and safely navigate the waters, it
is necessary to know where the surrounding ships are
situated. For this to work safely and robustly, target
tracking algorithms have to provide precise estimates
of the position and direction of surrounding vessels,
also known as targets. Radar-based target tracking al-
gorithms have largely been the norm when navigat-
ing outside of close encounter harbor areas. There is,
however, also a standardized system to help with colli-
sion avoidance at sea: the automatic identification sys-
tem (AIS). This system provides target-provided mea-
surements with valuable information that could help
give better estimates than what only radar measurement
can provide. However, this valuable source of informa-
tion often remains unused in modern target tracking
algorithms.

When monitoring aircraft, target-provided mea-
surements are also used, with measurements based
on the automatic dependent surveillance–broadcast
(ADS-B) protocol.The latter protocol can, togetherwith
radar, be used in air traffic control to provide a bet-
ter picture of the airspace [4]. The availability of target-
providedmeasurementsmakes it possible to identify tar-
gets and utilize information that is impossible to get from
radar measurements alone, such as the ship destination.
For, e.g., long-time vessel prediction, the additional in-
formation provided by target-provided measurements
can be very valuable [31].

The two measurement types are inherently differ-
ent. The radar is attached to the ship, scanning the
surrounding area. The measurements are unlabeled,
can be false alarms, and can provide several detections
for each target. The last issue is often solved using a
clustering algorithm, while the problem of false alarms
has no single simple solution. The radar measurements
are also often noisier than the target-provided measure-
ments, with the noise becoming more prominent when
the target is far away. Target-provided measurements,
on the other hand, are sent out from the surrounding
ships as data packages containing not only the position
of the target but additional information as well, such
as the ID number of the transmitting ship. Because a
target needs to send a target-provided measurement
for it to be received, there are no false alarms, and
the precision of the transmitted kinematic information
is independent of the distance to the target because
the positional data comes from GPS measurements.
However, not all targets have a transmitter, and the
messages will often be received somewhat infrequently,
as high-frequency transmitting is not always required,
see, e.g., [19]. Thus, a robust target tracking system based
only on target-provided measurements will not be
feasible.
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There are two established approaches to the fu-
sion of sensor signals: track-to-track fusion and track-
to-measurement fusion [1]. Here track-to-measurement
fusion is examined, and a model suitable for incorpo-
rating target-provided measurements, and a tracking al-
gorithm utilizing this model, is presented. For example,
Gaglione et al. [13] have previously investigated track-
to-measurement fusion for radar and target-provided in-
formation. The tracking algorithm presented here dif-
fers from previous work in some significant ways. We
use a hybrid state framework based on [7], which can
include motion and visibility models in addition to tar-
get IDs. Furthermore, building upon [7], we derive the
tracking algorithm as a special case of the Poisson multi-
Bernoulli mixture (PMBM) filter originally proposed in
[34]. An important technical detail to enable this is to
model the birth model as a marked Poisson point pro-
cess (PPP), where the target IDs take the role of the
marks. The resulting algorithm can be seen as a gener-
alized version of joint integrated probabilistic data asso-
ciation (JIPDA) [24].

The contributions of this paper are as follows. It de-
rives a framework that includes target-provided mea-
surements based on a PMBM formulation of the JIPDA.
The resulting target tracker includes both a visibility
state and multiple kinematic models. Furthermore, the
paper details a sequential way of handling the incom-
ing target-provided measurements, a method more sim-
ilar to the one described in [13], and a method similar
to how radar measurements are processed. Lastly, we
present some implementation-specific considerations to
make when handling target-provided measurements in
a tracker.

The paper is organized as follows:We detail the prob-
lem formulation in Section III. In Section IV, we ex-
plain the structure of the hybrid state that facilitates
the inclusion of target-provided information.We present
the mathematical expressions needed for calculations
in Section V. In Section VI, three different methods
for handling the incoming measurements are detailed.
Section VII presents the implementation choices, to-
gether with considerations to make to accommodate
the target-provided measurements. Lastly, Section VIII
presents the results.We compare the performance of the
different measurement handling methods and how they
compare to using only radar and the method from [13].

II. BACKGROUND

This work builds upon the multitarget tracking
method presented in [7] and can be considered an ex-
tension of the framework described there. The tracking
algorithm, denoted as visibility interacting multiple
models joint integrated probabilistic data association
(VIMMJIPDA), combines interacting multiple models
(IMM) and a visibility state with the well-established
JIPDA framework. The tracking method was derived
with a basis in the PMBM filter [34].

Darko Musicki and Rob Evans introduced the
JIPDA in [24], where the concept of visibility is men-
tioned and indicates whether the tracked target is vis-
ible to the sensor or not. Later, e.g., [35] has ex-
plored visibility in connection with the problem of es-
timating target detectability. The JIPDA is an exten-
sion of the joint probabilistic data association (JPDA)
method developed by Yaakov Bar-Shalom [12], which
again is an extension of Bar-Shalom’s probabilistic
data association (PDA) method [3]. These methods
are well established in the target tracking community
and have been used for a range of different purposes,
such as collision avoidance for marine vessels [29], au-
tonomous navigation [11], and air traffic control [20].
Henk A. P. Blom and Yaakov Bar-Shalom introduced
the IMM method [5], and it has been used for sev-
eral decades in, e.g., air traffic control. Furthermore,
Musicki and Suvorova presented an IMM-JIPDA algo-
rithm in [25].

The PMBM filter and subsequent tracking algo-
rithms [15] utilize the PMBM density, which is the union
between a PPP and a multi-Bernoulli mixture (MBM).
The PPP represents unknown targets, i.e., undetected
targets hypothesized to exist, and the MBM represents
already detected targets. Links between PMBM and
JIPDA have been established in [34] (single kinematic
model, loopy belief propagation as an alternative to hy-
pothesis enumeration) and in [7] (multiple kinematic
models, standard hypothesis enumeration, and mixture
reduction).

Some work on the track-to-measurement fusion of
radar and target-provided measurements has been done
previously,both byHabtemariam et al. [17] andGaglione
et al. [13]. The first approach includes target-provided
measurements in a JPDA-like tracking algorithm, while
the second uses a framework that also includes track
existence. The second approach utilizes probabilistic
graphical models and loopy belief propagation for the
calculations. Furthermore, Gaglione et al. use particle
filtering for performing the calculations. Both works
perform data association on batches of target-provided
measurements simultaneously as on the radar measure-
ments. Gaglione et al. nevertheless consider that target-
provided measurements can arrive at any time. They
also share similar modeling of the target-provided mea-
surement IDs, from which the model presented here de-
viates. However, neither method directly addresses the
initialization of tracks using target-provided measure-
ments. In [21], a multiple hypothesis tracking (MHT)
approach is presented, which also showed promising
results but relied on preprocessing of the AIS mea-
surements. Track-to-track fusion using radar and AIS
measurements has also been done previously, e.g., in
[9]. Here, a multisensor network for maritime surveil-
lance is described, utilizing several sensors, including
radar and AIS. More recently, research has been con-
ducted into the track-to-track association of radar- and
AIS-tracks [27].
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III. PROBLEM FORMULATION

The unknown target intensity u(y) describes the not
yet discovered targets present in the surveillance area.
We model the unknown targets as a marked PPP, which
is equivalent to a PPP on the Cartesian product of the
space Rnx and the discrete spaces the discrete hybrid
states can take values from [30, p. 205]. In its general
form, this process is

b(y) = p(v)p(τ |v)p(s|v, τ )pγ (x|s, v, τ ), (1)

where pγ (x|s, v, τ ) is an intensity function on the the
space Rnx , and p(·) are distributions over the discrete
states. Rather than using the birth intensity directly, we
use Proposition 1 from [7] to get the converged unknown
target intensity

u(y) =Uov
uξ

τ
uμτ

u fu(x). (2)

Here,U is the overall birth rate of new targets, ov
u is the

probability of visibility state v, ξ τ
u is the probability of

ID τ , μτ
u is the probability of the kinematic mode s, and

fu(x) is the distribution of the kinematic state. The sub-
script u indicates that the individual expressions are part
of the unknown target intensity. Equation (2) does not
contain the initial values of new targets, as it is a function
of the birth intensity and the transition probability ma-
trices. However, for simplicity, the unknown target val-
ues are tuned directly and can be viewed as initial values.

Remark 1. This method of modeling the target IDs
through a marked PPP implies that two targets can have
the same ID. The probability of two targets having the
same ID in a surveillance area with relatively few tar-
gets is minuscule, but it is nevertheless a possibility [10].
We also note how themodeling of actual,observable IDs
here deviates from theoretically assigned IDs.The labels
in labeled random finite sets (RFSs), introduced in [32],
are unobservable and analogous to the identifying tags
in [14], which ensure the uniqueness of the elements of
a RFS. The IDs described here, however, serve no such
purpose and can be assumed nonunique without break-
ing the underlying mathematical assumptions of RFSs.

M2: We model the survival probability as a function of
time since the last update. A constant parameter PSc de-
notes the probability of survival after one second. Thus,
the survival probability of an interval between times tk−1

and tk, denoted as �t, becomes

PS(�t) = P�t
Sc . (3)

M3: The ID numbers τ are assumed to be static, in line
with the physical reality of the AIS protocol. The IDs
are manually set at the installation of the AIS system.
We assume that the ID numbers of the unknown targets
are distributed according to

ξ τ
u =

⎧⎨
⎩

ξ 0
u if τ = 0
1 − ξ 0

u

|V| − 1
if τ > 0

, (4)

where ξ 0
u is some parameter denoting the belief that the

target has no ID and |V| is the number of all possible ID
numbers in addition to 0.Not all targets have an ID, and
we represent this non-ID by the value τ = 0. If τ = 0,
the target does not transmit measurements.

M4: From time step k−1 to k, the evolution of a target
is given by

fy(yk|yk−1) = f sτx (xk|xk−1)π sk−1skwvk−1vk . (5)

The π -matrix contains theMarkov chain probabilities of
changing between different kinematic models. The ma-
trixw contains theMarkov chain probabilities of the tar-
get switching between the visible state v = 1 and invisi-
ble state v = 0. The ID numbers are assumed static and
therefore do not change during a prediction.

M5: For radar measurements, the detection probabil-
ity PD(yk) varies based on the visibility state v, and we
define it as

PD(yk) =
{
PD if v = 1
0 if v = 0 , (6)

where PD is a constant describing the probability of a
target being detected by the radar at a given time step.

For target-provided measurements, which are as-
sumed to give no missed detections, we have that

PD(yk) =
⎧⎨
⎩
1 if a target-provided measurement

is received
0 otherwise

(7)

independent of the visibility state. Thus, no conclusions
about a target are made from the absence of target-
provided measurements. Trying to keep track of when a
vessel should transmit measurements is a difficult prob-
lem that, e.g., would be subject to intentional random-
ness from the protocol [6].

M6: Radar clutter measurements are assumed to fol-
low a Poisson process with intensity λ. The target-
provided measurements do not contain clutter, the same
as if they are following a Poisson process with intensity 0.

M7: The radar measurements are assumed to be
synchronized and to arrive simultaneously at a fixed fre-
quency. The synchronicity means that when radar mea-
surements arrive at time step k, the set of radar measure-
ments contains measurements from all detected targets
at time step k, in addition to clutter measurements. The
radar measurement likelihood is denoted as f Rz (zk|yk).
M8: The target-provided measurements can arrive
whenever and are not synchronized. Thus, a transmit-
ted measurement can be received at any time from any
target. We do not assume that targets transmit mea-
surements simultaneously, contrary to what we do for
radar measurements. Whenever a target-provided mea-
surement arrives, however, the time of arrival is assumed
to be known.Themeasurement likelihood for the target-
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provided measurements is

fAz (zk|yk) = fp(pk|yk) fτ (τ zk |τ ), (8)

where zk is the whole measurement and pk only contains
the kinematic data of the measurement. Furthermore,

fτ (τ zk |τ ) =

⎧⎪⎪⎨
⎪⎪⎩
PC if τk = τ

zk
k

1 − PC
|V| − 1

if τk �= τ
zk
k and τ > 0

0 if τ = 0

, (9)

where PC is a fixed parameter describing the confidence
in the ID number not being corrupted, denoted as the
confidence probability. The reasoning behind the above
equation comes from the observation that the likeli-
hood of a transmitted measurement coming from a tar-
get without an ID is zero. Furthermore, the chance of a
transmitted ID being erroneous makes it a possibility, al-
beit small, that any ID can be the correct one.

IV. HYBRID STATES AND THE PMBM

As formulated in [2, p. 441], a hybrid state is a state
where the state space contains both discrete and contin-
uous states or uncertainties.This structure is useful as the
kinematic state will be continuous, while, e.g., the choice
of kinematic model for the target will be discrete.

A PMBM filter represents the posterior multitar-
get density for discovered targets as a weighted sum of
multi-Bernoulli densities.These involveweights for each
of the multi-Bernoullis, and kinematic densities and ex-
istence probabilities for each of theBernoullis.The PMB
filter, which is essentially the same as a JIPDA, approx-
imates the sum of multi-Bernoullis by a single multi-
Bernoulli at the end of each estimation cycle.

Using the equations from [34], one can get general
expressions for the weight, existence, and states irre-
spective of the sensor type, assuming the sensors gen-
erate measurements adhering to the assumptions made
in Assumption 2 in [34]. The assumptions hold for both
target-provided and radar measurements. The inclusion
of IDs in the target-providedmeasurements is contained
in the measurement likelihood function, and they do
not breach any independence assumptions. The goal of
this section is to extract expressions for the probabilistic
properties of the individual hybrid state elements.

From [34],we have that the weightw, existence prob-
ability r, and distribution f (y) of a single Bernoulli in
general can be written as

w = g(y) + h[1], (10)

r = h[1]
g(y) + h[1]

, (11)

f (y) = h(y)
h[1]

(12)

for some functions g and h of the state y. The notation [·]
indicates a linear functional, defined as

g[h] =
∫
g(x)h(x)dx. (13)

These are useful tools for compactly writing normaliza-
tion constants and likelihoods. For later use, it is conve-
nient to find general expressions for the individual states
in the hybrid state y. Using the approximation from [7,
Remark 6] that the visibility is independent on the other
states, we can write h(y) = h(v)h(τ )h(s|τ )h(x|τ, s). We
get the individual states by using the rule of conditional
probability. Starting with the kinematic state x, it can be
acquired by

f t (x|s, τ, v) = f (x, s, τ, v)∫
f (x̃, s, τ, v)dx̃

=
h(x, s, τ, v)

h[1]∫
h(x̃, s, τ, v)dx̃

h[1]

= h(x, s, τ, v)∫
h(x, s, τ, v)dx

= h(v)h(x, s, τ )
h(v)

∫
h(x̃, s, τ, v)dx̃

= h(x, s, τ )
h(s, τ )

, (14)

where we have omitted the time indices for brevity. The
˜(·) notation is used for latent variables, which disap-
pear by marginalization. Furthermore, the absence of
the visibility state v in the final expression means that
f t (x|s, τ, v) = f t (x|s, τ ). Similarly, the mode probabili-
ties are

f t (s|τ ) = μtτ s = h(s, τ )
h(τ )

, (15)

the ID probabilities are

f t (τ ) = ξ tτ = h(τ )
h[1]

, (16)

and the visibility probabilities are

f t (v) = otv = h(v)
h[1]

. (17)

Note that
∑

τ̃

∑
s̃

∫
h(x̃, s̃, τ̃ )dx̃ = h[1], which essen-

tially acts as a normalization constant. Independencies
between the states will make it possible to reduce the
needed amount of marginalization, as they will appear
both in the numerator and the denominator. The inde-
pendencies will depend on the model choices and are
written here according to the assumptions in Section III.
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V. INCLUDING TARGET-PROVIDED MEASUREMENTS
IN THE VIMMJIPDA

In the VIMMJIPDA, the unknown target intensity
u(y) is assumed stationary and is left unchanged during
the prediction and updating of the estimates. We make
the same assumption here. This assumption means that
only the Bernoulli components have to be considered,
and is further simplified by following the JIPDAmethod
of performing mixture reduction. That is, we merge all
Bernoullis originating in the same measurement into a
single Bernoulli after each update.Thus,we can omit the
weights of the association hypotheses of previous time
steps can due to marginalization. Table II shows the ex-
pressions for updating and predicting theBernoulli com-
ponents from [34]. These are adapted to simplify inser-
tion in (10)–(12) and (14)–(17). Furthermore, they are
simplified to reflect the stationary unknown target inten-
sity and themarginalization over theweights duringmix-
ture reduction.As the measurement model assumptions
made in [34] hold with regards to both radar and target-
provided measurements, both f Rz (z|y) and fAz (z|y) can
be considered special cases of the more general fz(z|y)
in the table. The expressions for predicting and updating
the Bernoulli estimates based on the potential informa-
tion acquired by the sensor updates follow.

A. Prior

For a single track,which in the context of this paper is
analogous to a Bernoulli, we write the hybrid state prior
distribution as

f tk−1(y) = f tk−1(x|τ, s)ξ tτk−1μ
tτ s
k−1o

tv
k−1, (18)

while the prior existence probability is rtk−1. As men-
tioned above, we merge all the hypotheses of the pre-
vious time step, giving wt

k−1 = 1. The prior is a joint
distribution over the continuous kinematic state and the
discrete potential IDs, kinematic modes, and visibility
states. In the following propositions, only the probabil-
ity of the target being in the visible state is presented,
i.e., ot1, which we denote as ηt . The prior is decomposed
into several states conditioned on the different discrete
states. An example of the structure of a prior with two
possible IDs and two possible kinematic modes is shown
in Fig. 1. The expressions in the square boxes are not
calculated themselves but can be constructed from the
other expressions.

B. Prediction

All tracks are predicted from the previous time step
k− 1 to the current time step k. The predicted probabil-
ities and densities are denoted by the subscript (·)k|k−1.

Proposition 1. The prediction for the existence proba-
bility rt , the visibility probability ηt , the ID probabilities
ξ tτ , the mode probabilities μtτ s, and the kinematic density

Table I
Nomenclature

a Association hypothesis
b(·) Birth intensity function
1	(·) Indicator function
H Measurement matrix
H∗ Complementary measurement matrix
N (·) Gaussian probability density function
μ Mode probabilities
η Probability of a target being visible
ξ ID probabilities
f (·) Generic (single-target) probability density function (pdf)
fy(·) Transition density for hybrid state
fz(·) Measurement density conditional on hybrid state
F Process model transition matrix
g[h] functional with test function
h Generic hybrid state probability density function
j Measurement index (superscript)
k Time step index (subscript)
�t Interval between current and preceding time step
λ Poisson intensity for false alarms
n Number of tracks
o Visibility probabilities
PSc Constant survival probability
PD Detection probability
Pv Initial velocity covariance
π Mode transition probabilities
Q Process noise covariance matrix
r Existence probability
R Measurement noise covariance matrix
Rc Cartesian measurement noise covariance contribution
Rp Polar measurement noise covariance contribution
s Model index (superscript)
τ ID number (superscript)
t Track index (superscript)
u Poisson intensity of unknown targets
U Unknown target intensity strength
v Visibility state (superscript)
v Process noise
w Measurement noise
ω Visibility transition probabilities or turn rate
	 Surveillance region
x Kinematic (continuous) state vector
y Hybrid state vector
z Measurement vector
A Target-provided (AIS) specific entity
R Radar specific entity
(·)k A (typically posterior) quantity at time step k
(·)k|k−1 A predicted quantity at time step k
(·̂) A Kalman filter estimate
(·̃) Latent variables that are marginalized away
(·)0 An initial quantity. Further meaning is context-dependent.
(·)u Unknown target intensity parameter after convergence

f t (x|τ, s) are done as
rtk|k−1 = rtk−1PS(�t), (19)

ηtk|k−1 = (1 − ηtk−1)w
01 + ηtk−1w

11, (20)

ξ tτk|k−1 = ξ tτk−1, (21)

μtτ s
k|k−1 =

∑
s̃

μtτ s̃
k−1π

s̃s(�t), (22)
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Table II
Expressions for Creating, Updating, and Predicting the Bernoulli Components

g h[1] h(y)

New target λ u[PD(ỹ) fz(z|ỹ)] u(y)PD(y) fz(z|y)
Missed detection 1 − rtk|k−1 rtk|k−1 f [1 − PD(ỹ)] rtk|k−1 fk|k−1(y)(1 − PD(y))
Detection 0 rtk|k−1 f [PD(ỹ) fz(z|ỹ)] rtk|k−1 f

t
k|k−1(y)PD(y) fz(z|y)

Prediction 1 − rtk−1 f [PS(ỹ)] rtk−1 f [PS(ỹ)] rtk−1

∫
f tk|k−1(y|ỹ)PS(ỹ) fk−1(ỹ))dỹ

f tk|k−1(x|τ, s) = ∫
fy(x|τ, s, x̃) f tk−1(x̃|τ, s)dx̃, (23)

where

f tk−1(x̃|τ, s) =
∑
s̃

μtτ s̃
k−1π

s̃s f tk−1(x̃|τ, s̃)∑
s̃ μ

tτ s̃
k−1π

s̃s(�t)
. (24)

Proof. The proof builds upon [7], but is modified to
also account for the inclusion of the IDs in the state vec-
tor. It should be noted that the survival probability is
only dependent on the times of the measurements’ ar-
rival, which are independent of the state. Because the
IDs are assumed to be static the transition model for the
IDs becomes a Kronecker delta δτ τ̃ . It is defined as

δτ τ̃ =
{
1 if τ = τ̃

0 if τ �= τ̃
. (25)

First, we write out h(y) from Table II:

h(y) = rtk−1

∫
f tk|k−1(y|ỹ)PS(ỹ) fk−1(ỹ)dỹ

= rtk−1PS(�t)
( ∑

ṽ

f (ṽ) f (v|ṽ)
)
×

×
∑

τ̃

fk−1(τ̃ )δτ τ̃

∑
s̃

fk−1(s̃|τ̃ ) f tk|k−1(s|s̃)×

×
∫

f tk|k−1(x|s, τ, x̃) fk−1(x̃|s̃, τ̃ )dx̃

= rtk−1PS(�t)
( ∑

ṽ

f (ṽ) f (v|ṽ)
)
fk−1(τ )×

Fig. 1. The structure of the distribution of a hybrid state with two
kinematic modes and two possible IDs.

×
∑
s̃

fk−1(s̃|τ ) f tk|k−1(s|s̃)
∫

f tk|k−1(x|s, τ, x̃)×

× fk−1(x̃|s̃, τ )dx̃

= rtk−1PS(�t)
(∑

ṽ

otṽk−1w
ṽv

)
ξ tτk−1

∑
s̃

μτ s
k−1π

s̃s(�t)×

×
∫

f tτ sk|k−1(x|s, τ, x̃) fk−1(x̃|s̃, τ )dx̃, (26)

which uses the fact that only the conditioning on the
most recent variable is relevant. Marginalizing this, one
gets

h(s, τ ) = rtk−1

∫ ∑
v

h(x, s, τ, v)dx

= rtk−1PS(�t)ξ
tτ
k−1

∑
s̃

μtτ s̃
k−1π

s̃s(�t), (27)

h(τ ) = rtk−1

∑
s

h(s, τ ) = PS(�t)ξ tτk−1, (28)

h(v) = rtk−1

∫ ∑
τ

∑
s

h(x, s, τ, v)dx

= rtk−1PS(�t)
( ∑

ṽ

otṽk−1w
ṽv

)
(29)

h[1] = rtk−1

∑
τ

h(τ ) = rtk−1PS(�t). (30)

Inserting this in (14)–(17) provides the expressions for
the hybrid states. Note that the expression for the visi-
bility probability ηtk|k−1 follows from the fact that ot0k−1 =
1 − ot1k−1 = 1 − ηtk−1. The expression for the existence
probability rtk|k−1 is found by inserting g(y) = rtk−1PS(�t)
from Table II and h[1] into (11). �

C. Posterior

The individual posterior distributions, conditioned
on either a detection or a missed detection, are calcu-
lated after the prediction. The four possibilities for a
track when new measurements arrive are

� The previously unknown track is detected for the first
time.

� The previously detected track is detected again.
� The previously detected track is not detected.
� The previously unknown track is not detected.
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Any tracks covered by the fourth alternative will be
represented by the unknown target density, and do not
need to be considered specifically. The posterior distri-
butions for the three first possibilities are presented in
the following propositions.

Proposition 2. Initialization of a new track on ameasure-
ment indexed by j is done as

w
t j
k =

{
λ + cUPDη0 for radar
cU

∑
τ̃ ξ τ̃

u fτ (τ
j|τ̃ ) for target-provided

, (31)

rt jk =
⎧⎨
⎩

UPDη0

λ +UPDη0
for radar

1 for target-provided
, (32)

η
t j
k =

{
1 for radar
ηu for target-provided

, (33)

ξ
tτ j
k =

{
ξ τ
u for radar
fτ (τ z|τ ) for target-provided

, (34)

μ
tτ s j
k = μs

u, (35)

f t jk (x|s, τ ) = fz(z|x, s, τ ) fu(x)/c, (36)

where c = ∫
fz(z|x, s, τ ) fu(x)dx is a constant.

Proof. Firstly, for radar measurements, we have that

h(y) =UPD(v)ov
uξ

τ
uμτ s

u fu(x) fz(z|x, s, τ ), (37)

which follows from (2) and Table II. Furthermore,

h(s, τ, v) = cUPD(v)ov
uξ

τ
uμτ s

u , (38)

h(τ, v) = cUPD(v)ov
uξ

τ
u , (39)

h(v) = cUPD(v)ov
u, (40)

h[1] = cUPDη0, (41)

where c is a constant resulting from the marginalization
over x.

For target-provided measurements, we have that
fz(z|x, s, τ ) = fp(p|x, s, τ ) fτ (τ z|τ ). This means that

h(y) =Uov
uξ

τ
uμτ s

u fτ (τ z|τ ) fu(x) fz(p|x, s, τ ). (42)

The probability of detection is omitted here, as it is de-
fined as 1 whenever a target-provided measurement has
been received. Furthermore,

h(s, τ, v) = cUov
uξ

τ
uμτ s

u fτ (τ z|τ ), (43)

h(τ ) = cUξ τ
u fτ (τ

z|τ ), (44)

h(v) = cUov
u

∑
τ̃ ξ τ̃

u fτ (τ
z|τ̃ ), (45)

h[1] = cU
∑

τ̃ ξ τ̃
u fτ (τ

z|τ̃ ), (46)

where c again is a constant.

Inserting these expressions in (14)–(17) give (33)–
(36), i.e., the distributions of the individual hybrid states
of a new target. Furthermore,we have from Table II that
g is the clutter density,which is λ for radarmeasurements,
and 0 for target-providedmeasurements.We insert gand
h[1] in (10) and (11) to get (31) and (32). The expres-
sion for the ID probability in the event of initialization
on a transmitted measurement requires some further ex-
planation.Keeping in mind the prior distribution for the
IDs (4), we have that

ξ
tτ j
k = h(τ )

h[1]

= ξ τ
u fτ (τ

z|τ )∑
τ̃ ξ τ̃

u fτ (τ
z|τ̃ )

=
⎧⎨
⎩

fτ (τ z|τ )(1 − ξ 0
u )/|V − 1|∑

τ̃ fτ (τ
z|τ̃ )(1 − ξ 0

u )/|V − 1| if τ > 0

0 if τ = 0

=
⎧⎨
⎩

fτ (τ z|τ )∑
τ̃ fτ (τ

z|τ̃ ) if τ > 0

0 if τ = 0

=
{
fτ (τ z|τ ) if τ > 0
0 if τ = 0 = fτ (τ z|τ ), (47)

where we have used that
∑

τ̃ fτ (τ
z|τ̃ ) = 1. If a different

prior distribution than (4) is used for the IDs, it can be
accommodated by replacing the final expressionwith the
one in the second line of the above expression. �

Proposition 3. Updating based on a missed detection is
done as

wt0
k =

{
1 − rtk|k−1η

t
k|k−1PD for radar

1 for target-provided
, (48)

rt0k =

⎧⎪⎨
⎪⎩
rtk|k−1(1 − ηtk|k−1PD)

1 − rtk|k−1η
t
k|k−1PD

for radar

rtk|k−1 for target-provided
,

(49)

ηt0k =

⎧⎪⎨
⎪⎩
(1 − PD)ηtk|k−1

1 − PDηtk|k−1

for radar

ηtk|k−1 for target-provided
, (50)

ξ tτ0k = f tk|k−1(τ ), (51)

μtτ s0
k = f tk|k−1(s|τ ), (52)

f t0k (x|τ, s) = f tk|k−1(x|τ, s). (53)

Remark 2.The inclusion of target-providedmeasure-
ment types in the case of a missed detection is some-
what artificial. The expressions are the same as for the
prediction, as the absence of target-provided measure-
ments gives no additional information to the tracking
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algorithm. This follows from the definition of the de-
tection probability in Section III, i.e., that PD = 0 for
target-providedmeasurements when they have not been
received. For later use, the expressions are nevertheless
written out here.

Proof.We have that

h(y) = rtk|k−1(1 − PD(v))otvk|k−1ξ
tτ
k|k−1μ

tτ s
k|k−1 fk|k−1(x|s, τ ),

(54)
where the corresponding expression from Table II has
been written out. Similarly, as to what was done previ-
ously, we find through marginalization that

h(s, τ, v) = rtk|k−1(1 − PD(v))otvk|k−1ξ
tτ
k|k−1μ

tτ s
k|k−1

h(τ, v) = rtk|k−1(1 − PD(v))otvk|k−1ξ
tτ
k|k−1

h(v) = rtk|k−1(1 − PD(v))otvk|k−1. (55)

Again, the different detection probabilities have to be
taken into account when summing over the visibility
states, giving

h[1] = rtk|k−1((1 − PD)ηtk|k−1 + (1 − ηtk|k−1))

= rtk|k−1(1 − PDηtk|k−1) (56)

for radar updates and h[1] = 1 for AIS updates. Insert-
ing this in (14)–(17) gives the wanted expressions for the
hybrid states. Furthermore, we get from Table II that g is
given by 1−rtk|k−1, which together with h[1] gives us (48)
and (49) by using (10) and (11). �
Proposition 4. Updating based on a detection is done as

w
t j
k =

⎧⎪⎪⎨
⎪⎪⎩

PDηtk|k−1r
t
k|k−1

∑
τ̃ ξ t τ̃k|k−1

∑
s̃ μ

t τ̃ s̃
k|k−1l

t τ̃ s̃ j

for radar
rtk|k−1

∑
τ̃ ξ t τ̃k|k−1

∑
s̃ μ

t τ̃ s̃
k|k−1l

t τ̃ s̃ j

for target-provided

, (57)

rt jk = 1, (58)

η
t j
k =

{
1 for radar
ηtk|k−1 for target-provided , (59)

ξ
tτ j
k =

ξ tτk|k−1

∑
s̃ l
tτ s̃ j∑

τ̃ ξ ˜tτ
k|k−1

∑
s̃ lt τ̃ s̃ j

, (60)

μ
tτ s j
k =

μtτ s
k|k−1l

tτ s j∑
s̃ μ

tτ s̃
k|k−1l

tτ s̃ j
, (61)

f t jk (x|τ, s) =
fz(z|x, τ, s) f tk|k−1(x|τ, s)

ltτ s j
, (62)

where

ltτ s j = fτ (τ j|τ )
∫

fz(z
j
k|x̃) f tτ sk|k−1(x̃)dx̃ (63)

for target-provided measurements and

ltτ s j =
∫

fz(z
j
k|x̃) f tτ sk|k−1(x̃)dx̃ (64)

for radar measurements.

Proof. Writing out the expression for a detection in
Table II, we have that

h(y) = rtk|k−1PD(v)o
tv
k|k−1ξ

tτ
k|k−1μ

tτ s
k|k−1×

× f tτ sk|k−1(x) fz(z|x, s, τ ), (65)

which we marginalize to obtain

h(s, τ, v) = rtk|k−1PD(v)o
tv
k|k−1ξ

tτ
k|k−1μ

tτ s
k|k−1l

tτ s j

h(τ, v) = rtk|k−1PD(v)o
tv
k|k−1ξ

tτ
k|k−1

∑
s

μtτ s
k|k−1l

tτ s j

h(v) = rtk|k−1PD(v)o
tv
k|k−1

∑
τ

ξ tτk|k−1

∑
s

μtτ s
k|k−1l

tτ s j.

(66)

For radar,we have thatPD(v = 1) = PD and 0 otherwise,
and for AIS PD(v) = PD = 1 if a measurement has been
received. Using this, we get

h[1] = PDηtk|k−1r
t
k|k−1

∑
τ

ξ tτk|k−1

∑
s

μtτ s
k|k−1l

tτ s j (67)

for radar updates and

h[1] = rtk|k−1

∑
τ

ξ tτk|k−1

∑
s

μtτ s
k|k−1l

tτ s j (68)

for AIS updates. The expressions for the hybrid states
result from inserting this in (14)–(17). We see from
Table II that g = 0, and using this together with h[1],
we get (57) and (58) from (10) and (11). �

D. Mixture Reduction

The mixture reduction is done similarly to what is
done in the JIPDA. That is, all the association hypothe-
ses for each track are merged.An association hypothesis
ak from the set of all possible association hypotheses
Ak contains individual track-to-measurement associa-
tions at . The probabilities for the individual association
hypotheses are

Pr(ak) ∝
∏

t s.t at=0

wtat
k

∏
t s.t at>0

wtat
k /λ, (69)

where λ is the Poisson intensity for the false alarms, and
the fact that

∑
ak∈Ak

Pr(ak) = 1 is used to normalize
the probabilities. This in turn provides the marginal
probabilities for the associations as

pt jk =
∑

ak s.t. at= j

Pr(ak). (70)

The mixture reduction remains the same irrespective
of the type of measurement, as all differences are han-
dled during the calculation of the individual posterior
distributions.
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Proposition 5. We have that

rtk =
mk∑
j=0

rt jk p
t j, (71)

ηtk =
mk∑
j=0

1
rtk
rt jk p

t j
k︸ ︷︷ ︸

β
t j
k

η
t j
k , (72)

ξ tτk =
mk∑
j=0

1
rtk
rt jk p

t j
k︸ ︷︷ ︸

β
t j
k

ξ
tτ j
k , (73)

μtτ s
k =

mk∑
j=0

1
ξ tτk r

t
k

ξ
tτ j
k rt jk p

t j
k︸ ︷︷ ︸

β
tτ j
k

μ
tτ s j
k , (74)

f tτ sk (x) =
m∑
j=0

μ
tτ s j
k ξ

tτ j
k rt jk p

t j
k

μtτ s
k ξ tτk r

t
k︸ ︷︷ ︸

βtτ s j

f tτ s jki
(x), (75)

where

β
t j
k = rt jk p

t j
k

rtk
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
pt jk
rtk

, j > 0

r0kp
t0
k

rtk
, j = 0

, (76)

β
tτ j
k = ξ

tτ j
k rt jk p

t j
k

ξ tτk r
t
k

= β
t j
k

ξ
tτ j
k

ξ tτk
, (77)

β
tτ s j
k = μ

tτ s j
k ξ

tτ j
k rt jk p

t j
k

μtτ s
k ξ tτk r

t
k

= β
tτ j
k

μ
tτ s j
k

μtτ s
k

. (78)

Using the individual f tτ s jk (x), the combined state f tτ sk (x)
can be approximated by use of moment matching
techniques.

Proof. The MBM containing the posterior track es-
timates, weights, and existence probabilities can be ap-
proximated as a multi-Bernoulli. A thorough proof of
this, andmore context regarding theMBM,can be found
in [34].Drawing from the aforementioned proof, in com-
bination with the proof in [7,Appendix D],we have that
the posterior distribution over y can be approximated as

f tk(y) ≈
mk∑
j=1

β
t j
k f

t j
k (y) (79)

where

β
t j
k = rt jk p

t j
k

rtk
(80)

and

f t jk (y) = otv jk ξ
tτ j
k μ

tτ s j
k f tsτ jk (x). (81)

Using this, together with the approximation that the vis-
ibility is independent of the other states, we can write

mk∑
j=1

β
t j
k f

t j
k (y) ≈

mk∑
j=1

β
t j
k ξ

tτ j
k μ

tτ s j
k f tsτ jk (x)

mk∑
j=1

β
t j
k o

tv j
k

=
∑mk

j=1 β
t j
k ξ

tτ j
k μ

tτ s j
k f tsτ jk (x)∑mk

j=1 β
t j
k ξ

tτ j
k μ

tτ s j
k

∑mk
j=1 β

t j
k ξ

tτ j
k μ

tτ s j
k∑mk

j=1 β
t j
k ξ

tτ j
k

×

×
mk∑
j=1

β
t j
k ξ

tτ j
k

mk∑
j=1

β
t j
k o

tv j
k

=
mk∑
j=1

β
t j
k ξ

tτ j
k μ

tτ s j
k∑mk

j=1 β
t j
k ξ

tτ j
k μ

tτ s j
k

f tsτ jk (x)
mk∑
j=1

β
t j
k ξ

tτ j
k∑mk

j=1 β
t j
k ξ

tτ j
k

μ
tτ s j
k ×

×
mk∑
j=1

β
t j
k ξ

tτ j
k

mk∑
j=1

β
t j
k o

tv j
k

=
mk∑
j=1

β
tτ s j
k f tsτ jk (x)

︸ ︷︷ ︸
f tsτk (x)

mk∑
j=1

β
tτ j
k μ

tτ s j
k

︸ ︷︷ ︸
μtτ s
k

mk∑
j=1

β
t j
k ξ

tτ j
k

︸ ︷︷ ︸
ξ tτk

mk∑
j=1

β
t j
k o

tv j
k

︸ ︷︷ ︸
otvk

.

(82)

Keeping inmind that rt jk = 1 ∀ j > 0 and that ot1 jk = η
t j
k =

1 ∀ j > 0, we get the wanted expressions. Lastly, we get
the expression for the existence probability rtk directly
from [7]. �

VI. TARGET-PROVIDED MEASUREMENT HANDLING

The method shown in the previous section does
not specify how the target-provided measurements are
grouped before being sent to the tracker. In this sec-
tion, we present three different ways of considering the
target-provided measurements.

A. Method A: Sequential Measurement Processing

The first method for handling the incoming target-
provided measurements is to process them, and perform
the data association, as they arrive. This would mean
that the predicting and updating of tracks is performed
for each target-provided measurement, which can arrive
at any time between radar measurement batches. This
approach demands no further extensions to what is de-
scribed above. The method is shown in Algorithm 1.

B. Method B: Precise Batch Measurement Processing

The second method performs the data association
for the target-provided measurements at the times when
radar measurements arrive. The method considers all
the target-provided measurements that have arrived be-
tween the previous and current time steps as a batch
of measurements. This method is conceptually similar
to what is done in [13] and [17]. The method is shown
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Algorithm 1 Method A: Sequential measurement
processing

Require: target-provided measurements
ZA = {z1A, . . . , zmA}, radar measurements
ZR = {z1R, . . . , zmR }, tracks from previous time step
X = {x1, . . . , xn}
for target-provided measurement z jA ∈ ZA do
X ← predict(X, t jA) � predict tracks to time of z jA
X ← update(X, z jA)

end for
X ← predict(X, tR) � predict tracks to time of ZR

X ← update(X,ZR)

in Algorithm 2. The target-provided measurements with
the same ID are clustered together, and the data associa-
tion is performed based on these clusters. The clustering
means that the measurement likelihood has to be calcu-
lated for each cluster rather than for each measurement.
The measurement likelihood for Im measurements with
the same ID is

fz(z|x) = fz(z1, . . . , zIm |x) =
Im∏
i=1

fz(zi|zi−1, . . . , z1, x),

(83)
where

fz(zi|zi−1, . . . , z1, x)

=
∫

fz(zi|xi) fx(xi|zi−1, . . . , z1, x)dxi. (84)

This has to be calculated for each measurement that has
arrived between the radar updates. The measurements
are sorted according to their time stamp, with zIm be-
ing the most recent measurement. This expression effec-
tively replaces the integral in (63). The individual kine-
matic states are calculated as

f tτ s jk (x|zi, zi−1, . . . , z1, x)

= fz(zi|xi) fx(xi|zi−1, . . . , z1, x)∫
fz(zi|xi) fx(xi|zi−1, . . . , z1, x)dxi

. (85)

This expression can be calculated using, e.g., a Kalman
filter.A thorough explanation of this recursive measure-
ment likelihood calculation can be found in the supple-
mentary material of [13]. With these expressions estab-
lished, the other calculations and expressions are identi-
cal to Method A.

C. Method C: Batch Measurement Processing With
Added Noise

In Section III, it is assumed that the radar measure-
ments of a single measurement batch are synchronized,
i.e., they all arrive at the same time. We do not make

Algorithm 2 Method B: Precise batch measurement
processing

Require: target-provided measurement clusters
ZA = {z1A, . . . , zmA}, radar measurements
ZR = {z1R, . . . , zmR }, tracks from previous time step
X = {x1, . . . , xn}
for track xt ∈ X do

for target-provided measurement cluster z jA ∈ ZA

do
xt, j ← copy(xt)
for target-provided measurement zi ∈ z jA do

xt, j ← predict(xt , t j,iA )
xt, j ← update(x j, t j,iA )

end for
lt, j ← measurementLikelihood(xt, j, z jA)
xt, j ← predict(xt, j, tR)

end for
Xt, j

new ← xt, j

end for
X ← mixtureReduction(Xnew, l)
X ← update(X,ZR)

the same assumption for the target-provided measure-
ments. However, making this assumption would allow
us to simplify the handling of the measurements and
remove some of the computational complexity of the
above methods. Such an approach would be well suited
when the radar frequency is high, as the timing errors
would be small. Algorithm 3 describes the approach.
Furthermore, only the most recent measurement is con-
sidered when a target has transmitted more than one
measurement between radar updates. In addition, this
method should be usedwith a highermeasurement noise
level to account for the synchronization errors.

Algorithm 3 Method C: Batch measurement
processing with added noise

Require: target-provided measurements
ZA = {z1A, . . . , zmA}, radar measurements
ZR = {z1R, . . . , zmR }, tracks from previous time step
X = {x1, . . . , xn}

X ← predict(X, tR) � predict tracks to time of ZR,ZA

X ← update(X,ZA)
X ← update(X,ZR)

Remark 3. When grouping the same-ID target-
provided measurements, one has to keep in mind the as-
sumption of only one measurement arising from each
target. If a target transmits two target-provided mea-
surements between radar updates, and one of the mea-
surements has a corrupted ID number, then this would
breach the assumption. The most obvious way to amend
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this is to discard target-provided measurements when-
ever there are more measurements than tracks present.
This will, however, interfere with initializing new tracks
on the target-provided measurements. It should also be
noted that if the radar frequency is higher than the
target-provided measurement transmission frequency, a
cluster will always only contain a single measurement.
This would avoid the aforementioned problem and sim-
plify calculations.

Remark 4.Whenusing (83), the discrete hybrid states
will take their most likely value as a mean over the infor-
mation from the measurements in the cluster. This is as
opposed to obtaining the most likely value at the most
recent target-provided measurement. This could theo-
retically impact the estimation of the discrete states. For
example, if two measurements in a cluster indicate two
different kinematic models, then this disparity will not
be captured when using the batch processing methods.

VII. IMPLEMENTATION

A. Utilization of Gaussian-Linearity

Tomake the implementation tractable,we model the
individual kinematic states and the measurement likeli-
hoods as Gaussian distributions. This allows us to use an
Extended Kalman Filter when predicting and updating
the kinematic estimates. The measurement likelihoods
are defined as

f Rz (zk|yk) = N (zk|HRx,RR) (86)

for radar measurements and as

fp(pk|yk) = N (pk|HAx,RA) (87)

for the positional part of the AIS measurements. Fur-
thermore, the kinematic transition density f sτx (xk|xk−1)
is assumed to be in the form of a Gaussian

f sτx (xk|xk−1) = N (xk|f(s)(xk−1),Q(s)). (88)

The transition model is linearized when needed to en-
able EKF prediction and Gaussian moment matching
for mixture reduction.

The kinematic unknown target density from (2) is de-
fined as

fu(x) = 1	(H(s)x)N (H∗(s)x; 0,Pv ), (89)

where 1	(·) is an indicator function, which is 1 when the
unknown target is within the surveillance area, andH∗(s)

is the permutation matrix corresponding to the nonpo-
sitional states of the state vector x. Using this, we have
that

fz(z|x, s, τ ) fu(x)
= 1	(H(s)x)N (za

t

k |H(s)x,Rs)N (H∗(s)x|0,P(s)
v ). (90)

In the case of a large enough surveillance area 	, and
under the assumption of Gaussian-linearity, this can be

approximated as N (x|x̂s0,Ps
0). Furthermore, this means

that the constant c in Proposition 2 becomes

c =
∫

fz(z|x, s, τ ) fu(x)dx ≈
∫

N (x|x̂s0,Ps
0)dx = 1.

(91)
A more thorough proof regarding the unknown target
density can be found in Appendix C of [7].

B. Gating

Because the target-provided measurements can ar-
rive at any time, the number of times we have to perform
gating increases considerably. The main computational
cost of this is the number of predictions. Thus,we should
consider this when creating the gating procedure.

Several different gating methods are presented in
[33]. The first method relies on gating for each kine-
matic model, and it uses all measurements that have
been gated by any of the models. A different method
is a centralized gating procedure, which makes an ap-
proximation across all models using a single gate.We use
a somewhat more refined method, the Two-Step Model
Probability Weighted Gating (TS-MPWG) method. TS-
MPWG was also presented in [33]. The first step in the
method is a centralized gating procedure

f tk|k−1(x) =
∑

τ̃

ξ t τ̃k|k−1

∑
s̃

μt τ̃ s̃
k|k−1 f

t τ̃ s̃
k|k−1(x), (92)

where f tk|k−1(x) = N (x|x̂k|k−1, P̂k|k−1) provides the gate
center x̂k|k−1 and the predicted covariance P̂k|k−1. Fur-
thermore, the innovation covariance becomes

S = HP̂k|k−1H	 + Rk. (93)

If no measurements are gated during the first step, then
the next step is initiated.Here, the gate is determined by
the largest possible model error and should encompass
any measurements generated by the target even if the
chosen kinematic model is wrong. Thus, the TS-MPWG
method can exploit the more computationally effective
nature of the central gating method while compensating
for eventual model errors. Adapting the expressions in
[33] to this model, the gate in the second step is deter-
mined by the maximal difference between x̂k|k−1 and the
individual x̂tτ sk|k−1. This error is

Kmax = argmax
τ,s

‖Hx̂k|k−1 − Hx̂tτ sk|k−1‖2. (94)

Using this, we calculate the gate volume as

Sd = S + Kmax (95)

where

Kmax = diag[

n︷ ︸︸ ︷
Kmax, . . . ,Kmax] (96)

for a measurement space of dimension n.
Furthermore, it would be beneficial to have the possi-

bility of gating target-provided measurements between
two radar time steps without having to predict the state

VARIATIONS OF JOINT INTEGRATED DATA ASSOCIATION WITH RADAR AND . . . 107



of all tracks. We can achieve this by utilizing one of the
methods described in [36].Themethod involves expand-
ing the gate size according to a fixed presumedmaximum
velocity. That is, rather than predicting the track from
time tk−1 to tk, the gate accounts for movement in all
directions at a very high speed. This method gives very
large validation gates, and we only use it as a preliminary
step before using the TS-MPWG method. Here, the ra-
dius of the gate is decided by

rk = 2rk0 + (tk − tk−1)vmax (97)

where vmax is a parameter representing the largest pos-
sible speed for a target, and

rk0 =
√

γGeig(R)max. (98)

Here,γ is the gate size,and eig(R)max is the largest eigen-
value of the measurement covariance matrix.

C. Initialization and Termination

Due to target-provided measurements never being
clutter measurements, care should be taken when choos-
ing the initialization scheme. In JIPDA tracking algo-
rithms, new tracks are usually only initialized on so-
called free measurements, i.e., measurements that have
not been gated by any tracks at the current time step.
When using this scheme, a target-provided measure-
ment belonging to an uninitialized target, which falls
within the validation gate of a previously initialized
target, would most likely assign the measurement to
the previously initialized target. However, a scheme
that initiates tracks on all measurements will avoid this
problem.

Initializing a new track on every measurement is
computationally expensive and requires measures to
mitigate computational complexity. For this purpose, we
classify the tracks as newborn, adolescent, and ordinary.
Newborn tracks are tracks that have been initialized at
the current time step, adolescent tracks are tracks that
were initialized at the previous time step, and ordinary
tracks are all other tracks. The adolescent tracks are not
allowed to compete for measurements in the same way
as the ordinary tracks. The restriction comes into play
when an adolescent track i and an ordinary track t have
gated measurement j at the current time step, and they
have both gated the same measurement at the previous
time step. Then, the adolescent track j is only allowed
to compete for the measurement if it has a larger weight
relative to the measurement than the other track

max
t, j

w
t j
k < TBw

i j
k , (99)

where TB is a threshold parameter. Otherwise, the ado-
lescent track is not allowed to compete for measurement
j, which is enforced by setting w

i j
k = 0.

Termination is done as described in [37]. First, any
tracks with an existence probability under a predeter-
mined threshold Td are removed. Furthermore, any two

tracks deemed to be identical are identified by the use of
the hypothesis test in [1, p. 447]. The most recently ini-
tialized of these are then terminated. Lastly, any tracks
that have not been associated with a measurement for
NT radar intervals are terminated.

D. Kinematic Models

The implementation uses two different kinematic
models: the constant velocity (CV) model and the co-
ordinated turn (CT) model. Due to the varying predic-
tion intervals, we use the discretized continuous formu-
lation of the models. The CV model has the kinematic
state x = [x, y, vx, vy]T where v denotes the velocity, and
the state evolves according to xk = F(s)(�t)xk−1 + vk,
vk ∼ N (0,Q(s)) where

F(s) =
[
I2 �tI2
0 I2

]
, Q(s) =

[
(�t)3/3I2 (�t)2/2I2
(�t)2/2I2 �tI2

]
q. (100)

Here,I is the identitymatrix,�t is the prediction interval,
and q is the process noise intensity [2, p. 270] of the pro-
cess noise.TheCTmodel has an additional stateω,which
is the turn rate. It evolves as xk = F(s)(xk−1)xk−1 + vk,
vk ∼ N (0,Q(s)) where

F(s)(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
sin�tω

ω

−1 + cos�tω
ω

0

0 1
1 − cos�tω

ω

sin�tω
ω

0

0 0 cos�tω − sin�tω 0
0 0 sin�tω cos�tω 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(101)

and

Q(s) =
[
Q(1) 0
0 �tqω

]
, (102)

where Q(1) is a CV model covariance matrix and qω is
the intensity of the turn rate process noise. In the imple-
mentation, theCTmodel is linearized as in [2,Sec.11.7.2].

Remark 5. In most IMM applications, the transition
matrix is constant. Thus, an aspect that has to be con-
sidered when the measurements do not arrive at a fixed
frequency, is how to design the time-varying transition
matrix (�t). A solution is to use the theory of Contin-
uous Markov Chains to get an approximation for (�t)
from the time-independent transition matrix . As de-
scribed in [16], this can be done by use of a generator
matrix G. The generator matrix is closely related to the
time-independent transition matrix  and is formulated
as

(a) no transition takes place in the time interval�t with
probability 1 + gii�t + o(�t),

(b) a transition takes place in the time interval �t with
probability gi j�t + o(�t),

where gi j are the individual elements of G and o(�t)
indicates some small additional term, which is ignored.
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This approximation is reasonable for relatively small �t.
Thus, the generator matrixG forM number of states can
be written as

G =

⎡
⎢⎣

π11 − 1 . . . π1M

...
...

...
πM1 . . . πMM − 1

⎤
⎥⎦ , (103)

where π i j are the individual elements of.Furthermore,
we have from [16] that

π i j(�t) ≈ gi j�t if i �= j and π ii(�t) ≈ 1+gii�t. (104)

Using this, we get

(�t) ≈

⎡
⎢⎣
1 + (π11 − 1)�t . . . π1M�t

...
...

...
πM1�t . . . 1 + (πMM − 1)�t

⎤
⎥⎦ .

(105)

E. Measurement Models

Radar Measurements

The radar measurements only contain positional
data, and the measurements can be written as

zk = Hxk + wk, wk ∼ N (0,RR). (106)

The noise matrix has both a Cartesian and polar ele-
ment, to account both for errors in range and bearing,
and clustering errors. The measurement noise matrix for
the radar measurement becomes

RR = Rc + Rp. (107)

Here,Rc is the Cartesian noise component, whileRp

is the polar noise component converted to Cartesian co-
ordinates. The conversion is done by using the unbiased
conversion equations from [22].

Target-Provided Measurements

The target-provided measurements can contain both
positional and velocity data. The kinematic part of the
measurements can be written as

pk = Hposxk + Hvelxk + wk, wk ∼ N (0,RA), (108)

where Hpos and Hvel are the position and velocity mea-
surement matrices, respectively. The position is usually
derived from GPS information, while the velocity is de-
rived either from a combination of speed and heading
data [6]. Due to the nature of the data, we approximate
the positional errors as Cartesian noise,while we approx-
imate the velocity errors as polar noise. The measure-
ment noise matrix for the AIS measurement becomes

RA = HposRc,A + HvelRp,A, (109)

whereRc,A is the Cartesian noise component,whileRp,A

is the polar noise component converted to Cartesian co-
ordinates, again by using [22].

Table III
Tracking System Parameters

Quantity Symbol unit Value

Radar sample interval T [s] 2.5
Model 1 process noise intensity qa,1 [m2s−3] 0.12

Model 2 process noise intensity qa,2 [m2s−3] 1.52

Turn rate process noise intensity qω [rad2s−3] 0.022

Cartesian noise std. radar σcR [m] 6.6
Cartesian noise std. AIS σcA [m] 3.0
Polar range std. σr [m] 8.0
Polar bearing std. σθ [◦] 1.0
Detection probability PD [%] 92
Survival probability PS [%] 99.9
Noncorrupted ID probability PC [%] 99
Initial visibility probability ηu [%] 90
Visibility Markov probability ω11 [−] 0.90
Visibility Markov probability ω10 [−] 0.10
Visibility Markov probability ω01 [−] 0.52
Visibility Markov probability ω00 [−] 0.48
Gate size γ [−] 3.5
Clutter intensity λ [m−2] 5 × 10−7

Unknown target rate U [m−2] 5 × 10−8

Initial velocity std. σv [m s−1] 10
Initial model probability μs

u [%]
[
80 10 10

]
Unknown target no ID probability ξ0u [−] 0.5
Existence confirmation threshold Tc [%] 99.9
Existence termination threshold Td [%] 1

IMM transition probability π s̃s [%]

⎡
⎣99 .5 .5

.5 99 .5

.5 .5 99

⎤
⎦

VIII. RESULTS

A. Simulation Environment

We created the simulated data in line with the as-
sumptions in Section III. The ownship is situated at the
origin and is stationary. The surveillance area is circular
with a radius of 500 m.We track five targets, all appear-
ing at the edge of the area. Three of the targets appear
at time t = 0 s, while the last two appear at time t = 10 s.
The data consists of true target positions, radar, and AIS
measurements. The movement of the targets follows a
CV model with process noise intensity q = 0.12m2s−3,
with occasional maneuvers according to a CT model.
Furthermore, all targets are guided toward the center
of the surveillance area until they are within 50 m of
it. The measurements are created according to the mea-
surement models in Section VII-E.

The tracking parameters were tuned to achieve good
performance on experimental data and are similar to the
ones in [7]. We list the parameters in Table III. These
are also the parameters used for creating the simulated
data. The AIS measurement noise was also chosen ac-
cording to the experimental data and would correspond
to the measurements providing high location accuracy.
Furthermore, in practical applications, the precision of
the AIS location data can be dynamically adjusted ac-
cording to a position accuracy flag in the AIS protocol
[19].

VARIATIONS OF JOINT INTEGRATED DATA ASSOCIATION WITH RADAR AND . . . 109



To evaluate the results, we used five different per-
formance measures: the optimal subpattern assignment
(OSPA) metric [28], the track localization error (TLE),
track fragmentation rate (TFR), track false alarm rate
(TFAR), and track probability of detection (TPD). The
last four evaluation methods are described in [26]. The
OSPA metric provides an overall performance assess-
ment, while the other measures provide information
about specific aspects of the methods.

We tested five different methods: The three methods
described in Section VI, a method using only the radar
measurements, and the method described by Gaglione
et al. in [13]. The method from [13] uses a particle fil-
ter and loopy belief propagation and is thus very dif-
ferent from the one described in this paper. We denote
the method from [13] as the belief propagation and par-
ticle filter method (BP-PF method). The implementa-
tion uses a single CV model with process noise inten-
sity q = 0.72 m2s−3, and the same parameters as in Ta-
ble III where applicable. As proposed in [23], of which
the method in [13] is an extension, we use 3000 particles
for each potential target.We set the number of potential
targets to 30, as is done in [13].

The code implementing Method A from Section VI
is available at [18].

B. Simulated Data

We tested the methods on 100 simulated data sets
over a range of different detection probabilities. The re-
sults are seen in Figures 2 and 3. Not surprisingly, the
pure radar tracking method performs worse than the
AIS-aided tracking methods from Section VI when the
PD is low. The difference becomes smaller as PD ap-
proaches 1, but is still significant. Furthermore, we see
that themethod from [13] generally performsworse than
all themethods in SectionVI,and, in some aspects,worse
than the pure radar tracking method. The right subfig-
ure in Fig. 2 shows that the largest difference in perfor-

mance is in the initial stage of the scenarios. That is, the
method from [13] struggles with initialization relative
to the other methods. This struggle to initialize tracks
also results in significantly worse TPD,whereas the other
methods perform similarly to each other.

Furthermore, the TLEof themethod from [13] is bet-
ter than that of the pure radarmethod,but it is still worse
than the other methods. We see that the three meth-
ods from Section VI perform similarly. As expected, the
batch processingmethod using added noise gives slightly
less precise estimates.While we see some differences be-
tween the methods for TFR and TFAR, the errors are
of an overall small magnitude. However, the pure radar
tracker is more prone to track fragmentation than the
other methods.

The computational complexity of the methods also
warrants a comparison. The pure radar tracker is the
least computationally demanding, as all the other meth-
ods add functionality in addition to performing the cal-
culations of the pure radar tracker. The precise batch
processing method is the most demanding of the target-
provided measurement handling methods. This is be-
cause it requires predictions and updates for each track
for eachmeasurement.The least demanding of the three
is the batch processing method with added noise, as it
does not need to perform more predictions than the
pure radar methods.The three methods generally do not
introduce a prohibiting amount of complexity and can
all be implemented using a Kalman filter. Furthermore,
they are all significantly less demanding than the BP-PF
method, as it uses a particle filter.

C. Experimental Data

In addition to the simulated data, the sequentialmea-
surement handling method, the pure radar tracker, and
the method from [13] were tested on experimental data
collected as part of the Autosea project at NTNU [8].
The data set is the same set used in [7].We consider two
scenarios, which include three different ships using AIS,
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Fig. 2. Comparison of the different methods using the OSPA metric. The left figure shows the average OSPA values of each method for
different detection probabilities. The right figure shows the average OSPA value for each time step, with PD = 0.9. Here, we only consider the
BP-PF method and the sequential measurement processing method. Both figures contain results from the same 100 scenarios. The OSPA

values are calculated using p = 2 and c = 200. The purpose of the two parameters is described in [28].
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Fig. 3. TFAR, TPD, TLE, and TFR are the five different methods for different detection probabilities. The values were calculated by running
the methods on the same 100 scenarios as above.

of which two provide frequent measurements.The trans-
mission frequency for the two ships is higher thanwhat is
mandated by the IMO [19], but the data set is neverthe-
less helpful for demonstrating the functionality and use-
fulness of the tracking method.Due to the AIS data pre-
viously being used as ground truth for theAIS-equipped
vessels, the AIS data has been interpolated to increase
the number of measurements.This interpolation was un-
done prior to using the data, i.e., we removed any artifi-
cially added measurements.

Figure 4 shows the results from the first scenario.
The scenario contains three fast-moving and maneuver-
ing targets and a single slow-moving target. The slow-
moving target is a large vessel with an AIS transmitter,
while the three fast-moving targets are small, rigid in-
flatable boats (RIBs). Only one of the RIBs has an AIS
transmitter, and it only transmits a single AIS measure-
ment. The large vessel, however, provides high-quality
AIS measurements. As can be seen, both the sequen-
tial measurement handling method and the pure radar
method can track the scenario well, while the BP-PF
method struggles. The BP-PF method likely struggles
due to the kinematic modeling, i.e., because it has to use

a single model to cover the kinematic behavior of both
the RIBs and the large vessel. The two other methods
have more flexibility in their use of IMM, and they can
thus use different kinematic models for the RIBs and
the large ship. When combining target-provided mea-
surements with IMM, the tracker is also better able to
select the correct kinematic model for each target. Fur-
thermore, the sequential measurement handling method
can use the AIS measurements when tracking the large
vessel, improving upon the track from the pure radar
method. It also correctly associates the single AIS mea-
surement transmitted by the RIB.

The second scenario can be seen in Fig. 5. The plots
show the two vessels with frequent AIS transmissions
and the ownship. Figure 6 displays a close-up of the
northernmost turn,with andwithoutAISmeasurements.
The second scenario highlights some advantages of uti-
lizing the AIS measurements when available. The main
event occurs during the turn depicted in Fig. 6, where
the radar measurements are poor due to the large ves-
sel making a maneuver and generating numerous clut-
ter measurements. A similar effect also occurs on the
straight leading up to the turn. Both of these effects
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Fig. 4. A scenario showing four targets. The ownship is the gray line, moving southwards, while the targets all move northwards. The gray dots
are radar measurements, and the green crosses are AIS measurements. The measurements become more transparent as time passes, i.e., the

darker ones have arrived closer to the end of the scenario. The transparency of the tracks is decided by the existence probability, with the more
transparent having a lower probability of existence. The target originating furthest to the right is a large vessel with an AIS transmitter, while
the three other targets are small, fast-moving RIBs. Of the RIBs, only the orange has an AIS transmitter, which transmits a single measurement
during the scenario. The RIBs make several maneuvers before moving beyond the radar range. (a) Results when tracking the scenario using

Method A: Sequential measurement processing. (b) Results when tracking the scenario using only radar. (c) Results when tracking the
scenario using the BP-PF method.

cause the purely radar-guided tracking method to veer
off track, while the sequential measurement handling
method can utilize the AIS measurements to avoid this.
The BP-PF method loses track on the straight due to a
shift in the radar measurements, combined with a tem-
porary absence of AIS measurements, but is better able
to handle the northernmost turn than the pure radar
tracker. This improvement comes at the expense of a
falsely initialized track on the unused radar measure-
ments. The false track is avoided when using the sequen-
tial measurement handling method, given the correct

tuning. Figure 7 shows the estimated course of the tar-
get during the turn, in addition to the standard deviation
of the estimates. The poor radar measurements make
the course estimates unreliable when not also utilizing
the AIS measurements. When using the AIS measure-
ments, the standard deviation of the course estimates
during the turn is significant, but they are still consider-
ably smaller than when the tracker uses only radar mea-
surements. Furthermore, the track avoids sudden course
changes. In this scenario, the inclusion of AIS measure-
ments causes no unwanted consequences, opening the
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Fig. 5. A scenario showing two large vessels with AIS transmitters (with tracks shown as blue and orange lines), in addition to an ownship
(gray line).We depict the measurements and tracks as in Fig. 4. Initially, the orange target moves north, while the blue target moves east. After
some time, the orange target makes a u-turn, while the blue target makes a turn toward southwest. The ownship moves in a clockwise motion.
The orange and blue dots represent the track positions at the end of the scenario. (a) Results when tracking the scenario using Method A:

Sequential measurement processing. (b) Results when tracking the scenario using only radar. (c) Results when tracking the scenario using the
BP-PF method.
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Fig. 6. A closer look at the northernmost turn for the orange track in
the scenario in Figure 5. A single large vessel makes a clockwise turn,
resulting in significant amounts of radar clutter. (a) A target making a
clockwise turn while being tracked using AIS and radar. (b) A target

making a clockwise turn while being tracked using only radar.

possibility of utilizing all the potential enhancements in-
formation given by the messages can bring.

IX. CONCLUSION

We present a framework for including target-
provided measurements in a JIPDA-based tracking al-
gorithm. We use AIS measurements as an example of
such measurements. It is seen that the inclusion of such
measurements can help a pure radar tracking method
and improve performance greatly when the radar mea-
surements are of low quality. In addition to the pure
performance improvements, target-provided measure-
ments can facilitate the identification of targets, which
can be useful for, e.g., a collision avoidance system. Fur-
thermore,we present and compare three different meth-
ods of handling the target-provided measurements:One
method where the tracker processes the target-provided
measurements when they arrive,and twomethodswhere
the tracker processes them at the time of the radar up-

Fig. 7. Course estimate for the turn depicted in Figure 6 using both
radar and AIS (top) and using only radar (bottom).

date.All three methods outperform similar state-of-the-
art methods.

A. Future Work

The main focus of this work is how to incorporate
target-provided measurements into a tracking method,
and we have avoided amore thorough analysis of how to
exploit the information provided by different protocols.
Thus,how to usemore of the data provided by suchmea-
surements should be investigated. There is also the pos-
sibility of using the expressions presented in Section V
in a PMBM,which could improve performance.Another
option is to use target-provided measurements to assist
in clustering radarmeasurements.Lastly, there are safety
concerns when using target-provided information. That
is, the inclusion of easily manipulated input in a safety-
critical system should be investigated.
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