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Dynamic asset allocation in financial investment with an optimal

equity growth principle based on mutual information in communi-

cation theory is considered. Specifically, the asset allocation formula

using Kelly’s criteria derived from channel capacity of a binary

symmetric channel is developed. The goal is to determine the opti-

mal fraction of equity to be invested between a risk-free asset and a

risky asset in a repeated trading activity. The analytical operating

curve to predict trading performance is provided. An extension for

dynamic multi-asset allocation is also presented. An out-of-sample

simulation based on historical market data demonstrates the effec-

tiveness of the methodology.
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1. INTRODUCTION

In modern financial investment world, dynamic asset

allocation allows frequent rebalancing of portfolio over

time in order to achieve certain objectives. Investors

have to sift through a large amount of data in order

to analyze the market behavior, predict future market

directions, and make sound trading decisions. Given the

complexity of the markets and the high stake of trading

decisions, financial engineering and risk analysis have

emerged as an important research field [1—2].

In particular, one of the critical questions is how to

allocate the capital optimally among various correlated

risky assets in order to achieve the highest overall

return under a defined risk level. This type of portfolio

management has become one of the most important

elements in practical investment management. The main

goal of asset allocation is to develop a long-term risk

and return expectation curve for the portfolio and to

establish an operating point for each individual investor

to balance between the expected return and risk based

on his or her own preferences. Traditionally, the process

of asset allocation is to identify fundamentally different

core asset classes (stocks, bonds, real estate, commodity,

etc.) and decide what portion of the capital to invest

in each class in order to compose an overall balanced

portfolio.

To model and analyze financial data, many math-

ematical and statistical methods have been applied

for quantitative analysis, such as time series analy-

sis, regression analysis, machine learning methods, and

Monte Carlo simulations [1—2]. In the financial mar-

kets, there are two main traditional approaches for mar-

ket analysis and stock selection. Fundamental analysis

looks into economic factors such as financial statements

and market competitiveness to make subjective judg-

ments on the qualitative relationship between equity

values and expected market returns, whereas technical

analysis uses quantitative historical data of a security

such as trading patterns and volume to predict its future

price movement [3—8].

Alternative to these traditional approaches, mod-

ern quantitative analysis applies complex mathematical

models to analyze portfolio risk and develop algorithm

trading and arbitraging strategies [2]. This paper adopts

the concept of the classical modern portfolio theory

(MPT) [9—11], which provides a foundation for explicit

risk-reward trade-off analysis. In MPT, a portfolio is

consisted of a set of correlated assets each with its own

expected return (defined as annual average percentage

return) and risk (defined as equity return standard de-

viation on an annual basis). The goal of this “mean-

variance” (MV) approach is to allocate equity among

the assets optimally so that the expected portfolio re-

turn can be maximized given a defined risk level or

vice versa (the overall portfolio risk can be minimized

given a desired return level). MPT develops a set of opti-

mal asset allocation policies by optimizing the allocation
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among available assets subject to risk constraints. These

policies form an “efficient frontier” which allows the

decision maker to select his/her own operating point on

the curve to trade off between risk and return. When an

asset is selected with a certain allocation, it implies that

specific trading actions for the underlined asset would

be taken.

Traditionally MPT-based performance prediction is

made based on some idealized dynamic model for the

volatility of the underlying asset [11—12], which does

not work well in real world. Another approach de-

veloped originally by Kelly [13] shows that the opti-

mal long run asset allocation strategy can be obtained

by maximizing the expected logarithm of the portfo-

lio value over each time step. This strategy has been

proven in different ways [14—15] and has been success-

fully applied in financial markets [16—17]. An explicit

connection between Kelly’s criterion and the informa-

tion theory has also been discussed in [18].

In real world financial market, characteristics of

asset returns change rapidly over time such that an

investor needs to develop a dynamic asset alloca-

tion/rebalancing strategy adaptive to the market envi-

ronment [5, 19]. In portfolio rebalancing, when an as-

set is selected with a certain allocation, it implies that

specific trading actions for the underlined asset would

be taken. Typically, equity-trading strategies are simple

buy or sell actions, which are often used for short-term

trading.

To account for the complex dynamics of modern

market behavior, this paper presents an approach for

performance prediction and evaluation by incorporat-

ing historical market data in simulated trading. Specif-

ically, the equity index futures and options (S&P 500)

data from 1990 to 2016 are used to test the allocation

strategy and trading decisions. In addition, instead of

defining risk using volatility as in MPT, a different risk

metric based on probability of ruin or “draw down” is

computed to derive the corresponding efficient frontier.

In this paper, we advocate the development of op-

timal asset allocation strategies using Kelly’s formula

that was derived based on mutual information of a bi-

nary symmetric channel in communication theory. For

clear exposition, we start with a simple trading scenario

where the entire equity is allocated between two assets:

the risk-free asset (money market or fixed income) and

a risky equity asset (S&P index futures and options). In

fact, the trading choices examined here are intentionally

simplified so that we can clearly illustrate the analytical

performance prediction with tradeoffs between risk and

return.

The goal is to identify the optimal fraction of the

equity to be allocated for trading in order to achieve the

highest long-term return given a risk constraint. The re-

sults based on extended simulated trading with index

options are compared with the analytical performance

prediction. In the trading process, in order to obtain a

more realistic options price, we develop an analytical

model based on “implied volatility”1 and adjust the op-

tion price accordingly. The results have been validated

against the historical market data and proved to be rea-

sonably accurate.

The preliminary version of this paper was presented

in the 19th International Conference on Information Fu-

sion [20]. We have thoroughly re-organized and revised

the original paper with additional contributions. In par-

ticular, we develop a dynamic asset allocation strategy

for portfolio with multiple correlated assets. Similar to

Kelly’s approach for single asset, the goal is to maxi-

mize the long-run portfolio growth rate over many in-

vestment cycles. In addition, we conduct extensive out-

of-sample simulations and show that the resulting strat-

egy outperforms the traditional MV approach in ex-

pected return but with higher volatility. This strategy

can be considered as an alternative approach for the

investor to trade off between risk and reward.

The paper is organized as follows. Section 2 de-

scribes the optimal asset allocation methodologies and

the implications on risk and return. Section 3 presents

the selected trading strategies and the options pricing

model. Section 4 summarizes the simulation results and

the performance analysis for single asset allocation.

Section 5 presents Kelly’s approach as a multi-asset dy-

namic allocation strategy and compares its performance

with a naïve strategy and MV tangency portfolio. Con-

clusions and future research are presented in Section 6.

2. OPTIMAL ASSET ALLOCATION
The goal of constructing an optimal portfolio is

to maximize the investor’s return with a given risk

level. Consider a portfolio consisting of multiple assets.

The log return of each asset in the portfolio over an

investment period is defined as ´i(k) = log[Ai,k=Ai,k¡1]
where Ai,k is the value of the asset i at time k. Assume

that the single period log returns are independent and

normally distributed. Then the return of the asset,

Ri(k) = (Ai,k ¡Ai,k¡1)=Ai,k¡1 = e´i(k)¡ 1 (1)

is log-normally distributed.

2.1. Mean-Variance Approach
In modern portfolio theory (MPT) [21—22], a port-

folio consists of a set of correlated assets each with its

own expected return (defined as annualized percentage

return) and risk (defined as equity standard deviation

on an annual basis). For example, let R= [R1 ¢ ¢ ¢RN]T be
the return ofN correlated assets, E(R) = ¹= [¹1 ¢ ¢ ¢¹N]T
be their expected return over an investment period,

and § be the covariance matrix of R. Denote ! =
[!1 ¢ ¢ ¢!N]T as the asset weights in the portfolio such
that

PN
i=1!i = 1

T! = 1. The expected portfolio return is

therefore
PN

i=1!i¹i = !
T¹ and the corresponding vari-

ance is ¾2P = !
T§!.

1The volatility of the option implied by the market price with a the-

oretical option value model.
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Fig. 1. A Binary Symmetric Channel

Typical investment goal is to allocate capitals among

the assets optimally so that the expected portfolio re-

turn can be maximized given a defined risk level; or

alternatively, the overall portfolio risk can be minimized

given a desired return level. For example, if there is no

risk-free asset, a typical asset allocation problem can

be formulated as the following constrained optimization

problem:

Min! !
T§! subject to !T1= 1 and !T¹= ¹P (2)

With this “mean-variance” (MV) approach, an efficient

frontier can be constructed where for each return level a

portfolio can be derived with minimum risk (variance).

2.2. Binary Symmetric Channel and the Kelly Criteria

In communication theory, a binary symmetric chan-

nel (BSC) is defined in Figure 1, where the binary input

experiences a cross-over probability (probability of er-

ror) p to yield the binary output. In BSC, the channel

capacity is defined by

CBSC = 1¡H(p) = 1+p log(p) + (1¡p) log(1¡p)
(3)

which is equivalent to the maximum mutual information.
The Kelly criterion was originally developed [13]

based on the channel capacity concept in communica-

tion theory. Start with a single asset portfolio, the spe-

cific question addressed was how to allocate the asset

optimally for an investment/betting opportunity in order

to maximize the expected long-term equity growth rate.

The only requirement is that the investment opportunity

needs to have a positive expected return (i.e., with a

winning edge).

Consider a specific investment (bet). Let p represent

its winning probability, b represent the expected return

per unit bet for a winning trade, f represent the fraction

of the equity allocated to the investment (the remaining

1¡f sits on the side line). The number of winning

and losing trades over n bets is denoted by W and

L respectively, with W+L= n. Apparently, W and L

approach pn and (1¡p)n respectively when n is large.
Let X0 and Xn denote the initial and the final amount

of the equity after n bets, where Xn=X0 is called the

terminal wealth ratio (TWR). Then the expected log

growth rate of the equity per trade can be written as [20],

g(f) = E

(
log

·
Xn
X0

¸1=n)

= E

½
W

n
log(1+ bf) +

L

n
log(1¡f)

¾
(4)

It can be easily shown that the optimal f that maximize

g(f) is,

f¤ =
bp¡ (1¡p)

b
(5)

which is called the Kelly’s formula. Specifically, when

b = 1, f¤ = 2p¡ 1, Equation (4) converts to (3), the
BSC channel capacity or the maximum mutual informa-
tion [14—15]. In other words, with the optimal fraction
allocation based on the Kelly’s formula (5), the expected

log growth rate of the equity per trade with a winning

probability p converges to the maximum mutual infor-

mation of a binary symmetric channel.

2.3. Return and Risk Trade-off

Equation (4) shows that the log equity of a portfolio

is expected to grow at a rate of g(f) on a per-trade

basis. For example, if b = 1, p= 0:6, then the optimal

Kelly’s fraction is f¤ = 0:2 and the highest expected
gross return per unit bet per trade is bp¡ (1¡p) = 0:2.
The corresponding expected growth rate of the equity

is R = eg(f
¤)¡ 1 = 0:02 on a per-trade basis. In other

words, with the optimal Kelly criterion, the equity is

expected to grow on an average of 2% after each trade

if 20% of the equity is allocated for each trade where the

amount of potential gain or loss are the same for each

trade and the winning probability of each trade is 0.6.

While the Kelly’s formula provides an optimal allo-

cation for each trade to maximize the long-term TWR,

the potential risk could also be high. Traditionally, trad-

ing risk is assessed by the volatility (STD) of the equity

return [9]. However, it has been recognized that a more

appropriate measure of risk for an investment is draw

down (DD) or probability of ruin. Draw down is de-

fined as the percentage of the equity loss from a peak

to a subsequent bottom within an investment cycle and

the probability of ruin is defined as the probability of

losing a certain percentage of the equity at the end of

an investment cycle. While return and risk go against

each other, it is obviously desirable for an investment

strategy to achieve a high return with a limited draw

down or low probability of ruin.

It has been shown that with Kelly’s investment strat-

egy, the probability of ruin at the terminal stage (having

a draw down of d = 1¡ d̄) after an extensive trading
period can be approximated by [15]

Pf(Xn=X0)· d̄g= d̄(2=c)¡1 (6)

where the allocation for each trade is f = cf¤ with 0<
c < 2. For example, with f¤ = 0:5, c= 1, and d̄ = 0:33,
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Fig. 2. Risk and Return Trade-off as a function of Investment

Fraction

Pf(Xn=X0)· 0:33g= 0:33 when nÀ 1. Namely, there

is a 33% chance that the terminal equity after a large

number of trades is less than 33% (a draw down of

more than 67%) of the initial equity if 50% (optimal

Kelly fraction) of the equity was allocated for each

trade. On the other hand, if c= 0:5, f = 0:5f¤ = 0:25
(half of Kelly), then the probability of ruin reduces to

Pf(Xn=X0)· 0:33g= 0:333 ¼ 0:036.
For example, with p= 0:75, b = 1, and f¤ = 0:5,

Figure 2 compares the normalized rate of return to the

risk of ruin over the range of fraction f from 0 to

1 for equity allocation in each trade [20]. As can be

seen from the figure, when the allocation follows the

Kelly’s suggestion (namely, f = 0:5), the rate of return

is at maximum (0.13) while the probability of ruin (with

d̄ = 0:33), is about 0.33. When half of Kelly (0.25) is

applied, the rate of return lowers to 0.095 while the risk

of ruin reduces to under 0.04. This also suggests that a

systematic approach can be developed for an investment

strategy where a system operating curve (SOC) can

be established to predict risk and reward performance

at different operating points and ultimately allow an

investor to choose a specific point to fit his/her own

risk preference.

To illustrate, Figure 3 shows the corresponding SOC

curve derived from Figure 2 [20]. Each point on the

curve represents an operating point with a specific

fraction of equity being allocated for each trade, where

the peak of the curve corresponds to the suggested

optimal Kelly’s fraction (50%). The left portion of

the curve represents the operating points where higher

return can be achieved by taking a higher risk. They

can be considered as the “investment efficient frontier”

where investors could pick and choose an operating

point based on their own preference. It can be seen

from the figure that beyond the efficient frontier, taking

higher risk will negatively reduce the expected rate

of return. This is due to the “over aggressiveness” by

Fig. 3. System Operating Curve (SOC) for Return vs. Risk

investing more than the optimal Kelly’s fraction on each

trade and is clearly not desirable.

3. TRADING STRATEGIES WITH SINGLE ASSET
ALLOCATION
Having explained the basic principle of Kelly’s for-

mula, this section demonstrates how it can be applied for

optimal allocation with a single asset in practice where

a number of statistical characteristics of the trading as-

set need to be acquired first. Specifically, the winning

probability, the average gain of winning trades, and the

average loss of the losing trades need to be estimated.

3.1. Trading S&P Futures and Options

S&P futures and their options are selected as the

asset for the portfolio. They are traded in many financial

markets, including the Chicago Mercantile Exchange

(CME) [23] and the CME electronic GLOBEX platform

[24]. They are one of the most liquid equity index

products traded in the world. The two most commonly

traded options are the plain vanilla put and call options.2

Both S&P futures and the corresponding options are

extremely liquid and popular.

One could long or short the futures contracts or

the option contracts depending on the goals of his/her

trading strategies. By writing (selling) the put options

when the market is expected to go higher would result

in the options expiring worthlessly and therefore the

seller could keep the collected premium. Similarly, the

seller could keep the premium collected by writing the

call options if the market does not move up beyond the

strike price. However, while the potential loss of buying

2A put option gives the owner of the option the right, but not the

obligation, to sell an asset (the underlying) at a specific price (the

strike), by a pre-determined date (the expiration or maturity date) to

the seller (or “writer”) of the option. A call option gives the buyer of

the option the right, but not the obligation, to buy an agreed quantity

of the underlying from the seller of the option before the expiration

date at a given strike price.
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Fig. 4. Implied Volatility Index and the Implied Volatility Smile

options is limited by the premium paid, shorting options

could be very risky because the loss is only limited by

the market actions. For example, shorting a call option

while the market continues moving up could result in a

severe loss.

3.2. Options Pricing Model

To derive the fair option price, a common practice is

to assume that the underlying asset follows a certain

dynamic model such as geometric Brownian motion

(GBM) with constant drift and volatility, described by

the following stochastic differential equation:

dS = ¹Sdt+¾SdW (7)

where S is the asset price, ¹ is the drift parameter, ¾ is

the volatility, and W is a Wiener process or Brownian

motion. With the assumed model, a closed-form options

pricing model has been developed as a function of the

current asset price, the option strike price, the time to

maturity, and the asset volatility [12, 25]. This popu-

lar Back-Scholes-Merton (BSM) option pricing model

developed in 1973 had revolutionized the derivative in-

dustry for the last several decades.

As mentioned above, an important assumption be-

hind the derivation of the BSM pricing model is that the

price of the underlying asset follows a GBMmodel with

constant drift and volatility. However, since the stock

market crash of October 1987, the volatility of stock

index options implied by the market prices has been

observed to be “skewed” in the sense that the volatility

became a function of strike and expiration instead of

remaining a constant. This phenomenon, referred to as

the “volatility smile,” has since spread to other markets

[26]. Because the original BSMmodel can no longer ac-

count for the smile, investors have to use more complex

models to value and hedge their options. In this paper,

for the purpose of evaluating the trading performance,

we will emulate the option prices subject to the smile

phenomenon by utilizing the historical implied volatility

index (VIX) data and approximate the volatility smile

with a quadratic function of moneyness3 [25]. Figure 4

shows the historical VIX data from 1990 to 2015 and

the corresponding volatility smile based on normalized

strike price used in the simulated trading.

3.3. Trading Process
We employ a simple trading strategy, called “stran-

gle,” by simultaneously writing both out-of-money4

(OTM) weekly put and call options. With an expiration

cycle of 4 weeks, the options are written repeatedly on

a weekly basis. The trading equity is allocated over the

4 weeks period where at the end of each week, a por-

tion of the options expires and a new set of options is

initiated/written. We use historical end-of-the-day S&P

settlement prices and the options pricing model (Section

3.2) to emulate the filled-prices of the transactions. We

assume no transaction cost and no slippage. Note that

since the strategy does not produce substantial amount

of trading as will be clearly described in the next Sec-

tion, this assumption does not affect the validity of re-

sults.

4. TEST AND SIMULATION
In order to estimate the optimal Kelly’s fraction, we

first apply the “strangle” strategy with various parame-

ters such as different out of the money (OTM) strikes

and maturity dates to test the performance. Specifically,

for each set of parameters, the winning probability, the

average gain of winning trades, and the average loss of

3Moneyness is the relative position of the current price of an under-

lying asset with respect to the strike price of derivative.
4The strike of a call option is above the market price or the strike of

a put option is below the market price of the underlying asset.
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Fig. 5. S&P Index (1990—2015)

the losing trades are computed. The results are then used

to obtain the optimal Kelly’s fraction based on Eqn. (5).

The resulting fraction is then applied to allocate equity

in the simulated trading process.

4.1. Options Writing Strategy

With the strangle strategy, we simultaneously short

the OTM S&P put and call options regardless of the

market conditions. We will keep the option positions

open until expiration before repeating the same process

again in the next trading cycle. To compare the perfor-

mance, we vary the strike prices of the options from

at-the-money (ATM) to 6% OTM with a 1% increment.

Note that the options could expire OTM, and there-

fore become worthless. In that case, the premium col-

lected by the seller becomes the profit and the positions

will be closed automatically by the exchange. On the

other hand, if the options expire in the money (ITM),

the options will have to be settled in cash in the sense

that the sellers have to pay the market price at the expi-

ration time to “buy” back the options they sold. In that

case, if the market price deviates more than the premium

collected, the seller will incur a loss.

4.2. Simulated Trading

Figure 5 shows the historical S&P data from 1990

to 2015. Since there are only limited historical options

prices with specific strikes and expirations available

in the public domain, we simulate the options filled-

prices based on the model described earlier. Specifically,

options prices are obtained by utilizing the BSM model

given the S&P price, risk-free interest rate, volatility,

and an expiration time of 4 trading weeks after writing

the options. The S&P prices are based on historical data

and served as the ATM strike prices. Risk-free interest

is based on historical 3-month LIBOR data [27] and

volatility is based on the historical implied volatility

index (VIX).

Fig. 6. Options Writing with 6% OTM Strangle (1990—2005)

However, as mentioned earlier, it is well known

that true volatility is not a constant but a function of

strike and expiration (volatility smile and surface, see

Figure 4) [28]. To obtain a more realistic options price,

we develop a smile model and adjust the option price

accordingly as described in Section 3.2. The results have

been validated against the available market data and

proved to be reasonably accurate.

4.3. Performance Results
To estimate the Kelly parameters, we use 16 years

(1990—2005) of historical data to test the weekly stran-

gle options writing strategy. To be conservative, a 30%

margin5 is assumed to be required for each option con-

tract. In addition, a VIX threshold of 35 is set to avoid a

potential catastrophic loss.6 In other words, all position

will be closed when the VIX goes beyond the thresh-

old and new positions will not be written until VIX

moves below the threshold. To test the performance,

the strike prices are varied from 0% ATM to 6% OTM.

For example, Figure 6 shows that with 6% strangle writ-

ing, the option strategy produces fairly smooth equity

curve with some minor drawdowns. Note that the top

left panel of Figure 6 shows that the number of positions

drop to zero in several occasions [20]. This is due to the

VIX based closing criterion mentioned above.

The detailed resulting performances are summarized

in Figure 7. For example, with a 6% OTM strike, the

rate of winning is around 80% and the draw down is

about 24%. The average amount of winning7 is 2.2

5Margin is the amount of capital needed to initiate and maintain an

option position. Typically, for S&P options, the margin requirement

could be as low as 10% of the underlying asset value.
6The historical average of VIX is below 20.
7Note that for e-mini S&P futures market, each point corresponds

to $50.
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Fig. 7. Performance Summary–Strangle Writing (1990—2005)

Fig. 8. S&P and VIX–2006—2015

per winning trade and ¡4:2 for a losing trade. This
corresponds to a Kelly’s fraction of

f¤ =
bp¡ (1¡p)

b
=

2:2
4:2
(0:8)¡0:2
2:2=4:2

¼ 0:418: (8)

The results indicate that, based on the historical perfor-

mance, the Kelly’s formula recommends an allocation

of about 42% of the equity for each trade in order to

achieve the highest possible long-term gain. Note that

Figure 7 also shows that the average S&P annual re-

turn (Buy and hold) during the same period was less

than 9%.

We apply the Kelly criterion to test the S&P data

from 2006 to 2015. Figure 8 shows the corresponding

S&P and VIX data over the 10-year period. Note that a

42% Kelly also implies that at most 42% of the equity

can be lost in a single trade. In order to ensure that,

a stop loss needs to be in place to determine the total

number of option positions that could be written. For

example, with an initial capital of $1M, a 42% Kelly

and a $4k stop loss per contract, the maximum number

of positions is $1M¤0:42=$4k = 105.
Figure 9 shows the trading performance with a 6%

strangle and the optimal Kelly’s fraction. The option

strategy produces an average of 40+% annual return

and a draw down of around 40%. The detailed perfor-

mances are shown in Figures 10—11 and also summa-

rized in Table 1. In the table, two sets of performance

results, one with the optimal Kelly and the other with a 1
2

Kelly, are given for comparison. It can be seen from the

table that, with the optimal Kelly, the strangle strategy

generally produces much higher rate of return than the

naïve buy-and-hold (B&H) policy, at the expense of a

higher risk (DD) [20].

For example, Table 1 shows that over the 10-year

period, the B&H strategy produces an average annual

return of 5.73% with a DD of 56.24%, while a 2% OTM

strangle produces a 26.39% annual return with a DD of

74.56%. On the other hand, with a 5% OTM strangle,

the annual return reach the highest value of 44.82% with

a draw down of 50.02%. This relatively “conservative”

strategy8 produces much better return than the naïve

B&H strategy while with a smaller drawdown.

8A strangle selling strategy with higher OTM strikes is more con-

servative than the one with lower OTM strikes in the sense that it is

expected to achieve a lower rate of return with a smaller DD.
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Fig. 9. Options Writing Performance with 6% OTM Strangle and Optimal Kelly Fraction (2006—2015)

Fig. 10. Performance Summary–Strangle Writing with Optimal Kelly Fraction (2006—2015)

With 1
2
Kelly, both annual rate of return and maxi-

mum drawdown are much lower due to lower leverage

as shown in Figure 11 and Table 1. For example, with a

4% strangle, the annual rate of return reduces to 23.28%

while the draw down also drops to 30.75%. A 6% stran-

gle reduces the DD to 22.48% and an average annual

return of 21.22%. It is clear from the table that by se-

lecting different leveraged options writing policies, the

performance can be adapted to fit individual investor’s

risk aptitude.

Figure 12 shows the trade-off between risk and re-

turn with different OTM strangles and different invest-
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Fig. 11. Performance Summary–Strangle Writing with 1
2
Kelly fraction (2006—2015)

Fig. 12. Performance Summary vs. Theoretical Predictions

TABLE 1.

Performance Comparison with optimal Kelly fraction

Annual RR Max DD Annual RR Max DD

2006—2015 1 Kelly 1 Kelly 1
2
Kelly 1

2
Kelly

Buy—Hold 5.73% 56.24% 5.73% 56.24%

Strangle 0% 9.62% 86.49% 11.92% 48.44%

Strangle 1% 14.88% 83.38% 14.45% 47.10%

Strangle 2% 26.39% 74.56% 18.64% 42.86%

Strangle 3% 37.09% 66.56% 21.88% 36.30%

Strangle 4% 43.50% 58.00% 23.28% 30.75%

Strangle 5% 44.82% 50.02% 22.72% 26.82%

Strangle 6% 43.23% 42.41% 21.11% 22.48%

ment fractions [20]. The left panel of Figure 12 shows

that, for the simulated trading during the 10-year pe-

riod, the highest rate of return could be achieved with

around 4—5% OTM strangles regardless of the choice

of Kelly’s fractions. The right panel shows the theo-

retical prediction using Equations (4) and (6) based on

the probability of winning and average gain and loss

per trade obtained from the simulation results for 4%

and 5% OTM strangle options writing. As expected, the

“efficient frontier” peak at the optimal Kelly’s fraction.

With the SOC curves given in Figure 12, an operat-

ing point can be chosen to satisfy almost any desired

risk aptitude, should that be defined as drawdown or

probability of ruin. For example, an aggressive investor

might decide to employ a higher Kelly leverage ratio

and a higher OTM strike price with an expectation of

better return and an understanding of the accompanying

higher risk as indicated by the predictions.

5. MULTI-ASSET ALLOCATION

With the “mean-variance” (MV) approach described

in Section 2.1, an efficient frontier can be constructed

for multi-asset allocation where for each return level a
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Fig. 13. (a) Efficient Frontier for a Two Risky Asset Portfolio; (b) Efficient Front Edge and Tangency Portfolio

portfolio can be derived with minimum risk (variance).

For example, with two risky assets, ¹= [0:14,0:08]T

and § = diag[0:22,0:152], Figure 13 (a) shows the “ef-

ficient frontier” portfolios on a mean-STD (standard de-

viation) chart. Each optimal portfolio consists of a com-

bination of the two assets where at the top right end of

the frontier, the entire 100% of the capital is allocated

to asset 1 while at the bottom, all capital is allocated

to asset 2. Any portfolio below the return level of MVP

(minimum variance portfolio) is not considered efficient

due to its lower expected return. Therefore, an efficient

frontier is constructed from MVP to the top right of the

curve.

With the efficient frontier, an investor could choose

a portfolio on the curve depending on his/her own

risk aptitude. For example, a conservative investor may

choose a portfolio close to MVP while an aggressive

investor may choose a portfolio close to R1.
9 Note that

when risk-free asset10 is available, an “efficient front

edge” can be constructed by connecting the risk-free

asset and the tangency portfolio on the mean-variance

chart11 (see Figure 13(b) with risk-free rate rf = 0:06).

The MV tangency portfolio (MVTP) can be shown

to maximize the risk-adjusted return (Sharpe ratio12)

and is a desirable choice of optimal portfolio on the

frontier13 [9].

5.1. Kelly’s Approach

As in (2), we consider a portfolio consisting of a set

of correlated assets with weights ! = [!1 ¢ ¢ ¢!N]T such

9If short-selling or borrowing/leverage are allowed, an investor could

choose a portfolio beyond R1 where higher expected return together

with higher risk can be achieved.
10Cash or Treasuries with interest rate rf and with little or no risk.
11It’s also called the capital market line (CML).
12Sharpe ratio is the risk-adjusted return defined as (¹P ¡ rf )=¾P
13When the portfolio includes all assets in the market, the tangency

portfolio converges to the market portfolio by the equilibrium argu-

ment [11].

Fig. 14. Tangency Portfolio and the Kelly’s Portfolio

that
PN
i=1!i = 1

T!¡ 1. Then the portfolio value for the
following investment period becomes,

P(k) = P(k¡ 1)
Ã
1+

NX
i=1

!iRi(k)

!
= P(k¡ 1)(1+RP(k)) (9)

where P(k) is the portfolio value at time k and RP(k) is

the portfolio return.

According to Kelly, in order to maximize the in-

vestment growth rate in the long run, it is equivalent

to maximize the logarithm of the equity after each time

step [13, 29—30]. Therefore, to construct Kelly’s portfo-

lio, with no short selling and no leverage, it is necessary

to solve the following optimization problem,

Max! E

"
ln

Ã
1+

NX
i=1

!iRi(k)

!#
subject to !T1= 1;!i ¸ 0

(10)

For example, the Kelly’s portfolio (KP) for the two risky

assets example given in Figure 13 turns out to be the one

with 100% allocation on asset #1 as shown in Figure 14.
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Fig. 15. (a) The Four Core Asset Index Funds: 1996—2016; (b) Core Asset Returns: 1996—2016

Fig. 16. Efficient Frontier and the Kelly’s Portfolio

5.2. Test and Simulation

For evaluation purpose, we compose an artificial

portfolio with a few “core assets” selected from the Van-

guard index-based mutual fund family. Specifically, four

core asset classes, including the US total stock market

index (VTSMX), total bond index (VBMFX), interna-

tional stock index (VGTSX), and the real estate index

(VGSIX), are selected to construct the portfolio. The 20-

year historical prices obtained from finance.yahoo.com

and their log returns of the four assets from 1996 to

2016 are shown in Figure 15.

As mentioned earlier, the goal of constructing an

optimal portfolio is to maximize the investor’s return or

minimizing the risk. Under a given capital constraint,

portfolios are constructed and dynamically rebalanced

by allocating the capital over the four core assets using

different strategies. With no shorting and no leverage

assumptions, the allocation fraction of each asset is

subject to !T1= 1 and !i ¸ 0.
The three strategies to be compared include MV

tangency portfolio (MVTP), Kelly’s portfolio (KP), and

the portfolio based on a Naïve strategy. The Naïve

strategy is a simple allocation scheme served as the

baseline for comparison, in which the portfolio is simply

rebalanced uniformly among all the core assets at the

beginning of each investment period. The historical data

of the four core assets are used to train the model.

Specifically, a sliding window of 18 months of data is

used to estimate the asset returns, volatilities, and the

correlations between the assets. Based on the results,

optimal portfolios under each strategy will be formed

and rebalanced accordingly on a monthly basis from

2000 to 2016. During the test period (2000—2016), a

total of 204 months is available for portfolio rebalancing

and performance evaluation. For example, Figure 16

shows a snap shot of the efficiency frontier and the

corresponding locations of the three strategies for Nov.

2016. The history of the dynamic allocation fractions

of the four core assets in the portfolio based on MVTP

and KP are shown in Figure 17. As can be seen, KP

tends to take a more extreme allocation than that of the

MVTP.

5.3. Performance Results

With the three strategies, the portfolio is dynami-

cally rebalanced monthly during the investment period

from 2000 to 2016. In the process, we assume no trans-

action cost and no slippage for the rebalancing trades.

The resulting portfolio equity curves for the three strate-

gies are shown in Figure 18 and the overall perfor-

mances are summarized in Table 2. The Naïve portfolio

has the lowest annualized return (5.33%) with highest

volatility (12.80%) and worst drawdown (49.94%) due

to its simplicity and the inability to deal with the 2008

102 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 13, NO. 1 JUNE 2018



Fig. 17. (a) Asset Allocation Fractions–MVTP; (b) Asset Allocation Fractions–KP

TABLE 2.

Performance Summary: 2000—2016

2000—2016 MVTP Baseline KP

Annual Return 7.44% 5.33% 9.90%

Annual Risk 6.65% 12.80% 12.53%

Sharpe Ratio 1.044 0.377 0.750

Drawdown 14.78% 49.94% 23.27%

credit crisis. As expected, Kelly’s portfolio (KP) is an

aggressive strategy and it produces the highest annu-

alized return (9.90%) while suffers a noticeable draw-

down (23.27%). Not surprisingly, the MVTP strategy

produces the highest Sharpe ratio of 1.044. This is ex-

pected by the nature of the tangency portfolio. In addi-

tion, it’s necessary to point out that the MVTP is able to

weather the 2008 credit storm with a fairly small port-

folio volatility (6.65%) and a manageable drawdown

(14.78%). Note that MVTP and KP represent two com-

plementary strategies that allow an investor to make a

tradeoff between risk and return according to his/her

own preferences.

6. SUMMARY AND CONCLUSION

An optimal asset allocation strategy to support in-

vestment and trading decisions is developed. First, a

simple yet practical trading scenario where the entire

equity is allocated between a risk-free asset and a risky

asset is considered. The goal is to identify the opti-

mal fraction of the equity to be allocated for trading

in order to achieve the highest long-term return with a

limited risk. The allocation is based on Kelly criterion

derived from the concept of mutual information in bi-

nary symmetric communication channels. The resulting

model is applied to dynamically allocate equity for writ-

ing S&P futures options. Several trading strategies are

Fig. 18. Equity Curves Comparison

implemented based on the decision makers’ risk apti-

tude.

Similar to the classical portfolio theory, a system

operating curve is developed for each trading strategy

where each operating point on the curve representing an

expected trade-off between risk of ruin and return. An

investor can choose any operating point to satisfy a de-

sired risk and return aptitude. An extended simulation

was conducted for performance prediction and evalu-

ation by incorporating historical market data of S&P

index futures and options. The results of the simulated

trading using these strategies over a 10-year period sig-

nificantly outperform the buy-and-hold strategy. They
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are also consistent with the analytical performance pre-

dictions.

The single asset allocation strategy is then extended

to portfolio rebalancing with multiple correlated assets.

As in the single asset case, the goal is to maximize the

long-run portfolio growth rate over many investment

cycles. We compare three strategies including MV tan-

gency portfolio (MVTP), Kelly’s portfolio (KP), and the

Naïve strategy. Through extensive out-of-sample simu-

lations, we show that the resulting KP strategy outper-

forms the traditional MVTP approach in annual return

but with higher volatility. As expected, KP can be con-

sidered as an alternative approach for investor to trade

off between risk and reward.

While the preliminary results shown in this paper

are promising, one of the critical future step is to

develop and integrate a dynamic model [31—32] into the

allocation strategies so that we would be able to apply

the expected future returns of the chosen assets into the

optimization process. Another potential future research

direction is to integrate the quantitative data with the

qualitative information by utilizing the data fusion and

machine learning technologies.
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