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Fully Decentralized Estimation
Using Square-Root
Decompositions

SUSANNE RADTKE
BENJAMIN NOACK
UWE D. HANEBECK

Networks consisting of several spatially distributed sensor nodes

are useful in many applications. While distributed information pro-

cessing can be more robust and flexible than centralized filtering, it re-

quires careful consideration of dependencies between local state esti-

mates.This paper proposes an algorithm to keep track of dependencies

in decentralized systems where no dedicated fusion center is present.

Specifically, it addresses double-counting of measurement information

due to intermediate fusion results and correlations due to common

process noise and common prior information. To limit the necessary

amount of data, this paper introduces a method to partially bound cor-

relations, leading to a more conservative fusion result than the optimal

reconstruction while reducing the necessary amount of data. Simula-

tion studies compare the performance and convergence rate of the pro-

posed algorithm to other state-of-the-art methods.

COMMENT: RELATION TO PRIOR VERSIONS OF THIS
PAPER

This paper is an extended version of [1], which won
the Best Paper Award in the general category during
the 23rd Conference on Information Fusion. Sections II,
III, and IV have been improved to provide more clar-
ity. Furthermore, Section V.B has been updated with an
improved implementation of the previously used con-
sensus algorithms, and the resulting implications are
discussed.

I. INTRODUCTION

Considered problem: Sensor networks consist of sev-
eral spatially distributed sensor nodes that can coopera-
tively perform a variety of different tasks [2], e.g., track-
ing a moving target using a network of cameras. In this
paper, we consider the problem of fusing several state
estimates in discrete-time linear Gaussian systems with
multiple completely synchronized sensors with linear
Gaussian observations. While centralized processing of
measurements can be done optimally, network topology
and communication bandwidth often forbid processing
measurements in a central processing unit since nodes
can only communicate with their closest neighbors. Dis-
tributed estimation allows the processing of measure-
ments in a local processing unit. This local information
is then communicated and fused with information from
neighboring sensor nodes. It has been shown that the dis-
tributed processing of sensor data can be more robust,
flexible, and scalable [3]. However, it introduces depen-
dencies that need to be addressed carefully to ensure
consistent fusion results.

State-of-the-art: Within the past 40 years, many algo-
rithms [4] have been proposed to address the problems
arising in distributed estimation. This includes using the
information form of the Kalman filter [5]–[7] or formu-
lating an optimally distributed Kalman filter [8]–[10].
Other approaches propose to use local Kalman filters
and fuse their respective state estimates. Several publi-
cations address the correlations due to common process
noise and common prior information [11]–[14]. When
neglecting dependencies [15], fused estimates tend to be-
come inconsistent as the uncertainty is underestimated.
Covariance intersection [16]–[18] aims to find a conser-
vative fusion rule to always ensure consistent results. As
these are often too conservative, other approaches try
to find closer bounds, e.g., inverse covariance intersec-
tion [19], [20]. Specifically for different network topolo-
gies,other algorithms such as the channel filter (ChF) [3],
the information graph approach [21], or the information
matrix fusion [22], [23] were proposed.

Another class of algorithms aims to converge to
a global estimate by iteratively exchanging informa-
tion between neighboring nodes. Prominent repre-
sentatives include consensus on measurements [24],
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consensus on information [25], [26], or hybrid ap-
proaches [27], [28]. Consensus methods can be regarded
as suboptimal fusion rules [29] where the averaging of
the information does not represent the actual informa-
tion in the network and also does not consider redundant
information systematically. For simpler network topolo-
gies, several approaches trying to reconstruct the cross-
covariance matrix between state estimates using ensem-
bles, e.g., the common past invariant Ensemble Kalman
filter (CPI-EnKF) [30], or using samples [31]–[33] have
been proposed. Furthermore, a reconstruction of cross-
covariance matrices using square-root decompositions
was proposed by [34] and [35]. The reconstruction of
cross-covariances has advantageous properties as it al-
lows optimal fusion with consistent fusion results that
are generally more accurate and do not over- or under-
estimate the uncertainty. Yet, it requires the communi-
cation of additional information between sensor nodes,
leading to a trade-off between optimality and network
capacity.

Contribution: The square-root decomposition as ini-
tially proposed in [35] considers fusion in network
topologies with only one dedicated fusion center. In this
paper, we apply the decompositions to decentralized es-
timation tasks, where each node may sporadically serve
as a fusion center. Nodes can exchange their estimates
and fuse their local estimates with the received infor-
mation. For this purpose, each node must keep track
of correlations during its local processing steps. Not
only common process noise needs to be encoded in the
square-root decompositions,but also double-counting of
information poses a problem in decentralized network
topologies and needs to be tracked. Due to the storage
requirements and communication load associated with
the square-root decompositions, the nodes can reach a
compromise between fusion quality and resource de-
mands by introducing partial bounds on the correlations.

Outline: This paper is structured as follows. In
Section II, we first discuss the problem of fusing several
state estimates with correlated estimation errors. In
Section III, we revisit the previously proposed square-
root decomposition method [35] to reconstruct the
cross-covariance matrix between estimates in central-
ized sensor networks with only one dedicated fusion
center.Decentralized network topologies in the absence
of a dedicated fusion center are studied in Section IV.
The evaluation in Section V studies different scenarios
and also provides a comparison with consensusmethods.
Section VII concludes this paper.

II. PROBLEM FORMULATION

We consider a discrete-time linear time-variant
stochastic dynamic system with time index k and state
transition matrix Ak, state vector xk ∈ R

N of state di-
mensionN, and zero-mean white Gaussian system noise

wk with noise dimensionW = N and covariance matrix
Qk, i.e.,

xk+1 = Ak xk + wk ,with wk ∼ N (0,Qk) . (1)

The system is observed by a network ofNs sensor nodes.
The processing and sensing times of the sensor nodes are
synchronized. Each individual node i receives measure-
ments using the observationmodelCi and covarianceRi

k
according to

zik = Ci xk + vik ,with vik ∼ N (0,Ri
k) . (2)

Furthermore, we assume that the measurement noise
and the process noise are mutually independent. Each
node i computes a state estimate x̂ik|k with error covari-
ance matrix Pi

k|k = E
[
(x̂ik|k − xk)(x̂

i
k|k − xk)

T
]
.

A. Fusion of Estimates

Without loss of generality, we confine ourselves to
the fusion of two estimates as multiple estimates can be
fused sequentially. In the following discussions, we also
omit the time index k for the sake of clarity.

The fusion of two state estimates x̂i and x̂ j can take
place at an arbitrary time step k and is a linear combina-
tion with the fusion gains Fi and F j. Depending on the
chosen fusion algorithm, the gains can be determined ac-
cording to the Bar-Shalom/Campo formulas but can also
be fixedweightingmatrices.The fused estimate becomes

x̂f = Fi x̂i + F j x̂ j , (3)

with Fi+F j = I and the corresponding error covariance
matrix

Pf = FiPi(Fi)T + FiPi, j(F j)T + F jP j,i(Fi)T + F jP j(F j)T

= [
Fi F j

]
J
[
Fi F j

]T
. (4)

The joint error covariance matrix is

J =
[
Pi Pi, j

P j,i P j

]
,

where Pi, j = E
[
(x̂i − x)(x̂ j − x)T

] = (
P j,i

)T denote the
cross-covariances and characterize the correlated esti-
mation errors between the state estimates. Typically, the
fusion gains Fi and F j are computed to minimize the es-
timation error E

[
(x̂f − x)T(x̂f − x)

]
. In this case, we re-

fer to x̂f as the optimal fusion result. As discussed, e.g.,
in [37], the optimal fusion result can also be represented
as a weighted least-squares (WLS) estimate

x̂WLS = argmin
x

[m̂− H x]TJ−1[m̂− H x] , (5)

with m̂ = [
x̂i x̂ j

]T
and the matrix H = [

I I
]T, which

determines how the local states map into the global state
vector. The solution to formula (5) is a gain matrix ac-
cording to

K = [
Fi F j

] = (
HTJ−1H

)−1HTJ−1 .
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For two sensor nodes, the fusion gains can be calculated
according to the Bar-Shalom/Campo formulas [11] by

F j = (
Pi − Pi, j)(Pi + P j − Pi, j − P j,i)−1

and Fi = I − F j . (6)

Then, the fusion rule can be written as

Pf = (
HTJ−1H

)−1
, (7)

x̂f = Km̂ = PfHTJ−1m̂ . (8)

Furthermore, from (5), it follows that the fusion result
is unbiased. This formula can only be solved optimally
if the joint covariance matrix J is available. The entries
on the main diagonal are the covariances of the local fil-
ters and thus known. The entries on the off-diagonals,
on the other hand, are caused by the dependent infor-
mation shared between the individual sensor nodes, and
they are usually hard to keep track of.

There are several sources of correlated estimation
errors in distributed state estimation problems [13],
namely

1) common prior information,
2) common process noise, and
3) common measurement information.

Common prior information occurs when the local
KFs are initialized with the same information, e.g., the
same prior state estimate and the same prior covariance
matrix. But even with independent initialization of lo-
cal filters, every sensor node is affected by the same pro-
cess noise, which leads to correlated estimation errors
between state estimates. The local KFs assume condi-
tional independence of measurements, which are then
incorporated into the local state estimates. Due to the
spread of information throughout the network and fur-
ther processing, measurement information can be in-
corporated into several state estimates. This double-
counting of sensor data causes additional correlations.
Only proper treatment of these correlations allows cor-
rect and consistent fusion results.

Optimal fusion is an essential aspect of distributed
estimation, and several authors discussed the optimal-
ity of the fusion of state estimates, e.g., [36] and [37].
However, the fusion of state estimates is not equal to the
minimummean squared error (MMSE) sense in which a
central KF can utilizemeasurements.Therefore,wewant
to distinguish between a central KF and the optimal cen-
tralized fusion in this paper.

B. Correlations Due to Common Process Noise and
Common Prior Information

In systems with a central fusion node [see Fig. 1(a)],
state estimates are correlated due to common process
noise and common prior information.When all process-
ing steps are known, the cross-covariances between state
estimates can be calculated recursively [11]. During the
time update, the process noise is incorporated and the
cross-covariance matrix is updated, leading to the recur-
sive formula

Pi, j
k|k−1 = E[(x̂ik|k−1 − xk)(x̂

j
k|k−1 − xk)

T]

= E
[(
Akx̂ik−1|k−1 − (Akxk−1 + wk)

)
× (

Akx̂
j
k−1|k−1 − (Akxk−1 + wk)

)T]
= AkE

[(
x̂ik−1|k−1 − xk−1

)(
x̂ jk−1|k−1 − xk−1

)T]
AT
k

+E
[
wk(wk)T

]
= AkP

i, j
k−1|k−1A

T
k + Qk , (9)

where Pi, j
k−1|k−1 for time step k = 1 is the common prior

covariance P0|0. During the measurement update, the
cross-covariance is updated using the KF gain Ki

k by

Pi, j
k|k = E[(x̂ik|k − xk)(x̂

j
k|k − xk)

T]

= E
[(
x̂ik|k−1 + Ki

kz
i
k − xk

)(
x̂ jk|k−1 + K j

kz
j
k − xk

)T]
= E

[(
x̂ik|k−1 + Ki

k(v
i
k − Ci

kx̂
i
k|k−1) − xk

)
× (

x̂ jk|k−1 + K j
k(v

j
k − C j

kx̂
j
k|k−1) − xk

)T]

Fig. 1. Different network topologies with sensor nodes (blue), nodes only dedicated to fusion (gray), and sensor nodes with fusion capabilities
(blue and gray).

FULLY DECENTRALIZED ESTIMATION USING SQUARE-ROOT DECOMPOSITIONS 5



= (
I − Ki

kC
i
k

)
E

[(
x̂ik|k−1 − xk

)(
x̂ jk|k−1 − xk

)T]
× (

I − K j
kC

j
k

)T + E
[
vik(v

j
k)

T
]

= Li
kP

i, j
k|k−1(L

j
k)

T , (10)

where Li
k = I − Ki

kC
i
k and E[v

i
k(v

j
k)

T] = 0 because the
measurement noises are mutually independent. This re-
cursive formulation can also be rewritten explicitly as a
sum of the covariances:

Pi, j
k|k = Ti

0,kP0|0(T
j
0,k)

T +
k∑

τ=1

Ti
τ,kQτ (T

j
τ,k)

T , (11)

where at every time step τ we include the new process
noise Qτ . The matrix Tτ,k denote the individual matrix
transformations that are a result of the local KFs [see
equations (9) and (10)]. In large sensor networks, keep-
ing track of these correlations can be cumbersome and
often infeasible as it requires full communication of all
processing steps. Therefore, the methods in [34] and [35]
propose the use of square-root decompositions to keep
track of correlated estimation errors.

III. SQUARE-ROOT DECOMPOSITION OF COMMON
PROCESS NOISE

The following section revisits our previous work
about the square-root decomposition algorithm. It was
originally formulated only for the fusion in centralized
sensor networks with only one dedicated fusion cen-
ter. The basic idea is a sliding window mechanism for a
square-root decomposition of the track correlations.Ev-
ery node updates and saves its history of processing steps
in a matrix containing all square-root decompositions of
common prior information and common process noise.
During the fusion step, every node transmits its state es-
timate, covariance matrix, and square-root matrix. The
square-root matrix allows us to reconstruct the joint co-
variance matrix to fuse the local estimates according to
(7) and (8).The recursive formula of (11) is reformulated
as a square-root decomposition as

Pi, j
k|k = Ti

0,k

√
P0|0(

√
P0|0)T(T

j
0,k)

T

+
k∑

τ=1

Ti
τ,k

√
Qτ (

√
Qτ,k)T(T j

τ )
T

=
k∑

τ=0

�i
τ,Q(�

j
τ,Q)

T .

Each sensor node stores its square-root terms in the
matrix

Sik,Q =
[
�i

0,Q,�i
1,Q, . . . ,�i

k,Q

]
,

which includes all noise terms until the current time step
k and has the dimensionM = N ×D = N × (N + (k−

1) ×W ). The calculation of this matrix can be done re-
cursively. At time step k = 0, it is initialized with

Si0,Q = �i
0,Q =

√
P0 ,

and the matrix is then linearly transformed by the time
update, and a new noise term �i

k,Q = √
Qk is included.

Furthermore, the matrix is then updated using the gain
matrix of the KF update Li

k = I − Ki
kC

i
k

Sik,Q = Li
k

[
Ai
kS

i
k−1,Q, �i

k,Q

]
.

When the fusion step is reached, the cross-covariance
matrix between node i and node j can be reconstructed
as

Pi, j
k,Q =

k∑
m=0

�i
m,Q(�

j
m,Q)

T = Sik,Q(S
j
k,Q)

T . (12)

By including a new process noise term at every time
update, the square-root decomposition matrix Sik,Q will
continue to grow linearly in size. Since communication
bandwidth is limited in sensor networks, we need to find
a trade-off between the optimal decomposition of corre-
lated estimation errors and the communication capacity.

A. Limiting the Number of Square-Root Decomposition
Terms for Process Noise and Common Prior
Information

In order to keep the number of entries in the square-
root decompositionmatrix constant, the square-rootma-
trix is decomposed [35] into two parts:

Sik = [
Sik,TQ , Sik,�

]
,

where Sik,TQ is a moving horizon square-root decomposi-
tion matrix

Sik,TQ =
[
�i
k−TQ+1,�

i
k−TQ+2, . . . ,�

i
k] , (13)

which will only include the dependent noise terms up
to a user-defined time horizon TQ. The remaining noise
terms will be removed from the square-root matrix and
summarized in a residual Sik,�. This residual has to be
bounded in order to obtain a consistent fusion result. To
formulate the fusion rule, we consider the optimal joint
covariance matrix

Jk =
[
Pi
k Pi, j

k

P j,i
k P j

k

]
.

We can now decompose this matrix into a part Pi, j
k,TQ that

we can reconstruct and a part Pi, j
k,� that is correlated but

whose exact correlation we cannot reconstruct anymore,
i.e.,

Jk =
⎡⎣ Pi

k Pi, j
k,TQ + Pi, j

k,�

P j,i
k,TQ + P j,i

k,� P j
k

⎤⎦ .

This residual can be calculated recursively and includes
all correlated noise terms not included in the square-root
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matrix Sik,T . With the residual, we obtain

Sik,�
(
Sik,�

)T = �i
k,Q . (14)

We now aim to find a bound according to⎡⎢⎣
1
ω
�i
k,Q 0

0 1
1−ω

�
j
k,Q

⎤⎥⎦ ≥
[
�i
k,Q Pi, j

k,�

P j,i
k,� �

j
k,Q

]
.

Finally, we can now formulate the new suboptimal joint
covariance matrix

J̃k=
⎡⎣Pi

k−�i
k,Q Pi, j

k,TQ

P j,i
k,TQ P j

k−�
j
k,Q

⎤⎦+

⎡⎢⎣
1
ω
�i
k,Q 0

0 1
1−ω

�
j
k,Q

⎤⎥⎦ ≥ Jk,

(15)

which we will use for the fusion step according to formu-
las (3) and (4). The weighting factors ω can be found by
minimizing the fused covariancematrix according to for-
mula (7).Alternatively, an approximate solution such as
the one proposed by [34] and [38] can be used.Although
suboptimal, we used the latter approach for its simple
implementation and fast execution time. The weighting
factor can be calculated by

ω = 1/tr(�i
Q)

1/tr(�i
Q) + 1/tr(� j

Q)
.

Afterwards, the formula given in (6) yields

F j =
(
Pi + 1

ω
�i
Q − Pi, j

TQ

)

×
(
Pi + 1

ω
�i
Q + P j + 1

1 − ω
�

j
Q − Pi, j

TQ − P j,i
TQ

)−1

.

Last, the fused covariance and fused state can be calcu-
lated according to equations (7) and (8).

IV. EXTENSION TO THE FUSION IN DECENTRALIZED
SENSOR NETWORKS

The square-root decomposition enables the nodes to
encode correlated process noise and correlated prior in-
formation in a distributed fashion. The central node in
Fig. 1(a) does not need to keep track of the correlations,
processing steps, or number of nodes as all the required
information is provided by the nodes themselves. Mod-
ifications to the square-root decomposition are neces-
sary when nodes are organized in hierarchical network
topologies, as shown in Fig. 1(b), where intermediate fu-
sion nodes exist. Each fusion step alters the correlation
structure among the nodes, which has to be encoded
properly and is discussed in Section IV.A. The decen-
tralized network architecture depicted in Fig. 1(c) ex-
hibits cycles that lead to double-counting of information.
Section IV.B discusses how additional data structures

can be introduced to cover correlations due to double-
counting of measurements and thus correlated measure-
ment errors.

A. Hierarchical Fusion

In a hierarchical fusion architecture, nodes may fuse
estimates and pass them to the upper layer for a subse-
quent fusion step.Hence,such intermediate fusion nodes
have to take into account correlations for the fusion but
simultaneously have to compute an updated square-root
decomposition for the subsequent fusion steps. Each
node i can fuse its estimate with an estimate received
from node j by using the fusion formulas (3) and (4).
The required cross-covariancematricesPi, j = (

P j,i
)T are

obtained by the square-root decomposition, i.e., by us-
ing (12).

For the subsequent fusion layer, the square-root de-
composition needs to encode the correlation structure
of the fusion result x̂f. The cross-covariance matrix for
this fusion result x̂f and the estimate x̂l of a third node l
yields

Pf,l = E[(x̂f − x)(x̂l − x)T]

= E[(Fi x̂i + F j x̂ j − x)(x̂l − x)T]

= Fi Pi,l + F j P j,l .

The dependencies Pi,l and P j,l are given by the corre-
sponding square-root decompositions, i.e.,

Pi,l = SiQ
(
SlQ

)T and P j,l = S jQ
(
SlQ

)T
.

Hence, the fused square-root decomposition for the Pf,l

has the form

SfQ = FiSiQ + F jS jQ , (16)

which gives Pf,l = SfQ(S
l
Q)

T for any l.
For a finite horizon TQ, Sf only partially covers the

correlations, and the fusion node also has to update the
residual term (14). According to the chosen weight ω

in (15), the residual becomes

�f
Q = 1

ω
Fi�i

Q

(
Fi

)T + 1
1−ω

F j�
j
Q

(
F j)T

≥ Fi�i
Q

(
Fi

)T + Fi�i, j
Q

(
F j)T

+F j�
j,i
Q

(
Fi

)T + F j�
j
Q

(
F j)T , (17)

which is a bound since any information about �
i, j
Q has

been discarded.

B. Double-Counting

Double-counting occurs when two nodes i and j fuse
their estimates for a second time. In other words, the in-
formation sent out by node i circles back to this node
over possibly multiple hops and processing steps. Not
only common process noise then leads to correlations,
but also measurements incorporated in the estimates
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reappear at the nodes and introduce additional corre-
lations. In the latter case, two estimates are to be fused
that share the same information. The cross-covariance
matrix between the fused estimate x̂f and the estimate x̂i

of node i yields

Pf,i = E[(x̂f − x)(x̂i − x)T]

= E[(Fi x̂i + F j x̂ j − x)(x̂i − x)T]

= Fi Pi,i + F j P j,i .

The cross-covariance P j,i can be calculated as discussed
in Section II.B. The matrix Pi,i represents the correlated
estimation errors of sensor node i and is equal to the co-
variance matrix

Pi
k|k = E[(x̂ik|k − xk)(x̂

i
k|k − xk)

T]

= E
[(
x̂ik|k−1 + Ki

kz
i
k − xk

)(
x̂ik|k−1 + Ki

kz
i
k − xk

)T]
= E

[(
x̂ik|k−1 + Ki

k(v
i
k − Ci

kx̂
i
k|k−1) − xk

)
× (

x̂ik|k−1 + Ki
k(v

i
k − C j

kx̂
i
k|k−1) − xk

)T]
= Li

kP
i
k|k−1(L

i
k)

T + Ki
kR

i(Ki
k

)T
,

with the KF update Li
k = I−Ki

kC
i
k. For this reason, each

node i needs to keep track of an additional list of mea-
surement noise terms

Sik,Ri =
[
�i

0,Ri ,�
i
1,Ri , . . . ,�

i
k,Ri

]
, (18)

to account for double-counting of measurements. It is
initialized at time step k = 1 with

Si1,Ri = �i
1,Ri = Ki

1

√
Ri

1 ,

where Ri
1 is the measurement covariance matrix of the

first measurement (2) acquired by node i. The matrixKi
1

is theKalman gain used in thismeasurement update.The
matrix Sik,Ri is recursively updated according to1

Sik,Ri = [
Li
kA

i
kS

i
k−1,Ri , �i

k,Ri

]
(19)

with

�i
k,Ri = Ki

k

√
Ri
k .

When two sensor nodes exchange estimates for fusion,
they also pass on all the square-root matrices. These ma-
trices need to be kept separate from each other to trace
back possible sources of double-counting. Node i that
receives an estimate from node j then also keeps and
manages the set Sik,Rj ,which is the corresponding set (19)
from node j. The own and the received square-root ma-
trices are updated similarly to (16) and (17) by

SfRi = FiSiRi + F jS jRi ,

SfRj = FiSiR j + F jS jR j .

1Note that Lik in [1] should be inside the brackets.

Bookkeeping of the received Sik,Rj resembles (19).How-
ever, it differs in that it is filled with zeros during further
processing according to

Sik,Rj = Li
k

[
Ai
kS

i, j
k−1,Rj , 0

]
(20)

as the measurement noise affecting node j is uncorre-
lated with the estimation errors at node i for the follow-
ing time steps.

The square-root matrix Sik,Ri can be used in a later
fusion step to retrieve the cross-covariances stemming
from the previous fusion step by

Pi, j
k,R = Sik,Ri (S jk,Ri )

T + Sik,Rj (S jk,Rj )
T , (21)

where S jk,Ri is the common information with node i that

has been tracked in node j. More precisely, S jk,Ri is the
corresponding set to (20) that was generated by node j
when it received information from i. The reconstructed
cross-covariance matrix (21) has to be combined with
Pi, j
k,Q representing the common process noise, which fi-

nally results in the full cross-covariance matrix

Pi, j
k = Pi, j

k,Q + Pi, j
k,R .

The amount of data that need to be stored and up-
dated by each node grows linearly over time. Espe-
cially in networks with many sensor nodes, conservative
bounding techniques can allow the nodes to surpass this
burden.

1) Limiting the Number of Square-Root Decomposi-
tion Terms forMeasurement Noise: Following the con-
cept in Section III.A, we limit the number of process-
ing steps encoded in the square-root decompositions to
a fixed time horizon TR. The matrix (18) becomes

SiR = [�i
R,k−TR+1,�

i
R,k−TR+2, . . . ,�

i
R,k] ,

which has a constant number of entries. The remainder
of the matrix is summarized in the residual term �i

R.
When two estimates are fused, a bound on the residual
matrix as in (17) has to be computed by

�f
R = 1

ω
Fi�i

R

(
Fi

)T + 1
1−ω

F j�
j
R

(
F j)T .

This bound also has to be combined with the residual
bound (17) for the process noise.

2) Keeping Track of Uncorrelated Measurements:
The treatment of correlated measurement information
and double-counting can be simplified by computing
a more general bound on the measurement covari-
ance. This approach circumvents the explicit bookkeep-
ing (18) of the information shared through the fusion of
estimates.

The local covariancematrix of sensor node i is rewrit-
ten as

Pi = PQ,TQ + PQ,� + PR ,

where PQ,TQ accounts for the reconstructable cross-
covariance matrix using (13), PQ,� accounts for the
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residual (14),andPR represents possibly correlatedmea-
surement noise.We further separate this into

PR = P+
R + P−

R ,

whereP+
R denotes correlatedmeasurement noise andP−

R
denotes uncorrelated measurement noise.We can safely
assume that measurements that have been obtained be-
tween fusion steps and thus have not been shared are
uncorrelated. Therefore, only the part accounting for in-
formation that has been shared with other sensor nodes
before is correlated and needs to be bounded. The un-
correlated measurement noise residual P−

k,R can be cal-
culated recursively:

P−
k,R = LAP−

k−1,RA
TLT + Ki

kR
i
1

(
Ki
k

)T
.

To ensure the correctness of this assumption,P−
k,R will be

reset to the zero matrix when the fusion step has been
executed or the information has been shared with other
sensor nodes. The correlated measurement residual is
calculated by

�i
R = Pi − SiQ

(
SiQ

)T − �i
Q − P−

R .

The bounded part of the joint covariance matrix be-
comes

�i
k = �i

k,Q + �i
k,R .

The rest of the fusion step is analogous to (15).

V. EVALUATION

The following section features three distinct ex-
amples to highlight the performance of the proposed
algorithm under different conditions. First, we discuss
an example using only two sensor nodes that constantly
exchange information, which leads to highly correlated
estimates. Second, we discuss the convergence rate of
the proposed algorithm and compare it with standard
consensus algorithms. Last, a tracking example using
25 heterogeneous sensor nodes in a sparse network but
with synchronized fusion steps is analyzed.

A. Two Sensor Nodes

We consider two sensor nodes A and B, which ob-
serve the discrete-time time-invariant linear stochastic
system in (1) with the parameters

A =
[
1 �T

0 1

]
, Q =

[
1 0

0 1

]
, �T = 0.1 .

Both sensor nodes draw observations using the linear
measurement model (2), where every measurement is
corrupted by additive-white Gaussian noise vik with co-
variance matrix RA = RB = 50 and measurement ma-
trices

CA = [
1 0

]
, CB = [

0 1
]

.

Both sensor nodes are initialized with P0 = 5Q and x̂0 =[
0 0

]T. The data exchange between the two nodes is
performed as follows:

1) both sensor nodes execute a local filter update,
2) node A sends its local information to node B,
3) node B fuses information according to the selected

fusion method and reinitializes its local state and co-
variance matrix with new fused information,

4) both sensor nodes execute a local filter update,
5) node B sends its local information to node A,
6) node A fuses information according to the selected

fusion method and reinitializes its local state and co-
variance matrix with new fused information,

7) repeat from beginning.

We calculate the MSE of both sensor nodes and
then calculate the average. Fig. 3(a) shows the averaged
MSE of both sensor nodes for 1000 Monte Carlo runs
(MCRs). The results are compared with the optimal
fusion result. The optimal fusion result is obtained by
optimally keeping track of the cross-covariancematrices
between the state estimates and performing the fusion
step in one dedicated fusion center using a centralized
network topology. After the fusion step is executed,
the local state estimates and covariances matrices
are reinitialized with the fusion result. This approach
shows the lowest MSE as expected. The MSE of the
naïve fusion, which neglects the correlations between
state estimates, immediately diverges. The proposed
square-root decomposition (SqDF) is shown in several
configurations. The time horizon for the square-root
matrix is TQ = 5. The square-root decomposition with-
out bounding (SqDFno) shows a relatively high MSE as
it does not account for older process noise or any corre-
lation due to measurement noise. Bounding of process
noise (SqDFQb) performs a bit better in comparison as
it does bound the process noise but also does not ac-
count for possibly correlated measurements.Covariance
intersection performs better than SqDFno and SqDFQb,
but its performance is limited as it cannot account for
uncorrelated parts. Using the proposed algorithm with
partial bounding of measurement noise (SqDFRbp, see
Section IV.B2) shows better performance than covari-
ance intersection, as it can find a tighter bound. The
proposed method from Section IV.B1 using the limited
time horizon TR for the track-keeping of correlatedmea-
surement noise is also compared to the other methods.
The square-root decomposition using a time horizon
of TR = 5 (SqDFRb1) shows a lower MSE compared
to all other methods. The square-root decomposition
using a smaller time horizon of TR = 2 (SqDFRb2) is
comparable to the performance of CI.

Fig. 3(b) shows the averaged normalized estimation
error squared (ANEES) over both sensor nodes. The
ANEES is a measure to determine whether the ac-
tual uncertainty matches the expected uncertainty [39].
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TABLE I
Abbreviations and Parameterizations for Two Sensor Nodes Example

Method Short Parameterization

Covariance intersection [16] CI –
Naïve fusion [15] Naïve –
Optimal fusion [11] (central) Optimal –
Square-root decomposition (Section III) SqDFno TQ = 5
Square-root decomposition (Section III.A) SqDFQb TQ = 5
Square-root decomposition (Section IV.B2) SqDFRbp TQ = 5
Square-root decomposition (Section IV.B1) SqDFRb1 TQ = 5, TR = 5
Square-root decomposition (Section IV.B1) SqDFRb2 TQ = 5, TR = 2

An ANEES below 1 indicates a conservative fusion
estimate, while an ANEES above 1 indicates an un-
derestimation of the actual uncertainty. Naïve fusion
again diverges very fast and is therefore not included
in the plot, and covariance intersection is overly con-
servative.Both methods without bounding (SqDFno and
SqDFQb) are inconsistent as it would be expected. The
algorithm with partial bounding is close to 1, meaning
that the actual MSE of the fused results matches the
covariance matrix. The proposed methods using a lim-
ited time horizon to keep track of correlated measure-
ment noise (SqDFRb1 and SqDFRb2) are very close to
the optimal fusion result but slightly more conservative,
where SqDFRb2 shows similar performance to the pro-
posed method with the partial bounding of correlated
measurement errors (SqDFRbp).

A summary of all used abbreviations and parameter-
izations of the used methods can be found in Table I.

B. Consensus between States

In the following example, we discuss how fast the
proposed algorithm converges toward a global consen-
sus. Consensus problems have been intensively studied
inmany different contexts [24]. Instead of accounting for
dependencies within the network, consensus algorithms
average the information of neighboring nodes iteratively
until all sensor nodes have converged asymptotically to
a global estimate [29]. While finding a consensus is usu-
ally not the goal of fusion algorithms, it is an interesting
problem to investigate the effect of double-counting in
sensor networks. This section demonstrates that a care-
ful consideration of dependencies improves the conver-
gence rate toward a global consensus. We define the av-
eraged consensus estimate error (ACEE), which indi-
cates the degree of consensus among estimates from all
nodes in the network (see also [28]), as

ACEE = 1
Ns

Ns∑
i=1

(
x̂i − x̄

)
, x̄ = 1

Ns

Ns∑
i=1

x̂i .

We consider a network of ten sensor nodes with ring
topology [see Fig. 2(a)]. The system description is sim-
ilar to the one in Example 1, but the measurement co-
variances are reduced to RA = RB = 0.2 to decrease

oscillation.The sensor nodes alternate between themea-
surementmodel of nodeA and nodeB,which can also be
seen in the figure. The sensor nodes first perform ten fil-
tering steps independently and then communicate their
local information toward their neighbors multiple times.
The fusion algorithms are also compared with consensus
algorithms, specifically consensus on measurements [24]
(ConsM), consensus on information [26] (ConsI), and a
hybrid consensus method called DHIWCF [28], which
performs a consensus on measurement on the first itera-
tion and a consensus on information afterward.All con-
sensusmethods are performed usingMetropolis weights.
We would like to point out that many consensus algo-
rithms have been proposed in recent years and that the
utilized algorithms may not be best tailored to the con-
sidered problem. A summary of all used abbreviations
and parameterizations of the usedmethods can be found
in Table II. Fig. 4(a) shows the convergence rate of the
state estimates. Covariance Intersection (CI) and naïve
fusion show very similar convergence rates. All consen-
sus methods converge only slightly slower. The hybrid
consensus algorithm DHIWCF lies between consensus
on measurements and consensus on information. Fur-
thermore, we see that the square-root decomposition of
the measurement noise improves the convergence rate.
Keeping track of all measurements (SqDFOpt) leads to
the fastest convergence, followed by the square-root de-
composition with a time horizon TR = 3 (SqDFRb1) and
using a time horizon TR = 1 (SqDFRb2), thus show-
ing that even a short time horizon for the measurement

Fig. 2. Network topologies. Magenta nodes are using one
measurement model and blue nodes are using the other

measurement model.
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TABLE II
Abbreviations and Parameterizations for Consensus Example

Method Short Parameterization

Covariance intersection [16] CI –
Naïve fusion [15] Naïve –
Optimal fusion [11] (central) Optimal –
Square-root decomposition (Section IV.B2) SqDFRbp TQ = 11
Square-root decomposition (Section IV.B) SqDFOpt TQ = 11, TR = 10
Square-root decomposition (Section IV.B1) SqDFRb1 TQ = 11, TR = 5
Square-root decomposition (Section IV.B1) SqDFRb2 TQ = 11, TR = 2
Consensus on measurements [24] ConsM Metropolis weights
Consensus on information [26] ConsM Metropolis weights
Hybrid consensus filter [28] DHIWCF Metropolis weights

noise might make a huge difference.The time horizon of
the square rootmatrix keeping track of the process noise
is TQ = 11. Therefore, process noise and common prior
information are fully tracked.

For further comparison, we computed the MSE for
all sensor nodes and showed the averaged MSE in
Fig. 4(b). Compared with all other fusion methods, the
optimal track keeping of correlations achieves the low-
est MSE fastest and almost approaches the centralized
optimal fusion result. The square-root decomposition
with a smaller time horizon, SqDFRb1 and SqDFRb2,
also performs well but converges more slowly. Consen-
sus on information does not show any performance im-
provements in comparison to the other fusion methods.
On the other hand, consensus on measurements con-
verges slightly slower but outperforms all other meth-
ods after 18 time steps. The hybrid method DHIWCF
shows slightly lower performance.Both consensusmeth-
ods reach a lower average MSE because the utilization
of measurement information is more effective than the
exclusive fusion of state estimates.

Lastly, in Fig. 4(c), it can be seen that the aver-
age ANEES over all sensor nodes in the network is
close to the optimal fusion result for SqDFRb1, SqDFOpt,
and SqDFRb2. All square-root decomposition-based al-
gorithms that bound the measurement partially or fully
are very close to the performance of covariance intersec-
tion and, therefore, overly conservative. Consensus on
information shows similar performance to covariance in-
tersection but performs slightly worse becauseMetropo-
lis weights do not minimize the trace or determinant of
the fused covariance matrix. The performance of con-
sensus on measurements depends on the utilized cor-
rection weights to mitigate the averaging of measure-
ments [40]. We chose the correction weight as 2 in the
first consensus step when only two measurements are
available to the sensor node. Then, we increment the
correction weight by 1 in every consensus step until 10
to account for the ten measurements once a consensus
is reached. Because of the averaging characteristics, the
ANEES will start to rise as some measurements have
higher weights than others during the averaging, leading
to double-counting. Once the consensus is approached,

the ANEES will converge toward 1 again, meaning that
the method will be consistent after a certain amount
of time. DHIWCF shows slightly less conservative re-
sults than covariance intersection. This means that it can
reach a relatively low MSE while still achieving consis-
tent results, which is an interesting finding. Yet, the best
trade-off between convergence rate, MSE, and consis-
tency can be achieved using the proposed method.

C. Large-Scale Sparse Network

In our last example,we consider a simple tracking ex-
ample featuring 25 sensor nodes in a sparse network, as
depicted in Fig. 2(b). Nodes always receive information
from the three closest sensor nodes. The movement of
the tracked object is described by

xk+1 = Ax + wk with wk ∼ N
(
0,Q

)
,

A =

⎡⎢⎢⎢⎢⎣
1 0 �T 0

0 1 0 �T

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎦ ,

Q = 0.1

⎡⎢⎢⎢⎢⎣
1
3�T 0 1

2�T 0

0 1
3�T 0 1

2�T
1
2�T 0 �T 0

0 1
2�T 0 �T

⎤⎥⎥⎥⎥⎦ , �T = 0.1 .

Referring again to Fig. 2(b), the blue nodes observe
the bearing toward a moving target and the red nodes
the range. Their observation is described by a nonlinear
measurement function

yi
k

= hi(xk) + vk ,

where nodes alternate between measuring the bearing
or the range toward a moving target:

hi(xk) =
⎧⎨⎩ atan2(xy,k − Piy , xx,k − Pix) if i is odd,√(

xx,k − Pix
)2 + (

xy,k − Piy
)2 if i is even,
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TABLE III
Abbreviations and Parameterizations for Large-Scale Network Example

Method Short Parameterization

Covariance intersection [16] CI –
Naïve fusion [15] Naïve –
Optimal fusion [11] (central) Optimal –
Square-root decomposition (Section III) SqDFno TQ = 5
Square-root decomposition (Section III.A) SqDFQb TQ = 5
Square-root decomposition (Section IV.B2) SqDFRbp TQ = 5
Channel filter [21] ChF

with measurement noise

Ri = ( 2π
180

)2
if i is odd, or Ri = 0.01m2 if i is even

at the sensor node position Pi = [Pix,P
i
y]

T. The nodes
are placed at random on a 10 m×10 m field. They per-
form a synchronized fusion step at every fifth time step.
Since the most recent five measurements are hence un-
correlated, a square-root decomposition of the measure-
ment noise is not needed as only oldermeasurements are
correlated and their influence is increasingly becoming
weaker. Therefore, we will utilize the additional infor-
mation about uncorrelatedmeasurements for the fusion.
A summary of all used abbreviations and parameteri-
zations of the used methods can be found in Table III.
Fig. 5(a) shows the average MSE over all 25 sensor
nodes. The time horizon for keeping track of process
noise is TQ = 5. The results of the partial bounding
SqDFRbp and the square-root decompositionwithout ac-
counting for correlated measurements SqDFQb have the
lowestMSE.As expected, the partial bounding SqDFRbp

is more conservative than SqDFQb as indicated by the
ANEES [see Fig. 5(b)].We also observe that SqDFQb is
even consistent, i.e., the ANEES is close to 1, which can
be due to correlations that cancel each other out because
of symmetries within the considered setup.

We also compared our proposed algorithm to the
ChF [21], [41], which can be seen as a first-order approx-
imation of the information graph technique. While the

ChF is suboptimal because it does not account for all
common information, it might be only slightly subop-
timal if the time between the occurrence of correlated
estimation errors and the current fusion step is large
enough. Furthermore, it requires very little additional
computation and communication. Fig. 5 shows that the
ChF’s MSE is very close to the fusion result using CI.
Yet, the ANEES indicates that the fusion result is con-
sistent.

VI. RESULTS AND DISCUSSION

The second example shows that the convergence
rate is improved when cross-covariances can be recon-
structed accurately. However, the fusion can lead to nu-
merical issues when sensor nodes are highly correlated
since the joint covariance matrix cannot be inverted
properly. While the additional square-root decomposi-
tion of the measurement noise is beneficial, it leads to
additional communication, which grows with the num-
ber of sensor nodes. It might be possible to discard
parts of these square roots when they traveled too far
from their source. Therefore, correlations would only
be tracked within a particular region of interest around
a sensor node, which might improve the scalability of
the algorithm. The choice of the time horizon deter-
mining the number of encoded dependent noise terms

Fig. 3. Comparison of the fusion results of different algorithms for 1000 MCRs.
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Fig. 4. Convergence of state estimates toward a common consensus and MSE for ring topology with 200 MCRs.

highly depends on the application and needs thorough
consideration.

VII. CONCLUSION

This paper aims at solving the problem of fusing
multiple state estimates in different network topologies
with unknown correlations. The proposed method uti-
lizes the square-root decomposition of correlated noise

covariances.The advantage of this approach is that every
node can keep track of its local processing steps indepen-
dently, and, thus, no dedicated fusion center is necessary
tomanage the sensor nodes or their communicationwith
each other.

The results show that the fused estimate remains
consistent in arbitrary network topologies and that
the fusion results of several sensor nodes converge
faster toward a consensus than other fusion methods

Fig. 5. Comparison of the fusion results of different algorithms for 100 MCRs.
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while yielding more consistent results than consensus
methods. The downside of this method is the increased
amount of additional information that needs to be
shared and constantly updated. Therefore, the choice
of the right time horizon might be crucial for the
performance in many applications.

The findings of this paper make several contribu-
tions to the current literature. First, the modification of
cross-covariances between state estimates due to inter-
mediate fusion steps is discussed. Second, the additional
dependency due to the double-counting of measure-
ment information is examined. The provided method
can be tailored to the needs of the application by tun-
ing the time horizon for the number of tracked cor-
related noise covariances to meet the bandwidth re-
quirements. Furthermore, the time horizon for com-
mon prior information and common process noise can
be chosen independently from the time horizon for
common measurement information. This allows to only
keep track of correlated estimation errors that con-
tribute the most to the cross-covariance. By choos-
ing a shorter time horizon, the fusion result becomes
more conservative while still being a tighter bound than
most other conservative fusion methods. In addition,
the time horizon can be adjusted within the sensor net-
work to provide more accuracy in certain areas where
it is needed while allowing for rougher estimates in
others.

Because of its flexibility, the method can even be
utilized in low-cost sensor networks. An exciting appli-
cation is the cooperative localization of robots, where
many sources of correlated estimation errors occur,
which are usually only addressed in a conservative
fashion.
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Analysis of Costs for the GNP
Problem

MARK LEVEDAHL
JOHN D. GLASS

Track-to-track data association in a multisensor framework

involves score functions to determine a solution. When sensor er-

rors include both random noise and unknown bias terms, several

options are available. Of these, two options are the global near-

est pattern match (GNPM) and marginal track-to-track association

(MTTA) scores. The former involves a joint likelihood of bias and

association hypothesis and the latter is the result of integrating the

total probability space over the unknown bias to remove the bias

likelihood. Analytically, we show that the difference between these

scores is the determinant of the a-posteriori bias covariance, and

that the same bias estimation is inherent in both. Using a simple

numerical example, we compare the weight each score formulation

apportions to track assignment hypotheses based on the quality of

the bias estimate, and show that GNPM tends to favor hypothe-

ses with low a-posteriori bias covariance. Additionally, through eval-

uation of the incremental cost structure, we argue that the non-

assignment cost used in both scores is nearly optimal, in the sense of

correct associations, for GNPM. However, the same non-assignment

cost is not optimal for the MTTA score, and the significance depends

upon the uncertainty of bias and the number of associations made.

I. INTRODUCTION

ASSOCIATING sets of observations from sensor
systems is fundamental in multi-sensor tracking. With
reliable multi-sensor track assignment, track fusion can
achieve improved accuracy and allow handover of data
from one sensor to another [4]. Furthermore, distributed
sensor systems allow coverage of larger areas with differ-
ent viewing angles and facilitate the formation of a com-
plete track picture [6]. Basic complications that prohibit
perfect track-to-track association are unknown residual
bias errors, random errors contained in the observations
of a sensor, unknown true target motion, and hetero-
geneous sensor coverage. Residual bias may arise from
imperfections in sensor registration, transformation er-
rors, and other sources, whereas random errors arise
from stochastic effects of sensor systems such as ther-
mal noise. Missed detections are often the result of sen-
sor sensitivity/phenomenology and other aspects such
as sensor resolution, thus causing heterogeneous sensor
coverage.Unknown target motionmay also induce error
in the estimated track state, regardless of other errors,
yielding cross-correlated error across sensors. Mathe-
matical models of these sensor errors form the founda-
tion of modern track-to-track association algorithms.

Track association in a multisensor framework in-
volves score functions to assess alternate association hy-
potheses. Any hypothesized association of tracks im-
plies a set of observed targets and locations, with the
score function providing the probability the given tracks
arise from common targets specified by the association
hypothesis. These score functions in general have un-
known, possibly random, parameters (e.g., location of
targets) implicitly set such that the score is maximized at
the observed values [12], [13],and thus evaluate howwell
each hypothesis fits the data. The classic formulation is
termed the global nearest neighbor (GNN) problem and
addresses randomerrorswith heterogeneous sensor cov-
erage, but assumes independent errors per track, ignor-
ing bias errors [5], [6], [16]. Since the assignment score
of a track tuple is independent of others, GNN is an
N-D assignment problem with costs in the form of nega-
tive log-likelihoods based on assumed statistical models.
Solving the two-sensor case is very efficient with solvers
such as the auction or Jonker–Volgenant–Castanon al-
gorithms. For a survey on solution methods to GNN see
[22]. To handle heterogeneous sensor coverage, GNN
algorithms include the cost of particular tracks not as-
signing, based on a-priori assumptions by which targets
may appear. Uniform spatial distribution of targets in
the surveillance volume with the total number of targets
as Poisson distributed are standard assumptions in the
literature.

When multiple sensors track the same target, errors
of those tracks can become cross-correlated, assuming
these errors arise due to common process noise. The
basic ideas are in [2], including discussion of handling
more than two sensors. As shown in [2], the scores of
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track tuples remain independent with inclusion of cross-
correlated errors of this form, maintaining the ability
to use GNN solution methods. A more difficult prob-
lem arises when there are cross-correlated errors across
a set of tracks from a sensor, herein called “bias” er-
rors, though these errors need not be time-invariant nor
100% cross-correlated. This problem is very important
when the magnitude of the residual bias errors is signifi-
cant compared to the sum of target spacing and indepen-
dent errors in tracks. A simple mitigation with a GNN
algorithm is to inflate covariances to cover both the ran-
dom errors and the residual bias. However, as shown in
[16], the method of covariance inflation gives poor asso-
ciation performance as the magnitude of bias grows.Ap-
proaches that are more sophisticated attempt to recog-
nize the bias and provide specific treatment. Early tech-
niques involved sequential methods that first attempt to
estimate and remove the bias, then use GNN as if the
tracks are unbiased [24]. More recent techniques jointly
solve for residual bias and assignments within the math-
ematical formulation of the problem.

A full treatment of bias errors requires different scor-
ing functions than used in GNN. The global nearest pat-
tern match (GNPM) function, presented in [16] for the
case of two sensors, includes the most probable bias per
hypothesis in the score.A variant of this approach based
upon marginalizing the bias estimate, termed marginal-
ized track-to-track association (MTTA), is presented in
[20], again for the case of two sensors. These scoring
functions facilitate solutions to what we call the global
nearest pattern (GNP) problem. Compared to early so-
lutions to the GNP problem that focused on indepen-
dent bias estimation and assignment steps, the novelty of
GNPM and MTTA is in the explicit treatment of sensor
bias in the scoring functions, leading to joint assignment
and bias estimation [16], [20].As shown in [16], this joint
approach can provide significantly improved data asso-
ciation performance compared to GNN even when bias
errors are a small fraction of the independent random
errors.The work of [7] and [14] extends theGNPM func-
tion for the N-sensor case, including cross-correlation
due to process noise.

The GNP assignment problem is much more difficult
to solve than the related GNN problem as the costs are
not separable into independent costs per track pair. In-
stead, GNP gives coupled costs based upon the hypoth-
esis dependent bias estimate, breaking the assumption
underlying use of standard assignment solvers for this
problem. For problems with only a handful of hypothe-
ses to choose from, a feasible solution is to enumerate
and score all. However, in many real-world cases, this
approach is infeasible. The 6 × 8 association problem
we investigate in Section III gives 93,289 possible hy-
potheses, illustrating how even a handful of tracks give a
high number of total hypotheses. Addressing this prob-
lem, Levedahl in [17] provides a Dijkstra shortest path
technique for providing the K-best solutions to the GNP
problem, applicable to both the GNPM and MTTA cost

functions, and discuses performance (both runtime and
accuracy) compared to GNN in [16]. Papageorgiou in
[21] provides additional specialized mathematical pro-
grams for solving these problems, again including dis-
cussion of accuracy and runtime issues. The techniques
discussed above have proved practical and useful in real
time for problems much larger than the 6 × 8 problem
included here.

It is worth noting that, in general, these techniques
assume the targets within a single GNP problem have a
common bias offset represented in the same dimension
of the state space. Strictly speaking, the assumption of
a common relative bias offset to the sets of data is sel-
dom true in practice. For example, a registration bias is
often modeled as additive constants in the measurement
space of range and angle as in [19], which affects Carte-
sian tracks in a non-linear fashion. Thus, a small azimuth
bias δθ affects position as rangemultiplied by δθ ,but also
the velocity as the latter vector estimate has been rotated
by δθ . So long as the targets are not widely dispersed,
an assumption of common bias is reasonable. We pre-
fer to think of the common bias assumption as a linear
approximation of a non-linear bias model about the cen-
troid of the targets of interest. Conversely, a non-linear
bias model of specific range and azimuth offsets for each
sensor needs wide dispersion among targets to yield
favorable observability [19], and requires non-linear
estimation techniques. In addition, widely dispersed tar-
gets tend to unambiguous association problems where
GNN covariance inflation approaches may suffice. GNP
methods are appropriate where bias errors are signifi-
cant compared to the noise error and inter-target spac-
ing, and targets in the problem are not widely dispersed
such that the common bias model is unreasonable. Re-
gardless, the common bias representation is an approxi-
mation made by numerous authors, including [7], [8], [9],
[14], [16], [17], [20], and [24], and is the focus of this work.
We leave any extensions to non-linear bias models as fu-
ture work, in part because such extensions preclude the
closed-form solutions essential to the comparisonsmade
in this paper.

The key objective of this paper is to understand the
full mathematical foundation and relationship ofGNPM
and MTTA, along with sound mathematical rationale
for selection between them. Therefore, we ignore any
extension to greater than two sensors, and ignore any
extension to general cross-correlated errors beyond sen-
sor bias. Generally speaking, GNPM assumes that the
most probable bias is a key variable in the association
problem, while MTTA treats bias as a nuisance parame-
ter andmarginalizes bias in the score. Ferry in [8] and [9]
also makes arguments based in Bayesian methodology
in agreement with Papageorgiou’s treatment of bias, but
Ferry incorporates fundamentally different a-priori tar-
get assumptions, most importantly that targets appear
spatially according to a Gaussian distribution rather
than uniform as GNPM/MTTA assumes. A benefit
of the Gaussian assumption is closed-form integrals
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rather than the approximations needed for the uni-
form case, but results in equations much more complex
than GNPM/MTTA and are hard to decompose in a
fashion that allow efficient solution. We note that the
perceived value of bias marginalization by the authors
of [20] is in ambiguity management, claiming that bias
likelihood can be a corrupting presence in correctly
determining the probabilities of various association
hypotheses. Other authors have attributed the difficulty
of reliable probability determination to the integral
approximations inherent in the posterior [15], precisely
the integral targeted in the work of Ferry in [8] and
[9]. Although the work of [15] demonstrates that this
integral approximation becomes less accurate in dense
target scenarios where ambiguity management is crit-
ical, the role this integral plays was not discussed in
[20]. We further note that the key metric used in this
work, association accuracy, directly scores whether the
highest probability hypothesis is most correct, and is a
necessary but insufficient criterion to achieving correct
hypothesis probabilities. For the problems investigated
here, our findings show MTTA is sometimes worse, and
never better, than GNPM in association accuracy.

We investigate GNPM/MTTA against the key crite-
rion of maximizing the number of correct assignments,
as that is the fundamental objective of data association.
In Section II of this contribution, we start from the basic
assumptions of the track association problem in the pres-
ence of bias to derive the exact difference between the
GNPMandMTTA score functions.A part of this deriva-
tion includes expressing the GNPM and MTTA scores
as a new, yet equivalent, stacked Gaussian density equa-
tion. We show that although MTTA has the bias term
removed through integration, the same relative bias es-
timation of GNPM is implicit in the MTTA assignment
score. Intuitively, we show that the difference between
the two scores is the determinant of the covariance of
the a-posteriori bias estimate, very similar to the conclu-
sionsmade in [12] formarginalization of target locations.
Leveraging this result, in Section III we elaborate on
the practical differences between theGNPMandMTTA
scores through analytic and numerical examples. Crit-
ically, we evaluate association performance for various
non-assignment costs and show that the non-assignment
cost often cited in the GNN/GNP literature is nearly op-
timal for GNPM in the sense of maximizing the proba-
bility of correct association.However, as the uncertainty
of residual bias grows, this non-assignment cost can be
far from optimal for MTTA. The covariance of the a-
posteriori bias estimate in theMTTAcost is precisely the
source of sub-optimal assignment performance, there-
fore any adjustments made toMTTA that maximize cor-
rect assignments give GNPM. Our findings show that
GNPM can be much more accurate than MTTA for few
assignments or large bias errors, and MTTA is never
more accurate than GNPM. Therefore, we recommend
the use of GNPM for the problems described here. We
provide concluding remarks in Section IV.

II. GNP SCORES AND COSTS

In this section,we start froma basicmathematical de-
scription of the track association problem and derive the
necessary total and conditional distributions required to
reveal the relationship between the GNPM and MTTA
assignment scores. For the nomenclature used in this pa-
per, N (μ, �) denotes a multivariate normal distribu-
tion of mean μ and covariance �. All vectors are as-
sumed column vectors denoted in lowercase bold, and
matrices are uppercase bold. To reduce nomenclature
complexity, we use 0 to denote either the zero matrix or
the zero vector, which is obvious in the context of usage.

A. Observation Model

Assume nt targets denoted as xt, t = 1, ..,nt , ob-
served by sensors A and B, each observing a potentially
different subset of targets.Assume sensorA developsm
distinct observations and B develops n distinct observa-
tions with no false or redundant observations from ei-
ther sensor. Without loss of generality, assume the ob-
servations satisfy m ≤ n ≤ nt . Sensor A observations
are corrupted by zero-mean random noise with covari-
ance SA,i, uncorrelated for each observation. Therefore
the observations from A take the form

xAi = xαi + nAi , (1)

p
(
nAi
) = N (0, SA,i) , (2)

where αi is an unknown index to the target tracked. Ob-
servations from sensor B follow a similar model but with
errors specific to that sensor including an unknown rel-
ative bias term b. Therefore

xBj = xη j − b + nBj , (3)

p
(
nBj
)

= N (0, SB, j) , (4)

where η j is an unknown index to the target tracked for
sensor B. The single relative bias term (relative to the
coordinate frame of sensor A) is assumed common to
all observations from sensor B and has the probability
distribution

p (b) = N (0, R) . (5)

The covariances SA,i, SB, j, and R are all assumed
to be symmetric positive-definite matrices, and the di-
mension of all sensor observations is assumed to be of
dimension d.

The goal of track-to-track assignment is to determine
the underlying truth commonality in the observations.
Truth commonality is represented as the i and j indexes
such that αi = η j. Since the actual ordering of the tar-
gets is arbitrary and unknown, we equivalently seek the
assignment of tracks from sensor A to sensor B. Define
the assignment vector as h = [h1 . . . hm]T of length m
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where the ith element indicates the index in B that is as-
signed to the ith observation in A. Unassigned observa-
tions inA are indicated with an hi of zero. Therefore, let
J = {i : hi �= 0} be the set of assigned track indexes and
na = |J | be the number of assignments in h.Assuming a
uniform prior on each xi location and that the number of
targets in the surveillance volume is Poisson distributed,
following the derivation in [14], the posterior probability
of an assignment hypothesis and bias can be written as1

Pr
(
h, b|xA1 , .., xAm, xB1 , .., xBn

)
= C

1√|2πR|e
− 1

2 b
TR−1b

× (βPAB̄)
n−na (βPĀB)

m−na (βPAB)
na (6)

×
∏
i∈J

1√|2πSi|
e− 1

2 (x
�
i −b)TS−1

i (x�
i −b),

with the difference terms and associated covariances
expressed as

x�
i = xAi − xBhi ,

Si = SA,i + SB,hi ,
(7)

for all i ∈ J . The β term is the spatial density of the
targets, PAB is the probability that both sensor A and B
observe a target,PAB̄ is the probability that sensorA but
not B observe a target, PĀB is the probability that sen-
sor B but not A observe a target, andC is a normalizing
constant.2 Of significance in (6) is the sufficient statis-
tic of an assignment hypothesis as the absolute differ-
ence between the track states, x�

i . As noted in Corol-
lary 1 of [14], incorporation of cross-correlated errors be-
tween xAi and xBhi due to common process noise involves
a simple subtraction term to Si, which can be easily in-
serted into (7). We choose to leave that term omitted
since we have not studied the effects of common pro-
cess noise in our numerical simulations, but anticipate
no impact upon the conclusions reached. As will be dis-
cussed in upcoming sections, GNPM is the joint poste-
rior of (6), while MTTA requires the additional step of
marginalizing b.

B. Probability Distributions of Bias and Errors

Any joint probability density has an equivalencewith
marginal and conditional densities. Block forms of the

1The authors in [14] generalized to more than two sensors, with a sep-
arate bias term per sensor instead of a single relative bias.
2A slight distinction with the derivation in [14] is the detection proba-
bilities as hypothesized in h, which are conditioned on the event that
at least one sensor detected the target (i.e., undetected targets do not
enter the assignment problem). Some authors have also made this dis-
tinction explicit as in [11] or [18].We also note thatC scales all hypoth-
esis scores equally so is not needed for finding the best hypothesis, and
in general is not determined as doing so may require enumerating all
possible assignment hypotheses.

random vectors described in the observation model al-
low the use of the fundamental equations of linear es-
timation [3] to give marginal and conditional densities.
Defining γ = [γ1, . . . , γna ] to be a length na vector that
contains an ordering of the indices inJ , the stacked vec-
tor of absolute differences of assigned tracks from (7) as

x� =

⎡⎢⎢⎣
x�

γ1

...

x�
γna

⎤⎥⎥⎦ , (8)

and the block identity matrix as

H =

⎡⎢⎢⎣
I
...

I

⎤⎥⎥⎦ , (9)

with na blocks of d × d identity matrices, the follow-
ing marginal and conditional distributions are derived in
Appendix A:

p (x�) = N (0, Qx�
) , (10)

p(x�|b) = N
(
μx�|b, Qx�|b

)
, (11)

p (b|x�) = N
(
μb|x�

, Qb|x�

)
, (12)

with the corresponding elements as

Qx�
= Qx�|b + HRHT , (13)

μx�|b = Hb, (14)

Qx�|b =

⎡⎢⎢⎢⎣
Sγ1 0 0

0
... 0

0 0 Sγna

⎤⎥⎥⎥⎦ , (15)

μb|x�
= PT

bx�
Q−1

x�
x� (16)

Qb|x�
= R − PT

bx�
Q−1

x�
Pbx�

, (17)

Pbx�
= HR. (18)

Each of these probability densities relate to the likeli-
hood of a track assignment hypothesis and bias. Upon
conversion into the block structure, (11) is the final term
in (6), therefore

Pr
(
h, b|xA1 , ..xAm, xB1 , ..xBn

)
= C(βPAB̄)

n−na (βPĀB)
m−na (βPAB)

na p (x�|b) p (b)
.

(19)
It is worth noting that p(x�|b) in (19) is the like-

lihood function of the bias and hypothesis given the
data, although the conditioning term only mentions b.
By inspection of (7), the x� notation depends on the
hypothesis, and therefore we do not add h as a condi-
tioning term. We use the p(x�|b) notation to identify
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that the likelihood is a function of the differences of as-
signed tracks in a particular hypothesis, in addition to
simplicity compared to the more formal, yet equivalent,
p(xA1 , ..xAm, xB1 , ..xBn |h, b). Careful readers may also no-
tice that (19) is not written explicitly as a function of
p(h). However, following the derivation in [14] p(h) is
part of the product of scalar terms in (19). More specif-
ically, the derivation of (6) in [14] involves conditioning
h to the abstract αi and η j indices from (1) and (3), re-
spectively, along with the unknown number of targets,
which upon simplification gives p(h) as being a contrib-
utor to the term C(βPAB̄)

n−na (βPĀB)
m−na (βPAB)na . Rig-

orous technical details of the posterior density deriva-
tion exist in previous literature, including [9] and [14].
We also note that many authors use the word “likeli-
hood” liberally when referring to posteriors and related
terms, sometimes by admission as the authors of MTTA
in [20]. In this work, we prefer to maintain more strict
terminology usage, particularly with the use of the word
likelihood as a specific contribution to the posterior.Fur-
thermore, we define the product of likelihood and bias
prior, p(x�|b)p(b), as the kinematic score.

The GNPM and MTTA scores differ only in
kinematic terms, which are those depending upon
x� or b. These terms reveal the relationship of the
GNPM/MTTA scores using p(x�) decomposed through
Bayes law:

p (x�) = p (x�|b) p (b)
p (b|x�)

, (20)

which is valid for any realization of b.

C. GNPM and p(x� ) Equivalence

In this section, we provide the relationship between
the GNPM score of [16] and the distribution of the to-
tal errors. First, with algebraic manipulations (16) can be
expressed as3

μb|x�
= PT

bx�
Q−1

x�
x�

= RHT(Qx�|b + HRHT )−1
x�

= RHT
(
I + Q−1

x�|bHRHT
)−1

Q−1
x�|bx�

= R
(
I + HTQx�|bHR

)−1
HTQ−1

x�|bx�

=
(
R−1 + HTQ−1

x�|bH
)−1

HTQ−1
x�|bx�. (21)

Recognizing that HTQ−1
x�|bH = 
m

i=1 S
−1
i , removal of the

block form in (21) reveals an equivalence to the x̄ from

3An algebraic step here uses the relationship (I + PQ)−1P =
P(I + QP)−1 from traditional literature on thematrix inversion lemma
[10].

[16]

μb|x�
=
(
R−1 + HTQ−1

x�|bH
)−1

HTQ−1
x�|bx�

=
(
R−1 +

∑
i∈J

S−1
i

)−1∑
i∈J

(S−1
i x�

i ) = x̄, (22)

which is the bias estimate that maximizes the kine-
matic score for a given assignment hypothesis. We sub-
sequently refer to μb|x�

as x̄, avoiding excessive use of
subscripts and to clarify connections to previous litera-
ture. By inspection of (6) and (8) in [16], nomenclature
translation allows theGNPMkinematic score to be writ-
ten as

KGNPM = 1√|2πR |e
− 1

2 x̄
TR−1x̄

×
∏
i∈J

1√|2πSi|
e− 1

2 (x�
i −x̄)TS−1

i (x�
i −x̄)

= 1√|2πR |e
− 1

2 x̄
T R−1x̄ (23)

× 1√∣∣2πQx�|b
∣∣e− 1

2 (x�−Hx̄)TQ−1
x� |b(x�−Hx̄)

.

Notice that the first term of (23) is (5) evaluated at b =
x̄ and the second term is (11), also evaluated at b = x̄ by
(14). Further observing from (22) and (12) that p(b|x�)
evaluated at b = x̄ gives 1/

√|2πQb|x�
|, the relationship

between KGNPM and p(x�) is

p (x�) = p (x�|b) p (b)
p (b|x�)

∣∣∣
b = x̄

= KGNPM

p(b|x�)|b = x̄
= KGNPM

√∣∣2πQb|x�

∣∣. (24)

D. MTTA and p(x� ) Equivalence

The derivation of MTTA in [20] began with GNPM,
shown in the previous section to be p(x�|b)p(b), fol-
lowed by integration of bias out of the score. There-
fore, due to ∫ p(x�|b)p(b)db = p(x�), we expect
the MTTA likelihood to be equivalent to the distri-
bution of the total errors. Here, we show the equiv-
alence using the expansion of (20) about the point
b = 0. As a preliminary step, we rewrite (17) into
an equivalent expression using the matrix inversion
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lemma and removal of the block form,

Qb|x�
= R − PT

bx�
Q−1

x�
Pbx�

= R − RHT(Qx�|b + HRHT )−1
HR

=
(
R−1 + HTQ−1

x�|bH
)−1

=
(
R−1 +

∑
i∈J

S−1
i

)−1

. (25)

Upon nomenclature translation, the MTTA kine-
matic score as given for (8) in [20] is

KMTTA =
√|2πV|√∏
i∈J ∗ |2πSi|

e− 1
2ζ, (26)

with

V =
(∑
i∈J ∗

S−1
i

)−1

, (27)

ζ =
(∑
i∈J ∗

(x�
i )

T
S−1
i x�

i

)
− uTVu, (28)

u =
∑
i∈J ∗

S−1
i x�

i , (29)

and the definitions S0 = R, x�
0 = 0, and J ∗ = {J , 0}.

From (22) and (25), we observe that V = Qb|x�
and u =

V−1x̄, therefore

uTVu = x̄TV−1VV−1x̄

= x̄TV−1x̄

= x̄TQ−1
b|x�

x̄, (30)

and the full expansion of ζ can be rewritten as

ζ =
(∑
i∈J

(x�
i )

T
S−1
i x�

i

)
− x̄TQ−1

b|x�
x̄. (31)

Substituting the expansions of V, ζ, and rearranging
terms in (26) to expose the specific Gaussian densities,
we demonstrate the desired equivalency of MTTA and
p(x�) following similar steps as in (23) and (24):

KMTTA =
√∣∣2πQb|x�

∣∣
e− 1

2

(
x̄TQ−1

b|x� x̄
)

×
∏
i∈J

1√|2πSi|
e− 1

2 (x
�
i )

TS−1
i x�

i

× 1√|2πR| (32)

=
(

1
p (b|x�)

× p (x�|b) × p (b)
) ∣∣∣∣∣∣b = 0

= p (x�) .

E. Remarks on GNP Assignment Scores

Combining (24) and (32) gives the key result relating
the kinematic scores and the distribution of the absolute
errors

KMTTA = KGNPM

√∣∣2πQb|x�

∣∣ = p (x�) . (33)

Consequently, although the MTTA formulation in-
tegrated the bias from the GNPM kinematic score, it in-
herently uses the same bias estimate that maximizes the
association hypothesis as in GNPM. This result for bias
mirrors the conclusions found for marginalizing the un-
known target locations by Kaplan in [12] and [13]. In
both cases, the difference between using the maximum
likelihood value versus marginalizing reduces to a fac-
tor of the a-posteriori covariance. Furthermore, (33) im-
plies the additional insight that bias estimation does not
need to be a separate step in the calculation of a GNP
score due to the equivalence with (10). In other words,
combining the terms raised to the exponent in (23) gives
an expression equivalent to xT�Q

−1
x�
x�. To solidify this re-

sult, we show the following equivalence algebraically in
Appendix B:

xT�Q
−1
x�
x� = (x� − Hx̄)TQ−1

x�|b (x� − Hx̄) + x̄TR−1x̄
(34)

which follows from the matrix inversion lemma along
with several algebraic manipulations.A corollary of (34)
is that (x� − Hx̄)TQ−1

x�|b(x� − Hx̄) + x̄TR−1x̄ is a chi-
square random variable with dna degrees of freedom,
since xT�Q

−1
x�
x� is a chi square random variable of di-

mension dna. This may not be immediately obvious at
first glance, since with removal of the block form of
the right hand side, (34) is the sum of (na + 1) terms.
In other words, degrees of freedom are lost through
the estimation of x̄ with the data. An additional ob-
servation of (34) is that the left hand side is a func-
tion of R, but the right hand side is a function of
R−1. This allows various interpretations and simplifi-
cations if R is assumed arbitrarily large or arbitrarily
small.

As an additional remark, equating the normalization
terms inherent in (33) gives

√∣∣2πQb|x�

∣∣
√|2πR|∏i∈J

√|2πSi|
= 1√∣∣2πQx�

∣∣ , (35)

which after removal of the square roots and factoring out
the constants, gives a simpler expression that relates the
determinant terms of the structuredmatrices in theGNP
problem:

∣∣Qx�

∣∣ = |R|∏i∈J |Si|∣∣Qb|x�

∣∣ . (36)
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F. GNP Costs

In this section, we provide the GNP costs in a form
that includes the non-assignment gate with the same
structure as found in [16] and [20]. Multiplying the
joint posterior of (6) by the hypothesis-invariant term
1
CP

−m
AB β−nP(m−n)

AB̄ (2π )d(m+1)/2√|R| gives4

Pr
(
h, b|xA1 , .., xAm, xB1 , .., xBn

)
∝ e− 1

2 b
TR−1b

(
PAB

(2π )
d
2 βPĀBPAB̄

)−(m−na)

×
∏
i∈J

1√|Si|
e− 1

2 (x
�
i −b)TS−1

i (x�
i −b). (37)

For a given hypothesis, the GNPM approach selects b
that maximizes the score, thus GNPM is (37) evalu-
ated at b = x̄. As a critical note, the results of [1]
stress the use of unitless likelihood ratios. Since the first
term in (37) is unitless and the units on the remaining
terms are Vna−m and V−na , respectively, where V is a
unit hypersphere of the surveillance volume, the units
of (37) are hypothesis invariant as V−m. Therefore, hy-
potheses with varying numbers of assignments have the
same units and one may safely use (37) within a spe-
cific GNP problem. However, if the GNPM cost is used
in a higher context application, for example, in a sub-
optimal solution for the association of more than two
sensor data, care must be taken with the units of (37).
We prefer to keep units in the score to be consistent with
[16] and [20].

Taking the negative logarithm of (37) evaluated at
b = x̄ and multiplying by 2 gives the GNPM cost as

CGNPM (h) = x̄TR−1x̄

+2 (m− na) logG0

+
∑
i∈J

[
log (|Si|) + (x�

i − x̄)TS−1
i

(
x�
i − x̄

)]
,

(38)

where

G0 = PAB

(2π )d/2
βPĀBPAB̄

(39)

is the non-assignment gate value used in track-to-track
assignment problems [5].5

Applying the equivalence from (33) and
multiplying by the hypothesis-invariant term

4The determinant identity
√|2π�| = (2π )d/2√|�| is used in (6) to

allow the 2π term to be factored.
5A minor difference in the gate compared to previous literature is the
density of false tracks, which we have taken as zero. For applications
that need false target densities, we recommend using the gate value in
[20], which is a trivial adjustment of (39).With false target densities as
zero, the gate value in [20] is exactly (39).

1
CP

−m
AB β−nP(m−n)

AB̄ (2π )dm/2√|R| gives
Pr
(
h|xA1 , .., xAm, xB1 , .., xBn

)
∝
√∣∣Qb|x�

∣∣e− 1
2 x̄

TR−1x̄

(
PAB

(2π )
d
2 βPĀBPAB̄

)−(m−na)

×
∏
i∈J

1√|Si|
e− 1

2 (x
�
i −x̄)TS−1

i (x�
i −x̄), (40)

which has different units than GNPM through the deter-
minant of the a-posteriori bias covariance.Converting to
cost format the MTTA cost is

CMTTA (h) = x̄TR−1x̄ − log
(∣∣Qb|x�

∣∣)
+ 2 (m− na) logG0

+
∑
i∈J

[
log (|Si|) + (x�

i − x̄)TS−1
i

(
x�
i − x̄

)]
.

(41)

Note that (41) is not written exactly as was provided [20],
but is equivalent through the result of (33) with hypoth-
esis invariant terms removed.

G. Equivalence with GNN

Intuitively, the GNP problem in both the GNPM and
MTTA form is expected to reduce to the classic GNN
problem as R → 0. However, this does not directly fol-
low from (38) due to the indeterminate 0/0 that arises
in x̄TR−1x̄. As shown in Appendix C, application of the
key results of Section II.E avoids this issue and both the
GNPM andMTTA costs reduce to GNN asR → 0, thus

CGNPM (h)
∣∣
R→0 = CMTTA (h)

∣∣
R→0 = CGNN (h) , (42)

where

CGNN (h) = 2 (m− na) logG0

+
∑
i∈J

[
log (|Si|) + (x�

i )
TS−1

i

(
x�
i

)]
. (43)

Therefore,whenR is sufficiently small, aGNNalgorithm
is suitable since GNPM and MTTA effectively give the
same answer as GNN, as demonstrated in [16].

III. PRACTICAL CONSIDERATIONS

In this section, we provide further insight into the
cost differences and elaborate on the practical rele-
vance. We begin with a discussion on behavior of non-
assignment costs, and then conclude with a discussion on
bias estimation within the costs.

A. Optimal Non-Assignment Costs

Motivated by solution algorithms, we prefer to think
of the track assignment problem in an incremental cost
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structure, which starts from no assignments and incre-
mentally seeks additional assignments that lower the
cost as in the algorithm of [17]. In light of this concept,
by inspection of (43), the incremental cost of adding
track tuple (i, hi) to the assignment set in GNN is
(x�

i )
TS−1

i (x�
i ) + log(|Si|). Therefore, the optimal de-

cision in GNN is to accept the assignment for con-
sideration if the statistical distance (of d degrees of
freedom) does not exceed the covariance-dependent
threshold

(x�
i )

TS−1
i

(
x�
i

)
< 2 logG0 − log (|Si|) . (44)

We interpret the physical meaning of the GNN as-
signment threshold as evaluating the probability that
the tracks in the pair are on different targets that
randomly appeared in the containment volume of the
covariance, based on the a-priori spatial density that
tracked targets may appear. Therefore, as the statisti-
cal distance of the pair increases, corresponding to a
larger containment volume, it is more likely that one
of the tracks is on a different target. Note that sat-
isfying this inequality does not necessarily guarantee
any particular assignment, as there may be other as-
signment pairs with lower cost. Once the best available
assignment fails this inequality, no additional assign-
ments may be added and all unassigned tracks remain as
singletons.

Seeking an analogous threshold for the GNPM cost
of (38) is challenging since the acceptance of a new track
assignment adjusts the bias estimation within the hy-
pothesis. Recalling the equivalence found in (22), alge-
braic manipulations give the expected value of the bias
term x̄TR−1x̄ in (38) as

E[x̄TR−1x̄]

= E
[
tr
(
x̄TR−1x̄

)]
= tr
(
R−1E

[
x̄x̄T
])

= tr
(
R−1E

[
PT
bx�

Q−1
x�
x�

(
PT
bx�

Q−1
x�
x�

)T])
= tr
(
R−1PT

bx�
Q−1

x�
Qx�

Q−1
x�
Pbx�

)
= tr
(
R−1RHTQ−1

x�
HR
)

= tr
(
HT (Qx�|b + HRHT )−1

HR
)

= tr
(
HTQ−1

x�|b
(
I + HRHTQ−1

x�|b
)−1

HR
)

= tr
(
HTQ−1

x�|bHR
(
I + HTQ−1

x�|bHR
)−1
)

(45)

= tr
(
I −
(
I + HTQ−1

x�|bHR
)−1
)

= d − tr
((

I + HTQ−1
x�|bHR

)−1
)

= d − tr

⎛⎝(I +
∑
i∈J

S−1
i R

)−1
⎞⎠ ,

which is limited to [0,d] since each Si andR are symmet-
ric and positive definite matrices.6 Therefore, when the
final term in (45) vanishes, the incremental cost of the
ith assignment, in an expected value sense, is completely
contained in the log(|Si|) + (x�

i − x̄)TS−1
i (x�

i − x̄) term.
Thus, under this assumption and by inspection of (38),
the analogous threshold from GNPM follows the same
structure as GNN

(x�
i − x̄)TS−1

i

(
x�
i − x̄

)
< 2 logG0 − log (|Si|) , (46)

which is a statistical distance of d degrees of freedom
compared to a threshold that is dependent upon the co-
variance used in that statistical distance.

As discussed and demonstrated in [18], since GNPM
follows the same threshold decision structure as GNN,
G0 is a nearly optimal gate forGNPM.Critically, the gate
is optimal when the final term in (45) vanishes, which
occurs after several assignments are made or after the
first assignment when R 
 Si. In [18], an optimal gate
was provided for the case where only one assignment is
made, but we do not recommend this in practice since
intuitively the notion of a pattern match is only mean-
ingful with multiple assignments.

The determination of incremental cost for MTTA
is further complicated by the log(|Qb|x�

|) term in (41),
which introduces dependence upon the specific assign-
ments made, including the incremental addition of tuple
(i, hi). To allow an approximate analysis, we make the
simplifying assumption that each Si = S (this condition
is not required by GNPM or MTTA) and that enough
assignments are made such that the final term in (45)
vanishes. With these assumptions after na assignments
are made,Qb|x�

= (R−1 +∑i∈J S−1 )−1 ≈ (naS−1 )−1 =
S/na. Given na − 1 assignments made before incremen-
tally adding the tuple, an approximation of the incre-
mental cost of the − log(|Qb|x�

|) term is

− log (|S/na|) + log
(∣∣S/ (na − 1)

∣∣) = log
(

na
na − 1

)
.

(47)
Therefore, for MTTA, the approximate incre-

mental cost is log(|S|) + (x�
i − x̄)TS−1(x�

i − x̄) +
log(na/(na − 1)) and the analogous decision threshold
is

(x�
i − x̄)TS−1 (x�

i − x̄
)

< 2 logG0 − log (|S|)

− log
(

na
na − 1

)
, (48)

6We use the relationships (I + PQ)−1P = P(I + QP)−1 and
A(I + A)−1 = I − (I + A)−1 in (45).
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which does not take the same form as the GNN thresh-
old and G0 is therefore not an optimal gate for MTTA.
However, with many assignments, the log(na/(na − 1))
term eventually vanishes and we expectG0 to be nearly
optimal for MTTA in problems with a high number of
common targets.

The incremental cost of the ith assignment is not the
only mechanism of non-assignment behavior, the cost
of the null hypothesis (i.e., the hypothesis of no assign-
ments) also plays a significant role. Since the bias esti-
mate in the null assignment is x̄0 = 0 and recognizing
from (25) thatQb|x�

= R if there are no assignments, the
GNPM and MTTA costs for the null hypothesis h0 are

CGNPM (h0) = 2m logG0, (49)

CMTTA (h0) = 2m logG0 − log (|R|) . (50)

Therefore, with large R, the null hypothesis in MTTA
can dominate over other hypotheses. This trait is not
present with GNPM, which can generally be expected
to provide assignments using an arbitrarily large R.

We demonstrate the analytical results for non-
assignment behavior with numerical simulations. Con-
sider a scenario where sensorA observes six targets and
sensor B observes eight, with three targets in common.
By the formula given in [16], a 6 × 8 track association
problem has a total of 93,289 possible hypotheses. As-
sume that each of the 11 total targets are randomly gen-
erated in a hypersphere of dimension d = 3 with a uni-
form distribution, giving a target density of β = 11.These
numbers are sufficient to evaluate the parameters in G0

as PAB = 3/11, PĀB = 5/11, and PAB̄ = 3/11, and thus
G0 = 0.0127. Assume that the track covariances in each
hypothesis satisfy Si = S = σ 2I and that the bias co-
variance satisfies R = σ 2

b I. In Monte Carlo experiments,
we evaluate the probability of correct association,which
is the total number of correct entries in the most likely
assignment vector h as evaluated for the GNPM and
MTTAcosts. In theMonteCarlo experiments,a test gate,
Gtest , offset from the optimal gate of (39) is used in the
cost functions and 104 Monte Carlo trials are performed
for eachGtest . The structure of these experiments is very
similar to the numerical results of [23], which evaluated
the fraction of correct assignments using various non-
assignment thresholds.

In the first experiment, the Monte Carlo simulation
varies σ while maintaining σb = 5σ , and these results are
provided in Fig. 1.As shown,G0 gives very close to opti-
mal performance for GNPM, but a Gtest slightly larger
than G0 gives maximal probability of correct associa-
tion forMTTA.This illustrates the analytic result of (48)
which, with several assumptions, predicts thatG0 is gen-
erally not an optimal gate forMTTA,particularly if there
are few assignments made. The performance loss using
G0 for MTTA in this case is likely negligible as it causes
less than a percentage point from maximal performance
if that maximal performance is above 90%.

Fig. 1. Probability of correct track-to-track association for various
covariance sizes. In this case,G0 is a nearly optimal gate for GNPM.

In the next experiment, we maintain σ as the single
value of 0.025, but set σb to values of 0.5σ , 5σ , and 60σ .
The results are provided in Fig. 2, which illustrates that
G0 is not an optimal gate for MTTA when σb is large,
while GNPMmaintainsG0 as a nearly optimal gate.This
illustrates the analytic result of (50), which states that
the null hypothesis can dominate over other hypotheses
if R is large. As discussed in the derivation of (48) and
(50), the effects of the log(|Qb|x�

|) term in the MTTA
cost cause performance loss with G0. However, by the
key result of (33), any removal of the effects log(|Qb|x�

|)
cause in the incremental cost structure for MTTA effec-
tively gives the GNPM cost.

Additionally, the result in Fig. 2 corresponding to the
lowest σb illustrates (42), which states that GNPM and
MTTA are equivalent as R → 0. As a final observa-
tion, maximal performance of both GNPM and MTTA
reduces as σb grows. This is the intuitive result that

Fig. 2. Probability of correct track-to-track association for various
σb values.With large σb,G0 is not an optimal non-assignment gate for

MTTA.
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Fig. 3. 4 × 4 track assignment example. Targets 1 and 4 from Sensor
A and 3 and 4 from Sensor B have a variable covariance σ2I. All

other tracks have covariance 0.1I. Circles represent 90% containment
areas with σ2 =10−3.

some track association performance is lost when bias is
added to the GNN problem, and this was also reported
in [16].

B. A-Posteriori Bias Covariance

As evidenced by (33), the difference between the
GNPM and MTTA costs is in the a-posteriori bias co-
variance. Inspired by the example in [8], we use the 4
× 4, d = 2 numerical example in Fig. 3 to illustrate
the practical difference between the cost functions. A
4 × 4 track assignment problem gives 209 possible hy-
potheses. In this scenario, we let the covariance values
of tracks 1 and 4 from Sensor A and tracks 3 and 4
from Sensor B vary from very high to very low val-
ues, but let the others maintain the value of 0.1I. If the
variable covariances are large, the hypothesis of three
assignments, h∗ = [1 3 0 2] (i.e., A1 → B1, A2 →
B3, and A4 → B2 as illustrated in Fig. 3), is prefer-
able since the track states align and only a small shift
is needed for the alignment. However, as the variable
covariances shrink to very small size, the hypothesis of
h◦ = [3 0 0 4] becomes more probable. In other words,
given the a-priori assumptions that targets appear at ran-
dom locations in the surveillance volume, the probability
that the pattern difference [(A1 − A4) − (B3 − B4)]2 <

σ 2 occurs by random chance is essentially zero as
σ 2 → 0.

To illustrate the practical difference in the cost for-
mulations, we find the track covariance size for GNPM
and MTTA that gives h◦ as the definitive hypothesis.
Provided in Fig. 4 is the a-posteriori bias covariance
of the top hypothesis from the GMPM and MTTA
costs. For this numerical experiment, we let R = I and
G0 =19.2. As shown, GNPM determines the definitive
hypothesis with a larger σ than MTTA. This example
illustrates that GNPM generally tends to prefer (and

Fig. 4. A-posteriori bias covariance sizes of GNPM/MTTA
hypotheses from the track sets in Fig. 3. GNPM determines h◦ as the

best hypothesis near σ 2 = 10−3 and MTTA near σ 2 = 10−5.

score favorably) hypotheses that give smaller |Qb|x�
|.

Further illustrating this concept, we also provide the
posterior-weighted

√|Qb|x�
| in Fig. 4, using all 209 pos-

teriors (from (37) and (40)) normalized to sum to unity.
As shown, hypotheses with large a-posteriori bias co-
variance scored by GNPM have nearly zero weight as
σ 2 <10−4, while MTTA maintains significant on those
hypotheses.

IV. CONCLUDING REMARKS

GNP costs have their typical use in track-to-track
association problems. Compared to traditional litera-
ture for track-to-track association, the GNP problem in-
cludes unknown sensor bias into the observation model.
The two types of GNP costs discussed in this work are
the GNPM and MTTA costs. GNPM involves the joint
likelihood of both a hypothesis and a-posteriori bias es-
timate, while MTTA marginalizes bias from the prob-
lem. Here, we showed the intuitive result that the ana-
lytic difference between GNPM and MTTA kinematic
scores is the determinant of the a-posteriori bias covari-
ance. Several key insights arise through that result, in-
cluding equivalences with the distribution of total errors
and the role of bias estimation as a separate step in cost
calculations. Leveraging this result, through an inspec-
tion of the GNPM incremental assignment cost, we ar-
gue that the non-assignment cost G0 is nearly optimal
for GNPM and demonstrate with numerical examples.
However, through similar inspection of theMTTA incre-
mental cost,G0 is not optimal for MTTA and the signif-
icance diminishes for problems with many assignments
but grows with large R. Removal of the covariance of
the a-posteriori bias from the MTTA non-assignment
cost to give maximal probability of correct association
effectively yields the GNPM cost. Therefore, if the goal
of a GNP algorithm is to maximize the probability of
correct association, we recommend GNPM. As a final
experiment, through a simple two-dimensional exam-
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ple, we show that GNPM tends to favor hypotheses
with smaller a-posteriori bias covariance compared to
MTTA. In conclusion, the results contained here expand
upon previous literature to reveal important design con-
siderations for specific track-to-track association prob-
lems.

APPENDIX A

Provided in this appendix is a derivation of the
marginal and conditional densities for the random
vectors within the track assignment problem. Explic-
itly writing x�

i from (7) to expose the noise terms
gives

x�
i = xAi − xBhi

= xi + nAi − (xi − b + nBhi
)

(51)

= (nAi − nBhi ) + b,

since, given h is the correct hypothesis, each track is an
observation of xi. Defining the combined noise term as
ni = (nAi − nBhi ) which is zero mean with covariance Si =
SA,i + SB,hi , we have

x�
i = ni + b. (52)

Let γ = [γ1, . . . , γna ] to be a length na vector
that contains an ordering of the indices in J , which,
in other words, is simply a list of the track indices
from sensor A that are assigned to a track from sen-
sor B. Assuming all error terms are uncorrelated, the
stacked vector of error terms is a normally distributed
random vector with a block diagonal covariance,
expressed as⎡⎢⎢⎢⎢⎢⎢⎣

nγ1

...

nγna

b

⎤⎥⎥⎥⎥⎥⎥⎦ ∼ N

⎛⎜⎜⎜⎜⎜⎜⎜⎝
0,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Sγ1 0 · · · 0

0
...

...
...

...
... Sγna

0

0 · · · 0 R

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (53)

Defining the stacked vector of error terms as

x� =

⎡⎢⎣ x�
γ1
...

x�
γna

⎤⎥⎦ , (54)

left multiplication of (53) by the transform matrix

V� =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I 0 · · · 0 I

0
...

...
...

...

...
...

... 0 I

0 · · · 0 I I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (55)

gives the distribution of absolute error between the ob-
servations as a normally distributed random vector

p (x�) = N (0, Qx�
) , (56)

with covariance

Qx�
= V�

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Sγ1 0 · · · 0

0
...

...
...

...
... Sγna

0

0 · · · 0 R

⎤⎥⎥⎥⎥⎥⎥⎥⎦
VT

�

=

⎡⎢⎢⎢⎣
Sγ1 0 0

0
... 0

0 0 Sγna

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
R · · · R

...
...

...

R · · · R

⎤⎥⎥⎥⎦ . (57)

Next, we separate the distribution of absolute errors
into conditional distributions. Defining the joint vector
of absolute errors and bias as

xb =
[
x�

b

]
, (58)

left multiplication of (53) by a similar transformation
matrix

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 · · · 0 I

0
...

...
...

...

...
...

... 0 I

0 · · · 0 I I

0 0 · · · 0 I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (59)

gives the joint distribution of absolute error and bias as
a zero mean normally distributed random vector

p (xb) = N (0, Q) , (60)

with covariance written in block partition form

Q = V

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Sγ1 0 · · · 0

0
...

...
...

...
... Sγna

0

0 · · · 0 R

⎤⎥⎥⎥⎥⎥⎥⎥⎦
VT

=
[
Qx�

Pbx�

PT
bx�

R

]
. (61)

The cross-correlation matrix is the block matrix

Pbx�
=

⎡⎢⎢⎢⎣
R

...

R

⎤⎥⎥⎥⎦ . (62)
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Applying the fundamental equations of linear esti-
mation from [3] gives the conditional distributions ac-
cording to both x� and b. Defining a stacked matrix of
identity matrices asH = [I . . . I]T , the conditional distri-
bution of the absolute errors given the relative bias is a
normally distributed random vector

p (x�|b) = N
(
μx�|b, Qx�|b

)
, (63)

with mean

μx�|b = Pbx�
R−1b

= Hb, (64)

and corresponding covariance

Qx�|b = Qx�
− Pbx�

R−1PT
bx�

= Qx�
− HPT

bx�

= Qx�
−

⎡⎢⎢⎢⎣
R · · · R

...
...

...

R · · · R

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
Sγ1 0 0

0
... 0

0 0 Sγna

⎤⎥⎥⎥⎦ .

(65)

Next we apply conditional density relationships to
(60) to write the converse distribution. The conditional
distribution of the bias given the absolute errors is a nor-
mally distributed random vector

p (b|x�) = N
(
μb|x�

, Qb|x�

)
, (66)

with mean and covariance

μb|x�
= PT

bx�
Q−1

x�
x�, (67)

Qb|x�
= R − PT

bx�
Q−1

x�
Pbx�

, (68)

thus completing the derivation of the desired probability
distributions.

APPENDIX B

In this appendix, we algebraically show the equiva-
lence of (34). To reduce cumbersome nomenclature, we
drop the subscripts used in (34).Specifically,we establish
the following equivalence:

xTQ−1x = (x − Hb)TS−1 (x − Hb) + bTR−1b, (69)

given b = (R−1 + HTS−1H)−1HTS−1x,Q = S+HRHT ,
and H = [I . . . I]T . Assume that all necessary matrix in-
verses exist.

Beginning with expression for b, multiplication of
both sides by (R−1 + HTS−1H) gives the useful prelimi-

nary relationship,(
R−1 + HTS−1H

)
b = HTS−1x

R−1b + HTS−1Hb = HTS−1x

R−1b = HTS−1x − HTS−1Hb.

(70)

Application of the matrix inversion lemma toQ−1 gives

Q−1 = (S + HRHT )−1

= S−1 − S−1H
(
R−1 + HTS−1H

)−1
HTS−1, (71)

therefore, the full chi-square term can be written as

xTQ−1x

= xT
[
S−1 − S−1H

(
R−1 + HTS−1H

)−1
HTS−1

]
x

= xTS−1x − xTS−1H
(
R−1 + HTS−1H

)−1
HTS−1x.

(72)

Since the expression for b appears in (72), we have

xTQ−1x = xTS−1x − xTS−1Hb. (73)

Recognizing that (73) is a portion of the quadratic ex-
pansion of (x − Hb)TS−1(x − Hb), rewriting to include
the addition of terms that complete the quadratic expan-
sion gives

xTQ−1x = (x − Hb)TS−1 (x − Hb)

+bT
(
HTS−1x − HTS−1Hb

)
. (74)

Substituting (70) into (74) gives the desired equivalency
of (69).

APPENDIX C

In this appendix, we establish the equivalence be-
tween the GNPM, MTTA, and GNN costs as R → 0.
Unfortunately, direct substitution of R = 0 into the
GNPM and MTTA costs of (38) and (41) gives indeter-
minate terms. Applying the key results of Section II.E
avoids this issue, and allows simplification to the GNN
cost. Converting the chi-square terms of GNPM into a
block structure followed by application of (36) gives the
following equivalence:

x̄TR−1x̄ +
∑
i∈J

(x�
i − x̄)TS−1

i

(
x�
i − x̄

)
= x̄TR−1x̄ + (x� − Hx̄)TQ−1

x�|b (x� − Hx̄)

= xT�Q
−1
x�
x� (75)

By inspection of (13), Qx�
= Qx�|b if R =

0, therefore, the limiting form of GNPM can be
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written as

CGNPM (h)
∣∣
R→0 = xT�Q

−1
x�|bx� + 2 (m− na) logG0

+
∑
i∈J

log (|Si|)

= 2 (m− na) logG0

+
∑
i∈J

[
log (|Si|) + (x�

i )
TS−1

i

(
x�
i

)]
≡ CGNN (h) , (76)

which establishes the desired equivalence of GNPM
with GNN. Evaluating MTTA as R → 0 involves the
additional complication of Qb|x�

, which includes R−1 by
inspection of (25). Rearranging (36) gives∣∣Qb|x�

∣∣
|R| =

∏
i∈J |Si|∣∣Qx�

∣∣ , (77)

which for R → 0 can be reduced to∏
i∈J |Si|∣∣Qx�|b
∣∣ =

∏
i∈J |Si|∏
i∈J |Si|= 1. (78)

Therefore, by reintroducing the hypothesis-invariant
term |R| into (40) and applying (75) and (78) gives the
MTTA cost as the same functional form of (76) since
log(1)= 0,which establishesCMTTA(h)|R→0 = CGNN(h).
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A Constrained POMDP
Formulation and Algorithmic
Solution for Radar Resource
Management in Multi-Target
Tracking

MAX IAN SCHÖPE
HANS DRIESSEN
ALEXANDER G. YAROVOY

The radar resourcemanagement problem in amultitarget tracking

scenario is considered. The problem is solved using a dynamic budget

balancing algorithm. It models the different sensor tasks as partially

observable Markov decision processes and solves them by applying

a combination of Lagrangian relaxation and policy rollout. The algo-

rithm has a generic architecture and can be applied to different radar

or sensor systems and cost functions.This is shown through simulations

of two-dimensional tracking scenarios. Moreover, it is demonstrated

how the algorithm allocates the sensor time budgets dynamically to a

changing environment in a nonmyopic fashion. Its performance is com-

pared with different resource allocation techniques and its computa-

tional load is investigated with respect to several input parameters.

I. INTRODUCTION

Recent advances in multifunction radar (MFR) sys-
tems led to an increase of their degrees of freedom. As
a result, modern MFR systems are capable of adjusting
many parameters during runtime. An automatic adap-
tation of the radar system to changing situations, like
weather conditions, interference, or target maneuvers,
is often mentioned in the context of MFR and is usu-
ally called radar resource management (RRM). It is fre-
quently considered within the broader context of so-
called cognitive radar (see, e.g. [7], [10], [15], [19], [26]).
Possible applications of these management approaches
include automotive scenarios such as autonomous driv-
ing or traffic monitoring, (maritime) surveillance, and air
traffic control. This paper aims at developing a generic
framework and approximately optimal algorithmic so-
lutions for solving RRM problems. Although the focus
is on MFR, the approach is not limited to such sensor
systems and has a wider applicability.

A. Radar Resource Management

Much of the research on RRM (see e.g. the overview
byHero andCochran in [21] or byMoo andDing in [34])
focuses on a single task, e.g. keeping a constant track
quality even under target maneuvers.This usuallymeans
managing the time budget spent on a certain task.How-
ever, MFR systems are usually operating at their sensor
time and/or energy budget limit. In such cases, increas-
ing the budget for one task means simultaneously de-
creasing the budget of the others, inevitably deteriorat-
ing their performance. In this paper, part of the RRM
problem is therefore seen as a budget or resource bal-
ancing act over the individual tasks.

Heuristic solutions have been presented in the past
(see, for instance, the overview in [24]), some relying on
assigning task priorities and priority-based scheduling.
Applying heuristics too early in the design leads to com-
plicated solutions, e.g. nested if-then-else rules. It is not
easy to understand what problem is solved within those
approaches and whether or not and in what sense the so-
lution is optimal.This usually does not lead to a reusable
generic algorithm. In addition, a priority-based sched-
uler usually does not balance the budget over all tasks
but simply schedules the jobs in order of priority (as, e.g.
applied in [33] and [39]).When the timeline is fully occu-
pied, it often leaves a set of tasks with the lowest priori-
ties that together do not fit anymore. These approaches
do not consider decreasing the time budgets of individ-
ual tasks. Furthermore, the determination of the levels
of priorities and the rules for assigning them is often not
easy and prone to heuristics.

In this paper, the problem is treated as an optimal
stochastic control problem. This relies on an explicit for-
mulation of:
� the inference problem that the radar has to solve in
terms of dynamic and measurement models,
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� the control actions that are available to the sensor,
which reflect the degrees of freedomof theMFRmen-
tioned earlier,

� a cost function that reflects the system performance
that the user would like to optimize.

To the best of our knowledge, an overall solution to
the RRMproblem using this approach has not been pre-
sented so far. It has been suggested that a truly optimal
solution could possibly lead to a significant improvement
of the performance of adaptive sensors [20], but that
still needs to be illustrated. However, even if the perfor-
mance would not improve much over heuristic solutions
that are carefully tuned to each application, a reusable
generic framework will reduce the design effort of RRM
solutions.As a consequence, such a frameworkwould re-
duce the development cost and time and aid in under-
standing the system behavior.

B. Markov Decision Processes in Resource Management

Markov decision processes (MDPs) and partially ob-
servable MDPs (POMDPs) are attractive frameworks
for modeling and solving RRM problems. They use a
number of states to formulate a dynamic control prob-
lem in which the optimal actions can be found through
optimizing a cost or reward function. A very good
overview of how these schemes can be used for RRM
has been published by Charlish et al. in [12].

Those frameworks have been applied to single tasks,
for instance, by Charlish and Hoffmann in [13] or by
Krishnamurthy in [29]. Both methods optimize the time
between consecutive measurement operations. Charlish
and Hoffmann are considering a radar tracking exam-
ple, where the track quality needs to be optimized while
Krishnamurthy presents a more general sensor scenario
where the measurement performance is optimized re-
garding false-alarm rate and the quality of the estimate.
The former approach applied policy rollout, while the
latter used a stochastic dynamic programming algorithm.
Twoother approaches showhow radar actions can be de-
termined by applying reinforcement learning (RL) [38]
and deep RL [42] to solve an underlying MDP. In their
papers, both Selvi et al. and Thornton et al. are opti-
mizing the sensing strategies for a single target while a
communication signal is using the same frequency band.
Both publications show that the optimal policy can im-
prove the performance despite the presence of the inter-
ferer. We believe that RL is an interesting approach to
RRMbut that it is often not feasible because of the huge
state space that comes with many problem formulations.
In such a case, the training of the algorithm would need
an enormous amount of data and a lot of computation
time.

Constrained (PO)MDPs have been proposed to
solve multitask control problems, where the con-
straint(s) among others can represent the limit on the
available resources or budgets for all the tasks. Possi-

ble applications are radar networks or single radars with
multiple tasks. The computational complexity of these
problems is potentially large. It has been suggested to de-
couple the main optimization problem into smaller and
easier-to-solve subproblems by the use of Lagrangian re-
laxation (LR). One LR approach for sensor networks
with an energy constraint on the inter-sensor communi-
cation has been published byWilliams et al. in [45].Some
notable LR approaches for multitask radar scenarios
are, e.g. [46] by Wintenby and Krishnamurthy and [44]
by White and Williams. Wintenby and Krishnamurthy
apply a Markov chain consisting of performance states
for each tracking task and solve it with a combination of
LR and approximate dynamic programming.White and
Williams assume a discretized state space and a fully ob-
servable MDP, which they solve by the use of dynamic
programming. In addition to that, Castañón applies LR
in combination with a constrained POMDP for multiob-
ject classification in [11]. The chosen POMDP solution
method in that approach is the so-called Witness algo-
rithm. Similar to LR, one could also consider the quality
of service resource allocationmethod (Q-RAM) in com-
bination with POMDPs. Although Q-RAM requires an
action-space discretizationwhile LRallows the subprob-
lems to be solved analytically, these methods are con-
ceptually very similar. Some interesting approaches us-
ing Q-RAM have been shown by Irci et al. in [22] and
Charlish et al. in [16] and [14].

Another interesting approach for applying POMDPs
for RRM has been introduced by Krishnamurthy and
Djonin in [30], where they divide the RRM algorithm
into “sensor micromanagement” and “sensor macro-
management.” The former is formulated as a POMDP
and determines after which time the resource allocation
has to be updated. There is always one task that gets
a high resource allocation, while the others receive a
lower one. The macromanagement, on the other hand,
decides which target will get the highest priority and
therefore the highest resource allocation. This process is
based on the realized cost of the micromanagement and
some heuristic rules. Our research, on the other hand,
aims at combining micro- and macromanagement. The
resource distribution is defined directly through the cost
function and without any heuristic functions. In addition
to that, the budgets of the tasks can gradually change
over time contrarily to the approach of Krishnamurthy
and Djonin, where only two different actions exist.

C. The Cost Function

When applying such anRRMapproach, the final per-
formance of the sensor systemwill be determined by the
cost function.This is preferred over a heuristic approach;
however, it introduces the explicit formulation of such a
cost function in the application of the framework. Some-
times it has been suggested that generic measures of per-
formance, such as the information gain, or the Renyi di-
vergence applied to the posterior density of the full state
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could be applied (see, e.g. [28], [43]). It is our strong con-
viction that one single cost function will not meet the
desires of different users in different applications with
different sensors, targets, and environments.

The development of specific cost functions is impor-
tant and will be a development task in itself that will re-
quire close cooperation with potential users. However,
since the primary focus in this paper is on the develop-
ment of a generic framework forRRM,the development
of such user-specific cost functions is out of the scope.

D. Our Approach

In this paper, the RRM problem is considered as
a multitask time budget constrained control problem,
where the individual tasks are different tracking tasks.
Our chosen problem formulation directly leads to the
assumption of a constrained POMDP.

Previously, we have already shown the optimal bal-
ancing of sensor budgets in a linear time-invariant (LTI)
setting by using the optimal steady-state budget balanc-
ing (OSB) algorithm [36]. It applies LR to distribute the
resources over the different tasks.We have subsequently
considered generic dynamical problems by utilizing the
POMDP framework and introduced the approximately
optimal dynamic budget balancing (AODB) algorithm
[37] with a cost function based on the predicted error-
covariance of the Kalman filter (KF). We have shown
that the results of the AODB algorithm are approxi-
mately optimal with respect to the steady-state error-
covariance of a KF. The RRM problem was solved non-
myopically by using an online Monte Carlo technique
called policy rollout, which stochastically predicts the
future.

E. Novelty

In this paper, we compare the performance of the
AODB algorithm to several other resource allocation
techniques. Furthermore, we investigate its computa-
tional load. Compared to our previous papers, we apply
theAODB algorithm to amore complete dynamic radar
tracking scenario to emphasize its practical value in vari-
able problem settings. In order to do so,we show how the
AODB algorithm can be applied to dynamic radar sce-
narios assuming different measurement types and sys-
tem parameters.

F. Structure of the Paper

The remainder of this paper is structured as follows.
Section II defines the problemas a constrained optimiza-
tion problem in a POMDP framework, while Section III
explains the general application of LR and policy roll-
out to that problem. Section IV introduces the assumed
radar scenario. In Section V, we compare the results of
the OSB and the AODB algorithm in a simplified LTI
scenario, similar to our work in [37]. In Section VI, we

assume a dynamic radar-related scenario, with more re-
alistic parameters than in our previous work. It is solved
by applying the AODB algorithm and optimizing both
dwell time and revisit interval. Subsequently, an analy-
sis of the algorithm’s performance and its computational
load is conducted in Sections VII and VIII, respectively.
Finally, Section IX contains the conclusions.

II. RRM PROBLEM DEFINITION

A. Motion Model

At every moment in time t, each target considered
within this model can be characterized by a state based
on its position and velocity in the x and y directions
within a two-dimensional Cartesian coordinate system.
For target n, this state is defined as

snt = [xnt ynt ẋnt ẏnt ]
T

, (1)

where xnt , y
n
t and ẋnt , ẏ

n
t are the position and velocity of

target n in x and y, respectively. The future target state
at time t + �t can be calculated following a function

snt+�t = f�t (snt ,w
n
t ) , (2)

where snt+�t is the next following state at time t + �t and
wn
t ∈ R

4 is the maneuverability noise for target n at time
t. The state evolution equation (2) directly defines the
evolution probability density function,which is given as

p
(
snt+�t |snt

)
. (3)

B. Measurement Model

We assume a sensor that is taking noisy observations
of the state snt with sensor action ant ∈ R

m, where m is
the amount of adjustable action parameters.Ameasure-
ment znt of target n at time t can be characterized by using
the measurement function h as

znt = h (snt , v
n
t ,a

n
t ) , (4)

where vnt ∈ R
q is the measurement noise for target n and

q is the amount of measurement parameters. The mea-
surement equation (4) directly defines the measurement
probability density function, which can be written as

p (znt |snt ,ant ) . (5)

C. Tracking Algorithm

For the tracking scenarios considered in this paper,
a tracking algorithm should be chosen that aims at com-
puting the posterior density. For linear systems, a KF can
be adopted as an exact solution. For nonlinear systems,
possible algorithms are an extended KF (EKF) or a par-
ticle filter, for example.
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D. Budget Optimization Problem

As mentioned in Section I, the radar sensor is as-
sumed to have a limited maximum budget �max of any
kind. For action ant that is executed for each task n, a cer-
tain amount of budget (e.g. time or energy allocations) is
required. In an overload situation, the current tasks re-
quire more total budget than is available.Thus, the avail-
able budget has to be distributed over the tasks in a way
that minimizes a cost (e.g. related to the uncertainty of
the current situation).

At time t, the optimization problem for N different
tasks can be written as

minimize
at

N∑
n=1

c(ant , s
n
t )

subject to
N∑
n=1

�n
t (a

n
t ) ≤ �max,

(6)

where �n
t ∈ [0, 1] is the budget for task n at time t, c(·) is

the used cost function, and�max ∈ [0, 1] is the maximum
available budget (0: no budget assigned, 1: all budget as-
signed). The definition of an operationally relevant cost
function is important to efficiently benefit from these
techniques, but is not the focus of this paper. An exam-
ple of an operationally relevant cost function has been
discussed by Katsilieris et al. [25].

III. PROPOSED SOLUTION FOR RRM PROBLEM

A. Distribution of Sensor Budgets Using LR

This paper is partly based on our previous research
[36], where we used LR to include the constraints into
the cost function. By doing so, the original optimiza-
tion problem is decoupled into smaller ones, one for
each task.This leads to the Lagrangian dual (LD),which
needs to be optimized.The LDproblem (LDP) is formu-
lated as

ZD=max
λt

(
min
at

(
N∑
n=1

(c(ant , s
n
t ) + λt · �n

t )

)
− λt · �max

)
,

(7)
where λt ∈ R is the Lagrange multiplier for the budget
constraint. Due to the sum in the LDP, the minimization
problem can be solved for each target n in parallel before
updating the Lagrangian multiplier in an iterative pro-
cess. The exact procedure is shown in [36] and is summa-
rized in the following, where an internal index l is used
for the iterations within the LR process.:

1) l = 0: set an initial Lagrange multiplier (λ = λ0).
2) For each task n, minimize the LD with respect to the

actions and save resulting anl and �n
l .

3) Choose a subgradient for the Lagrange multiplier as
μλ
l = ∑N

n=1 �n
l − �max.

4) Check if μλ
l ≈ 0 with the desired precision. If it is,

stop the process. The current λl , anl , and �n
l are the

final LR solution for λt at time t.
5) Set λl+1 = max{0, λl + γlμ

λ
l }, where γl is the LR step

size at time l. This stage is responsible for iteratively
maximizing the LD with respect to λ.

6) Go to step 2 and set l = l + 1.

Lagrange multipliers and LR have been extensively
covered in literature andmore information can be found,
e.g. in [2], [5], [6], [9], and [31].

B. Definition of a POMDP

A POMDP describes an MDP for which the state
cannot be observed directly. Instead, an observation is
taken, which generates a probability distribution over
the possible states. This is called the belief state. Based
on the belief state and the knowledge of the underlying
MDP, a POMDP allows us to solve optimization prob-
lems nonmyopically, meaning that it takes the expected
future into account. In the following, the time is assumed
to be discretized in intervals kwith lengthT ,which is the
time between two consecutive observations.

Generally, a POMDP is defined by the following pa-
rameters (see, e.g. [35], [17]):

State space S: It consists of all possible states that can
be reached within the process, see (1).At time step k, the
state is defined as sk. Based on the underlying states and
the received observations, the belief state defines a prob-
ability distribution over all possible states. It is defined as
bk.

Action space A: It consists of all possible actions
within the process.Each action has a certain cost defined
by the cost function. The action at time step k is denoted
by ak.

Observation space Z: It consists of all possible ob-
servations that can be received within the process. An
observation at time step k is defined as zk.

Transition probability �(sk, sk+1,ak): It is the proba-
bility function p(sk+1|sk,ak) that defines the probability
of transitioning from state sk to state sk+1 given action
ak. Note: In this paper, the transition probability does
not depend on the action.

Probability of observation O(zk, sk+1,ak): It is the
probability function p(zk|sk+1,ak) that defines the prob-
ability of receiving a certain observation zk when execut-
ing action ak with the resulting state being sk+1.

Cost function c(sk,ak): It is the immediate cost of ex-
ecuting action ak in state sk. Note: In this paper, the cost
function does not directly depend on the state.

Discount factor γ: It is a discount factor that dis-
counts future time steps with respect to the present.
Note: In this paper, the discount factor is always set to
γ = 1.

POMDPs can be solved for finite or infinite horizons.
In order to reduce the necessary computational power, a
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limited horizonH is assumed in this paper.The value of
H represents the number of considered measurement
time steps into the future. Every time a new budget al-
location is calculated, the horizon H will be reapplied
from the currentmoment in time.This approach is there-
fore also called a receding horizon.

In [13], Charlish and Hoffmann have written a very
clear summary of the general solution of a POMDP,
which is used as a base for the following equations. We
would like to find the actions that minimize the total cost
(valueVH over horizonH ).Starting at time step k0, this
can be expressed as

VH = E

⎡⎣k0+H∑
k=k0

c(sk,ak)

⎤⎦ . (8)

Using CB(bk,ak) = ∑
s∈S bk(s)c(s,ak) being the ex-

pected cost given belief state bk,VH can be written as
a so-called value function of the belief state bk0 at time
step k0:

VH (bk0 ) = E

⎡⎣k0+H∑
k=k0

CB(bk,ak)|bk0

⎤⎦ . (9)

For belief state b0 and taking action a0, the optimal value
function is defined according to Bellman’s equation [1]
as

V∗
H (b0) = min

a0∈A
(
CB(b0,a0) + γ · E [

V∗
H −1(b1)|b0,a0

])
.

(10)
For very long or infinite horizons, the discount factor can
be set to γ < 1. Using this equation, the optimal policy
can be expressed as

π∗
0 (b0) = argmin

a0∈A

(
CB(b0,a0) + γ · E [

V∗
H −1(b1)|b0,a0

])
.

(11)
For each bk and ak, the optimal so-called Q-value is then
defined as

QH −k(bk,ak) = CB(bk,ak)+γ ·E [
V∗

H −k−1(bk+1)|bk,ak
]
.

(12)
Another way to find the optimal policy is to find the ac-
tion ak that minimizes the optimal Q-value:

π∗
k (bk) = argmin

ak∈A
(QH −k(bk,ak)). (13)

It is therefore necessary to calculate the Q-value for all
possible actions, which is generally infeasible.

C. Solution Methods for POMDPs

For solving a POMDP, there are both online and of-
fline approaches. The choice of the type of these meth-
ods usually depends on the size of the state space. The
so-called state-space explosion limits the usefulness of
exact offline techniques.

Most offline methods are based on the so-called
value iteration (VI), which iteratively calculates the

Task 1 Policy Rollout 1

Subgradient
method

Task 2 Policy Rollout 2

Task N Policy Rollout N

Ini�al λ
λ

Lagrangian relaxa�on

. . . .

. . . .

. . . . . .

Output of converged algorithm:
Approximately op�mal budgets     

Fig. 1. High-level block scheme of the proposed algorithm.

cost/reward values of all possible states. There are ex-
act approaches to VI (e.g. One-Pass algorithm [40]), as
well as approximate point-based algorithms (e.g. PBVI
or Perseus [41]). The former techniques often lead to
very complicated optimization problems,while the latter
ones requiremany grid points within the state space (and
therefore a lot of memory and computational effort) in
order to converge toward the exact solution. The advan-
tage of offline solutions is that the POMDP is solved only
once,and the solution is always valid afterward.Unfortu-
nately, those methods are already infeasible for a small-
dimensional state space.

In contrast to that, online algorithms only solve a
small part of the POMDP that is relevant at the current
moment.This makes them less accurate, but much easier
and faster to compute.Some of the online approaches in-
volve approximate tree methods (see, e.g. the overview
in [35]) or Monte Carlo sampling (e.g. policy rollout).

Since an exact and complete solution of the POMDP
is usually infeasible in real scenarios, this paper focuses
on the implementation of policy rollout as an approxi-
mate solution. The general structure of our proposed al-
gorithm is illustrated in Fig. 1. The outputs of the algo-
rithm are the converged budgets for each task.

D. Policy Rollout for POMDPs

The policy rollout technique takesMonte Carlo sam-
ples of the expected future, which means that it stochas-
tically explores the possible future actions and the ac-
cording costs. Within a rollout, observations and belief
states are generated from a given initial belief state and
a given candidate action. There is a rollout evaluation
per action a in the action space A. The candidate action
is taken in the first step of the rollout, while a so-called
base policy πbase is used for every following step, until
the horizon H is reached. In each rollout, the total cost
is summed up. This procedure is repeated M times and
then the summed cost of allM rollouts is averaged. This
is the expected cost of the evaluated action. The action
that produced the lowest expected cost is chosen for the
next time step. It has been shown that policy rollout leads
to a policy that is at least as good as the base policy with
a very high probability, if enough samples are provided
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TABLE I
System Parameters of the Assumed Radar Systems with Respect to

the Reference Measurement

System Measurement σ 2
r,0 (m

2) σ 2
θ,0 (rad

2) σ 2
d,0 ((m/s)2)

A r/θ 625 4e−4 –
B r/θ /d 2500 2e−4 25

[3]. The choice of the base policy and the amount of
samples to be taken are therefore crucial to the perfor-
mance of the algorithm.The number of samples is equiv-
alent to the number of rollouts M per action that are
used to average the cost, or, in other words, one sam-
ple is the evaluation of one possible future. Finding a
good base policy for a radar scenario is no trivial task.
As an example, one could think about using information
from previously experienced situations that were simi-
lar to the current one. If the executed actions from the
last run have been saved, they can be reused again to
improve the policy further. This could be considered in
the context of RL, for instance. Unfortunately, it is not
very likely to experience the exact same situation mul-
tiple times if a very big state space is assumed, so the
usefulness in such a case is questionable (see also our
remark about RL in Section I-B). Another very simple
choice of the base policy could be an equal resource al-
location to all the tasks. Policy rollout has been covered
extensively, e.g. by Bertsekas in [2]–[4].

The policy rollout can be expressed mathematically
as shown in (14) and (15). The Q-value is defined as

Qπbase (bk,ak) = CB(bk,ak) + E [Vπbase (bk+1)|bk,ak] ,
(14)

where E[·] is the expectation. The best policy can then
be found by applying

πk(bk) = argmin
ak∈A

(Qπbase (bk,ak)). (15)

Policy rollout does not necessarily lead to the optimal
policy. It rather aims at improving the chosen base policy
πbase.

IV. ASSUMED RADAR SCENARIO

For the rest of this paper, we assume a two-
dimensional radar tracking example that will be solved
using the AODB algorithm. Measurements are taken
in range, angle, and possibly radial velocity. The algo-
rithm is jointly optimizing the revisit intervalT (the time
between two consecutive measurements) and the dwell
time τ (the time that the sensor spends focusing on a
target). The algorithm calculates the budgets of all tasks
and makes sure that they fit into the time frame, but
does not create an explicit schedule. Therefore, the as-
sumed measurements are taken independently of each
other and can be overlapping in time. In order to put all
tasks into a single timeline,an explicit scheduler needs to

TABLE II
Parameters of Reference Measurement

SNR (SNR0) RCS (ς0) Dwell time (τ0) Range (r0)

1 10 m2 1 s 50 km

be implemented at a lower level.At which moments this
budget calculation is performed depends on the prefer-
ences of the user. In the following, the assumptions of the
assumed radar scenario are explained in more details.

A. Assumed Radar Systems

In the simulations, two different sets of system pa-
rameters are assumed as given in Table I. The table
shows the measurement noise variances for range (σ 2

r,0),
azimuth (σ 2

θ,0) angle, and radial velocity (σ 2
d,0) with re-

spect to the measurement of a reference target. The pa-
rameters of the reference measurement are shown in
Table II and are valid for all simulations that are pre-
sented in this paper.Radar systemAmeasures range and
azimuth only, while system B is able to measure radial
velocity as well. The values of the variances in Table I
are chosen rather arbitrarily. We do not intend to com-
pare the different radar systems, but rather use them to
show how the AODB algorithm can universally be ap-
plied to different systems.

B. Velocity Model

The velocity model is assumed to be constant. Be-
tween two resource allocation updates, the actions are
assumed to stay unchanged. The action vector an ∈ R

2

consists of the dwell time and the revisit interval.The lat-
ter defines the time between the measurements of target
n. In contrast to our previous publications, in this paper,
the revisit intervalTn and the dwell time τn are optimized
jointly. The revisit intervals with length Tn depend on
the targets and are therefore denoted by kn. Consider-
ing this, (2) can explicitly be written as

snkn+1 = Fnsnkn + wn
kn , (16)

with Fn ∈ R
4×4 defined as

Fn =

⎡⎢⎢⎣
1 0 Tn 0
0 1 0 Tn
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (17)

and the maneuverability noise wn with covariance

Qn =

⎡⎢⎢⎣
T 4
n /4 0 T 3

n /2 0
0 T 4

n /4 0 T 3
n /2

T 3
n /2 0 T 2

n 0
0 T 3

n /2 0 T 2
n

⎤⎥⎥⎦ σ 2
w,n, (18)

where σ 2
w,n is the maneuverability noise variance of tar-

get n.
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Because of the nonlinear relationship between mea-
surements and states, an EKF is applied. The corre-
sponding observation matrix Hn

kn is defined as the Jaco-
bian of the measurement transformation function h:

Hn
kn = ∂h

∂s

∣∣∣∣
snkn

. (19)

It has dimensions Hn
kn ∈ R

2×4 for system A and Hn
kn ∈

R
3×4 for system B.

C. Signal-To-Noise Ratio (SNR) Model

In the following examples, we assume sensor mea-
surements in range (r), azimuth (θ), and radial velocity
(d). Since the transformation between polar and Carte-
sian coordinates is nonlinear, themeasurement equation
in (4) for target n at time step kn can be defined as

znkn = h(snkn ) + vnkn , (20)

where h(snkn ) ∈ R
3 is the measurement transformation

function at snkn , which for system B is defined as

h(snkn )=⎡⎣√
(xnkn)

2+(ynkn)
2 , atan2

(
ynkn , x

n
kn

)
,
xnknẋ

n
kn

+ynkn ẏnkn√
(xnkn )

2+(ynkn )
2

⎤⎦T

(21)

and vnkn ∈ R
3 is the measurement noise for target n. The

range,azimuth,and radial velocity components of vnkn are
independent:

vnkn = [vr,nkn vθ,n
kn

vd,n
kn

]T , (22)

with variances σ 2
r,n, σ

2
θ,n, and σ 2

d,n. In this paper, the SNR
is calculated by using (23), which is based on equations
by Koch in [27]:

SNRkn (ςn, τn, r
n
kn ) = SNR0

(
ςn

ς0

)(
τn

τ0

)( rnkn
r0

)−4

e−2�α,

(23)
where�α is the relative beam positioning error,ςn is the
constant radar cross section (RCS) of the target n, rnkn is
the distance of target n at time step kn, and ς0, τ0, and
r0 are the corresponding values for a reference target. In
(23), the dwell time is used equivalently to the transmit-
ted energy mentioned by Koch. Similar to the approach
in [27], the relative beam positioning error is calculated
using

�α =
(
θkn − θ̂kn

)2
2

, (24)

where θkn is the real target angle, θ̂kn is the predicted tar-
get angle in azimuth at time kn, and  is the one-sided
beam width in azimuth.

Using (23), the variance of the range, azimuth, and
radial velocitymeasurement noise for target n can be de-

fined as (see, e.g. [32])

σ 2
•,n = σ 2

•,0
SNRkn (ςn, τn, r

n
kn
)
, (25)

where • ∈ (r, θ,d) and σ 2
•,0 is the measurement noise

variance for a reference target 0, as defined in Table I.
Due to the independentmeasurements, themeasure-

ment covariance when using system B can be defined as

Rn
kn =

⎡⎣σ 2
r,n 0 0
0 σ 2

θ,n 0
0 0 σ 2

d,n

⎤⎦ . (26)

D. Optimization Problem

It is assumed that there are N tracked targets in the
environment. The RRM problem can thus be expressed
as

minimize
T,τ

N∑
n=1

c(Tn, τn, snkn )

subject to
N∑
n=1

τn

Tn
≤ �max,

(27)

where �max ∈ [0, 1] is the total available budget. The
term budget refers to a ratio of dwell time τ to revisit
interval T .

Furthermore, every detection is always correctly as-
signed to the corresponding target.

E. Cost Function

The assumed cost function is constructed from the
predicted error-covariance matrix at time step kn + 1.
The current predicted error-covariancematrixPn

kn|kn−1 ∈
R

4×4 at time step kn can be defined for target n as

Pn
kn|kn−1(Tn, τn) = FnPn

kn−1|kn−1(Tn, τn)F
T
n +Qn, (28)

where Fn is the transition matrix with interval length
Tn as defined in (17), Pkn−1|kn−1 ∈ R

4×4 is the last fil-
tered error-covariance matrix, and Qn is the maneuver-
ability covariance with interval length Tn as defined in
(18). Based on this, another estimation and prediction
cycle is applied to the error-covariance. The result is the
error-covariance Pkn+1|kn ∈ R

4×4 for time kn + 1:

Pkn+1|kn (Tn, τn) = FnPkn|kn (Tn, τn)F
T
n +Qn. (29)

The cost function that is used in the following sections is
based on this expression.

V. LTI EXAMPLE

In this section, a simplified linear time-invariant sce-
nario is assumed in order to investigate if the AODB al-
gorithm converges to the same results as given by the
OSB algorithm,which is the optimal solution in this case.
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TABLE III
General Simulation Parameters of LTI Scenario

Parameter Value Parameter Value

Precision of LR (δLR): 0.001 Maximum budget
(�max):

1

Action discretization
(�T ,�τ ):

0.0025 s Budget update (tB): 5 s

Number of rollouts (M): 10 Beam positioning error
(�α):

0

Rollout horizon (H ): 10 steps Probability of detection
(PD):

1

A. General Simulation Parameters

We consider radar systemA,as mentioned in Table I.
For this simple example, no beam positioning error is
taken into account, e.g. due to a very wide beam by us-
ing anMFRwith a phased array antenna applying digital
beamforming (DBF) on receive. The probability of de-
tection is assumed to be 1. The implemented base policy
is simply to apply the evaluated action in every step of
the policy rollout. Therefore, πbase = a. A constant LR
step size is applied in all simulations. Within the policy
rollout, the expected future cost is simulated over the
defined horizon for each possible action. The action that
produces the lowest expected cost will be chosen for the
measurements during the next time steps. No additional
random movement (process noise) is considered within
the policy rollout. For the simulations in this section, the
sum of the predicted error-covariance for the position
in the x and y directions is applied as a cost function.
Because we want to avoid choosing parameters that are
impractical in a real application, an extra term is added
that penalizes small values of T . Using (29), this can be
expressed as

c(Tn, τn) = trace
(
EPkn+1|kn (Tn, τn)E

T ) + 1000
(Tn)2

, (30)

where

E =
[
1 0 0 0
0 1 0 0

]
(31)

is the selection matrix that selects the upper left two-by-
two submatrix from the error-covariance matrix.

Table III shows general simulation parameters. The
initial Lagrange multiplier value is set to 1. The budgets
are recalculated every tB = 5 s. The base policy is ex-
ecuting the evaluated action in every step of the policy
rollout horizon (πbase = a).Within the policy rollout, the
expected future is simulated and evaluated for each pos-
sible action. The radar is always positioned at the origin
of the Cartesian coordinate system.

B. Comparison of OSB and AODB

In order to prove the validity of the proposedAODB
algorithm, a comparison is conducted with the OSB al-

TABLE IV
Initial Target Parameters for LTI Scenario

Target n xn0 (km) yn0 (km) ẋn0 (m/s) ẏn0 (m/s) σ 2
w (m/s2)2 ςn (m2)

1 50 0 0 0 25 10
2 50 0 0 0 25 20
3 50 0 0 0 25 30
4 50 0 0 0 25 40
5 50 0 0 0 25 50
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Fig. 2. Budget per task over time after initialization of the AODB
algorithm. Solid lines: results from AODB.Dashed lines: optimal

steady-state results from OSB. Lines from top to bottom: targets 1–5.

gorithm, as proposed in [36]. The OSB algorithm calcu-
lates the optimal steady-state error-covariance given a
revisit interval T and a dwell time τ by using equations
by Kalata in [23] and by Gray and Murray in [18]. It is
used as explained in [36] with the general simulation pa-
rameters from Table III.

For the comparison, system A and five target track-
ing tasks are considered with the parameters shown in
Table IV. The revisit interval T and the dwell time τ

are discretized in steps of 0.0025 s. It is assumed that
the budget values are recalculated every 5 s. In between,
measurements of the targets are taken with the previ-
ously calculated revisit intervals Tn and dwell times τn.
The tracks are assumed to be initialized at the beginning
of the simulation.

Since the steady-state solution of the OSB algorithm
is only valid for a single dimension, we assume that the
targets are all positioned at the same position and the
system knows the exact azimuth angle. All targets are
static and only the RCS is considered to be different.

The simulation results are shown Fig. 2. It can be seen
that the budget allocations �n = τn/Tn converge to re-
sults that are very close to the values that have been de-
termined with the OSB algorithm.

Theoretically, the AODB algorithm should work
with any number of tasks. In order to demonstrate that,
the above simulation has been repeated with 10 tasks.
Equivalent to targets 1–5, the RCS values of targets 6–10
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Fig. 3. Budget per task over time after initialization of the AODB
algorithm. Same simulation as for Fig. 2, but with ten tracking tasks.

Lines from top to bottom: targets 1–10.

TABLE V
General Simulation Parameters of Dynamic Scenario

Parameter Value Parameter Value

Precision of LR (δLR): 0.001 Maximum budget
(�max):

1

Action discretization
(�T ,�τ ):

0.0025 s Budget update (tB): 5 s

Number of rollouts (M): 5 Beam positioning error
(�α):

0

Rollout horizon (H ): 15 steps Probability of detection
(PD):

1

are increasing in steps of 10 m2. Fig. 3 shows the approx-
imately optimal budget distribution.

VI. DYNAMIC RADAR EXAMPLE

In this section, the performance of the AODB algo-
rithm is investigated in a more realistic radar-related ex-
ample with different system parameters.

A. General Simulation Parameters

The cost function as introduced in (30) is applied.
Table V shows general simulation parameters for these
simulations. The initial Lagrange multiplier value is set
to 1. The budgets are recalculated every tB = 5 s and
measurements are taken in betweenwith the current cal-
culated resource allocations.The base policy is executing
the evaluated action in every step of the policy rollout
horizon (πbase = a). Within the policy rollout, the ex-
pected future is simulated and evaluated for each possi-
ble action.The radar is always positioned at the origin of
the Cartesian coordinate system.

B. Dynamic Radar Scenario for PD = 1

A dynamic scenario with five moving targets is con-
sidered in this simulation. The initial target parameters

TABLE VI
Initial Target Parameters for Dynamic Scenario

Target n xn0 (km) yn0 (km) ẋn0 (m/s) ẏn0 (m/s) σ 2
w (m/s2)2 ςn (m2)

1 12 10 9 −15 25 20
2 12 15 −30 15 25 20
3 7 11 45 30 64 10
4 19 2 −35 0 64 10
5 10 11 −20 −25 64 10
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Fig. 4. Trajectories of targets in a dynamic scenario.

are given in Table VI and are valid at the moment when
the corresponding track is started. Their trajectories are
shown in Fig.4.The simulation is conductedwith systems
A and B separately.As in the LTI simulations of Section
V, no beam positioning error is taken into account, e.g.
due to a very wide beam by using anMFRwith a phased
array antenna applying DBF on receive. The probability
of detection is assumed to be 1. A horizon of H = 15
is assumed. Targets 1–4 are tracked from the beginning,
while target 5 joins as a new track after 25 s. After 60 s,
the total budget is reduced to�max = 0.9.The reason for
this could be that an operator manually assigned 10% of
the budget to another task, for instance. At 90 s, the ma-
neuverability variance of target 1 increases by a factor of
36 to a value of 900 (m/s2)2, which is known to the sys-
tem in advance, for instance, through some knowledge
of the environment. The simulation results for system A
can be found in Figs. 5 and 6, where the former shows
the resource distribution over the tasks over time and
the latter shows the amount of LR iterations that was
needed for convergence. The corresponding simulation
results for system B are shown in Figs. 7 and 8.

The algorithm manages to calculate the budget for
both systems, while adjusting to unknown and known
changes. Before the known variance change at 90 s, the
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Fig. 5. Dynamic scenario simulation using radar system A.

algorithm already gradually increases the budget for
target 1. The algorithm delivers very similar but still dif-
ferent solutions for the two systems. It can be seen that
the amount of LR iterations needed until convergence
stays low, unless bigger changes in the situation take
place. For the chosen parameters, the maximum is 66 it-
erations for a single resource allocation calculation as-
suming system B. Using system A leads to similar peak
values.

Apart from the impact of the three mentioned sud-
den changes that are applied to the system, it is also ob-
vious that there seems to be a certain dependence of the
budgets on the range. While the budget assigned to tar-
gets 1 and 2 stays roughly constant in between different
events, target 3 gets an increasing amount of resources
assigned, while the resources of targets 4 and 5 are de-
creasing. The reason for this is that targets 1 and 2 are
moving roughly perpendicular to the radar, while target
3 is moving away from it and targets 4 and 5 are moving
toward it. In Section VI-D, this effect is investigated with
an extra simulation.

C. Dynamic Radar Scenario for PD < 1

In a real situation, a low SNR can lead to missed de-
tections. In addition to that, the used radar systemmight
not have the capability to transmit with a wide beam and
apply DBF on receive. Therefore, another simulation is
presented in this subsection that takes into account a
probability of detection based on the calculated SNR
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Fig. 6. Number of LR iterations for a dynamic scenario simulation
using radar system A.
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Fig. 7. Dynamic scenario simulation using radar system B.

and the beam positioning error. The scenario is identical
with the one shown in Section VI-B, and apart from the
probability of detection and the beam positioning error,
all values in Table V are applied. The SNR is calculated
using (23) and taking into account a beam width of 2◦.
In addition to that, a measurement in the simulation as
well as in the policy rollout is only generated with the
probability of detection [27]

PD,kn = P
1

1+SNRkn
FA , (32)

where PFA = 10−4 is the constant probability of false
alarm. It is assumed that the false alarms have no influ-
ence on the tracks.The result of this simulation assuming
system A can be found in Figs. 9 and 10.

It can be seen that the resulting budget allocations
are less smooth than in the simulations assumingPD = 1.
Still, the AODB algorithm leads to comparable results
despite the fact that some of the probabilities of detec-
tion are quite low.

D. Analysis of the Impact of the Chosen Cost Function

To show the impact of the range on the resource dis-
tribution by the AODB algorithm, another simulation
has been conducted with three targets. Target 1 has the
initial parameters x0 = 6 km, y0 = 6 km, ẋ0 = 50 m/s,
and ẏ0 = 50 m/s. Targets 2 and 3 are static at positions
x = 12.4 km, y = 9 km and x = 8.4 km, y = 9.2 km,
respectively. The simulation result is presented in Fig.
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Fig. 8. Number of LR iterations for a dynamic scenario simulation
using radar system B.
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Fig. 9. Dynamic scenario simulation using radar system A with
PD < 1.

11 and shows that the budget assigned to target 1 is
increasing with growing target distance from the radar,
while the budget assigned to the other targets is decreas-
ing. This behavior is expected but does not represent
what is typically desired or expected for a radar appli-
cation.

VII. ANALYSIS OF PERFORMANCE

In the following subsections, we will take a closer
look at the general performance of theAODBalgorithm
with respect to other resource allocation methods.

The assumed scenario is the same as in Section VI, so
the radar and target parameters are identical to Tables I,
V,andVI.For the following simulations,we consider one
implementation of theAODBalgorithm and three other
strategies using radar system A. The cost evaluation is
done for two cases, firstly for PD = 1 and secondly for
PD < 1, based on the SNR including a beam positioning
error as presented in Section VI-C.

It is generally difficult to judge the performance of
RRM algorithms in theory, because it depends on the
specific situation and the specific mission where they are
applied in. Depending on the user of the radar system,
there might be different views on the different parame-
ters. It is possible to show that an approach optimizes
the resource distribution according to the chosen cost
function, but if the cost function is not well designed,
the tracking,detection,or classification performance can
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Fig. 10. Average probability of detection per budget update interval
for the dynamic scenario with PD < 1.
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Fig. 11. Budget allocation for two static and one moving target.

still be unsatisfying. Therefore, we only focus on the ex-
pected cost in this section.

The techniques that are compared to each other are
as follows:

� Random policy: For a given revisit interval T = 1.2 s,
randomly divide the available resources among all
tasks.

� Equal policy: For a given revisit interval T = 1.2 s,
the available budget is always distributed equally to
all tasks.

� Unequal policy: For a given revisit interval T =
1.2 s, target 1 gets more resources assigned than the
other targets. The remaining resources are distributed
equally over targets 2–5.

� AODB15: Nonmyopic AODB algorithm, assigning
resources using policy rollout (H = 15,M = 5).

Figs. 12 and 13 show how the expected cost de-
velops over time for the different techniques that are
mentioned above. For the heuristic methods, the future
expected cost during a horizon of H =15 has been
evaluated stochastically assuming the chosen action,
equivalently to the policy rollout. One can see how
the AODB clearly minimizes the cost compared to the
other techniques for both PD = 1 and PD < 1.
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Fig. 12. Comparison of the expected cost for different resource
distribution methods assuming radar system A and PD = 1. Note that

the cost is plotted in a logarithmic scale.
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TABLE VII
General Simulation Parameters for Computational Load Analysis

Parameter Value Parameter Value

Precision of LR (δLR): 0.01 Maximum budget
(�max):

1

Action discretization
(�T ,�τ ):

0.0035 s Number of simulations: 10

Number of rollouts (M): 2 Beam positioning error
(�α):

0

Rollout horizon (H ): 2 steps Probability of detection
(PD):

1

VIII. ANALYSIS OF COMPUTATIONAL LOAD

In this section, the computational load of the AODB
algorithm is investigated. It should be noted that the cur-
rent version of the algorithm has not been derived with
high efficiency in mind. The following results should be
seen as indications, since the process can still be opti-
mized.

The computational load of the algorithm has been
investigated with respect to the following parameters:

� amount of tracking tasks,
� step size of LR,
� desired precision of results,
� initial value of the Lagrange multiplier,
� rollout length.

In the following, simulation results are shown based
on a single budget calculation. This means that we look
at the way the LR converges to its final result based on
the above parameters.To generate the figures, the results
of ten simulations have been averaged. The general sim-
ulation parameters are shown in Table VII. Those pa-
rameters are valid for all following simulations, except
for the currently evaluated parameter. For that one, a
sweep over different values is applied, which is specified
in the corresponding subsection. We assume a fixed ac-
tion space that is the same for each calculation in the
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Fig. 14. Convergence for different numbers of tracking tasks.
Number of LR iterations (blue with crosses) and total time (solid

red) needed for convergence, as well as time per LR iteration (dashed
red).

parameter sweep. The chosen system for these simula-
tions produces measurements in range and angle (sys-
temA) and the target parameters are the same as in Sec-
tion VI (see Table VI). The initial Lagrange multiplier
value is set to 1. In addition to that, the cost function as
introduced in (30) is used for all following simulations.
In the following figures, we show normalized times and
normalized LR iterations numbers.This means that each
data graph is normalized w.r.t. its maximum value. This
is done in order to emphasize that the capability of the
hardware and the choice of the general input parameters
are not relevant for the discussion of the results.

A. Influence of Number of Tasks on AODB

The following simulation shows the influence of an
increasing number of tasks on the computational load
and execution time of the AODB algorithm. Using the
above-mentioned parameters, 24 different simulations
have been conducted for 2–25 tracking tasks. The ini-
tial Lagrange multiplier value is 1 and the chosen con-
stant LR step size is 8000. Therefore, it is assumed that
there is no prior knowledge about the optimal Lagrange
multiplier. The results of this simulation can be seen in
Fig. 14. It can be seen that the amount of iterations, the
total time until the LR converges, and the time needed
for each LR iteration are increasing approximately lin-
early for a rising number of tracked targets, until the in-
crease slows down for larger amounts of targets of 15 and
more.

B. Influence of LR Step Size on AODB

In this subsection, a simulation shows the influence
of an increasing LR step size on the computational load
and execution time of the AODB algorithm. We con-
sider 5 tracking tasks and 50 step sizes between 250 and
20 000, while the initial Lagrange multiplier value is 1.
The results of this simulation can be found in Fig. 15. It
can be seen that the amount of LR iterations needed and
the time until convergence are decreasing exponentially.
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Fig. 15. Convergence for different LR step sizes. Number of LR
iterations (blue with crosses) and total time (red) needed for

convergence, as well as average time per LR iteration (dashed red).

The average time per LR iteration stays approximately
constant.

C. Influence of LR Precision on AODB

The following simulation shows the influence of dif-
ferent LR result precisions on the computational load
and execution time of the AODB algorithm. We con-
sider 5 tracking tasks and 50 precision values between
0.001 and 0.2. The results of this simulation can be
found in Fig. 16. The initial Lagrange multiplier value
is 1 and the chosen constant step size is 8000. It can be
seen that the amount of LR iterations and the total LR
convergence time are decreasing roughly exponentially.
The average time per LR iteration stays approximately
constant.

D. Influence of Initial Lagrange Multiplier Value on
AODB

This simulation shows the influence of different ini-
tial Lagrange multiplier values on the computational
load and execution time of the AODB algorithm. We
consider 5 tracking tasks and 50 initial Lagrangian mul-
tiplier values between 1 and 100 000. The chosen con-
stant step size is 8000. The results of this simulation can
be found in Fig. 17. It can be seen that the amount of
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Fig. 16. Convergence for different LR result precisions. Number of
LR iterations (blue with crosses) and total time (red) needed for

convergence, as well as average time per LR iteration (dashed red).
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Fig. 17. Convergence for different initial Lagrange multiplier values.
Number of LR iterations (blue with crosses) and total time (red)
needed for convergence, as well as average time per LR iteration

(dashed red).

LR iterations and the LR convergence time have a clear
minimum at about 24 000. This is the best starting value,
because it allows for the fastest convergence. The aver-
age time per LR iteration stays approximately constant.

E. Influence of Rollout Horizon Lengths on AODB

The following simulation shows the influence of dif-
ferent policy rollout horizon lengths on the computa-
tional load and execution time of the AODB algorithm.
We consider five tracking tasks and the rollout length to
vary from 1 to 25.The initial Lagrangemultiplier value is
1 and the chosen constant step size is 8000.The results of
this simulation can be found in Fig. 18. It can be seen that
the amount of LR iterations increases fast in the begin-
ning, before slowly decreasing again for horizon lengths
of 6 and longer. The total time needed increases ap-
proximately linearly, as well as the time needed per LR
iteration.

F. Conclusions on Computational Load

Based on the simulation result of the previous sub-
sections, some conclusions can be made regarding the
choice of the input parameters.They will be summarized
in the following paragraphs.
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Fig. 18. Convergence for different rollout horizon lengths. Number
of LR iterations (blue with crosses) and total time (red) needed for
convergence, as well as average time per LR iteration (dashed red).
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Number of targets and initial Lagrange multiplier
value: Both the necessary number of LR iterations and
the total LR convergence time increase with an increas-
ing number of tracking tasks. Unfortunately, it is gener-
ally not possible to influence the amount of tasks at will.
However, the effect of increasing convergence time can
be reduced by choosing the appropriate initial Lagrange
multiplier value. We found that there is a distinct mini-
mum in the number of LR iterations before convergence
(see Fig. 17). The minimum convergence time, which is
equivalent to a single LR iteration, is attained when that
Lagrangemultiplier value is chosen as the initial value. It
is interesting to see that initial Lagrange multiplier val-
ues that are bigger than the optimal value lead to longer
computations compared to values smaller than the opti-
mum. If some prior knowledge about the Lagrange mul-
tiplier value is available (e.g. from the previous budget
calculation), this can tremendously decrease the conver-
gence time, if the situation has not changed too much
since. Boyd et al. have labeled this approach a “Warm
Start” [8].

LR step size and precision of LR result: Increasing
LR step size and decreasing precision both lead to a de-
creasing number of LR iterations and time until conver-
gence, while the time needed for one LR iteration stays
more or less constant. Generally, it is useful to choose
a rather big LR step size, but if it is chosen too big
with respect to the precision and the action-space dis-
cretization, the algorithm might not converge but oscil-
late around the minimum. If the desired results lie in a
local minimum instead of the global one, the algorithm
might miss that minimum entirely, in case the step size is
chosen too big. Therefore, choosing a constant step size
is probably not the best solution and adaptive step sizes
could increase the performance. There is more freedom
to choose the precision,but one should keep inmind that
a lower precision will lead to a less accurate result,which
can lead to not precisely meeting the maximum budget
constraint.

Policy rollout horizon length: Although this paper
does not investigate the advantages of choosing differ-
ent horizon lengths for the policy rollout, it was cho-
sen to examine its impact on the computational load
for the sake of completeness. In the future, the impact
of the horizon needs to be studied in more detail. In-
creasing the horizon length leads to an almost linear
increase of the time per LR iteration. Very short hori-
zons seem to lead to very low numbers of LR iterations
until convergence. For horizon lengths longer than 2,
the number of LR iterations increases very quickly, al-
though for horizons longer than 6, it slightly decreases
again. The total LR convergence time increases with
growing rollout length (see Fig. 18). It is therefore rea-
sonable to choose the shortest horizon necessary. It
needs to be kept in mind that this is a trade-off with
an impact on the track performance, so a longer hori-
zon can potentially improve the mission performance
further.

IX. CONCLUSIONS

In this paper, we have developed a framework and
proposed approximately optimal algorithmic solutions
for solving RRM problems and shown applicability of
the algorithm to a dynamicmultitarget tracking scenario.
The proposed framework models the different sensor
tasks as constrained POMDPs and solves them by ap-
plying a combination of Lagrangian relaxation and pol-
icy rollout. In contrast to previous work where LTI sce-
narios were considered, this paper focuses on dynamic
situations with different parameters.We believe that the
proposed solution is a step toward a truly generic frame-
work.

In a simple radar tracking scenario, the dwell time
and the revisit interval were optimized using a cost func-
tion based on the predicted position error-covariance
that was computed using the EKF.

It was shown that the AODB algorithm budget allo-
cations are close to the optimal steady-state solution in
an LTI setting. Furthermore, the simulation results show
that the AODB algorithm can be applied to different
systems, and it was pointed out how it adjusted itself to
known as well as unknown situational changes in a dy-
namic scenario.

The presented cost function leads to a larger budget
being given to tracking tasks with higher uncertainty.At
first glance, this may seem to be fully appropriate; how-
ever, in radar this means that more budget will be as-
signed to targets at longer range. Thus, a simple error-
covariance-based cost function will not always suit prac-
tical radar applications.

An analysis of the performance of the algorithm has
also been conducted by comparing the optimized cost to
other resource distribution methods. It was found that
the AODB always led to the lowest cost values com-
pared to the other considered techniques. Finally, the
computational load of the algorithm was investigated.
Based on those results, suggestions about a good choice
of input parameters have been presented.

In future work, we will investigate the usage of the
AODB algorithm in a combined tracking and classifica-
tion scenario. Furthermore, we will investigate the im-
pact of choosing different horizon lengths and its impact
on the cost and the track accuracies. Finally,we will have
a closer look at the convergence of the algorithm and
how its efficiency can be improved.
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Improvement of Proportional
Conflict Redistribution Rules of
Combination of Basic Belief
Assignments

THÉO DEZERT
JEAN DEZERT
FLORENTIN SMARANDACHE

This paper discusses and analyzes the behaviors of the Propor-

tional Conflict Redistribution rules no. 5 (PCR5) and no. 6 (PCR6)

to combine several distinct sources of evidence characterized by their

basic belief assignments defined over the same frame of discernment.

After a brief review of these rules, the paper shows through simple

examples why their behaviors can sometimes increase the uncertainty

more than necessary, which is detrimental to decision-making support

drawn from the result of the combination.We present a theoretical im-

provement of these rules, and establish new PCR5+ and PCR6+ rules

of combination. These new rules overcome the weakness of PCR5 and

PCR6 rules by computing binary-keeping indexes that allow to keep

only focal elements that play an effective role in the partial conflict

redistribution. PCR5+ and PCR6+ rules are not associative but they

preserve the neutrality of the vacuous belief assignment contrary to the

PCR5 and PCR6 rules, and they make a more precise redistribution

which does not increase improperly the mass of partial uncertainties.

I. INTRODUCTION

There exist different theories based on distinct rep-
resentations and modelings of uncertainty to deal with
uncertain information to conduct information fusion [1].
The theory of probability [2], [3], the theory of fuzzy sets
[4], [5], the possibility theory [6], [7], and the theory of
belief functions [8]–[10] are the most well-known ones.
This paper addresses the problem of information fusion
in the mathematical framework of the belief functions
introduced by Shafer from Dempster’s works [11], [12].
The belief functions are often used in decision-making
support applications because the experts are generally
able to express only a belief in a hypothesis (or a set
of hypotheses) from their partial knowledge, experience,
and from their own perception of the reality. To con-
duct information fusion, we need some efficient rules
of combination that are able to manage the conflict-
ing sources of evidence (if any), or expert opinions ex-
pressed in terms of belief functions. Readers interested
in belief functions can found classical related papers in
[13] and in the special issue [14],which includes also a list
of good selected papers. It is worth to mention that the
recent book of Cuzzolin [15] includes 2137 references,
with many of them related to belief functions.

In this paper, we adopt the notion of conflict intro-
duced by Shafer in [8] (p. 65). This notion of conflict is
often adopted by researchers working with belief func-
tions, as in [16] (p. 17) for instance, because this notion
is quite simple to understand. Different definitions and
interpretations of conflict can be also found in [17]–[27]
for readers interested in this topic. In this paper, two (or
more) sources are said conflicting if they support incom-
patible (disjoint, or contradictory) hypotheses. We also
work with distinct sources of evidences that are consid-
ered as (cognitively) independent and reliable. We nei-
ther consider, nor apply discounting techniques of belief
assessments listed in [14] before combining them to keep
the presentation and notations as simple as possible.1

While the conjunctive rule makes it possible to
combine information between different sources of in-
formation by estimating the level of existing conflict,
Dempster–Shafer (DS) rule [8], [16] proposes a distri-
bution of this conflict on the hypotheses characterized
by the sources of information. The normalization car-
ried out by the DS rule may, however, be considered
counter-intuitive especially when the level of conflict be-
tween the sources of information is high [28], [29], but
also in some situations where the level of conflict be-
tween sources is low as shown in [30] showing a dictato-
rial behavior of DS rule. The Proportional Conflict Re-
distribution rules no. 5 (PCR5) [31] and no. 6 (PCR6)
[32], [33] have been proposed to circumvent the problem
of the DS rule to make a more judicious management of
the conflict.

1Of course discounted belief assignments can also be combined by the
rules presented in this paper.
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In this paper, we put forward a flawed behavior of
these combination rules in some cases attributed to the
non-neutrality of the vacuous Basic Belief Assignment
(BBA), and we propose an improvement of these two
combination rules (denoted by PCR5+ and PCR6+) in
order to ensure the neutrality property of the vacuous
BBA (VBBA).This is achieved by discarding specific el-
ements implied in the partial conflict and which are not
useful for making the conflict redistribution.

In the Proportional Conflict Redistribution (PCR)
rules [32]–[34], one redistributes the product of masses
of belief of incompatible (i.e., conflicting) elements
whose intersection is empty only to elements involved
in this product and proportionally to their mass of be-
lief. For instance, let’s consider two elementsA and B of
a frame of discernment (FoD) withA∩B = ∅, and three
BBAs m1(·),m2(·), and m3(·) defined on this FoD with
m1(A) > 0,m2(B) > 0,andm3(A ∪ B) > 0.The product
m1(A)m2(B)m3(A ∪B) > 0 is called a conflicting prod-
uct hereafter because A ∩ B ∩ (A ∪ B) = ∅. Based on
PCR5 (and PCR6) rule, we will redistribute the value of
this product back to the focal2 elementsA,B, andA∪B,
and proportionally tom1(A),m2(B), andm3(A ∪B). In
the improved PCR rules developed in this paper,we will
redistribute this conflicting product only to the focal el-
ementsA and B since the focal elementA∪B is neither
in conflict with A, nor with B. Such an improvement in
the PCR is made possible by defining a binary-keeping
index for each focal element involved in the conflicting
product. This index will allow the identification of ele-
ments of the conflicting product that will have an effec-
tive role in the proportional redistribution of conflicting
product. All elements (if any) having a binary-keeping
index equal to zero are discarded of the conflict redistri-
bution process. This main idea is developed in this pa-
per and illustrated with several examples. It allows to
preserve the neutrality of the total ignorant source of
evidence in the improved versions of PCR5 and PCR6
rules, which is often considered as a desirable property
for a rule of combination of distinct and reliable sources
of evidence.

For the reader not immersed in the belief mathe-
matics notion, the comparative numerical examples of
Example 1 of Section III-B as compared with Example
1 revisited of Section VII, provide a quick verification of
the improvements.

This paper is organized as follows.We give the basics
of belief functions in Section II. We present the PCR5
and PCR6 rules of combination in Section III with new
general formulas in Subsection III-C, and associated ex-
amples in Section IV. The flawed behavior of PCR5 and
PCR6 rules are highlighted in Section V through spe-
cific examples.Then,SectionVI proposes themathemat-
ical expression of the new improved PCR5+ and PCR6+

2A focal element is an element (i.e., a subset) having a strictly positive
mass of belief committed to it—see Section II elements.

rules of combination, as well as the very detailed pro-
cedure to select the focal elements for these new pro-
portional redistributions. Finally, comparative results for
relevant examples are shown in Section VII in order to
compare the PCR5 and PCR6 results with the PCR5+

and PCR6+ results. Concluding remarks are given in
Section VIII. For convenience, two MatlabTM routines
are also given in Appendix 3 of this paper for PCR5+

and PCR6+ rules of combination.

II. BASICS OF BELIEF FUNCTIONS

We consider a given finite set � of n > 1 distinct el-
ements � = {θ1, θ2, . . . , θn} corresponding to the FoD
of the fusion problem, or the decision-making problem,
under concern. All elements of � are mutually exclu-
sive3 and each element is an elementary choice of the
potential decision to take. The power set of � is the set
of all subsets of � (including empty set ∅ and �) and it
is usually denoted 2� because its cardinality equals 2|�|.
We adopt Shafer’s formalism whereby propositions are
represented by subsets [8] (Chap. 2, pp. 35–37). Hence,
the propositions under concern are in one-to-one corre-
spondance with subsets of �. We also use classical no-
tations of set theory [35], i.e. ∅ for the empty set,A ∪ B
for the union4 of sets A and B (which is the set of all
objects that are a member of the set A, or the set B, or
both),A∩B for their intersection (which is the set of all
objects that are members of both A and B), etc. A BBA
given by a source of evidence is defined by Shafer [8]
in his Mathematical Theory of Evidence (known also as
Dempster–Shafer Theory (DST)) as m(·) : 2� → [0, 1]
satisfying {

m(∅) = 0∑
A∈2� m(A) = 1, (1)

where m(A) is the mass of belief exactly committed to
A, what we usually call the mass of A. A BBA is said
proper (or normal) if it satisfies Shafer’s definition (1).
The subset A ⊆ � is called a focal element of the BBA
m(·) if and only if m(A) > 0. The empty set is not
a focal element of a BBA because m(∅) = 0 accord-
ing to definition (1). The set of all focal elements of a
BBAm(·) is denoted F (m). Its mathematical definition
is F (m) = {X ∈ 2�|m(X ) > 0}. The cardinality |F (m)|
of the set F (m) is denoted Fm. The order of focal el-
ements of F (m) does not matter and all the focal ele-
ments are different. The set F (m) of focal elements of
m(·) has at least one focal element, and at most 2|�| − 1
focal elements.

3This standard assumption is called Shafer’s model of FoD in Dezert–
Smarandache theory (DSmT) framework [34].
4We prefer the notation A ∪ B for denoting the union of sets A and
B, which is a formal mathematical notation for the union of two sets,
instead of the notations AB or {A,B} used by some authors.
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Belief and plausibility functions are, respectively, de-
fined fromm(·) by [8]

Bel(A) =
∑

X∈2�|X⊆A
m(X ) (2)

and

Pl(A) =
∑

X∈2�|A∩X �=∅
m(X ) = 1 − Bel(Ā). (3)

where Ā represents the complement of A in �.
Bel(A) and Pl(A) are usually interpreted, respec-

tively, as lower and upper bounds of an unknown
(subjective) probability measure P(A) [11], [12]. The
functionsm(.),Bel(.) and Pl(.) are one-to-one.A belief
function Bel(.) is Bayesian if all Bel’s focal elements
are singletons [8] (Theorem 2.8, p. 45). In this case,
m(X ) = Bel(X ) for any (singleton) focal element
X , and m(.) is called a Bayesian BBA. Corresponding
Bel(·) function is equal to Pl(·) and these functions can
be interpreted as a same (possibly subjective) proba-
bility measure P(·). The VBBA representing a totally
ignorant source is defined as mv(�) = 1.

III. COMBINATION OF BBAS

This section presents at first the conjunctive rule of
combination which is one of the main rules to combine
reliable sources of evidence and which allows to iden-
tify the conflicting information among the sources. Then
we present the PCR5 [31] and PCR6 [32], [33] as al-
ternatives of Dempster’s rule of combination [8]. The
development of these rules has been motivated by the
counter-intuitive behavior of Dempster’s rule [8] when
combining high conflicting sources of evidences, but also
when combining low conflicting sources of evidences as
well5.The reader interested in this topic can refer to [13],
[28]–[30] to see theoretical justifications and examples.
In the following, and for simplicity, we restrain our pre-
sentation to the classical framework of belief functions,
and we work with BBAs defined only on the power set
2� of a FoD �. PCR rules have been defined originally
for working with Dedekind’s lattice as well, see Chap-
ter 1 of [34] (Volume 2). In this paper, we present sim-
ple general expressions of PCR5 and PCR6 fusion rules
because they are easier to understand than the original
general formulas, and they afford expressions of the im-
proved PCR5+ and PCR6+ rules in a direct and useful
manner.

After a brief presentation of the main notations used
in this paper, we will recall both PCR5 and PCR6 rules
for historical and technical reasons. PCR5 has been de-
veloped at first, and then PCR6 has been proposed based
on a modified redistribution principle inspired by PCR5.
In this paper, we follow the logical and historical de-
velopment of these PCR5 and PCR6 rules to make

5Which is known as the dictatorial behavior of Dempster’s rule [30].

the presentation of their improved versions PCR5+ and
PCR6+. It seems easier to understand PCR6+ fusion for-
mula once the PCR5+ formula will have been estab-
lished. By presenting both rules, we offer to the readers
a global deeper view on how these new rules work and
their fundamental and mathematical differences in their
conflict redistribution principles. In the sequel, all the in-
troduced examples assume themodel of Shafer’s FoD as
in the classical DST framework.

A. Notations

When we make the combination of S ≥ 2 BBAs by
the conjunctive rule, or by the PCR5 and PCR6 fusion
rules, we have to compute the product of the masses of
the focal elements composing any possible S-tuple of fo-
cal elements. Each possible S-tuple is noted by6

X j � (Xj1 ,Xj2 , . . . ,XjS ) ∈ F (m1)×F (m2)×. . .×F (mS),

where j1 ∈ {1, 2, . . . ,Fm1}, j2 ∈ {1, 2, . . . ,Fm2}, ..., jS ∈
{1, 2, . . . ,FmS}. The element Xji is the focal element of
mi(·) that makes the i-th component of the j-th S-tuple
X j.

For notation convenience also, the cartesian prod-
uct F (m1) × F (m2) × . . . × F (mS) is denoted by
F (m1, . . . ,mS) in the sequel.

We have F � |F (m1, . . . ,mS)| = ∏S
i=1 |F (mi)| =∏S

i=1 Fmi products of masses of focal elements to con-
sider and to calculate because we have Fm1 focal ele-
ments in F (m1), Fm2 focal elements in F (m2), ..., and
FmS focal elements in F (mS). Each product for j = 1 to
F is of the form

π j(Xj1 ∩Xj2 ∩ . . . ∩XjS ) �
S∏
i=1

mi(Xji ). (4)

There are two types of products:

� π j(Xj1 ∩ Xj2 ∩ . . . ∩ XjS ) is called a non-conflicting
(mass) product if

Xj1 ∩Xj2 ∩ . . . ∩XjS = X �= ∅.

In this case, π j(Xj1 ∩ Xj2 ∩ . . . ∩ XjS ) is also noted by
π j(X ) for short.

� π j(Xj1 ∩Xj2 ∩ . . . ∩XjS ) is called a conflicting (mass)
product if

Xj1 ∩Xj2 ∩ . . . ∩XjS = ∅.

In this case, π j(Xj1 ∩ Xj2 ∩ . . . ∩ XjS ) is also noted by
π j(∅) for short.
It is worth noting that an element X ∈ 2� \ {∅} may

belong to sets of focal elements of the different BBAs to
combine, and therefore a S-tuple X j can have duplicate
components. Because all the BBAs are normalized, we

6The symbol � means “equals by definition.”
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always have

F∑
j=1

π j(Xj1 ∩Xj2 ∩ . . . ∩XjS ) = 1. (5)

As a simple example to illustrate our notations, let
us consider two BBAs m1(·) and m2(·) defined over the
FoD � = {A,B,C} with, respectively, two and three fo-
cal elements, say F (m1) = {A,B ∪ C} and F (m2) =
{B,C,A ∪ C}. Here Fm1 = |F (m1)| = 2 and Fm2 =
|F (m2)| = 3. For j1 = 1 (the first focal element ofm1(·))
one has Xj1 = A, and for j1 = 2 (the second focal ele-
ment ofm1(·)) one hasXj1 = B∪C. Similarly, for j2 = 1
(the first focal element of m2(·)) one has Xj2 = B, for
j2 = 2 (the 2nd focal element ofm2(·)) one hasXj2 = C,
and j2 = 3 (the 3rd focal element of m2(·)) one has
Xj2 = A ∪ C. In this case we have F = Fm1 · Fm2 = 6
products of masses to consider in the conjunctive fusion
rule (see next sub-section) which are

π1(A ∩ B) = m1(A)m2(B),

π2(A ∩C) = m1(A)m2(C),

π3(A ∩ (A ∪C)) = m1(A)m2(A ∪C),

π4((B ∪C) ∩ B) = m1(B ∪C)m2(B),

π5((B ∪C) ∩C) = m1(B ∪C)m2(C),

π6((B ∪C) ∩ (A ∪C)) = m1(B ∪C)m2(A ∪C).

The products π1 and π2 are called conflicting products
because

� for π1, the focal elements A and B involved in π1 are
incompatible (i.e., disjoint) because A ∩ B = ∅. π1

(A ∩ B) is of course equivalent to π j(Xj1 ∩ Xj2 ) with
j = 1 by taking Xj1 = A and Xj2 = B; and

� for π2, one has A ∩ C = ∅. π2(A ∩ C) is equivalent
to π j(Xj1 ∩ Xj2 ) with j = 2 by taking Xj1 = A and
Xj2 = C, etc.

The products π3, ..., and π6 are not conflicting prod-
ucts because the focal elements involved in each prod-
uct have non-empty intersection. Because m1(A) + m1

(B∪C) = 1 andm2(B)+m2(C)+m2(A∪C) = 1,one has
(m1(A)+m1(B∪C))(m2(B)+m2(C)+m2(A∪C)) = 1,
and therefore

∑6
j=1 π j = 1. This illustrates the formula

(5).
In this paper, i ∈ {1, . . . ,S} represents the index of

the i-th source of evidence characterized by the BBA
mi(·), and j ∈ {1, . . . ,F} represents the index of the j-th
product π j(Xj1 ∩Xj2 ∩ . . . ∩XjS ).

B. The conjunctive rule of combination

Let’s consider S ≥ 2 distinct reliable sources of evi-
dence characterized by their BBA ms(·) (s = 1, . . . ,S)

defined on 2�.Their conjunctive fusion7 is defined for all
A ∈ 2� by

mConj
1,2,...,S(A) =

∑
X j∈F (m1,...,mS)
Xj1∩...∩XjS=A

π j(Xj1 ∩Xj2 ∩ . . . ∩XjS )

=
∑

X j∈F (m1,...,mS)
Xj1∩...∩XjS=A

S∏
i=1

mi(Xji ). (6)

The symbol ©∩ is also used in the literature, for in-
stance in [36], to note the conjunctive fusion operator,
i.e.,mConj

1,2,...,S(A) = [m1©∩ m2©∩ . . . ©∩ mS](A).
The total conflicting mass between the S sources of

evidence, denoted mConj
1,2,...,S(∅), is nothing but the sum of

all existing conflicting mass products, that is

mConj
1,2,...,S(∅) =

∑
X j∈F (m1,...,mS)
Xj1∩...∩XjS=∅

π j(Xj1 ∩Xj2 ∩ . . . ∩XjS )

= 1 −
∑

A∈2�\{∅}
mConj

1,2,...,S(A). (7)

Note that the combined BBA mConj
1,2,...,S(.) given in (6) is

not a proper BBA because it does not satisfy Shafer’s
definition (1). In general, the S sources of evidence to
combine do not fully agree, and we have consequently
mConj

1,2,...,S(∅) > 0.
Dempster’s rule of combination (called also orthog-

onal sum by Shafer [8], p. 6) coincides with the nor-
malized version of the conjunctive rule. It is defined by
mDS

1,2,...,S(A) = mConj
1,2,...,S(A)/(1 − mConj

1,2,...,S(∅)), assuming

mConj
1,2,...,S(∅) �= 1. The DS upper notation refers to ini-

tials of Dempster and Shafer names becauseDempster’s
rule has gained its popularity through Shafer’s works
on belief functions. Shafer uses the symbol ⊕ to note
Dempster’s fusion operator, i.e., mDS

1,2,...,S(A) = [m1 ⊕
m2 ⊕ . . . ⊕ mS](A) for A �= ∅, and mDS

1,2,...,S(∅) = 0. A
probabilistic analysis of Dempster’s rule of combination
can be found in [37], and the geometry of Dempster’s
rule is analyzed in [38].

Example 1: Consider � = {A,B} and two following
BBAs

m1(A) = 0.1 m1(B) = 0.2 m1(A ∪ B) = 0.7

m2(A) = 0.4 m2(B) = 0.3 m2(A ∪ B) = 0.3

We have mConj
1,2 (∅) = 0.11, and

mConj
1,2 (A) = 0.35, mConj

1,2 (B) = 0.33, mConj
1,2 (�) = 0.21.

7The conjunctive fusion rule is also called Smets’ rule of combination
by some authors because it has been widely used by Philippe Smets in
his works related to belief functions. But Smets himself call it conjunc-
tive rule, see his last paper [20] (p. 388).
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Symbolically we denote the conjunctive fusion of S
sources as mConj

1,2,...,S = Conj(m1,m2, . . . ,mS). This con-
junctive rule is commutative and associative.This means
that the sources can be combined altogether in one step,
or sequentially in any order and it does not matter.
Also, the total ignorant source represented by the vacu-
ous (non-informative) BBA has no impact in the fusion
result—see Lemma 1 below.

Lemma 1:The VBBAmv has a neutral impact in the
conjunctive rule of combination, that is

Conj(m1,m2, . . . ,mS,mv ) = Conj(m1,m2, . . . ,mS).
(8)

Proof: see Appendix 1.
The main drawback of this fusion rule is that it does

not generate a proper BBA because mConj
1,2,...,S(∅) > 0 in

general,and also it can provide a fusion resultmConj
1,2,...,S(∅)

that quickly tends to one after only few steps of a se-
quential fusion processing of the sources which is not
very useful for decision-making support. This is because
the empty set ∅ is the absorbing element for the con-
junctive operation since ∅ ∩A = ∅ for allA ∈ 2� so that
the mass committed to the empty set always increases
through the repeated conjunctive fusion rule. The main
interest of this rule is its ability to identify the partial con-
flicts and to provide a measure of the total level of con-
flict mConj

1,2,...,S(∅) between the sources which can be used
to manage (select or discard) the sources in the fusion
process if one prefers, see [39] for an application in geo-
physics for instance.

C. PCR5 and PCR6 rules of combination

The PCR rules have been developed originally in the
framework of DSmT [31], [32], [34] but they can work
also in the classical framework of Shafer’s belief func-
tions as well. Six rules have been proposed and they are
referred as PCR1, ..., PCR6 rules of combination hav-
ing different complexities,PCR1 being themost simplest
(but less effective) one. All these rules share the same
general principle which consists of three steps:

� apply the conjunctive rule (6);
� calculate the conflicting mass products π j(∅); and
� redistribute the conflicting mass products π j(∅) pro-
portionally on all non-empty sets involved in the
conflict.

The way the conflicting mass product π j(∅) is redis-
tributed yields to different versions of PCR combination
rules that work for any degree of conflict.The sophistica-
tion/complexity and preciseness of PCR rules increases
from the first PCR1 rule up to the last rule PCR6. The
main disadvantage of these rules, aside their complex-
ity, is their non-associativity properties which impose to
combine all the BBAs altogether with PCR rules rather
than sequentially to expect the best fusion result.

In this paper, we focus on the presentation of PCR5
and PCR6 only because they are the most well-known
advanced fusion rules used so far in the belief func-
tions community. A detailed presentation of other rules
of combination encountered in the literature can be
found in [40]. Symbolically, the PCR5 fusion and the
PCR6 fusion of S ≥ 2 BBAs are, respectively, de-
noted mPCR5

1,2,...,S = PCR5(m1,m2, . . . ,mS), and mPCR6
1,2,...,S =

PCR6(m1,m2, . . . ,mS).
Readers familiar with PCR rules could quickly read

the example 1 given in section III-B, and the results
obtained with classical and improved PCR5 and PCR6
rules in sectionVII to appreciate the discussion through-
out the paper.

The PCR5 rule of combination [31]: This rule trans-
fers the conflicting mass π j(∅) to all the elements in-
volved in this conflict and proportionally to their individ-
ual masses, so that amore sophisticate and specific distri-
bution is donewith the PCR5 fusion process with respect
to other existing rules (including Dempster’s rule). The
PCR5 rule is presented in details (with justification and
examples) in [34] (Vol. 2 and Vol. 3).

• The PCR5 fusion of two BBAs is obtained by
mPCR5

1,2 (∅) = 0, and for all A ∈ 2� \ {∅} by

mPCR5
1,2 (A) = mConj

1,2 (A)

+
∑
X∈2�

X∩A=∅

[
m1(A)2m2(X )
m1(A) +m2(X )

+ m2(A)2m1(X )
m2(A) +m1(X )

]
, (9)

wheremConj
1,2 (A) is the conjunctive rule formula (6) with

S = 2, and where all denominators in (9) are different
from zero. If a denominator is zero, that fraction is dis-
carded.All propositions/sets are in a canonical form.We
take the disjunctive normal form, which is a disjunction
of conjunctions, and it is unique in Boolean algebra and
simplest. For example, X = A ∩ B ∩ (A ∪ B ∪ C) it is
not in a canonical form, but we simplify the formula and
X = A ∩ B is in a canonical form.

The PCR5 formula (9) for two BBAs can also be ex-
pressed by considering only the focal elements of m1(·)
and m2(·) as follows

mPCR5
1,2 (A) = mConj

1,2 (A)

+
∑

(Xj1 ,Xj2 )∈F (m1 )×F (m2 )
Xj1∩Xj2=∅
Xj1=A

m1(Xj1 ) · m1(Xj1 )m2(Xj2 )
m1(Xj1 ) +m2(Xj2 )

+
∑

(Xj1 ,Xj2 )∈F (m1 )×F (m2 )
Xj1∩Xj2=∅
Xj2=A

m2(Xj2 ) · m1(Xj1 )m2(Xj2 )
m1(Xj1 ) +m2(Xj2 )

,

(10)

or equivalently, with shorthand π j notations, as
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mPCR5
1,2 (A) = mConj

1,2 (A)

+
∑

j∈{1,...,F}|X j∈F (m1,m2 )
Xj1∩Xj2=∅

A∈X j

[
mi∈{1,2}|Xji=A(Xji )

· π j(Xj1 ∩Xj2 )
m1(Xj1 ) +m2(Xj2 )

]
, (11)

whereF = |F (m1)|·|F (m2)| is the total number of prod-
ucts π j(Xj1 ∩Xj2 ) = m1(Xj1 )m2(Xj2 ), andA ∈ X j means
that at least one component of X j equals A.

• The explicit formula of the PCR5 fusion of three
BBAs is given in [41].

• A simple formulation of the general expres-
sion of the PCR5 fusion of S > 2 BBAs is ob-
tained by redistributing each conflicting product
π j(∅) = π j(Xj1 ∩ . . . ∩XjS = ∅) = ∏S

i=1mi(Xji ) to
some elements of the power set of the FoD that are
involved in the conflict. Each π j(∅) is redistributed
proportionally to elements involved in this conflict
based on the PCR5 redistribution principle. When an
element A ∈ 2� is not involved in a conflicting product
π j(∅), i.e. A /∈ X j, the conflicting product π j(∅) is not
redistributed to A. If an element A is involved in the
conflict Xj1 ∩ . . . ∩XjS = ∅, i.e.A ∈ X j and π j(∅) occur,
then the proportional redistribution of π j(∅) to A is
given by

x j(A) �

⎛⎝ ∏
i∈{1,...,S}|Xji=A

mi(Xji )

⎞⎠
· π j(∅)∑
X∈X j

( ∏
i∈{1,...,S}|Xji=X

mi(Xji )
) , (12)

where A ∈ X j means that at least one component of the
S-tuple X j = (Xj1 , . . . ,XjS ) ∈ F (m1, . . . ,mS) equals A.

Finally the mass value of A obtained by the PCR5
rule is calculated by
mPCR5

1,2,...,S(A) = mConj
1,2,...,S(A) +

∑
j∈{1,...,F}|A∈X j∧π j (∅)

x j(A),

(13)
where A ∈ X j ∧ π j(∅) is a shorthand notation meaning
that at least one component of the S-tuple X j equals A
and the components ofX j are conflicting, i.e.,Xj1 ∩ . . .∩
XjS = ∅.

Therefore the general PCR5 formula can be ex-
pressed asmPCR5

1,2,...,S(∅) = 0, and for A ∈ 2� \ {∅} by

mPCR5
1,2,...,S(A) = mConj

1,2,...,S(A)

+
∑

j∈{1,...,F}|A∈X j∧π j (∅)

[( ∏
i∈{1,...,S}|Xji=A

mi(Xji )
)

· π j(∅)∑
X∈X j

( ∏
i∈{1,...,S}|Xji=X

mi(Xji )
)]

. (14)

It is worth noting that the formula (14) is a general-
ization of the formula (11), i.e., (14) coincides with (11)
when S = 2.

This general PCR5 formula is equivalent to the orig-
inal PCR5 formula given in [31] but it involves only the
focal elements of the BBAs to combine whichmakes the
derivationmore efficient (less computationally demand-
ing) than the original general PCR5 formula, specially
when each BBA has only few focal elements. We use
this new general PCR5 formula because it is relatively
simple and easy to improve it into PCR5+ formula—
see section VI-B. The extension of PCR5 for combin-
ing qualitative8 BBAs can be found in [34] (Vol. 2 and
3) and in [33]. PCR5 rule is not associative and the best
fusion result is obtained by combining the sources alto-
gether at the same timewhen possible.A suboptimal fast
fusion method using PCR5-based canonical decomposi-
tion [42] can be found in [43].

The PCR6 rule of combination [32]: A variant of
PCR5 rule, called PCR6 rule,has been proposed byMar-
tin andOsswald in [32], [33] for combining S > 2 sources.
Because PCR6 coincides with PCR5when one combines
two sources, we do not provide the PCR6 formula for
two sources which is the same as (9). The difference be-
tween PCR5 and PCR6 lies in the way the PCR is done
as soon as three (or more) sources are involved in the
fusion as it will be shown in the example 2 introduced in
the next section.The explicit formula of the PCR6 fusion
of three BBAs is given in [41] for convenience.

The PCR6 fusion of S > 2 BBAs is obtained by
mPCR6

1,2,...,S(∅) = 0, and for all A ∈ 2� \ {∅} by9

mPCR6
1,2,...,S(A) = mConj

1,2,...,S(A)

+
∑

j∈{1,...,F}|A∈X j∧π j (∅)

[( ∑
i∈{1,...,S}|Xji=A

mi(Xji )
)

· π j(∅)∑
X∈X j

( ∑
i∈{1,...,S}|Xji=X

mi(Xji )
)]

. (15)

The difference between the general PCR5 and PCR6
formulas is that the PCR5 proportional redistribution
involves the products

∏
i∈{1,...,S}|Xji=A

mi(Xji ) of multiple

same focal elements A (if any) in the conflict, whereas
the PCR6 conflict redistribution principle works with
their sum

∑
i∈{1,...,S}|Xji=A

mi(Xji ) instead. The next section

presents some examples for PCR5 and PCR6 rules of
combinations.

We use this general PCR6 formula instead of the
original Martin-Osswald’s PCR6 formula [32] because

8A qualitative BBA is a BBA whose values are labels (e.g., low,
medium, and high) instead of real numbers.
9We wrote this PCR6 general formula in the style of PCR5 formula
(14).
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it is easier to improve it into PCR6+ formula—see Sec-
tionVI-B.From the implementation point of view,PCR6
is simpler to implement than PCR5. From the decision-
making standpoint, PCR6 is better than PCR5 when
S > 2 as reported by Martin and Osswald in [32] (see
also the Example 3 in the next section) in their applica-
tions. For convenience, some MatlabTM codes of PCR5
and PCR6 fusion rules can be found in the appendix of
[44], also in Chap. 7 of [34] (Vol. 3), or fromArnaudMar-
tin’s web page [45]. PCR6 code (in R programming lan-
guage) can be found also in iBelief package developed
by Kuang Zhou and Arnaud Martin from the BFAS10

repository [46], or directly from [47] as well. When we
have only two BBAs to combine, PCR5 and PCR6 rules
provide the same result because formulas (14) and (15)
coincide for S = 2.

In this paper, we have voluntarily chosen to present
the two rules, PCR5 and PCR6, and their improved ver-
sionsmainly for historical reasons and because these two
rules have strong theoretical links as we have shown.
By doing this, we offer the possibility to readers (and
potential users) to test each of these advanced fusion
methods and evaluate their performances on their own
applications. Even though PCR6 is posterior to PCR5,
since some researchers have implemented and are using
PCR5 fusion rule, it appears important to introduce the
improved version of this rule. Furthermore, PCR5 goes
back exactly on the tracks of the conjunctive rule, while
PCR6 does not.

IV. EXAMPLES FOR PCR5 AND PCR6 FUSION RULES

Here we provide two simple examples showing the
difference of the results between PCR5 and PCR6 rules.
For convenience, all numerical values given in the ex-
amples of this paper have been rounded to six decimal
places when necessary.

Example 2: We consider the simplest FoD � =
{A,B}, and the three following BBAs

m1(A) = 0.6,m1(B) = 0.1,m1(A ∪ B) = 0.3

m2(A) = 0.5,m2(B) = 0.3,m2(A ∪ B) = 0.2

m3(A) = 0.4,m3(B) = 0.1,m3(A ∪ B) = 0.5

Because Fm1 = |F (m1)| = 3, Fm2 = |F (m2)| = 3
and Fm3 = |F (m3)| = 3, we have F = Fm1 · Fm2 ·
Fm3 = 27 products to consider.Fifteen products are non-
conflicting and will enter in the calculation ofmConj

1,2,3(A),

mConj
1,2,3(B), and mConj

1,2,3(A ∪ B), and 12 products are con-
flicting products that will need to be proportionally re-
distributed. The conjunctive combination of these three
BBAs is

mConj
1,2,3(A) = m1(A)m2(A)m3(A)

+m1(A)m2(A)m3(A ∪ B)

10Belief Functions and Applications Society.

+m1(A)m2(A ∪ B)m3(A)

+m1(A ∪ B)m2(A)m3(A)

+m1(A)m2(A ∪ B)m3(A ∪ B)

+m1(A ∪ B)m2(A)m3(A ∪ B)

+m1(A ∪ B)m2(A ∪ B)m3(A)

= 0.5370,

mConj
1,2,3(B) = m1(B)m2(B)m3(B)

+m1(B)m2(B)m3(A ∪ B)

+m1(B)m2(A ∪ B)m3(B)

+m1(A ∪ B)m2(B)m3(B)

+m1(B)m2(A ∪ B)m3(A ∪ B)

+m1(A ∪ B)m2(B)m3(A ∪ B)

+m1(A ∪ B)m2(A ∪ B)m3(B)

= 0.0900,

mConj
1,2,3(A ∪ B) = m1(A ∪ B)m2(A ∪ B)m3(A ∪ B)

= 0.3 · 0.2 · 0.5 = 0.0300,

and

mConj
1,2,3(∅) = 1 −mConj

1,2,3(A) −mConj
1,2,3(B) −mConj

1,2,3(A ∪ B)

= 0.3430,

In this example, we have 12 partial conflicts, noted π j(∅)
( j = 1, . . . , 12), which are given by the following prod-
ucts

π1(∅) = m1(A)m2(A)m3(B) = 0.0300,

π2(∅) = m1(A)m2(B)m3(A) = 0.0720,

π3(∅) = m1(B)m2(A)m3(A) = 0.0200,

π4(∅) = m1(B)m2(B)m3(A) = 0.0120,

π5(∅) = m1(B)m2(A)m3(B) = 0.0050,

π6(∅) = m1(A)m2(B)m3(B) = 0.0180,

π7(∅) = m1(A ∪ B)m2(A)m3(B) = 0.0150,

π8(∅) = m1(A ∪ B)m2(B)m3(A) = 0.0360,

π9(∅) = m1(B)m2(A)m3(A ∪ B) = 0.0250,

π10(∅) = m1(A)m2(B)m3(A ∪ B) = 0.0900,

π11(∅) = m1(A)m2(A ∪ B)m3(B) = 0.0120,

π12(∅) = m1(B)m2(A ∪ B)m3(A) = 0.0080.

In applying the PCR5 formula (14), and the PCR6 for-
mula (15), we obtain finally mPCR5

1,2,3 (∅) = mPCR6
1,2,3 (∅) = 0,
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and11

mPCR5
1,2,3 (A) ≈ 0.723281,

mPCR5
1,2,3 (B) ≈ 0.182460,

mPCR5
1,2,3 (A ∪ B) ≈ 0.094259,

and

mPCR6
1,2,3 (A) ≈ 0.743496,

mPCR6
1,2,3 (B) ≈ 0.162245,

mPCR6
1,2,3 (A ∪ B) ≈ 0.094259.

We see a difference between the BBAs mPCR5
1,2,3 and

mPCR6
1,2,3 , which is normal because the PCR principles are

quite different. Using the PCR5 fusion rule the first par-
tial conflicting mass π1(∅) = m1(A)m2(A)m3(B) = 0.03
will be redistributed back to A and B proportionally to
m1(A)m2(A) and tom3(B) as follows

x1(A)
m1(A)m2(A)

= x1(B)
m3(B)

= π1(∅)
m1(A)m2(A) +m3(B)

,

whence

x1(A) = m1(A)m2(A)π1(∅)
m1(A)m2(A) +m3(B)

= 0.0225,

x1(B) = m3(B)π1(∅)
m1(A)m2(A) +m3(B)

= 0.0075.

We can verify π1(∅) = x1(A) + x1(B) = 0.03.
Using the PCR6 fusion rule the first partial conflict-

ing mass π1(∅) = 0.03 will be redistributed back to A
andB proportionally to (m1(A)+m2(A)) and tom3(B).
So we will get the following redistributions x1(A) =
0.0275 for A and x1(B) = 0.0025 for B because

x1(A)
m1(A) +m2(A)

= x1(B)
m3(B)

= π1(∅)
m1(A) +m2(A) +m3(B),

whence

x1(A) = (m1(A) +m2(A))π1(∅)
m1(A) +m2(A) +m3(B)

= 0.0275,

x1(B) = m3(B)π1(∅)
m1(A) +m2(A) +m3(B)

= 0.0025.

We can verify π1(∅) = x1(A) + x1(B) = 0.03.
Note that for all the partial conflicts having no dupli-

cate element involved in the conflicting product π j(∅)
we make the same redistribution with PCR5 rule and
with PCR6 rule. For instance, for π7(∅) = m1(A ∪
B)m2(A)m3(B) = 0.0150 we get

x7(A ∪ B)
m1(A ∪ B)

= x7(A)
m2(A)

= x7(B)
m3(B)

= π7(∅)
m1(A ∪ B) +m2(A) +m3(B),

11The symbol ≈ means “approximately equal to.”

whence π7(∅) = x7(A ∪ B) + x7(A) + x7(B) = 0.0150
with

x7(A ∪ B) = m1(A ∪ B)π7(∅)
m1(A ∪ B) +m2(A) +m3(B)

= 0.0050,

x7(A) = m2(A)π7(∅)
m1(A ∪ B) +m2(A) +m3(B)

≈ 0.0083,

x7(B) = m3(B)π7(∅)
m1(A ∪ B) +m2(A) +m3(B)

≈ 0.0017.

The next example shows also the difference between
PCR5 and PCR6 rules, and it justifies why PCR6 rule is
usually preferred to PCR5 rule in applications.

Example 3: we consider the FoD � = {A,B,C}, and
the four very simple BBAs defined by

m1(A∪B) = 1,m2(B) = 1,m3(A∪B) = 1, andm4(C) = 1.

These BBAs are in conflict because the intersection of
their focal elements is (A ∪ B) ∩A ∩ (A ∪ B) ∩C = ∅.
In this example, one has only one product of masses to
calculate,which is π1((A∪B)∩A∩(A∪B)∩C) = m1(A∪
B)m2(A)m3(A ∪ B)m4(C) = 1. In fact this product is a
conflicting product denoted π1(∅). We can also denote
it π (∅) because the index j = 1 is useless in this case.
Moreover, these BBAs are also in total conflict because
π (∅) = m1(A ∪ B)m2(A)m3(A ∪ B)m4(C) = 1.

If one applies the PCR5 rule principle we get

x(A ∪ B)
m1(A ∪ B)m3(A ∪ B)

= x(B)
m2(B)

= x(C)
m4(C)

= π (∅)
m1(A ∪ B)m3(A ∪ B) +m2(B) +m4(C),

whence x(A ∪ B) = 1/3, x(B) = 1/3 and x(C) = 1/3 so
that

mPCR5
1,2,3,4(A ∪ B) = x(A ∪ B) = 1/3,

mPCR5
1,2,3,4(B) = x(B) = 1/3,

mPCR5
1,2,3,4(C) = x(C) = 1/3.

This PCR5 result appears counter-intuitive because
three sources among the four sources exclude definitely
the hypothesis C because one has Pl1(C) = Pl2(C) =
Pl3(C) = 0, so it is intuitively expected that after the
combination of all the four BBAs the mass committed
toC should not be greater than 1/4 = 0.25.

If one applies the PCR6 rule principle, we get

x(A ∪ B)
m1(A ∪ B) +m3(A ∪ B)

= x(B)
m2(B)

= x(C)
m4(C)

= π (∅)
m1(A ∪ B) +m3(A ∪ B) +m2(B) +m4(C),

whence x(A ∪ B) = 2/4, x(B) = 1/4 and x(C) = 1/4 so
that
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mPCR6
1,2,3,4(A ∪ B) = x(A ∪ B) = 0.5,

mPCR6
1,2,3,4(B) = x(B) = 0.25,

mPCR6
1,2,3,4(C) = x(C) = 0.25,

which is in better agreement with what we intuitively
expect because mPCR6

1,2,3,4(C) is not greater than 1/4. Of
course in this example, Dempster’s rule of combination
cannot be simply applied because the conflict is total
yielding a division by zero in Dempster’s rule formula
[8], but by using eventually some discounting methods
to modify the BBAs to combine.

V. FLAWED BEHAVIOR OF PCR5 AND PCR6 RULES

The PCR5 and PCR6 rules of combination are not
associative which means that the fusion of the BBAs
must be done using general formulas (14) or (15) if one
has more than two BBAs to combine, which is not very
convenient. Therefore, the sequential PCR5 or PCR6
combination of S > 2 BBAs are not in general equal
to the global PCR5 or PCR6 fusion of the S BBAs al-
together because the order of the combination of the
sources does matter in the sequential combination. In
general (i.e. when conflicts exist between the sources of
evidence to combine) one has for S > 2

PCR5(m1,m2, . . . ,mS) �=
PCR5(PCR5(PCR5(m1,m2),m3), . . . ,mS) (16)

and

PCR6(m1,m2, . . . ,mS) �=
PCR6(PCR6(PCR6(m1,m2),m3), . . . ,mS), (17)

and also for S > 2 PCR5 fusion result is generally differ-
ent of PCR6 fusion result that is

PCR5(m1,m2, . . . ,mS) �= PCR6(m1,m2, . . . ,mS).
(18)

Formula (18) says that in general PCR5 is different
from PCR6, of course except the case when we com-
bine only two sources. PCR5 and PCR6 rules can be-
come computationally intractable for combining a large
number of sources and for working with large FoD. This
is a well-known limitation of these rules, but this is the
price to pay to get better results than with classical rules.

Aside the complexity of these rules, it is worth to
mention that the neutral impact property of the VBBA
mv is lost in general when considering the PCR5 or
PCR6 combination of S > 2 BBAs altogether, that is

PCR5(m1, . . . ,mS−1,mv ) �= PCR5(m1, . . . ,mS−1)
(19)

and

PCR6(m1, . . . ,mS−1,mv ) �= PCR6(m1, . . . ,mS−1)
(20)

Formula (19) and (20) show that in general PCR5 and
PCR6 do not have the ignorant source as a neutral el-
ement. This is due to the redistribution principles used
in PCR5 and in PCR6 rules. Example 4 shows the non-
neutral impact of the VBBA in PCR5 and PCR6 rules
for convenience. Note that the VBBA has a neutral im-
pact in the fusion result if and only if one has only two
BBAs to combine with PCR5,or PCR6, and one of them
is the VBBA because in this case there is no possible
(partial) conflict to redistribute between any BBA m(·)
defined over the FoD � and the VBBA mv(·). That is,
for any BBA m1(·) one always has

PCR5(m1,mv ) = PCR6(m1,mv ) = m1. (21)

Example 4:we consider the FoD� = {A,B} having only
two elements, and the following four BBAs as follows:

m1(A) = 0.6,m1(B) = 0.1,m1(A ∪ B) = 0.3,

m2(A) = 0.5,m2(B) = 0.3,m2(A ∪ B) = 0.2,

m3(A) = 0.4,m3(B) = 0.1,m3(A ∪ B) = 0.5,

m4(A ∪ B) = 1.

BBAsm1,m2, andm3 are as in example 2, and the BBA
m4 is nothing but the VBBA mv defined over this FoD
�.

In example 2, we did obtain with PCR5(m1,m2,m3)
and with PCR5(m1,m2,m3,m4) the following resulting
BBAs

mPCR5
1,2,3 (A) ≈ 0.723281,

mPCR5
1,2,3 (B) ≈ 0.182460,

mPCR5
1,2,3 (A ∪ B) ≈ 0.094259,

and

mPCR5
1,2,3,4(A) ≈ 0.654604,

mPCR5
1,2,3,4(B) ≈ 0.144825,

mPCR5
1,2,3,4(A ∪ B) ≈ 0.200571.

Clearly, PCR5(m1,m2,m3) �= PCR5(m1,m2,m3,m4)
even if m4 is the VBBA.

Analogously, we did obtain with PCR6(m1,m2,m3)
and with PCR6(m1,m2,m3,m4)

mPCR6
1,2,3 (A) ≈ 0.743496,

mPCR6
1,2,3 (B) ≈ 0.162245,

mPCR6
1,2,3 (A ∪ B) ≈ 0.094259,

and
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mPCR6
1,2,3,4(A) ≈ 0.647113,

mPCR6
1,2,3,4(B) ≈ 0.128342,

mPCR6
1,2,3,4(A ∪ B) ≈ 0.224545.

Hence, PCR6(m1,m2,m3) �= PCR6(m1,m2,m3,

m4), even ifm4 is the VBBA.
This example 4 shows clearly that the VBBA does

not have a neutral impact in the PCR5 and PCR6 rules
of combination. In fact, adding more VBBAs mv in the
PCR5 or PCR6 fusion will increase more and more the
mass of A ∪ B while decreasing more and more the
masses of A and of B with PCR5, and PCR6. When
the number of VBBAs mv increases, we will have12

mPCR5/6
1,2,3,mv ,...,mv

(A ∪ B) → 1, mPCR5/6
1,2,3,mv ,...,mv

(A) → 0, and

mPCR5/6
1,2,3,mv ,...,mv

(B) → 0.
This is unsatisfactory because the VBBA brings no

useful information to exploit, and it is naturally expected
that it must not impact the fusion result in the combina-
tion of BBAs. This can be seen as a flaw of the behavior
of PCR5 and PCR6 rules of combination.

To emphasize this flaw, we give in the example 5 a
case where the mass committed to some partial uncer-
tainties can increase more than necessary with PCR5
and with PCR6 rules of combination. This is detrimen-
tal for the quality of the fusion result and for decision-
making because the result is more uncertain than it
should be, and consequently the decision is more diffi-
cult to make.

Example 5: we consider the FoD � =
{A,B,C,D,E}, and the following three BBAs⎧⎪⎪⎨⎪⎪⎩

m1(A ∪ B) = 0.70
m1(C ∪D) = 0.06
m1(A ∪ B ∪C ∪D) = 0.15
m1(E) = 0.09

and ⎧⎪⎪⎨⎪⎪⎩
m2(A ∪ B) = 0.06
m2(C ∪D) = 0.50
m2(A ∪ B ∪C ∪D) = 0.04
m2(E) = 0.40

and {
m3(B) = 0.01
m3(A ∪ B ∪C ∪D ∪ E) = 0.99.

Note that the BBAm3 is not equal to the VBBA but it is
very close to the VBBA because m3(�) is close to one.

If we make the PCR6(m1,m2) fusion of only the
two BBAs m1 and m2 altogether, which is also equal to
PCR5(m1,m2), we obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩

mPCR6
1,2 (A ∪ B) ≈ 0.465309

mPCR6
1,2 (C ∪D) ≈ 0.296299

mPCR6
1,2 (A ∪ B ∪C ∪D) ≈ 0.023471

mPCR6
1,2 (E) ≈ 0.214921

12The notation mPCR5/6 indicates “mPCR5 or mPCR6” for convenience.

If we make the PCR6(m1,m2,m3) fusion of all these
three BBAs altogether we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

mPCR6
1,2,3 (B) ≈ 0.000962

mPCR6
1,2,3 (A ∪ B) ≈ 0.286107

mPCR6
1,2,3 (C ∪D) ≈ 0.203454

mPCR6
1,2,3 (A ∪ B ∪C ∪D) ≈ 0.012203

mPCR6
1,2,3 (E) ≈ 0.116038

mPCR6
1,2,3 (A ∪ B ∪C ∪D ∪ E) ≈ 0.381236

One sees that combining the BBAs m1,m2 with the
BBA m3 (where m3 is close to VBBA, and therefore
m3 is almost non-informative) generates a big increase
of the belief of the uncertainty in the resulting BBA.
This behaviour is clearly counter-intuitive because if the
source is almost vacuous, only a small degradation of
the uncertainty is expected and in the limit case when
m3 is the VBBA no impact of m3 on the fusion result
should occur. Note that this behavior also occurs with
PCR5(m1,m2,m3) because one has for this example⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mPCR5
1,2,3 (B) ≈ 0.001103

mPCR5
1,2,3 (A ∪ B) ≈ 0.286107

mPCR5
1,2,3 (C ∪D) ≈ 0.203384

mPCR5
1,2,3 (A ∪ B ∪C ∪D) ≈ 0.012203

mPCR5
1,2,3 (E) ≈ 0.115967

mPCR5
1,2,3 (A ∪ B ∪C ∪D ∪ E) ≈ 0.381236

The deep analysis of the partial conflict redistribu-
tions done in this interesting example reveals clearly
the flaw of the principles of PCR5 and PCR6 rules
of combination. Indeed, for this example, one has
Fm1 · Fm2 · Fm3 = 4 · 4 · 2 = 32 products π j(Xj1 ∩ Xj2 ∩
Xj3 ) = m1(Xj1 )m2(Xj2 )m3(Xj3 ) to calculate, where
Xj1 ∈ F (m1) = {A ∪ B,C ∪ D,A ∪ B ∪ C ∪ D,E},
Xj2 ∈ F (m2) = {A ∪ B,C ∪ D,A ∪ B ∪C ∪ D,E}, and
Xj3 ∈ F (m3) = {B,A∪B∪C∪D∪E}. Among these 32
possible conjunctions of focal elements, 20 products cor-
respond to partial conflicts when Xj1 ∩ Xj2 ∩ Xj3 = ∅,
which need to be redistributed properly to some ele-
ments of 2� \ {∅} according to the PCR5, or the PCR6
redistribution principles.

More precisely, we have to consider all the following
products π j for calculating the result

π1(B) = m1(A ∪ B)m2(A ∪ B)m3(B) = 0.00042,

π2(A ∪ B) = m1(A ∪ B)m2(A ∪ B)m3(�) = 0.04158,

π3(∅) = m1(A ∪ B)m2(C ∪D)m3(B) = 0.0035,

π4(∅) = m1(A ∪ B)m2(C ∪D)m3(�) = 0.3465,

π5(B) = m1(A ∪ B)m2(A ∪ B ∪C ∪D)m3(B) = 0.00028,

π6(A ∪ B) = m1(A ∪ B)m2(A ∪ B ∪C ∪D)m3(�) = 0.02772,

π7(∅) = m1(A ∪ B)m2(E)m3(B) = 0.0028,

π8(∅) = m1(A ∪ B)m2(E)m3(�) = 0.2772,

π9(∅) = m1(C ∪D)m2(A ∪ B)m3(B) = 0.000036,

π10(∅) = m1(C ∪D)m2(A ∪ B)m3(�) = 0.003564,

IMPROVEMENT OF PROPORTIONAL CONFLICT REDISTRIBUTION RULES 57



π11(∅) = m1(C ∪D)m2(C ∪D)m3(B) = 0.0003,

π12(C ∪D) = m1(C ∪D)m2(C ∪D)m3(�) = 0.0297,

π13(∅) = m1(C ∪D)m2(A ∪ B ∪C ∪D)m3(B) = 0.000024,

π14(C ∪D) = m1(C ∪D)m2(A ∪ B ∪C ∪D)m3(�)

= 0.002376,

π15(∅) = m1(C ∪D)m2(E)m3(B) = 0.00024,

π16(∅) = m1(C ∪D)m2(E)m3(�) = 0.02376,

π17(B) = m1(A ∪ B ∪C ∪D)m2(A ∪ B)m3(B) = 0.00009,

π18(A ∪ B) = m1(A ∪ B ∪C ∪D)m2(A ∪ B)m3(�) = 0.00891,

π19(∅) = m1(A ∪ B ∪C ∪D)m2(C ∪D)m3(B) = 0.00075,

π20(C ∪D) = m1(A ∪ B ∪C ∪D)m2(C ∪D)m3(�)

= 0.07425,

π21(B) = m1(A ∪ B ∪C ∪D)m2(A ∪ B ∪C ∪D)m3(B)

= 0.00006,

π22(A ∪ B ∪C ∪D) = m1(A ∪ B ∪C ∪D)m2(A ∪ B ∪C ∪D)

·m3(�) = 0.00594,

π23(∅) = m1(A ∪ B ∪C ∪D)m2(E)m3(B) = 0.0006,

π24(∅) = m1(A ∪ B ∪C ∪D)m2(E)m3(�) = 0.0594,

π25(∅) = m1(E)m2(A ∪ B)m3(B) = 0.000054,

π26(∅) = m1(E)m2(A ∪ B)m3(�) = 0.005346,

π27(∅) = m1(E)m2(C ∪D)m3(B) = 0.00045,

π28(∅) = m1(E)m2(C ∪D)m3(�) = 0.04455,

π29(∅) = m1(E)m2(A ∪ B ∪C ∪D)m3(B) = 0.000036,

π30(∅) = m1(E)m2(A ∪ B ∪C ∪D)m3(�) = 0.003564,

π31(∅) = m1(E)m2(E)m3(B) = 0.00036,

π32(E) = m1(E)m2(E)m3(�) = 0.03564.

The conjunctive rule gives

mConj
1,2,3(B) = π1(B) + π5(B) + π17(B) + π21(B) = 0.00085,

mConj
1,2,3(A ∪ B) = π2(A ∪ B) + π6(A ∪ B) + π18(A ∪ B)

= 0.07821,

mConj
1,2,3(C ∪D) = π12(C ∪D) + π14(C ∪D) + π20(C ∪D)

= 0.106326,

mConj
1,2,3(A ∪ B ∪C ∪D) = π22(A ∪ B ∪C ∪D) = 0.00594,

mConj
1,2,3(E) = π32(E) = 0.03564.

The total conflicting mass between these three BBAs is

mConj
1,2,3(∅) =

∑
j=3,4,7,...,11,13,15,16,19,23,...,31

π j(∅)

= 1 −mConj
1,2,3(B) −mConj

1,2,3(A ∪ B) −mConj
1,2,3(C ∪D)

−mConj
1,2,3(A ∪ B ∪C ∪D) −mConj

1,2,3(E) = 0.773034.

Let us examine how themPCR5
1,2,3 (�) ≈ 0.381236 value

is obtained based on the PCR5 redistribution principle.
Based on the structures of π j(∅) products, we have to
consider only products involving a proportional redistri-
bution to �. So we get a proportional redistribution to
� only from the following products

π4(∅) = m1(A ∪ B)m2(C ∪D)m3(�) = 0.3465,

π8(∅) = m1(A ∪ B)m2(E)m3(�) = 0.2772,

π10(∅) = m1(C ∪D)m2(A ∪ B)m3(�) = 0.003564,

π16(∅) = m1(C ∪D)m2(E)m3(�) = 0.02376,

π24(∅) = m1(A ∪ B ∪C ∪D)m2(E)m3(�) = 0.0594,

π26(∅) = m1(E)m2(A ∪ B)m3(�) = 0.005346,

π28(∅) = m1(E)m2(C ∪D)m3(�) = 0.04455,

π30(∅) = m1(E)m2(A ∪ B ∪C ∪D)m3(�) = 0.003564.

Because there is no duplicate focal elements in each of
these products, the PCR5 and PCR6 redistributions to�

will be the same in this example.
The proportional redistribution of π4(∅) to � is

x4(�) = m3(�)π4(∅)
m1(A ∪ B) +m2(C ∪D) +m3(�)

≈ 0.156637.

The proportional redistribution of π8(∅) to � is

x8(�) = m3(�)π8(∅)
m1(A ∪ B) +m2(E) +m3(�)

≈ 0.131305.

The proportional redistribution of π10(∅) to � is

x10(�) = m3(�)π10(∅)
m1(C ∪D) +m2(A ∪ B) +m3(�)

≈ 0.003179.

The proportional redistribution of π16(∅) to � is

x16(�) = m3(�)π16(∅)
m1(C ∪D) +m2(E) +m3(�)

≈ 0.016222.

The proportional redistribution of π24(∅) to � is

x24(�) = m3(�)π24(∅)
m1(A ∪ B ∪C ∪D) +m2(E) +m3(�)

≈ 0.038186.

The proportional redistribution of π26(∅) to � is

x26(�) = m3(�)π26(∅)
m1(E) +m2(A ∪ B) +m3(�)

≈ 0.004643.

The proportional redistribution of π28(∅) to � is

x28(�) = m3(�)π28(∅)
m1(E) +m2(C ∪D) +m3(�)

≈ 0.027914.

The proportional redistribution of π30(∅) to � is

x30(�) = m3(�)π30(∅)
m1(E) +m2(A ∪ B ∪C ∪D) +m3(�)

≈ 0.003150.

Therefore, we finally obtain the quite big value for
the mass committed to �
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mPCR5
1,2,3 (�) = x4(�) + x8(�) + x10(�) + x16(�) + x24(�)

+ x26(�) + x28(�) + x30(�)

≈ 0.381236.

We see clearly why PCR5 (and PCR6) redistributes
some mass to uncertainty � although the focal element
� is not in conflict with other focal elements involved in
each product π4(∅),π8(∅),π10(∅),π16(∅),π24(∅),π26(∅),
π28(∅), and π30(∅),which is an undesirable behavior that
we want to avoid. That is why we propose in the next
section some improvement of PCR5 and PCR6 rules of
combination.

VI. IMPROVEMENT OF PCR5 AND PCR6 RULES

To circumvent the weakness of the orignal PCR5 and
PCR6 redistribution principles, we propose an improve-
ment of these rules that will be denoted as PCR5+ and
PCR6+ in the sequel.These new rules are not redundant
with PCR5 nor with PCR6 when combining more than
two BBAs altogether.

The very simple and basic idea to improve PCR5 and
PCR6 redistribution principles is to discard the elements
that contain all the other elements implied in the par-
tial conflict π j(∅) calculation. Indeed, the elements dis-
carded are regarded as non-informative and not useful
for making the conflict redistribution.

For instance, if we consider the previous example 5,
the conflictingmasswith PCR5+ andPCR6+ for the con-
flicting product π4(∅) = m1(A∪B)m2(C∪D)m3(�) will
be proportionally redistributed back only toA∪B and to
C ∪D but not to � because A ∪ B ⊆ � andC ∪D ⊆ �.
Thus, with PCR5+ and PCR6+ rules, we will make the
following redistribution:

x4(A ∪ B)
m1(A ∪ B)

= x4(C ∪D)
m2(C ∪D)

= π4(∅)
m1(A ∪ B) +m2(C ∪D)

Here, x4(�) is set to 0 with PCR5+ and PCR6+ prin-
ciples because no proportion of π4(∅) must be redis-
tributed to �.

However, with PCR5 and PCR6 rule we make the
redistributions according to

x4(A ∪ B)
m1(A ∪ B)

= x4(C ∪D)
m2(C ∪D)

= x4(�)
m3(�)

= π4(∅)
m1(A ∪ B) +m2(C ∪D) +m3(�)

.

A. Selection of focal elements for proportional
redistribution

The main issue to improve PCR5 and PCR6 rules of
combination is how to identify in each conflicting prod-
uct π j(∅) the set of elements to keep for making the im-
proved proportional redistribution.

In this section, we propose a solution of this prob-
lem that can be easily implemented. For convenience,
we give also the basic MatlabTMcodes of PCR5+ and
PCR6+ in Appendix 3.

Let us consider π j(∅) = m1(Xj1 )m2(Xj2 ) . . .mS(XjS )
a conflicting product13 where Xj1 ∩ Xj2 ∩ . . . ∩ XjS = ∅.
We denote by X j = {X1, . . . ,Xsj , s j ≤ S} the set of all
distinct components of the S-tuple X j related with the
conflicting product π j(∅). The order of the elements in
X j does not matter. The number s j of elements in X j can
be less than S because it is possible to have duplicate fo-
cal elements in π j(∅).We consider inX j only the distinct
focal elements involved in π j(∅) (see the next example)
and we will define their binary keeping-index indicator
which will allow to know if each element of X j needs to
be kept in the PCR, or not, in the improved PCR5 and
PCR6 rules of combination.

For each element Xl ∈ X j we first define its binary
containing indicator δ j(Xl ′ ,Xl ) with respect to Xl ′ ∈ X j

to characterize ifXl contains (includes)Xl ′ in wide sense,
or not.Therefore,we take δ j(Xl ′ ,Xl ) = 1 ifXl ′ ∩Xl = Xl ′ ,
or equivalently ifXl ′ ⊆ Xl , and δ j(Xl ′ ,Xl ) = 0 otherwise.
The definition of this binary containing indicator is sum-
marized by the formula

δ j(Xl ′ ,Xl ) �
{
1 if Xl ′ ⊆ Xl ,
0 if Xl ′ � Xl .

(22)

Of course δ j(Xl,Xl ) = 1 because Xl ∩ Xl = Xl , and
we have δ j(Xl ′ ,Xl ) = 0 as soon as |Xl ′ | > |Xl |, where
|Xl ′ | and |Xl | are the cardinalities of Xl ′ and Xl , respec-
tively.We have also δ j(Xl ′ ,Xl ) = 0 when Xl ′ ∩Xl �= Xl ′ .
ForXl = �, we have δ j(Xl ′ ,Xl ) = δ j(Xl ′ ,�) = 1 for any
Xl ′ ∈ X j.

To know if a focal element Xji ∈ X j must be kept, or
not, in the proportional redistribution of the j-th con-
flicting mass π j(∅) with PCR5+ and PCR6+ rules, we
have to determinate its binary keeping-index κ j(Xji ).For
this, we define κ j(Xji ) ∈ {0, 1} as follows

κ j(Xji ) � 1 −
∏

Xl′ ,Xl∈X j
Xl′ �=Xl

|Xji |≤|Xl |
|Xl′ |≤|Xl |

δ j(Xl ′ ,Xl ) (23)

The value κ j(Xji ) = 1 stipulates that the focal el-
ement Xji ∈ X j must receive some proportional re-
distribution from the conflicting mass π j(∅). The value
κ j(Xji ) = 0 indicates that the focal element Xji will not
be involved in the proportional redistribution of the con-
flicting mass π j(∅).

13We consider S > 2 BBAs because for S = 2 BBAs, no improper
increasing of uncertainty occurs with PCR5 or PCR6.
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The binary keeping-index can also be defined equiv-
alently as

κ j(Xji ) =

⎧⎪⎨⎪⎩
1 if c(Xji ) is true
1 − ∏

Xl′ ∈X j
Xl′ �=Xji|Xl′ |≤|Xji |

δ j(Xl ′ ,Xji ) if c(Xji ) is false,

(24)
where the condition c(Xji ) is defined as

c(Xji ) � ∃Xl ∈ X j such |Xl | > |Xji | and κ j(Xl ) = 1.

Because this second definition of κ j(Xji ) is self-
referencing, we need to calculate the binary keeping in-
dexes iteratively starting by the element of X j of highest
cardinality (say X ), then for elements of X j of cardinal-
ity |X |−1 (if any), then for elements of X j of cardinality
|X |−2 (if any), etc.From the implementation standpoint
the definition (24) is more efficient than the direct defi-
nition (23).

Remark 1:We always have κ j(�) = 0 if � ∈ X j be-
cause � always includes all other focal elements of X j

and � has the highest cardinality, so δ j(Xl ′ ,�) = 1 for
allXl ′ ∈ X j. Therefore the binary keeping index formula
(23) reduces to

κ j(�) = 1 −
∏

Xl′ ∈X j

δ j(Xl ′ ,�) = 1 − 1 · 1 · . . . · 1︸ ︷︷ ︸
|X j | terms

= 0.

Remark 2: For a given FoD and a given number of
BBAs to combine, it is always possible to calculate off-
line the values of the binary keeping indexes of focal el-
ements of all possible combinations of focal elements in-
volved in conflicting products π j(∅) > 0 because the bi-
nary keeping index depends only on the structure of the
focal elements, and not on the numerical mass values of
the focal elements. This remark is important, especially
in applications where we have thousands or millions of
fusion steps to make because we will not have to recal-
culate in each fusion step the binary keeping-indexes for
each π j(∅) even if the input BBAs values to combine
change.

Remark 3: It is worth to recall that PCR5+ and
PCR6+ have interest if and only if we have more than
two (S > 2)BBAs to combine. If we have only twoBBAs
to combine (S = 2) we always get mPCR5 = mPCR5+ =
mPCR6 = mPCR6+ because in this case the PCR5, PCR5+,
PCR6, and PCR6+ rules coincide.

For convenience, we illustrate the calculation of
these binary keeping-indexes based on the direct calcu-
lation (23) for different examples.

Example 6: We consider the FoD � = {A,B,C,D},
six BBAs, and the j-th conflicting (assumed strictly pos-
itive) product whose structure is as follows

π j(∅) = m1(A)m2(B ∪C)m3(A ∪C)m4(B ∪C)

·m5(A ∪ B ∪C)m6(A ∪ B ∪C ∪D).

In this product π j(∅), we have the duplicate focal
element B ∪ C because it appears both in m2(B ∪ C)

and in m4(B ∪ C). The focal elements entering in each
BBA of π j(∅) are respectively Xj1 = A, Xj2 = B ∪ C,
Xj3 = A ∪ C, Xj4 = B ∪ C, Xj5 = A ∪ B ∪ C, and
Xj6 = A ∪ B ∪ C ∪ D = �. So we have to consider only
the following set of distinct focal elements for this π j(∅)
product

X j = {X1 = A,X2 = B ∪C,X3 = A ∪C,

X4 = A ∪ B ∪C,X5 = A ∪ B ∪C ∪D}.
Therefore, considering only Xl ′ �= Xl and |Xl ′ | ≤ |Xl |

that are conditions entering in formula (23),we have the
following binary containing indicator δ j(Xl ′ ,Xl ) values:

δ j(X1,X2) = 0 because (X1 = A) � (X2 = B ∪C),

δ j(X1,X3) = 1 because (X1 = A) ⊆ (X3 = A ∪C),

δ j(X1,X4) = 1 because (X1 = A) ⊆ (X4 = A ∪ B ∪C),

δ j(X1,X5) = 1 because (X1 = A) ⊆ (X5 = �),

δ j(X2,X3) = 0 because (X2 = B ∪C) � (X3 = A ∪C),

δ j(X2,X4) = 1 because (X2 = B ∪C) ⊆ (X4 = A ∪ B ∪C),

δ j(X2,X5) = 1 because (X2 = B ∪C) ⊆ (X5 = �),

δ j(X3,X2) = 0 because (X3 = A ∪C) � (X2 = B ∪C),

δ j(X3,X4) = 1 because (X3 = A ∪C) ⊆ (X4 = A ∪ B ∪C),

δ j(X3,X5) = 1 because (X3 = A ∪C) ⊆ (X5 = �),

δ j(X4,X5) = 1 because (X4 = A ∪ B ∪C) ⊆ (X5 = �).

The binary keeping indexes κ j(Xji ) for i = 1, 2, . . . , 6
are calculated based on the formula (23) as follows:
� For the focal element Xj1 = A = X1 of X j having

|Xj1 | = 1, we get

κ j(A) = 1 −
∏

Xl′ ,Xl∈X j
Xl′ �=Xl|Xj1

|≤|Xl |
|Xl′ |≤|Xl |

δ j(Xl′ ,Xl )

= 1 − [δ j(X1,X2)δ j(X1,X3)δ j(X1,X4)δ j(X1,X5)

· δ j(X2,X3)δ j(X2,X4)δ j(X2,X5)δ j(X3,X2)

· δ j(X3,X4)δ j(X3,X5)δ j(X4,X5)]

= 1 − 0 · 1 · 1 · 1 · 0 · 1 · 1 · 0 · 1 · 1 · 1 = 1.

Hence, the focal element Xj1 = A will be kept in
the proportional redistribution of the conflicting mass
π j(∅).

� For the focal element Xj2 = B ∪C = X2 of X j having
|Xj2 | = 2, we get

κ j(B ∪C) = 1 −
∏

Xl′ ,Xl∈X j
Xl′ �=Xl

|Xj2 |≤|Xl |
|Xl′ |≤|Xl |

δ j(Xl ′ ,Xl )

= 1 − [δ j(X1,X2)δ j(X1,X3)δ j(X1,X4)
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· δ j(X1,X5)δ j(X2,X3)δ j(X2,X4)

· δ j(X2,X5)δ j(X3,X2)δ j(X3,X4)

· δ j(X3,X5)δ j(X4,X5)]

= 1 − 0 · 1 · 1 · 1 · 0 · 1 · 1 · 0 · 1 · 1 · 1 = 1.

Hence, the focal element Xj2 = B ∪C will be kept in
the proportional redistribution of the conflicting mass
π j(∅).

� For the focal element Xj3 = A ∪C = X3 of X j having
|Xj3 | = 2, we get

κ j(A ∪C) = 1 −
∏

Xl′ ,Xl∈X j
Xl′ �=Xl

|Xj3 |≤|Xl |
|Xl′ |≤|Xl |

δ j(Xl ′ ,Xl )

= 1 − [δ j(X1,X2)δ j(X1,X3)δ j(X1,X4)

· δ j(X1,X5)δ j(X2,X3)δ j(X2,X4)

· δ j(X2,X5)δ j(X3,X2)δ j(X3,X4)

· δ j(X3,X5)δ j(X4,X5)]

= 1 − 0 · 1 · 1 · 1 · 0 · 1 · 1 · 0 · 1 · 1 · 1 = 1.

Hence, the focal element Xj3 = A ∪C will be kept in
the proportional redistribution of the conflicting mass
π j(∅).

� For the duplicate focal element Xj4 = B ∪ C of X j

having |Xj4 | = 2, we have κ j(Xj4 ) = 1 because Xj4 =
Xj2 and κ j(Xj2 ) = 1.

� For the focal element Xj5 = A ∪ B ∪ C = X4 of X j
having |Xj5 | = 3, we get

κ j(A ∪ B ∪C) = 1 −
∏

Xl′ ,Xl∈X j
Xl′ �=Xl

|Xj5 |≤|Xl |
|Xl′ |≤|Xl |

δ j(Xl ′ ,Xl )

= 1 − [δ j(X1,X4)δ j(X1,X5)

· δ j(X2,X4)δ j(X2,X5)δ j(X3,X4)

· δ j(X3,X5)δ j(X4,X5)]

= 1 − 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 = 0.

Hence, the focal element Xj5 = A ∪B ∪C will be dis-
carded in the proportional redistribution of the con-
flicting mass π j(∅).

� For the focal element Xj6 = A∪B∪C ∪D = � = X5

of X j having |Xj6 | = 4, we get

κ j(�) = 1 −
∏

Xl′ ,Xl∈X j
Xl′ �=Xl

|Xj6 |≤|Xl |
|Xl′ |≤|Xl |

δ j(Xl ′ ,Xl )

= 1 − δ j(X1,X5)δ j(X2,X5)δ j(X3,X5)δ j(X4,X5)

= 1 − 1 · 1 · 1 · 1 = 0.

This result illustrates the validity of the aforemen-
tioned remark 1. Hence, the focal element Xj5 = A ∪
B ∪C ∪ D = � will be discarded in the proportional
redistribution of the conflicting mass π j(∅).
In summary, the conflicting product π j(∅) =

m1(A)m2(B∪C)m3(A∪C)m4(B∪C)m5(A∪B∪C)m6(�)
will be redistributed only to the three focal elements A,
B ∪ C, and A ∪ C with the improved rules PCR5+ and
PCR6+, whereas it would have been redistributed to all
five focal elements A, B ∪ C, A ∪ C, A ∪ B ∪ C, and �

with the classical PCR5 and PCR6 rules. Thus, two focal
elements were discarded.

Example 7:This example is somehow an extension of
example 6 by including a new element E in the FoD. So,
the FoD is � = {A,B,C,D,E}, seven BBAs, and the
j-th conflicting (assumed strictly positive) product
whose structure is as follows

π j(∅) = m1(A∪E)m2(B∪C∪E)m3(A∪C∪E)m4(B∪C∪E)

·m5(A ∪ B ∪C ∪ E)m6(A ∪ B ∪C ∪D ∪ E)m7(A).

In this product π j(∅),we have the duplicate focal ele-
mentB∪C∪E because it appears both inm2(B∪C∪E)
and in m4(B ∪ C ∪ E). The focal elements entering in
each BBA of π j(∅) are, respectively, Xj1 = A ∪ E,
Xj2 = B ∪ C ∪ E, Xj3 = A ∪ C ∪ E, Xj4 = B ∪ C ∪ E,
Xj5 = A ∪ B ∪C ∪ E, Xj6 = A ∪ B ∪C ∪ D ∪ E = �,

and Xj7 = A. So we have to consider only the following
set of distinct focal elements for this π j(∅) product

X j = {X1 = A ∪E,X2 = B ∪C ∪E,X3 = A ∪C ∪E,

X4 = A∪B∪C∪E,X5 = A∪B∪C∪D∪E,X6 = A}.
Therefore, considering only Xl ′ �= Xl and |Xl ′ | ≤ |Xl |

that are conditions entering in formula (23),we have the
following binary containing indicator δ j(Xl ′ ,Xl ) values:

δ j(X6,X1) = 1 because (X6 = A) ⊆ (X1 = A ∪ E),

δ j(X6,X2) = 0 because (X6 = A) � (X2 = B ∪C ∪ E),

δ j(X6,X3) = 1 because (X6 = A) ⊆ (X3 = A ∪C ∪ E),

δ j(X6,X4) = 1 because (X6 = A) ⊆ (X4 = A ∪ B ∪C ∪ E),

δ j(X6,X5) = 1 because (X6 = A) ⊆ (X5 = �),

δ j(X1,X2) = 0 because (X1 = A ∪ E) � (X2 = B ∪C ∪ E),

δ j(X1,X3) = 1 because (X1 = A ∪ E) ⊆ (X3 = A ∪C ∪ E),

δ j(X1,X4) = 1 because (X1 = A ∪ E) ⊆ (X4 = A ∪ B ∪C ∪ E),

δ j(X1,X5) = 1 because (X1 = A ∪ E) ⊆ (X5 = �),

δ j(X2,X3) = 0 because (X2 = B ∪C ∪ E) � (X3 = A ∪C ∪ E),

δ j(X2,X4) = 1 because (X2 = B ∪C ∪ E) ⊆ (X4 = A ∪ B ∪C ∪ E),

δ j(X2,X5) = 1 because (X2 = B ∪C ∪ E) ⊆ (X5 = �),

δ j(X3,X2) = 0 because (X3 = A ∪C ∪ E) � (X2 = B ∪C ∪ E),
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δ j(X3,X4) = 1 because (X3 = A ∪C ∪ E) ⊆ (X4 = A ∪ B ∪C ∪ E),

δ j(X3,X5) = 1 because (X3 = A ∪C ∪ E) ⊆ (X5 = �),

δ j(X4,X5) = 1 because (X4 = A ∪ B ∪C ∪ E) ⊆ (X5 = �).

The binary keeping indexes κ j(Xji ) for i = 1, 2, . . . , 7
are calculated based on the formula (23) as follows
� For the focal element Xj1 = A ∪ E = X1 of X j having

|Xj1 | = 2, we get

κ j(Xj1 ) = 1 −
∏

Xl′ ,Xl∈X j
Xl′ �=Xl|Xj1

|≤|Xl |
|Xl′ |≤|Xl |

δi(Xl′ ,Xl )

= 1 − [δ j(X1,X2)δ j(X1,X3)δ j(X1,X4)δ j(X1,X5)

· δ j(X2,X3)δ j(X2,X4)δ j(X2,X5)δ j(X3,X2)

· δ j(X3,X4)δ j(X3,X5)δ j(X4,X5)δ j(X6,X1)

· δ j(X6,X2)δ j(X6,X3)δ j(X6,X4)δ j(X6,X5)]

= 1 − 0 · 1 · 1 · 1 · 0 · 1 · 1 · 0 · 1 · 1 · 0 · 1 · 1 · 1 = 1.

Hence, the focal element Xj1 = A ∪ E will be kept in
the proportional redistribution of the conflicting mass
π j(∅).

� For the focal element Xj2 = B ∪ C ∪ E = X2 of X j
having |Xj2 | = 3, we get

κ j(Xj2 ) = 1 −
∏

Xl′ ,Xl∈X j
Xl′ �=Xl|Xj2

|≤|Xl |
|Xl′ |≤|Xl |

δ j(Xl′ ,Xl )

= 1 − [δ j(X1,X2)δ j(X1,X3)δ j(X1,X4)δ j(X1,X5)

· δ j(X2,X3)δ j(X2,X4)δ j(X2,X5)δ j(X3,X2)

· δ j(X3,X4)δ j(X3,X5)δ j(X4,X5)δ j(X6,X2)

· δ j(X6,X3)δ j(X6,X4)δ j(X6,X5)]

= 1 − 0 · 1 · 1 · 1 · 0 · 1 · 1 · 0 · 1 · 1 · 1 · 0 · 1 · 1 · 1
= 1.

Hence, the focal element Xj2 = B∪C ∪E will also be
kept in the proportional redistribution of the conflict-
ing mass π j(∅).

� For the focal element Xj3 = A ∪ C ∪ E = X3 of X j
having |Xj3 | = 3, we get

κ j(Xj3 ) = 1 −
∏

Xl′ ,Xl∈X j
Xl′ �=Xl

|Xj3 |≤|Xl |
|Xl′ |≤|Xl |

δ j(Xl ′ ,Xl )

= 1 − [δ j(X1,X2)δ j(X1,X3)δ j(X1,X4)δ j(X1,X5)

· δ j(X2,X3)δ j(X2,X4)δ j(X2,X5)δ j(X3,X2)

· δ j(X3,X4)δ j(X3,X5)δ j(X4,X5)δ j(X6,X2)

· δ j(X6,X3)δ j(X6,X4)δ j(X6,X5)]

= 1 − 0 · 1 · 1 · 1 · 0 · 1 · 1 · 0 · 1 · 1 · 1 · 0 · 1 · 1 · 1
= 1.

Hence, the focal element Xj3 = A∪C∪E is also kept
in the redistribution.

� For the duplicate focal elementXj4 = B∪C∪E having
|Xj4 | = 3, we have κ j(Xj4 ) = 1 because Xj4 = Xj2 and
κ j(Xj2 ) = 1.

� For the focal elementXj5 = A∪B∪C∪E = X4 having
|Xj5 | = 4, we get

κ j(Xj5 ) = 1 −
∏

Xl′ ,Xl∈X j
Xl′ �=Xl

|Xj5 |≤|Xl |
|Xl′ |≤|Xl |

δ j(Xl ′ ,Xl )

= 1 − [δ j(X1,X4)δ j(X1,X5)δ j(X2,X4)δ j(X2,X5)

· δ j(X3,X4)δ j(X3,X5)δ j(X4,X5)δ j(X6,X4)

· δ j(X6,X5)]

= 1 − 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 = 0.

Hence, the focal element Xj5 = A ∪ B ∪C ∪ E must
be ignored in the proportional redistribution.

� For the focal elementXj6 = A∪B∪C∪D∪E = � =
X5 having |Xj6 | = 5, we get

κ j(Xj6 ) = 1 −
∏

Xl′ ,Xl∈X j
Xl′ �=Xl

|Xj6 |≤|Xl |
|Xl′ |≤|Xl |

δ j(Xl ′ ,Xl )

= 1 − [δ j(X1,X5)δ j(X2,X5)δ j(X3,X5)δ j(X4,X5)

· δ j(X6,X5)]

= 1 − 1 · 1 · 1 · 1 · 1 = 0.

This result illustrates the validity of the aforemen-
tioned remark 1. Hence, the focal element Xj6 = A ∪
B ∪ C ∪ D ∪ E must be ignored in the proportional
redistribution.

� For the focal element Xj7 = A = X6 having |Xj7 | = 1,
we get naturally (see our previous remark 1)

κ j(Xj7 ) = 1 −
∏

Xl′ ,Xl∈X j
Xl′ �=Xl

|Xj7 |≤|Xl |
|Xl′ |≤|Xl |

δ j(Xl ′ ,Xl )

= 1 − [δ j(X1,X2)δ j(X1,X3)δ j(X1,X4)δ j(X1,X5)

· δ j(X2,X3)δ j(X2,X4)δ j(X2,X5)δ j(X3,X2)

· δ j(X3,X4)δ j(X3,X5)δ j(X4,X5)δ j(X6,X2)

· δ j(X6,X3)δ j(X6,X4)δ j(X6,X5)]

= 1 − 0 · 1 · 1 · 1 · 0 · 1 · 1 · 0 · 1 · 1 · 1 · 0 · 1 · 1 · 1
= 1.

Hence, the focal element Xj7 = Amust be kept in the
proportional redistribution.

In summary, the conflicting product π j(∅) = m1(A∪
E)m2(B ∪C ∪ E)m3(A ∪C ∪ E)m4(B ∪C ∪ E)m5(A ∪
B∪C∪E)m6(�)m7(A) will be redistributed only to focal
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elementsA∪E,B∪C∪E,A∪C∪E, andA with the im-
proved rules PCR5+ and PCR6+, whereas it would have
been redistributed to all focal elementsA∪E,B∪C∪E,
A ∪ C ∪ E, A ∪ B ∪ C ∪ E, �, and A with the classical
PCR5 and PCR6 rules.

Example 8: This is a somehow simplified version of
example 6.We consider the FoD � = {A,B,C,D}, only
five BBAs, and suppose that the j-th conflicting (as-
sumed strictly positive) product is as follows

π j(∅) = m1(A)m2(B ∪C)m3(A ∪C)m4(B ∪C)

·m5(A ∪ B ∪C ∪D).

Based on (23), it can be verified14 that the binary keeping
indexes of focal elements involved in conflicting prod-
ucts are

κ j(A) = 1,

κ j(B ∪C) = 1,

κ j(A ∪C) = 1,

κ j(A ∪ B ∪C ∪D) = 0.

Example 9: We consider the FoD � = {A,B,C,D},
seven BBAs, and suppose that the j-th conflicting (as-
sumed strictly positive) product is as follows

π j(∅) = m1(A)m2(B ∪C)m3(A ∪C)m4(B ∪C)

·m5(A ∪ B ∪C ∪D)m6(A ∪ B ∪C)m7(A ∪ B ∪C).

Based on (23), it can be verified that the binary keeping
indexes of focal elements involved in conflicting prod-
ucts are

κ j(A) = 1,

κ j(B ∪C) = 1,

κ j(A ∪C) = 1,

κ j(A ∪ B ∪C ∪D) = 0,

κ j(A ∪ B ∪C) = 0.

Example 10: We consider the FoD � = {A,B,C}, three
BBAs, and suppose that the j-th conflicting (assumed
strictly positive) product is as follows

π j(∅) = m1(A)m2(B ∪C)m3(A ∪C).

Based on (23), it can be verified that the binary keeping
indexes of focal elements involved in conflicting prod-
ucts are

κ j(A) = 1,

κ j(B ∪C) = 1,

κ j(A ∪C) = 1.

14The verification is left to the reader.

Example 11: We consider the FoD � = {A,B,C}, four
BBAs, and suppose that the j-th conflicting (assumed
strictly positive) product is as follows

π j(∅) = m1(A)m2(B ∪C)m3(A ∪C)m4(A ∪ B).

Based on (23), it can be verified that the binary keeping-
indexes of focal elements involved in conflicting prod-
ucts are

κ j(A) = 1,

κ j(B ∪C) = 1,

κ j(A ∪C) = 1,

κ j(A ∪ B) = 1.

Example 12: We consider the FoD � = {A,B,C}, three
BBAs, and suppose that the j-th conflicting (assumed
strictly positive) product is as follows

π j(∅) = m1(A ∪ B ∪C)m2(A)m3(B ∪C).

Based on (23), it can be verified that the binary keeping-
indexes of focal elements involved in conflicting prod-
ucts are

κ j(A ∪ B ∪C) = 0,

κ j(A) = 1,

κ j(B ∪C) = 1.

Example 13:We consider the FoD� = {A,B,C,D}, and
the three following BBAs

m1(A ∪ B) = 0.8,m1(C ∪D) = 0.2,

m2(A ∪ B) = 0.4,m2(C ∪D) = 0.6,

m3(B) = 0.1,m3(A ∪ B ∪C ∪D) = 0.9.

WehaveF = |F (m1)|·|F (m2)|·|F (m3)| = 2·2·2 = 8
products π j ( j = 1, . . . ,F) entering in the fusion process
as follows

π1(B) = m1(A ∪ B)m2(A ∪ B)m3(B) = 0.032,

π2(A ∪ B) = m1(A ∪ B)m2(A ∪ B)m3(�) = 0.288,

π3(∅) = m1(A ∪ B)m2(C ∪D)m3(B) = 0.048,

π4(∅) = m1(A ∪ B)m2(C ∪D)m3(�) = 0.432,

π5(∅) = m1(C ∪D)m2(A ∪ B)m3(B) = 0.008,

π6(∅) = m1(C ∪D)m2(A ∪ B)m3(�) = 0.072,

π7(∅) = m1(C ∪D)m2(C ∪D)m3(B) = 0.012,

π8(C ∪D) = m1(C ∪D)m2(C ∪D)m3(�) = 0.108.

Based on (23), it can be verified15 that the binary
keeping-indexes of focal elements involved in conflict-
ing products π3(∅) to π7(∅) are

κ3(A ∪ B) = 1, κ3(C ∪D) = 1, κ3(B) = 1,

15The verification is left to the reader.
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κ4(A ∪ B) = 1, κ4(C ∪D) = 1, κ4(�) = 0,

κ5(C ∪D) = 1, κ5(A ∪ B) = 1, κ5(B) = 1,

κ6(C ∪D) = 1, κ6(A ∪ B) = 1, κ6(�) = 0,

κ7(C ∪D) = 1, κ7(B) = 1.

In summary,once the binary keeping-index of κ j(Xji )
of all focal elements Xji involved in a conflicting prod-
uct π j(∅) are calculated, we can apply PCR5 or PCR6
redistribution principle only with the focal elements for
which κ j(Xji ) = 1. With this new improved method
of proportional redistribution, PCR5+ and PCR6+ rules
will never increase the mass of non-conflicting elements
involved in each π j(∅) (if any), and in doing this way, we
will preserve the neutrality of the vacuous belief assign-
ment in the PCR5+ and PCR6+ fusion rules, which is a
very desirable behavior.

B. Expressions of PCR5+ and PCR6+ fusion rules

The expressions of PCR5+ and PCR6+ fusion rules
are proper modifications of PCR5 and PCR6 formulas
(14) and (15) taking into account the selection of focal
elements on which the proportional redistribution must
apply thanks to the value of their binary keeping index.

The PCR5+ fusion of S > 2 BBAs is obtained by
mPCR5+

1,2,...,S(∅) = 0, and for all A ∈ 2� \ {∅} by

mPCR5+
1,2,...,S(A) = mConj

1,2,...,S(A)

+
∑

j∈{1,...,F}|A∈X j∧π j (∅)

[(
κ j(A)

∏
i∈{1,...,S}|Xji=A

mi(Xji )
)

· π j(∅)∑
X∈X j

(
κ j(X )

∏
i∈{1,...,S}|Xji=X

mi(Xji )
)]

. (25)

The PCR6+ fusion of S > 2 BBAs is obtained by
mPCR6+

1,2,...,S(∅) = 0, and for all A ∈ 2� \ {∅} by

mPCR6+
1,2,...,S(A) = mConj

1,2,...,S(A)

+
∑

j∈{1,...,F}|A∈X j∧π j (∅)

[(
κ j(A)

∑
i∈{1,...,S}|Xji=A

mi(Xji )
)

· π j(∅)∑
X∈X j

(
κ j(X )

∑
i∈{1,...,S}|Xji=X

mi(Xji )
)]

, (26)

where κ j(A) and κ j(X ) are, respectively, the binary
keeping indexes of elements A and X involved in the
conflicting product π j(∅), that are calculated by the for-
mula (23) or (24).

Remark 4: It is worth mentioning that PCR5+ for-
mula (25) is totally consistent with PCR5 formula (14)
when all binary keeping-indexes are equal to one. Simi-
larly, the PCR6+ formula (26) reduces to PCR6 formula
(15) if all binary keeping indexes equal one.

Theorem: The VBBA mv has a neutral impact in
PCR5+ and PCR6+ rules of combination.

Proof: see Appendix 2.

C. On the complexity of PCR5+ and PCR6+ fusion rules

The complexity of PCR5 and PCR6 rules is diffi-
cult to establish precisely because the number of com-
putations highly depends on the structure of focal el-
ements of the BBAs to combine, but definitely it is
higher thanDempster’s rule of combination.What about
the complexity of PCR5+ and PCR6+ fusion rules? On
one hand, PCR5+ and PCR6+ seem more complex than
PCR5 and PCR6 rules because one needs extra compu-
tational burden with respect to PCR5 and PCR6 rules
to calculate the binary keeping indexes. But in fact, the
calculation of binary keeping indexes do not depend on
themass values of focal elements but only on their struc-
ture. Hence, the binary keeping indexes can be calcu-
lated off-line once for all for many possible structures
of focal elements of BBAs to combine. On the other
hand, if the binary keeping index calculation is done off-
line, then PCR5+ and PCR6+ become less complex than
PCR5 and PCR6 rule because some elements are dis-
carded with PCR5+ and PCR6+ making the redistribu-
tion simpler and more effective than with PCR5 and
PCR6 rules. It is not possible to say for sure if glob-
ally PCR5+ and PCR6+ are more (or less) complex than
PCR5 and PCR6 because it really depends on the fu-
sion problem under consideration and the structure of
focal elements of BBAs to combine. If the sources of
evidence to combine generate many partial conflicts to
redistribute, including many elements to discard, then
PCR5+ and PCR6+ are more advantageous than PCR5
and PCR6 in terms of reduction of complexity.

VII. EXAMPLES FOR PCR5+ AND PCR6+ FUSION
RULES

Here we compare the results obtained with PCR5+

and PCR6+ with respect to those drawn from PCR5 and
PCR6 rules on the examples from 1 to 13 in the previous
sections. Since these following examples, for PCR5+ and
PCR6+ fusion rules, respectively, consider the same FoD
and BBAs as those presented, they will be denoted as
“revisited examples.”

Example 1 (revisited): Consider � = {A,B} and two
following BBAs

m1(A) = 0.1 m1(B) = 0.2 m1(A ∪ B) = 0.7

m2(A) = 0.4 m2(B) = 0.3 m2(A ∪ B) = 0.3

Because there is only two BBAs to combine, we have

PCR5(m1,m2) = PCR6(m1,m2),

PCR5+(m1,m2) = PCR6+(m1,m2).

64 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 16, NO. 1 JUNE 2021



We have mConj
1,2 (A) = 0.35, mConj

1,2 (B) = 0.33,

and mConj
1,2 (�) = 0.21, and we have the two conflict-

ing products π1(∅) = m1(A)m2(B) = 0.03 and
π2(∅) = m2(A)m1(B) = 0.08 to redistribute.

Applying PCR5 principle for π1(∅) = 0.03 we get

x1(A)
m1(A)

= x1(B)
m2(B)

= π1(∅)
m1(A) +m2(B)

,

whence x1(A) = 0.1 · 0.03
0.1+0.3 = 0.0075 and x1(B) = 0.3 ·

0.03
0.1+0.3 = 0.0225.

Applying PCR5 principle for π2(∅) = 0.08 we get

x2(A)
m2(A)

= x2(B)
m1(B)

= π2(∅)
m2(A) +m1(B)

,

whence x2(A) = 0.4 · 0.08
0.4+0.2 ≈ 0.0533 and x2(B) = 0.2 ·

0.08
0.4+0.2 ≈ 0.0267.

Therefore we get

mPCR5
1,2 (A) = mPCR6

1,2 (A) = mConj
1,2 (A) + x1(A) + x2(A)

= 0.35 + 0.0075 + 0.0533 = 0.4108,

mPCR5
1,2 (B) = mPCR6

1,2 (B) = mConj
1,2 (B) + x1(B) + x2(B)

= 0.33 + 0.0225 + 0.0267 = 0.3792,

mPCR5
1,2 (A ∪ B) = mPCR6

1,2 (A ∪ B) = mConj
1,2 (A ∪ B) = 0.21.

If we want to apply PCR5+, or PCR6+, rule we need
to compute the binary keeping indexes of each focal
element entering in the conflicting products π1(∅) and
π2(∅). In this example, for π1(∅) = m1(A)m2(B), we
have X1 = {A,B}, and for π2(∅) = m2(A)m1(B),
we have X2 = {A,B}. Applying formula (22), we get
δ1(A,B) = 0 because A � B, and δ1(B,A) = 0 because
B � A (and also δ2(A,B) = 0 and δ2(B,A) = 0). Ap-
plying formula (23) we get the binary keeping indexes
κ1(A) = 1, κ1(B) = 1, κ2(A) = 1, and κ2(B) = 1, indi-
cating that the redistribution of π1(∅) must operate on
all elements of X1 = {A,B}, and the redistribution of
π2(∅) must also operate on all elements of X2 = {A,B},
so there is no element that must be discarded for making
the improved redistribution in this example. Therefore
PCR5+,or PCR6+ results coincidewithPCR5 andPCR6
results, that is mPCR5(·) = mPCR6(·) = mPCR5+

(·) =
mPCR6+

(·) which is normal.
Example 2 (revisited): Consider � = {A,B} and the

three following BBAs

m1(A) = 0.6,m1(B) = 0.1,m1(A ∪ B) = 0.3,

m2(A) = 0.5,m2(B) = 0.3,m2(A ∪ B) = 0.2,

m3(A) = 0.4,m3(B) = 0.1,m3(A ∪ B) = 0.5.

As shown in Section IV, for this example,one has the fol-
lowing 12 conflicting products to redistribute when ap-
plying PCR5 or PCR6 fusion formulas.

π1(∅) = m1(A)m2(A)m3(B) = 0.0300,

π2(∅) = m1(A)m2(B)m3(A) = 0.0720,

π3(∅) = m1(B)m2(A)m3(A) = 0.0200,

π4(∅) = m1(B)m2(B)m3(A) = 0.0120,

π5(∅) = m1(B)m2(A)m3(B) = 0.0050,

π6(∅) = m1(A)m2(B)m3(B) = 0.0180,

π7(∅) = m1(A ∪ B)m2(A)m3(B) = 0.0150,

π8(∅) = m1(A ∪ B)m2(B)m3(A) = 0.0360,

π9(∅) = m1(B)m2(A)m3(A ∪ B) = 0.0250,

π10(∅) = m1(A)m2(B)m3(A ∪ B) = 0.0900,

π11(∅) = m1(A)m2(A ∪ B)m3(B) = 0.0120,

π12(∅) = m1(B)m2(A ∪ B)m3(A) = 0.0080.

With PCR5 and PCR6, the products π1(∅) to π6(∅) are
redistributed to A and B only, whereas the products
π7(∅) to π12(∅) are redistributed toA,B, andA∪B. Ap-
plying PCR5 formula (14) and PCR6 formula (15), we
obtain mPCR5

1,2,3 (∅) = mPCR6
1,2,3 (∅) = 0 and

⎧⎪⎨⎪⎩
mPCR5

1,2,3 (A) ≈ 0.723281

mPCR5
1,2,3 (B) ≈ 0.182460

mPCR5
1,2,3 (A ∪ B) ≈ 0.094259

and

⎧⎪⎨⎪⎩
mPCR6

1,2,3 (A) ≈ 0.743496

mPCR6
1,2,3 (B) ≈ 0.162245

mPCR6
1,2,3 (A ∪ B) ≈ 0.094259

The calculation of the binary keeping indexes by the
formula (23) gives in this example{

κ j(A) = 1, κ j(B) = 1, for j = 1, . . . , 6

κ j(A) = 1, κ j(B) = 1, κ j(A ∪ B) = 0, for j = 7, . . . , 12.

Therefore, if we apply the PCR5+ and PCR6+ im-
proved rules of combination, we redistribute the prod-
ucts π1(∅) to π6(∅) to A and B (as for PCR5 and
PCR6 rule), but the products π7(∅) to π12(∅) will be
redistributed to A, B only, and not to A ∪ B because
κ j(A ∪ B) = 0 for j = 7, . . . , 12. So finally, we obtain
mPCR5+

1,2,3 (∅) = mPCR6+
1,2,3 (∅) = 0 and⎧⎪⎨⎪⎩

mPCR5+
1,2,3 (A) ≈ 0.768631

mPCR5+
1,2,3 (B) ≈ 0.201369

mPCR5+
1,2,3 (A ∪ B) = 0.03

and

⎧⎪⎨⎪⎩
mPCR6+

1,2,3 (A) ≈ 0.788847

mPCR6+
1,2,3 (B) ≈ 0.181153

mPCR6+
1,2,3 (A ∪ B) = 0.03

We can verify that we obtain a more precise re-
distribution with PCR5+ (respectively PCR6+) rule
with respect to PCR5 (respectively PCR6) rule because

TABLE I
Example 5: Results of PCR5+ versus PCR5

Focal elements mPCR5
1,2,3 (·) mPCR5+

1,2,3 (·)
B 0.001103 0.001107

A ∪ B 0.286107 0.464483
C ∪D 0.203385 0.296186

A ∪ B ∪C ∪D 0.012203 0.023408
E 0.115966 0.214816

A ∪ B ∪C ∪D ∪ E 0.381236 0
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TABLE II
Example 5: Results of PCR6+ versus PCR6

Focal elements mPCR6
1,2,3 (·) mPCR6+

1,2,3 (·)
B 0.000962 0.000967

A ∪ B 0.286107 0.464483
C ∪D 0.203454 0.296255

A ∪ B ∪C ∪D 0.012203 0.023408
E 0.116038 0.214887

A ∪ B ∪C ∪D ∪ E 0.381236 0

mPCR5+
1,2,3 (A ∪ B) < mPCR5

1,2,3 (A ∪ B) and also mPCR6+
1,2,3 (A ∪

B) < mPCR6
1,2,3 (A ∪ B).

Example 3 (revisited): we consider � = {A,B,C},
and the four very simple BBAs defined by

m1(A∪B) = 1,m2(B) = 1,m3(A∪B) = 1, andm4(C) = 1.

These four BBAs are in total conflict because
(A ∪ B) ∩A ∩ (A ∪ B) ∩C = ∅, and one has only one
product π (∅) = m1(A ∪ B)m2(A)m3(A ∪ B)m4(C) = 1
to consider, so j = 1 in this case and it can be omitted in
the notations of the binary keeping indexes.

As shown previously, one has⎧⎨⎩
mPCR5

1,2,3,4(A ∪ B) = 1/3
mPCR5

1,2,3,4(B) = 1/3
mPCR5

1,2,3,4(C) = 1/3
and

⎧⎨⎩
mPCR6

1,2,3,4(A ∪ B) = 0.5
mPCR6

1,2,3,4(B) = 0.25
mPCR6

1,2,3,4(C) = 0.25

Because all focal elements A ∪ B, A, and C entering in
π (∅) are conflicting then one has the binary keeping-
indexes κ(A ∪ B) = 1, κ(A) = 1 and κ(C) = 1, i.e., all
these elements will receive a redistribution of the con-
flicting mass π (∅). Therefore there is no restriction for
making the redistribution. Consequently, PCR5+ result
coincides with PCR5 result, and PCR6+ result coincides
with PCR6 result.

Example 4 (revisited): we consider � = {A,B}, and
the following four BBAs

m1(A) = 0.6,m1(B) = 0.1,m1(A ∪ B) = 0.3,

m2(A) = 0.5,m2(B) = 0.3,m2(A ∪ B) = 0.2,

m3(A) = 0.4,m3(B) = 0.1,m3(A ∪ B) = 0.5,

m4(A ∪ B) = 1 (m4 is the VBBA).

The BBAsm1,m2, andm3 are the same as in example 2,
and the BBA m4 is the VBBA. We have already shown

TABLE III
Example 6: Results of PCR5+ versus PCR5

Focal elements mPCR5
1,2,3,4,5,6(·) mPCR5+

1,2,3,4,5,6(·)
A 1/5 1/3

A ∪C 1/5 1/3
B ∪C 1/5 1/3

A ∪ B ∪C 1/5 0
A ∪ B ∪C ∪D 1/5 0

TABLE IV
Example 6: Results of PCR6+ versus PCR6

Focal elements mPCR6
1,2,3,4,5,6(·) mPCR6+

1,2,3,4,5,6(·)
A 1/6 1/4

A ∪C 1/6 1/4
B ∪C 1/3 1/2

A ∪ B ∪C 1/6 0
A ∪ B ∪C ∪D 1/6 0

that PCR5(m1,m2,m3) �= PCR5(m1,m2,m3,m4) even
ifm4 is the VBBA, and⎧⎨⎩

mPCR5
1,2,3,4(A) ≈ 0.654604

mPCR5
1,2,3,4(B) ≈ 0.144825

mPCR5
1,2,3,4(A ∪ B) ≈ 0.200571

Similarly, PCR6(m1,m2,m3) �= PCR6(m1,m2,m3,m4),
and ⎧⎨⎩

mPCR6
1,2,3,4(A) ≈ 0.647113

mPCR6
1,2,3,4(B) ≈ 0.128342

mPCR6
1,2,3,4(A ∪ B) ≈ 0.224545

Applying the PCR5+ formula (25) and the PCR6+

formula (26) wewill obtainmPCR5+
1,2,3 (∅) = mPCR6+

1,2,3,4 (∅) = 0
and⎧⎪⎨⎪⎩
mPCR5+

1,2,3,4 (A) ≈ 0.768631
mPCR5+

1,2,3,4 (B) ≈ 0.201369
mPCR5+

1,2,3,4 (A ∪ B) = 0.03
and

⎧⎪⎨⎪⎩
mPCR6+

1,2,3,4 (A) ≈ 0.788847
mPCR6+

1,2,3,4 (B) ≈ 0.181153
mPCR6+

1,2,3,4 (A ∪ B) = 0.03

One has PCR5+(m1,m2,m3,m4) = PCR5+

(m1,m2,m3) and PCR6+(m1,m2,m3,m4) = PCR6+

(m1,m2,m3) because with the improved proportional
redistribution of PCR5+ and PCR6+ rules, the VBBA
has always a neutral impact in the fusion result, which is
what we intuitively expect.

Example 5 (revisited): we consider � =
{A,B,C,D,E}, and the following three BBAs⎧⎪⎪⎪⎨⎪⎪⎪⎩

m1(A ∪ B) = 0.70

m1(C ∪D) = 0.06

m1(A ∪ B ∪C ∪D) = 0.15

m1(E) = 0.09

TABLE V
Example 7: Results of PCR5+ versus PCR5

Focal elements mPCR5
1,2,3,4,5,6,7(·) mPCR5+

1,2,3,4,5,6,7(·)
A 1/6 1/4

A ∪ E 1/6 1/4
A ∪C ∪ E 1/6 1/4
B ∪C ∪ E 1/6 1/4

A ∪ B ∪C ∪ E 1/6 0
A ∪ B ∪C ∪D ∪ E 1/6 0
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TABLE VI
Example 7: Results of PCR6+ versus PCR6

Focal elements mPCR6
1,2,3,4,5,6,7(·) mPCR6+

1,2,3,4,5,6,7(·)
A 1/7 1/5

A ∪ E 1/7 1/5
A ∪C ∪ E 1/7 1/5
B ∪C ∪ E 2/7 2/5

A ∪ B ∪C ∪ E 1/7 0
A ∪ B ∪C ∪D ∪ E 1/7 0

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
m2(A ∪ B) = 0.06

m2(C ∪D) = 0.50

m2(A ∪ B ∪C ∪D) = 0.04

m2(E) = 0.40

and {
m3(B) = 0.01

m3(A ∪ B ∪C ∪D ∪ E) = 0.99

Note that the BBAm3 is not equal to the VBBA but it is
very close to the VBBA because m3(�) is close to one.

If we consider the fusion of only the two first
BBAs m1 and m2, we have PCR6(m1,m2) =
PCR6+(m1,m2) = PCR5(m1,m2) = PCR5+(m1,m2)
because all these rules coincide when combining two
BBAs. ⎧⎪⎪⎪⎨⎪⎪⎪⎩

mPCR6
1,2 (A ∪ B) ≈ 0.465309

mPCR6
1,2 (C ∪D) ≈ 0.296299

mPCR6
1,2 (A ∪ B ∪C ∪D) ≈ 0.023471

mPCR6
1,2 (E) ≈ 0.214921

If we make the PCR5, PCR5+, PCR6, and PCR6+

fusion of these three BBAs altogether we obtain now
different results which is normal, because for S > 2,
one has PCR5+(m1, . . . ,mS) �= PCR5(m1, . . . ,mS) and
PCR6+(m1, . . . ,mS) �= PCR6(m1, . . . ,mS) in general.
So, in this example 5, we get results shown in Tables I
and II.

These values highlight the great ignorance of the re-
sults proposed by PCR5 and PCR6 when the third (al-
most vacuous) source of information is taken into ac-
count. Indeed, mPCR5

1,2,3 (�) = mPCR6
1,2,3 (�) is the great-

est mass among the set of hypotheses, whereas the
results proposed with PCR5+ and PCR6+ combina-

TABLE VII
Example 8: Results of PCR5+ versus PCR5

Focal elements mPCR5
1,2,3,4,5(·) mPCR5+

1,2,3,4,5(·)
A 1/4 1/3

A ∪C 1/4 1/3
B ∪C 1/4 1/3

A ∪ B ∪C ∪D 1/4 0

TABLE VIII
Example 8: Results of PCR6+ versus PCR6

Focal elements mPCR6
1,2,3,4,5(·) mPCR6+

1,2,3,4,5(·)
A 1/5 1/4

A ∪C 1/5 1/4
B ∪C 2/5 1/2

A ∪ B ∪C ∪D 1/5 0

tion rules discard the ignorant information and pro-
pose results closer to those obtained by merging
two sources. Indeed, the largest mass is allocated to
A ∪ B.

The next examples 6–12 are very simple examples
involving only categorical BBAs so that only one con-
flicting product (equals to one) needs to be redistributed
based on PCR5, PCR6, PCR5+, and PCR6+ rules. These
examples offer the possibility to the reader to do the
derivations manually for making a verification of our re-
sults.

Example 6 (revisited):we consider � = {A,B,C,D},
and the following categorical BBAsm1(A) = 1,m2(B ∪
C) = 1,m3(A∪C) = 1,m4(B∪C) = 1,m5(A∪B∪C) = 1,
andm6(A∪B∪C∪D) = 1. If wemake the PCR5,PCR5+,
PCR6, and PCR6+ fusion of these six BBAs altogether,
we obtain results given in Tables III and IV.

In this example,we have only one conflicting product
π1(∅) to redistribute which is given by

π1(∅) = m1(A)m2(B ∪C)m3(A ∪C)m4(B ∪C)

·m5(A ∪ B ∪C)m6(A ∪ B ∪C ∪D).

Because κ1(A ∪ B ∪ C) = 0 and κ1(A ∪ B ∪ C ∪
D) = 0, these two disjunctions are discarded and
more mass is committed to A, A ∪ C and B ∪ C with
PCR5+ and PCR6+ rules. There is more mass allocated
to B ∪C with PCR6+ and PCR6 than with PCR5+ and
PCR5 because two sources of information support this
hypothesis.

Example 7 (revisited): we consider � =
{A,B,C,D,E}, and the following seven categori-
cal BBAs m1(A ∪ E) = 1, m2(B ∪ C ∪ E) = 1,
m3(A ∪ C ∪ E) = 1, m4(B ∪ C ∪ E) = 1,
m5(A ∪ B ∪C ∪ E) = 1,m6(A ∪ B ∪C ∪ D ∪ E) = 1,
and m7(A) = 1. If we make the PCR5, PCR5+, PCR6,

TABLE IX
Example 9: Results of PCR5+ versus PCR5

Focal elements mPCR5
1,2,3,4,5,6,7(·) mPCR5+

1,2,3,4,5,6,7(·)
A 1/5 1/3

A ∪C 1/5 1/3
B ∪C 1/5 1/3

A ∪ B ∪C 1/5 0
A ∪ B ∪C ∪D 1/5 0
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TABLE X
Example 9: Results of PCR6+ versus PCR6

Focal elements mPCR6
1,2,3,4,5,6,7(·) mPCR6+

1,2,3,4,5,6,7(·)
A 1/7 1/4

A ∪C 1/7 1/4
B ∪C 2/7 1/2

A ∪ B ∪C 2/7 0
A ∪ B ∪C ∪D 1/7 0

and PCR6+ fusion of these seven BBAs altogether, we
obtain results given in Tables V and VI.

In this example 7, we have only one conflicting prod-
uct π1(∅) to redistribute which is given by

π1(∅) = m1(A ∪ E)m2(B ∪C ∪ E)m3(A ∪C ∪ E)

·m4(B ∪C ∪ E)m5(A ∪ B ∪C ∪ E)

·m6(A ∪ B ∪C ∪D ∪ E)m7(A).

Because κ1(A∪B∪C∪E) = 0 and κ1(A∪B∪C∪D∪E) =
0, these two disjunctions are discarded and more mass is
committed to A,A ∪ E,A ∪C ∪ E, and B ∪C ∪ E with
PCR5+ and PCR6+ rules. There is more mass allocated
to B ∪C ∪ E with PCR6+ and PCR6 than with PCR5+

and PCR5 because two sources of information support
this hypothesis.

Example 8 (revisited):we consider � = {A,B,C,D},
and the following categorical BBAsm1(A) = 1,m2(B ∪
C) = 1, m3(A ∪ C) = 1, m4(B ∪ C) = 1, and m5(A ∪
B ∪C ∪ D) = 1. If we make the PCR5, PCR5+, PCR6,
and PCR6+ fusion of these seven BBAs altogether we
obtain results given in Tables VII and VIII.

Because κ1(A ∪ B ∪ C ∪ D) = 0, this disjunction
is discarded and more mass is committed to A, A ∪ C,
and B ∪ C with PCR5+ and PCR6+ rules. There is more
mass allocated toB∪Cwith PCR6+ and PCR6 than with
PCR5+ and PCR5 because two sources of information
support this hypothesis.

Example 9 (revisited):we consider � = {A,B,C,D},
and the following seven categorical BBAs m1(A) =
1, m2(B ∪C) = 1, m3(A ∪ C) = 1, m4(B ∪ C) = 1,
m5(A ∪ B ∪ C ∪ D) = 1, m6(A ∪ B ∪ C) = 1, and
m7(A ∪ B ∪ C) = 1. If we make the PCR5, PCR5+,
PCR6, and PCR6+ fusion of these seven BBAs alto-
gether, we obtain results given in Tables IX and X.

Because κ1(A∪B∪C∪D) = 0 and κ1(A∪B∪C) = 0,
these disjunctions are discarded and more mass is com-

TABLE XI
Example 10: Results of PCR5, PCR5+, PCR6, PCR6+

Focal elements mPCR5
1,2,3 (·) mPCR5+

1,2,3 (·) mPCR6
1,2,3 (·) mPCR6+

1,2,3 (·)
A 1/3 1/3 1/3 1/3

A ∪C 1/3 1/3 1/3 1/3
B ∪C 1/3 1/3 1/3 1/3

TABLE XII
Example 12: Results of PCR5, PCR5+

Focal elements mPCR5
1,2,3 (·) mPCR5+

1,2,3 (·)
A 1/3 1/2

B ∪C 1/3 1/2
A ∪ B ∪C 1/3 0

mitted to A,A ∪C and B ∪C with PCR5+ and PCR6+

rules. There is more mass allocated toB∪C with PCR6+

and PCR6 than with PCR5+ and PCR5 because two
sources of information support this hypothesis. Simi-
larly, more mass is allocated to (A ∪ B ∪C) with PCR6
than PCR5 since two sources of information support this
hypothesis.

Example 10 (revisited): we consider � = {A,B,C},
and the following three categorical BBAs m1(A) =
1, m2(B ∪ C) = 1, and m3(A ∪ C) = 1. We have
only one conflicting product π1(∅) = m1(A)m2(B ∪C)
m3(A ∪C) = 1 to redistribute, and for this example, we
have κ1(A) = 1, κ1(A∪C) = 1, and κ1(B∪C) = 1,which
means that all focal elements A,A ∪C, and B ∪C must
be kept, and they must receive a mass through the pro-
portional redistribution principle. Hence, in this exam-
ple, we have mPCR5

1,2,3 = mPCR6
1,2,3 = mPCR5+

1,2,3 = mPCR6+
1,2,3 , and

the combined masses are evenly distributed as shown in
the Table XI.

Example 11 (revisited): we consider � = {A,B,C},
and the following four categorical BBAs m1(A) = 1,
m2(B ∪ C) = 1, m3(A ∪ C) = 1, and m4(A ∪ B) = 1.
Because we have only one conflicting product π1(∅) =
m1(A)m2(B∪C)m3(A∪C)m4(A∪B) = 1 and κ1(A) =
1, κ1(A ∪ B) = 1, κ1(A ∪ C) = 1 and κ1(B ∪ C) =
1, no hypothesis is discarded in the PCR, and we get
mPCR5

1,2,3,4 = mPCR6
1,2,3,4 = mPCR5+

1,2,3,4 = mPCR6+
1,2,3,4 with the merged

masses being evenly distributed, that is mPCR5
1,2,3,4(A) =

1/4, mPCR5
1,2,3,4(A ∪ B) = 1/4, mPCR5

1,2,3,4(A ∪ C) = 1/4, and
mPCR5

1,2,3,4(B ∪C) = 1/4.
Example 12 (revisited): we consider � = {A,B,C},

and the following three categorical BBAs, m1(A ∪ B ∪
C) = 1, m2(A) = 1, and m3(B ∪ C) = 1. If we make
the PCR5 fusion and the PCR5+ fusion of these three
BBAs altogether, we obtain results given in Table XII.
Because π1(∅) = m1(A ∪ B ∪ C)m2(A)m3(B ∪ C), we

TABLE XIII
Example 13: Results of PCR5+ versus PCR5

Focal elements mPCR5
1,2,3 (·) mPCR5+

1,2,3 (·)
B 0.041797 0.041797

A ∪ B 0.487632 0.613029
C ∪D 0.258327 0.345174

A ∪ B ∪C ∪D 0.212244 0
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TABLE XIV
Example 13: Results of PCR6+ versus PCR6

Focal elements mPCR6
1,2,3 (·) mPCR6+

1,2,3 (·)
B 0.037676 0.037676

A ∪ B 0.487632 0.613029
C ∪D 0.262448 0.349295

A ∪ B ∪C ∪D 0.212244 0

get κ1(A ∪ B ∪ C) = 0, κ1(A) = 1, and κ1(B ∪ C) = 1
based on (23). Therefore, using the PCR5+ combina-
tion rule, we get a redistribution of the conflicting mass
π1(∅) = 1 only betweenA andB∪C. In this example we
havemPCR5

1,2,3 = mPCR6
1,2,3 , andmPCR5+

1,2,3 = mPCR6+
1,2,3,4 because no

mass is allocated on the same hypothesis by two differ-
ent sources.

Example 13 (revisited): we consider � =
{A,B,C,D}, and the three following BBAs

m1(A ∪ B) = 0.8,m1(C ∪D) = 0.2,

m2(A ∪ B) = 0.4,m2(C ∪D) = 0.6,

m3(B) = 0.1,m3(A ∪ B ∪C ∪D) = 0.9.

If wemake the PCR5,PCR5+, PCR6, and PCR6+ fusion
of these seven BBAs altogether, we obtain results given
in Tables XIII and XIV.

Because κ j(�) = 0 for any conflicting product π j(∅)
involving �, this hypothesis is discarded in the redistri-
bution of π4(∅) and of π6(∅) (see example 13 in Sub-
section VI-A for details), and therefore more mass is
redistributed to A ∪ B and C ∪ D with PCR5+ and
PCR6+ rules. No more mass is committed to B with
PCR5+ and PCR6+, respectively, in comparison with
PCR5 and PCR6. This is because B is not implied in
any partial conflict with � (cf. Subsection VI-A for
details).

VIII. CONCLUSION

In this paper, after having demonstrated the flawed
behavior of PCR5 and PCR6 rules of combination for
S > 2 BBAs (including possibly VBBAs), we pro-
posed improvements to correct these behaviors. A com-
putation of a binary keeping index has been detailed,
which makes it possible to discard ignorant information
sources for the calculation of each partial conflict. This
binary keeping index has been integrated into the origi-
nal formulations of PCR5 and PCR6 in order to ensure
the neutrality property of the VBBA and to propose two
new combination rules for a number of sources greater
than 2: PCR5+ and PCR6+ rules. The interest of such
combination rules could prove to be particularly impor-
tant in an application case identifying many ignorant
sources of information. In such a scenario, the prepon-

derant ignorance of a certain number of sources will no
longer obscure amore precise characterization provided
by other sources.

These new rules of combination have been al-
ready applied to risk analysis issues for geophysical and
geotechnical data fusion in order to reinforce the levee
protection characterizations [48].

APPENDIX 1: PROOF OF THE LEMMA 1

We prove that:mConj
1,2,...,S,S+1(A) = mConj

1,2,...,S(A), for any
A ∈ 2� \ {∅}, where mS+1(�) = 1 is the VBBA mv . The
set of focal elements ofmS+1(·) isF (mS+1) = {�}, there-
fore FmS+1 = 1 and XjS+1 = �. Based on the formula (6)
written for S+ 1 BBAs, we have

mConj
1,2,...,S,S+1(A) =

∑
X j∈F (m1,...,mS,mS+1 )
Xj1

∩...∩XjS
∩XjS+1

=A

π j(Xj1 ∩ . . . ∩XjS ∩XjS+1 )

=
∑

X j∈F (m1,...,mS,mS+1 )
Xj1

∩...∩XjS
∩�=A

S+1∏
i=1

mi(Xji ). (27)

Because XjS+1 = � is constant and mS+1(XjS+1 ) =
mS+1(�) = 1, one has

S+1∏
i=1

mi(Xji ) =
(

S∏
i=1

mi(Xji )

)
·mS+1(�) =

S∏
i=1

mi(Xji ),

and Xj1 ∩ . . . ∩ XjS ∩ XjS+1 = Xj1 ∩ . . . ∩ XjS ∩ � =
Xj1 ∩ . . . ∩XjS . Therefore the formula (27) becomes

mConj
1,2,...,S,S+1(A) =

∑
X j∈F (m1,...,mS,mS+1)
Xj1∩...∩XjS∩�=A

S+1∏
i=1

mi(Xji )

=
∑

X j∈F (m1,...,mS)
Xj1∩...∩XjS=A

S∏
i=1

mi(Xji )

= mConj
1,2,...,S(A),

which completes the proof of the Lemma 1.

APPENDIX 2: PROOF OF THE THEOREM

We prove that PCR5+(m1, . . . ,mS,mS+1) =
PCR5+(m1, . . . ,mS), or equivalently that
mPCR5+

1,2,...,S+1(A) = mPCR5+
1,2,...,S(A) for any A ∈ 2� \ {∅},

where mS+1(XjS+1 ) = mS+1(�) = 1 is the VBBA. It
is worth noting that mConj

1,2,...,S,S+1(A) = mConj
1,2,...,S(A) for

any A ∈ 2� \ {∅} because the VBBA mS+1(.) is the
neutral element of the conjunctive rule (see Lemma 1).
It is important to note that when considering A = �,
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we have always mPCR5+
1,2,...,S+1(�) = mConj

1,2,...,S,S+1(�) =
mConj

1,2,...,S(�) = mPCR5+
1,2,...,S(�) because the binary keeping

index of � is always equal to zero (see remark 1), i.e.,
κ j(�) = 0. Therefore all the redistribution terms to � in
PCR5+ (and in PCR6+) formula are equal to zero when
A = �. So, we just have to consider A �= � to make the
proof.

Because mS+1(·) is the VBBA, its set of focal ele-
ments is F (mS+1) = {�} and it contains only one focal
element, i.e. |F (mS+1)| = 1. Therefore

F = |F (m1)| · |F (m2)| · . . . · |F (mS)| · |F (mS+1)| (28)

= |F (m1)| · |F (m2)| · . . . · |F (mS)|. (29)

Thismeans that the number of conflicting productsπ j(∅)
associated to the S + 1-tuple Xj = (Xj1 , . . . ,XjS ,�) ∈
F (m1, . . . ,mS,mS+1) is equal to the number of con-
flicting products π j(∅) associated to S-tuple Xj =
(Xj1 , . . . ,XjS ) ∈ F (m1, . . . ,mS). Moreover, we always
have

S+1∏
i=1

mi(Xji ) =
(

S∏
i=1

mi(Xji )

)
·mS+1(�) =

S∏
i=1

mi(Xji ).

Hence, we always have

π j(Xj1 ∩ . . . ∩XjS ∩ � = ∅) = π j(Xj1 ∩ . . . ∩XjS = ∅),
because Xj1 ∩ . . . ∩XjS ∩ � = Xj1 ∩ . . . ∩XjS .

Based on the formula (25) written for S + 1 BBAs,
we have

mPCR5+
1,2,...,S,S+1(A) = mConj

1,2,...,S,S+1(A)

+
∑

j∈{1,...,F}|A∈X j∧π j (∅)

[(
κ j(A)

∏
i∈{1,...,S+1}|Xji=A

mi(Xji )
)

· π j(Xj1 ∩ . . . ∩XjS ∩ � = ∅)∑
X∈X j

(
κ j(X )

∏
i∈{1,...,S+1}|Xji=X

mi(Xji )
)]

, (30)

where F is given by (28).
Because XjS+1 = � and because we consider A �= �,

we have always∏
i∈{1,...,S+1}|Xji=A

mi(Xji ) =
∏

i∈{1,...,S}|Xji=A
mi(Xji ).

Whether X ∈ Xj = (Xj1 , . . . ,XjS ) or X ∈ Xj =
(Xj1 , . . . ,XjS ,�) the value of κ j(X ) is the same since
the additional binary containing indicator δ j(X,�) en-
tering in the product of the computation of the binary
keeping-index is always equal to 1 and does not modify
κ j(X ) value, and of course when X = A. Because the
binary keeping-index entering in the numerator and de-
nominator of formula (30) removes the factor mS+1(�)
from all products it belongs to (since � includes all el-
ements of the product it belongs to), the formula (30)

reduces to the following formula

mPCR5+
1,2,...,S,S+1(A) = mConj

1,2,...,S(A)

+
∑

j∈{1,...,F}|A∈X j∧π j (∅)

[(
κ j(A)

∏
i∈{1,...,S}|Xji=A

mi(Xji )
)

· π j(Xj1 ∩ . . . ∩XjS = ∅)∑
X∈X j

(
κ j(X )

∏
i∈{1,...,S}|Xji=X

mi(Xji )
)]

= mPCR5+
1,2,...,S(A), (31)

whereX j represents now the S-tuple (Xj1 , . . . ,XjS ), and
π j(∅) = π j(Xj1 ∩ . . . ∩XjS = ∅).

So, we have proved PCR5+(m1, . . . ,mS,mS+1) =
PCR5+(m1, . . . ,mS) when mS+1 is the VBBA. Simi-
larly, we can prove that PCR6+(m1, . . . ,mS,mS+1) =
PCR6+(m1, . . . ,mS) whenmS+1 is the VBBA.This com-
pletes the proof of the theorem.

APPENDIX 3: CODES OF PCR5+ AND PCR6+ RULES

For convenience, we provide two basic
MatlabTMcodes for PCR5+ and PCR6+ for the fu-
sion of S ≥ 2 BBAs for working with 2�, i.e. working
with Shafer’s model. No input verification of input is
done in the routines. It is assumed that the input ma-
trix BBA is correct, both in dimension and in content.
The derivation of all possible combinations is done
with combvec(Combinations, vec) instruction which is
included in the MatlabTM neural networks toolbox.
This combvec call can be a very time-consuming task
when the size of the problem increases. A standalone
version of these codes is also available upon request
to the authors. The j-th column of the BBA input
matrix corresponds to the (vertical) BBA vector mj(.)
associated with the j-th source s j. Each element of a
BBAmatrix is in [0,1] and the sum of each column must
be one. If N is the cardinality of the frame � and if
S is the number of sources, then the size of the BBA
input matrix is ((2N ) − 1)) × S. Each column of the
BBA matrix must use the classical binary encoding of
elements. For example, if � = {A,B,C}, then we encode
the elements of 2� \{∅} by the binary sequence 001 ≡ A,
010 ≡ B, 011 ≡ A ∪B, ..., 111 ≡ A ∪B ∪C. The mass of
empty set is not included in the BBA vector because its
is always set to zero.These codes can be used and shared
for free for research purposes only. Commercial uses of
these codes, or adaptation of them in any programming
language, is not allowed without written agreement of
the authors. These codes are provided by the copyright
holders “as is” and any express or implied warranties
are disclaimed. The copyright holder will not be liable
for any direct, or indirect damages of the use of these
codes. The authors would appreciate any feedback in
the use of these codes, and publication using these codes
should cite this paper in agreement for their use.
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