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Possibilistic Medical

Knowledge Representation

Model

MOHAMMAD ALSUN

LAURENT LECORNU

BASEL SOLAIMAN

Medical Decision Support Systems involve two main issues: med-

ical knowledge representation and reasoning mechanisms adapted

to the considered representation model. This paper proposes an ap-

proach to construct a new medical knowledge representation model,

based on the use of possibility theory. The major interest of using

the possibility theory comes from its capacity to represent differ-

ent types of information (quantitative, qualitative, binary, etc.), as

well as different forms of information imperfections such as uncer-

tainty, imprecision, ambiguity and incompleteness. Starting from

the description, realized by an expert of the medical knowledge,

describing the relationship between symptoms and diagnoses, the

proposed approach consists on building a possibilistic model includ-

ing the Medical Knowledge Base. Moreover, the proposed approach

integrates several possibilistic reasoning mechanisms based on the

considered knowledge. The validation of the proposed approach is

then conducted using an Endoscopic Knowledge Base. The proposed

representation, reasoning model and the obtained validation results

show a real interest in order to realize various goals of Medical De-

cision Support Systems such as classification, similarity estimation,

etc.
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1. INTRODUCTION

Physician is the direct responsible for health and
life of his patients. Therefore, diagnosis delivering is

an extremely critical, although difficult task. Further-
more, diagnosis delivering is an error-prone task [3].
Medical Decision Support Systems such as Knowledge

Based Systems, Case Based Reasoning Systems, Ma-
chine Learning Systems and Medical Data Mining Sys-

tems, have been constructed in order to reduce diagnosis
error risks, as well as to help physicians making high
quality and reliable medical decisions [4]. These sys-

tems involve two main issues: the medical knowledge
representation and adapted reasoning mechanisms. The

medical knowledge, in general terms, has to be con-
sidered from two points of view: Expert Knowledge
related to the physician’s description of different rela-

tionships between symptoms and diagnoses, symptoms
and symptoms, and diagnoses and diagnoses. Patient
Information is collected from each patient (patient data

collecting and structuring). The first is crucial in order
to establish Medical Knowledge Base, while the second

leads to establish the patient database (i.e., Medical Case
Base). Experts use their own experience of the medical
cases as well as references knowledge sources to define

the structure of the medical knowledge base.
Medical knowledge often suffers from different

forms of information imperfections (i.e., uncertainty,
imprecision, ambiguity, etc.). In addition to the differ-
ent types of information imperfections, the information

can be quantitative (numerical or binary) or qualitative
(nominal and ordinal) [17, 29]. Thus, the heterogeneity

and imperfection of medical knowledge must be taken
into consideration while the construction of a Medical
Decision Support System. In other words, Medical De-

cision Support System has to be able to deal with het-
erogeneous and imperfect knowledge.

In [27] R. Seising et al. defined the Medical knowl-
edge as follows:

“The certain information about relationships that ex-
ist between symptoms and symptoms, symptoms and di-
agnoses, diagnoses and diagnoses and more complex
relationships of combinations of symptoms and diag-
noses to a symptom or diagnosis are formalizations of
what is called medical knowledge.”

The term “symptom” is used for any information about

the patient’s state health (anamnesis, signs, laboratory
test results, etc.).
According to the previous definition, the term “med-

ical knowledge” will be considered in this study to
represent the relationship between symptoms and di-

agnoses, (Symptom)—(Diagnosis). This relation is gen-
erally expressed in a probabilistic way based on the use
of a linguistic term, referring to the expert’s assessment

of the occurrence of a given symptom related to a given
diagnosis.

In order to be exploited in Medical Decision Support
Systems, this Medical Knowledge has to be modeled
(translated into a model understandable by the system)
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using one of representation’s approaches such as prob-
abilistic, fuzzy, possibilistic, etc.
In [4] and [18], theory about clinical decision sup-

ports system is presented. The probabilistic approach
is one of the first model that can be proposed, regard-
ing the probabilistic nature of the linguistic term. The
following probability, pr(D j B) (where D and B repre-
sent respectively a diagnosis and a symptom), should
be computed for each diagnosis. This value is obtained
by the Bayes’ formula:

pr(D j B) = pr(B jD):pr(D)
pr(B)

: (1)

In this formula we need two types of information:
–pr(B jD) which is available
–pr(D) which is difficult to be known, but it can be

estimated by a statistic approach.
In our case, we suppose that the only available

information is pr(B jD). For this reason the probabilistic
representation approach is not adequate in our context.
Fuzzy sets theory, introduced by Zadeh [33] has sev-

eral interesting properties that make it suitable for for-
malizing the imperfect information upon which medi-
cal diagnosis is usually based on. Firstly, it allows the
definition of inexact and/or ambiguous medical entities
as fuzzy sets. Secondly, it offers the possibility of us-
ing linguistic variables in addition to crisp numerical
variables. Finally, fuzzy logic (i.e. mathematical logic
allowing the manipulation of fuzzy sets) offers reason-
ing methods adequate for approximate inferences draw-
ing. Fuzzy sets as a framework representation and fuzzy
logic as a reasoning mechanism have been successfully
applied to different Medical Decision Support Systems
[1, 5, 21, 22, 26].
Progress in this field was characterized by the in-

troduction of the possibility theory as an alternative ap-
proach of the inexact reasoning. Although the possi-
bility theory is an extension of the fuzzy sets theory,
it has many advantages over to make it more suitable
as well as more efficient [24, 35]. In fact, possibility
theory provides an approach to formalize subjective un-
certainties of events, that is to say means of assessing
to what extent the occurrence (realization) of an event
is possible and to what extent we are certain of its oc-
currence, without having the possibility to measure the
exact probability of this realization because we lake sim-
ilar events to be referred to, or because the uncertainty
is the consequence of observation instruments reliability
absence. It also offers the advantage of decision making
based on two set-based measures called the possibility
and the necessity measures. At the level of information
fusion, the possibility theory uses simple mathematical
operations (min, max, etc.). Several studies proved the
successful using of possibility theory as a representation
framework and as a reasoning mechanism in Medical
Decision Support Systems [9].

In this document, we propose the use of the possi-

bility theory [10] as a global framework in our Medical

Decision Support System. After studying the existing

possibilistic approaches, we can note that these works

neglect the issue of the medical knowledge representa-

tion, and concentrate their contribution only on the issue

of possibilistic reasoning (for instance see [10]). In other

words, there is no algorithm describing the phase con-

cerning the transition from the medical description (i.e.

the linguistic term expressing the medical knowledge

(Symptom)—(Diagnosis)) into a possibilistic description

(i.e. numerical value in the interval [0,1] expressing the

occurrence possibility degree of Symptom with a given

Diagnosis).

The important contribution of this work is to answer

the question concerning the issue of medical knowledge

possibilistic representation. Furthermore, this work pro-

poses an algorithm describing, in details, the construc-

tion of Possibilistic Knowledge Base (in which the re-

lation (Symptom)—(Diagnosis) is represented by possi-

bilistic value belonging to the interval [0,1]) fromMedi-

cal Knowledge Base (in which the relation (Symptom)—

(Diagnosis) is represented by linguistic term).

This document is organized as follows: Section 2 de-

tails a knowledge representation model allowing physi-

cians to express their medical knowledge. Main as-

pects of possibility theory are briefly introduced in Sec-

tion 3. Section 4 is devoted to the detailed description

of the proposed approach to construct a new possibilis-

tic model of medical knowledge and to the use of this

model in order to build Possibilistic Knowledge Base.

In Section 5, the evaluation of the reliability of the con-

structed model will be conducted by realizing several

tasks accomplished by Medical Decision Support Sys-

tems. The particular Endoscopic Knowledge Base al-

lowing the validation of proposed possibilistic model,

obtained results and the comparison with prior ones are

detailed in Section 6. Finally, Section 7 presents conclu-

sions concerning the proposed model as well as some

propositions for further developments.

2. MEDICAL KNOWLEDGE AND REPRESENTATION
(EXPERT VISION)

The objective of the medical knowledge base con-

struction is to perform a reliable information model-

ing of the medical knowledge description, expressed

by physicians, according to a predefined knowledge

representation scheme. The knowledge representation

schemes had been classified by Carter [6] into four cat-

egories: logical, procedural, graph/network and struc-

tural. In this paper, we adopt the structural model that

has been used by Cauvin [4] in order to construct

the Endoscopic Knowledge Base, which represents our

medical application. According to this structural model,

this section is devoted to present the description of:

–Diagnoses in the medical knowledge base;

–Patient-cases in the medical case base.

From here, we will use the term “feature” to rep-

resent the name of symptom, and the term “modality”

to represent the value of symptom. For example, the
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Fig. 1. Qualitative description using linguistic term.

Fig. 2. Example of qualitative description using linguistic term.

TABLE I

Example of Physician Description in a Medical Knowledge Base

P1 P2

v1
1

v1
2

v1
3

v2
1

v2
2

D1 always never never rare usual

D2 rare usual usual never always

D3 exceptional usual usual never always

feature “Temperature” can take one of three modalities

low, normal, high.

2.1. Medical Knowledge Base

The Medical Knowledge Base is assumed to en-

capsulate the expert knowledge related to the differ-

ent considered diagnoses. A diagnosis is represented by

physicians, using all potential modalities of the prede-

fined features, through describing the relationship be-

tween modalities and diagnoses. This relationship ex-

presses the occurrence, assessed by physicians, of a

given modality for a given diagnosis.

2.1.1. (Modality)—(Diagnosis) Relationship
From a probabilistic point of view, the ideal repre-

sentation of this relation is to attribute to each couple

(Modality)—(Diagnosis), it’s exact occurrence probabil-

ity value. Nevertheless, these values are rarely known

by physicians in terms of exact values. For this rea-

son and in order to express this imprecise/ambiguous

knowledge of the probabilistic values, physicians use

a qualitative description by means of natural language

[2]. This description mode offers physicians the oppor-

tunity to express their uncertainty by using linguistic

terms more indicative than numerical ones used in pos-

sibility or probability theories. The form of the qualita-

tive description using these linguistic terms is shown in

Fig. 1. In this form, the linguistic term belongs to the

scale fnever,: : : ,alwaysg. For instance, if the relation be-
tween a given diagnosis Flu and a given modality fever

is described by the linguistic term habitual as shown

in Fig. 2, then we can read: the modality fever occurs

habitually with the diagnosis rheum.

2.1.2. Medical Diagnosis Representation
Let D= fD1, : : : ,DMg denote the set ofM diagnoses,

P= fP1, : : : ,PGg denote the set of G features used for

the description of diagnoses. In this description, each

feature is considered independently from the others.

Each feature Pg can assume one of Kg potential modali-
ties defined by the setVg = fvg1 ,vg2 , : : : ,vgKgg. The diagno-
sis Dm, m= 1, : : : ,M, is thus represented in the medical
knowledge base by the following model:

Dm = f(Pg,vgj ,R(vgj ,Dm)); g = 1, : : :G; j = 1, : : : ,Kgg
(2)

where

² Pg denotes the feature “g”;
² vgj is the jth modality (j = 1, : : : ,Kg) of the feature
“g”;

² R(vgj ,Dm) represents the linguistic term (defined by

physicians) that expresses the occurrence of jth mod-
ality related with the given diagnosis Dm;

² Q= fq1, : : : ,qLg represents the predefined set of lin-
guistic terms.

Table I shows an example of an expert description in a

medical knowledge base [4]. In this example, the physi-

cian describes a set of three diagnoses (diseases) D=

fD1,D2,D3g using two features: P1 (with three modal-
ities: V1 = fv11,v12,v13g) and P2 (with two modalities:
V2 = fv21,v22g). Five linguistic terms are used:Q= fq1 =
never, q2 = exceptional, q3 = rare, q4 = usual, q5 =
alwaysg.

2.2. Patient-Case Representation

The Medical Case Base is assumed to encapsulate

the recorded data collected from different patients. An

expert standardizes the description such that a case has

a unique description and is structured to be used by a

computer-aided system [4].

A patient-case is described by physicians using the

same set of G features (Pg, g = 1, : : : ,G) used in the
description of diagnoses. Each feature Pg can assume

one and only one of its potential modalities included

in its corresponding feature modalities set Vg, or it can

assume the value “0” in the case where this feature is

not evaluated (i.e., a missing data) or if the feature is

impossible to be observed or to be evaluated.

Let B = fB1, : : : ,BNg denote a medical case base
containing a set of N patient-cases. A patient-case Bn,
n= 1,2, : : : ,N, is thus represented in the medical case
base by the following medical model:

Bn = f(Pg,xg,n),Dng (3)

where

² xg,n is the value of the feature Pg such that xg,n 2
Vg [f0g, g = 1, : : : ,G;

² Dn is the diagnosis associated with the case Bn,
Dn 2D= fD1, : : : ,DMg, (D contains all possible diag-
noses).

In this model, only a discrete set of modalities is in-

volved, it means that an expert divides each continuous

modality in intervals.

An illustrative example of an Endoscopic Medi-

cal Case Base is shown in Table II. In this example,
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TABLE II

Example of Physician Description in an Endoscopic Case Base

P1 = Object Type P2 = Origin Diagnosis

B1 Not Homogenous Simple Parietal Tumor

B2 Homogenous Parietal Spot

B3 Not Homogenous Multiple Luminal Food

three cases B1, B2, B3, are described using two features:
P1 = “Object Type” with three modalities fHomogenous,
Not Homogenous Simple, Not Homogenous Multipleg and
P2 = “Origin” with two modalities fParietal, Luminalg.
The associated diagnosis is respectively given as fD1 =
Tumor, D2 = Spot, D3 = Foodg.

3. POSSIBILITY THEORY

3.1. Possibility and Necessity Measures

Possibility Theory, introduced by L. Zadeh in 1978

[34] and then developed by Dubois and Prade in 1988

[13], offers an interesting tool allowing to deal with dif-

ferent forms of information imperfections (ambiguity,

imprecision, incompleteness, etc.).

The possibility theory constitutes the basis of several

recent studies in medicine [11]. The obtained results in

these studies confirmed the efficacy of the use of possi-

bility theory as a tool for medical knowledge represen-

tation, as well as for the medical diagnostic decision.

Let − = fx1, : : : ,xNg denote an exhaustive and ex-
clusive Universe of discourse that means the list of the

possible alternatives. At the semantic level, the basic

function in possibility theory is the possibility distribu-

tion denoted as ¼ :−! [0,1] which assigns to each pos-

sible alternative xn from − a value ranging within the

interval [0,1]. This possibility distribution represents the

possibility occurrence degree of xn, the basic alterna-
tive, decision, diagnosis, etc. If, for some xn, ¼(xn) = 1,
then xn is said to be a totally possible alternative; and
if ¼(xn) = 0, then xn is said to be an impossible alterna-
tive. Based on a possibility distribution, the information

concerning the occurrence of an event A 2 P(−) (P(−)
is the power set of −) is represented by means of two
set functions: a Possibility Measure denoted as ¦(:) and
a Necessity Measure denoted as N(:).
The possibility measure ¦(:) is defined as fol-

lows [11]:

¦ : P(−)! [0,1]

A!¦(A) = max
xn2A

(¼(xn))
(4)

and satisfying the following requirements:

¦(©) = 0 and ¦(−) = 1 (5)

¦

0@[
j2J
Aj

1A=max
j2J

¦(Aj) 8Aj , j 2 [1,J] (6)

where J represents the number of elements of the set

P(−).
If the possibility measure of an event A 2 P(−) is

equal to the unity (i.e., ¦(A) = 1, then A is said to be

totally possible event. If ¦(A) = 0 then, A is said to be
totally impossible event.

Reciprocally, the possibility distribution can be de-

fined from the possibility measure, by affecting the pos-

sibility measure of the subset A= fxng to the alternative
xn: ¼(xn) =¦(fxng).
The second measure, called the necessity measure

N(:), is defined as follows [11]:

N : P(−)! [0,1]

A!N(A) = 1¡max
xn2A

(1¡¼(xn)) 8Aj , j 2 [1,J]
(7)

and satisfying the following requirements:

N(©) = 0 and N(−) = 1 (8)

¦

0@\
j2J
Aj

1A=min
j2J

N(Aj) 8Aj , j 2 [1,J]: (9)

If the necessity measure of an event A 2 P(−) is
equal to the unity (i.e., N(A) = 1, then A is said to be
totally certain; and if N(A) = 0, then A is said to be

totally uncertain.

Several duality relations link the possibility measure

and the necessity measure:

A 2 P(−) : 0·N(A)·¦(A) (10)

If N(A)> 0, then ¦(A) = 1 (11)

If ¦(A)< 1, then N(A) = 0 (12)

N(A) = 1¡¦(Ac): (13)

3.2. Joint and Conditional Possibility Distribution

Within the application studied here, the expert ex-

presses medical knowledge as the possibility of modal-

ity occurrence given a diagnosis. This type of knowl-

edge can be modeled using the conditional possibility

concept.

Given two reference sets X and Y where X =
fx1, : : : ,xMg and Y = fy1, : : : ,yNg, a joint possibility dis-
tribution ¼(xm,yn) where xm 2 X (m= 1, : : : ,M) and yn 2
Y (n= 1, : : : ,N) can be defined on the Cartesian product
X £Y in order to express the joint occurrence possibil-
ity of the singletons xm 2 X (m= 1, : : : ,M) and yn 2 Y
(n= 1, : : : ,N) [34]. The joint possibility distribution pro-
vides information on each reference set X and Y individ-

ually as two marginal possibility distributions, obtained

by retaining the largest value of joint possibility distri-

butions relative to the reference set as it is explicated in

the following definitions.
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DEFINITION 1 Starting from a given joint distribution

¼, the marginal possibility distributions are defined on
the two reference sets X and Y as follows:

8xm 2 X : ¼(xm) = sup
y2Y

¼(xm,y) (14)

8yn 2 Y : ¼(yn) = sup
x2X

¼(x,yn): (15)

The reciprocal influence among the reference sets

can be studied through the degree to which an element

yn of Y is possible, knowing that the element xm of X is
considered. In other words, the conditional possibility

which is defined as follows:

DEFINITION 2 There is not a unique definition of the

conditional possibility distribution ¼(yn j xm) measuring
the occurrence for an element yn from Y knowing

that the element xm from X has occurred [6], but all

proposed definitions in the literature [31] are based on

the following general formula linking the conditional

possibility with the joint and marginal possibilities:

¼(xm,yn) = ¼(yn j xm) ¤¼(xm) 8xm 2 X, 8yn 2 Y
(16)

where, “*” is a combination operator which can be con-

sidered as the minimum or the product fusion operator.

The decision made by humans, is usually taken

based on information fusion of different types and as-

signed various forms of imperfection: uncertain infor-

mation, possibilistic information, binary information,

ambiguous information, etc. To address these different

types of information into a single framework, a trans-

formation from one type to another is fundamental. An

important facet of the theory of possibilities lies in the

ability to transform probabilistic information in pos-

sibilistic information in carrying out the projection of

probability distributions to possibility ones. Indeed, this

transformation is a useful operation when dealing with

heterogeneous information. Several transformations of

a probability distribution into a possibility distribution

and conversely have been proposed in this direction. In

this study, we will adopt Dubois-Prade transformation

[13, 15]:

Dubois-Prade transformation procedure:

Given a reference set X = fx1, : : : ,xMg, in which

each element xi is associated with its probability pri =
Pr(fxig), i= 1, : : : ,M. In order to perform the transfor-

mation from the given probability into a possibility dis-

tribution, first, the probability values are arranged in

a decreasing order so that pr1 ¸ pr2 ¸ : : :¸ prM ; then,
the following possibility degrees are computed 8i, i=
1, : : : ,M:

¼1 = 1

¼i =¦(fxig) =
MX
j=1

(prj) if pri¡1 > pri

= ¼i¡1 otherwise:

(17)

4. POSSIBILISTIC MEDICAL KNOWLEDGE
REPRESENTATION MODEL

In Section 2, we have shown the Medical Knowl-

edge Base, and how physicians qualitatively describe,

using linguistic terms, the medical knowledge consid-

ered mainly as a relationship (Modality)—(Diagnosis).

In order to be exploited in Medical Decision Sup-

port Systems, this Medical Knowledge Base has to be

modeled using one of representation approaches. Fur-

thermore, the linguistic term, expressing the relation-

ship (Modality)—(Diagnosis), has to be translated into a

model understandable by the system.

This section is devoted to present our proposed

approach in order to represent this kind of relationships

by means of possibilistic model.

4.1. Possibilistic Knowledge Base Construction

Assume that a Medical Knowledge Base (as de-

scribed in Section 2), containing a set D of M diag-

noses, is available. Each diagnosis in this base Dm,

m= 1, : : : ,M, is characterized using a set P of G fea-

tures. Each feature Pg, g = 1, : : : ,G, can assume one of
Kg possible modalities grouped in a set Vg. The diag-
nosis Dm is thus expressed using the model given in
(2). The expert will indicated the modality frequency

for each diagnosis in using a qualitative scale Q of L
linguistic terms Q= fq1, : : : ,qLg running from “never”

to “always” as follows: q1 = never, : : : ,qL = always. The
expert doesn’t know the exact probability but only an

approximation.

The objective here is to translate the Medical Knowl-

edge Base established by the Expert into a possibilistic

model exploitable by medical decision support systems.

In other words, we want to build the following possi-

bilistic model of diagnosis Dm, m= 1,2, : : : ,M, in which
the relationship (Modality)—(Diagnosis) is represented

as a possibility value:

Dm = f(Pg,vgj ,¼(vgj jDm)); g = 1 : : : ,G; j = 1, : : : ,Kgg:
(18)

The proposed approach to realize reach this target

consists on performing the following steps:

Step 1 Transforming the qualitative scale of lin-

guistic terms Q= fq1, : : : ,qLg into a quantitative one
of numerical values ®= f®1, : : : ,®Lg where ®i 2 [0,1],
®1 = 0, : : : ,®L = 1, and 8j 2 [0,L¡1] : ®j < ®j+1, so that
8i 2 [1,L] there is qi ´ ®i.
Step 2 Substituting each R = qi 2Q in the Medical

Knowledge Base by the corresponding numerical value

®i. Therefore, the representation of a given diagnosis
Dm will be as follows:

Dm = f(Pg,vgj ,®(vgj jDm)); g = 1 : : : ,G; j = 1, : : : ,Kgg:
(19)

In fact, the distribution of numerical values at the level

of given feature Pg, cannot called a probability distri-
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Fig. 3. Projection d’une échelle qualitative en une échelle

numérique.

TABLE III

Linguistic Term Substitution by Numerical Ones

P

vP
1

vP
2

vP
3

D1 always never never

D2 rare usual usual

D3 exceptional usual usual

D4 usual exceptional never

bution because the normality condition is not satisfied

(i.e.,
PKg
j=1®(v

g
j j Dm) 6= 1). For this reason, a normaliza-

tion operation at the level of feature is necessary.

Step 3 Normalizing the numerical values ® at the
level of feature, in order to have a conditional probabil-

ity distribution:

Dm = f(Pg,vgj ,pr(vgj jDm)); g = 1 : : : ,G; j = 1, : : : ,Kgg
(20)

so that:

pr(vgj jDm)

=
®(vgj jDm)

®(vg1 jDm)+ ¢ ¢ ¢+®(vgj jDm)+ ¢ ¢ ¢+®(vgKg jDm)
:

(21)

For j = 1, : : : ,Kg.
Step 4 Applying the Dubois-Prade transformation

on the probability distributions in order to construct the

conditional possibility distributions. Once the transfor-

mation is performed, we obtain the model presented in

(18) of Dm.

4.2. Illustrative Example

In order to illustrate the construction of the Pos-

sibilistic Knowledge Base, let us consider the follow-

ing example: Assume that we have a set of four di-

agnoses D= fD1,D2,D3,D4g described using one fea-
ture P of three potential modalities grouped in a set

VP = fvP1 ,vP2 ,vP3 g (Table III), and the occurrence of these
modalities is represented by means of the qualitative

scale Q= fq1 = never, q2 = exceptional, q3 = rare, q4 =
usual, q5 = alwaysg.

TABLE IV

Substituting Linguistic Terms by Numerical Ones

P

vP
1

vP
2

vP
3

D1 1 0 0

D2 0.25 0.75 0.75

D3 0.1 0.75 0.75

D4 0.75 0.1 0

TABLE V

Resulting Probability Distribution

P

vP
1

vP
2

vP
3

D1 1 0 0

D2 0.14 0.43 0.43

D3 0.06 0.47 0.47

D4 0.88 0.12 0

In order to construct the possibilistic model of these

four diagnoses following the proposed approach, steps

from 1 to 4 must be applied as follows:

Step 1 The projection of the qualitative scale Q

(having five linguistic values), onto a numerical scale

® (also having five empirical numerical values), will

produce ®= ®1,®2,®3,®4,®5g where ®i 2 [0,1], ®1 =
0, : : : ,®5 = 1, and j 2 [1,4] : ®j < ®j+1, so that: 8i 2
[1,5] we obtain qi ´ ®i as follows:
–q1 = never! ®i = 0,
–q2 = exceptional! ®2 = 0:1,
–q3 = rare! ®3 = 0:25,
–q4 = usual! ®4 = 0:75,
–q5 = always! ®5 = 1.
Step 2 Substituting each linguistic term qi in Ta-

ble III by the corresponding numerical value ®i, leads
to Table IV.

We note that the sum of numerical values at the

level of the feature P doesn’t equal to 1 (for example,P3
j=1®(v

P
j jD2) = 0:25 + 0:75 + 0:75 = 1:75 6= 1). For

this reason, a normalization operation at the level of

feature is necessary.

Step 3 The conditional probability value for each

modality according to a given diagnosis is computed

according to (21) and shown in Table V. For example,

the conditional probability value of modality vP2 for a
given diagnosis D2 is calculated as follows:

pr(vP2 jD2) =
®(vP2 jD2)

®(vP1 jD2)+®(vP2 jD2)+®(vP3 jD2)

=
0:75

0:25+0:75+0:75
= 0:43:
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TABLE VI

Conditional Possibility Distribution (Possibilistic Knowledge Base)

P

vP
1

vP
2

vP
3

D1 1 0 0

D2 0.14 1 1

D3 0.06 1 1

D4 1 0.12 0

The transformation of the probability distribution

into a possibilistic one, will be realized by applying

the Dubois-Prade’s transformation (Step 4), which will

finally produce the possibilistic model of this base con-

taining four diagnoses (Table VI). For example, the

probability distribution associated with the diagnosis

D4fpr(vP1 jD4)=0:88; pr(vP2 jD4)=0:12, pr(vP3 jD4)=0g
will be transformed according to Dubois-Prade as fol-

lows:

–Ranking the probability distribution as follows:

pr1= pr(v
P
1 jD4) = 0:88> pr2= pr(vP2 jD4) = 0:12> pr3

= pr(vP3 jD4) = 0;
–According to (17), we obtain:

¼1 = ¼(v
P
1 jD4) = 1,

¼2 = ¼(v
P
2 jD4) =

3X
i=2

pri = pr2 +pr3

= pr(vP2 jD4)+pr(vP3 jD4) = 0:12+0 = 0:12

¼3 = ¼(v
P
3 jD4) =

3X
i=3

pri = pr3 = pr(v
P
3 jD4) = 0:

This table is defined for each feature. If G is the

number of features, then we have G tables.

5. POSSIBILISTIC REASONING

Once Possibilistic Knowledge Base is constructed,

as detailed in the previous section, the reliability of

the possibilistic modeling should be evaluated. This

evaluation has to be performed in terms of the qual-

ity of different tasks conducted by medical decision

support systems. In this paper, we will study the ex-

ploitation of our possibilistic model in medical decision

support systems adopting the Reasoning by Classifica-

tion. This reasoning type is based on the comparison of

the available information acquired from a patient with

the medical a prior knowledge formulated by physi-

cians (i.e., Expert Medical Vision) with the aim to as-

sign potential diagnoses facing this particular patient-

case.

Given a new case with an unknown diagnosis B

which its description is as follows:

B = f(Pg,xg); g = 1, : : :G; xg 2Vg [f0gg (22)

where

² Pg represents the feature ‘g’;
² xg represents the observed modality of the feature
‘g’. If the feature is observed, then xg take one and

only one value from the set of possible modalities

Vg = fvg1 ,vg2 : : : ,vgKgg, and it takes the value ‘zero’

otherwise (i.e., the feature Pg is not observed or it

is missing data).

In order to classify this case B (i.e., finding its

corresponding diagnosis), we have to compare it with

all diagnoses included in the knowledge base, through

calculating the similarity between this case and each

diagnosis, and then ranking the set of obtained potential

diagnoses according to the maximum similarity.

The similarity between B and Dm, m= 1, : : : ,M, is

represented in our approach by the possibilistic couple

[N(Dm j B),¦(Dm j B)] of similarity which can be esti-
mated by performing the following steps:

Step 1 Estimation of the local conditional possi-

bility (i.e., at the level of feature), ¼(Dm j Pg), m=
1,2, : : : ,M and g = 1,2, : : : ,G. Here, we distinguish two

cases:

² The feature Pg is observed and produced in the case B
as the modality xg: in this case, the local conditional

possibility ¼(Dm j Pg = xg) will be estimated from the
possibilistic knowledge ¼(xg jDm) which is available
in the possibilistic knowledge base (as we will see

later).

² The feature Pg is not observed or it is a missing
data: in this case, the local conditional possibility

is considered equal to the unity, ¼(Dm j Pg = 0) = 1.
This means that the diagnosis Dm is considered as

possible solution for a given feature Pg.

Step 2 Estimation of the global conditional possi-

bility (i.e., for the set of all features), ¼(Dm j B), m=
1, : : : ,M , by performing a conjunctive fusion of local

conditional possibilities. Indeed, the choice of the con-

junctive as a fusion type is justified by the fact that if

the diagnosis Dm is impossible to produce as a potential

solution, at least for one feature (i.e., ¼(Dm j Pg) = 0),
then the diagnosis has to be rejected as an impossible

solution to the target case B (i.e., ¼(Dm j B) = 0). For
example, using the conjunctive operator min, we obtain:

¼(Dm j B) =
G

min
g=1

¼(Dm j Pg): (23)

After this step, we obtain the conditional possibility

distribution defined on the set of diagnoses: f¼(D1 j B),
: : : ,¼(DM j B)g.
Step 3 Using the previous possibility distribution to

calculate the conditional possibilistic couple [N(Dm j B),
¦(Dm j B)], m= 1, : : : ,M, according to the following
formulas:

¦(Dm j B) = maxn=m
(¼(Dn j B)) = ¼(Dm j B) (24)
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N(Dm j B) = 1¡¦(Dm j B) = 1¡
M
max
n=1
n 6=m
(¼(Dn j B)):

(25)

It is clear that the possibilistic couple estimating

is essentially based on the availability of the local

possibility value, ¼(Dm j xg) (i.e., more precisely, the
possibility value ¼(Dm j vgj ), j = 1,2, : : : ,Kg). However,
the real challenge lies in the fact that this value is not

available in the possibilistic knowledge base. Indeed, the

available information is the local possibility ¼(vgj jDm)
(i.e., the possibility of observing a given modality of a

certain feature, since the diagnosis Dm). For this reason,

the essential question that arises is:

“How can calculate the conditional possibility ¼(Dm j
vgj ) where the information available in the possibilistic

knowledge base is the conditional possibility ¼(vgj j
Dm), m= 1,2, : : : ,M, g = 1,2, : : : ,G, j = 1,2, : : : ,Kg?”

In order to answer to this question, we use the

formula (16) that defines the conditional possibility

distribution. From this formula, we can write:

¼(Dm,v
g
j ) = ¼(v

g
j jDm) ¤¼(Dm) = ¼(Dm j vgj ) ¤¼(vgj ):

(26)

From this formula, we notice that:

–The estimating of the conditional possibility

¼(Dm j vgj ) is based on, beside to the conditional pos-
sibility ¼(vgj jDm) which is known, the availability of
marginal possibilities ¼(vgj )¼(Dm) which are unknown.
–Also, this relation does not provide a unique

opportunity to build the conditional possibility

¼(Dm j vgj ).
For these reasons, various rules are proposed in the

literature to interpret the relation between the condi-

tional and joint possibility distributions, as well as to

define the conditional possibility (i.e., Zadeh’s rule, His-

dal’s equation, Ramer’s rule, etc.) [31].

After having analyzed these rules, two of them can

be exploited, Zadeh’s rule and Nguyen’s rule, thanks to

their good properties and their relevance to the process

of medical diagnostic reasoning, because of its capa-

bility to estimate the conditional possibility ¼(Dm j vgj )
using only the conditional possibility ¼(vgj jDm) without
any other information as the marginal possibility. In this

study, we adopt Zadeh’s rule defining the conditional

possibility as equal to the joint one as follows:

¼ZA(yn j xm) = ¼ZA(yn,xm) = ¼ZA(xm j yn),
8xm 2 X and 8yn 2 Y: (27)

6. MEDICAL APPLICATION AND RESULTS

6.1. Endoscopic Application

The Medical Knowledge Base used in this study

is an Endoscopic Knowledge Base [8, 19]. This Base

consists of a set of 89 endoscopic findings (diagnoses).

Each diagnosis is described using a set of 33 features

corresponding with 206 global modalities. The qualita-

tive scale used to express the relationship (Modality)—

(Diagnosis) by the physicians consists of the follow-

ing linguistic values fnever, exceptional 2, exceptional 1,
rare 2, rare 1, usual 2, usual 1, alwaysg. Furthermore,
the linguistic value doubtful that is intermediate between

never and exceptional, is added when the expert has an

ignorance about the reality of the modality observation.

It is important to notice that there are two importance

levels for the three variables exceptional, rare, and usual.

The case base used in this study has been developed

in the framework of an endoscopic image analyzes sys-

tem [19]. It is a decision support system of the diagno-

sis of endoscopic findings. These findings are described

by the physicians, from the endoscopic images, through

symbolic terms, which are defined by the Minimal Stan-

dard Terminology of the SEGE (European Company of

Gastro-enterology). A case (or an object) in the base

represents a description of the image (using a set of 33

features, 24 features to describe an object and 9 features

to describe a potential sub-object) of an endoscopic le-

sion.

6.2. Experiments and Results

Before analyzing the results of the proposed ap-

proach on the global case base, and in order to have a

simple and clear representation of the obtained results,

we propose to analyze, as an illustrative example, the

classification of a small subset of three cases (i.e., endo-

scopic lesions), CB= fB1,B2,B3g, where the “known”
diagnoses of these cases are respectively: Normal Esoph-

agus, Dilated Lumen, and Ring.

The compatibility between each case Bf , f = 1,2,3,
and each diagnosis Dm, m= 1,2, : : : ,M, predefined in
the knowledge base, will be estimated according to our

possibilistic approach (presented in Section 5). In this

approach, the diagnosis Dm is considered as a potential

solution for the case Bf , if the conditional possibilistic
couple [N(Dm j Bf),¦(Dm j Bf)] is not [0,0].
The results obtained by our approach will be com-

pared with that obtained by the fuzzy approach. In the

fuzzy approach, Dm is considered as a potential solution

for the case Bf , if the conditional membership degree
¹(Dm j Bf) is not zero.
Fuzzy Theory uses one measure for uncertainty

whereas Possibility Theory uses two measures (i.e., the

possibility and necessity measures). So, in order to re-

alize the comparison of our possibilistic approach with

other one, we must build one measureª which combine
the possibilistic couple [N,¦] as follows [24]:

ª(Dm j B) =
N(Dm j B) +¦(Dm j B)

2
: (28)

So, according to this measure, the diagnosis Dm is

considered as a potential solution for the case Bf , if the
conditional possibilistic measure ª (Dm j Bf) is not zero.
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The ranking of the potential solutions will be per-
formed according to: the maximal conditional member-
ship degree in the fuzzy approach, and the maximal
measure ª in possibilistic approach.
Two types of comparison between these two ap-

proaches will be realized: comparison in terms of po-
tential diagnoses ranking, and comparison in terms of
decision quality. As an evaluation index of the taken
decision quality, we propose the use of the distance be-
tween the first two potential solutions, if this distance
is great, then the decision is of quality, because the dis-
crimination between the potential solutions is easier.
The obtained results are presented in Table VII. This

table shows the first two potential diagnoses proposed
for each case Bf , as well as the measure “Dist.” which
represents the evaluation index of taken decision quality
according to the considered decision criteria.
To facilitate the comparison and analysis of results

presented in this table, we made a graphic representation
in Fig. 4. This figures show a representation of the
first two potential diagnoses according to the three
approaches as well as the distance Dist., for respectively
the cases B1, B2, B3. In these figures, the two potential
diagnoses obtained by each approach, are presented in
the same color (i.e., the colors green, and blue represent
respectively the potential diagnoses obtained by the
Fuzzy, and Possibilistic Approach).
By analyzing the table and the figure, we note that:

In terms of potential diagnoses ranking:
² For the case B1, the two approaches gave the true
diagnosis (i.e., diagnosis of the studied case) as the
first potential solution.

² For the case B2, the proposed approach gave the true
diagnosis as the unique potential solution, whereas
the fuzzy approach gave an additional solution as a
second potential solution.

² For the case B3, the proposed approach gave the true
diagnosis as the first potential solution, whereas the
fuzzy approach gave two diagnoses as two first poten-
tial solutions having the same compatibility degree.

In terms of decision quality:
² For the three cases, the distance between the first two
potential solutions obtained by possibilistic approach
is greater than that obtained by fuzzy approach.

² For the case B3, the fuzzy approach could not distin-
guish between the two potential solutions.
After presenting an illustrative example, we will

realize a comparison between two approaches on the
global case base containing 4450 cases (lesions). As
presented in the previous example, the comparison will
be realized in terms of the potential diagnoses ranking,
and in terms of the taken decision quality.
In order to realize the comparison in terms of the

potential diagnoses ranking, we can distinguish four
groups:
–Found: represents the number of cases for

which the right diagnosis is classified as a potential so-
lution.

TABLE VII

Potential diagnoses of the set CB according to two approaches

(Fuzzy, Possibilistic)

Fuzzy Approach Dist. Possibilistic Approach Dist.

¹(Dm j Bf ) ª (Dm j Bf )

B1 D1 =

Normal Esophagus: 0.5

0.13 D1 =

Normal Esophagus: 0.94

0.88

D2 = Spot: 0.37 D2 = Spot: 0.06

B2 D1 =

Dilated Lumen: 0.45

0.45 D1 = Dilated Lumen: 1 1

B3 D1 = Ring: 0.49 0.17 D1 = Ring: 0.84 0.69

D2 =Web: 0.32 D2 =Web: 0.15 2

–Sole: represents the number of cases for which

the right diagnosis is classified as a unique potential

solution.

–First: represents the number of cases for which

the right diagnosis is classified as the first potential

solution.

–Other: represents the number of cases for which

the right diagnosis is classified as a potential solution,

but not the first.

We note that the recognition rate associated with

diagnostic group called “Found” is always 100% for

both fuzzy and possibilistic approaches. This shows that

the correct diagnosis still occurs as a potential solution

to the target case considered.

For other groups, we note that the results obtained by

the proposed approach are better than those obtained by

the fuzzy approach, because the greater recognition rate

is devoted to the group First, while this rate is divided in

the possibilistic approach for the two groups “Unique”

61.24% and “First” 30.76%.

In order to realize the comparison in terms of the

taken decision quality, we apply the following algo-

rithm:

For each approach: Possibilistic and Fuzzy Do

From n= 1 To n= 4450 Do (n: means the considered
target case)

1. Calculate the possibilistic couple [N(Dm j Bn),
¦(Dm j Bn)] for all the diagnoses, Dm, m= 1,
: : : ,M;

2. Ranking the set of cases according to the maxi-

mum similarity measure;

3. Identify all cases where the correct diagnosis (i.e.,

the true diagnosis of considered target case) is

the first potential diagnostic obtained by each ap-

proach;

4. Calculate, for each case obtained by the previous

step, the distance between the two first potential

diagnoses (the true diagnosis and the next diagno-

sis).

End

End
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Fig. 4. Distance Representation. (a) Case B1. (b) Case B2. (c) Case B3.
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TABLE VIII

Comparaison Between the Two Approaches

Fuzzy Approach Possibilistic Approach

¹(Dm j Bf ) ª (Dm j Bf )

Found 100% 100%

Sole 0.2% 61.24%

First 91% 30.76%

Other 8.8% 8%

TABLE IX

Result Obtained by the Possibilistic Approach

Distance

Superior (Possibilistic> Fuzzy) 3678=4031 = 91:24%

Equal (Possibilistic = Fuzzy) 3=4031 = 0:08%

Lower (Possibilistic< Fuzzy) 129=3207 = 8:68%

After applying the above algorithm, the distances

obtained by the possibilistic approach are compared

with those obtained by one of the fuzzy approach. Three

groups can be distinguished:

–Superior: represents the number of cases for

which the distance calculated by the possibilistic ap-

proach is greater than that calculated by the fuzzy ap-

proach.

–Lower: represents the number of cases for which

the distance calculated by the possibilistic approach is

lower than that calculated by the fuzzy approach.

–Equal: represents the number of cases for which

the distance calculated by the possibilistic approach is

equal to that calculated by the fuzzy approach.

We note that the highest rate is dedicated to the

group “Superior.” This means that the distance char-

acterizing the quality of the solutions obtained by the

proposed approach is higher than that obtained by the

fuzzy approach.

7. CONCLUSION AND PERSPECTIVES

In this paper, the use of the possibility theory

as a global framework is proposed to construct the

medical knowledge representation model. This possi-

bilistic model is applied, as a knowledge representa-

tion approach, to represent the relationship (Modality)—

(Diagnosis), as well as in the construction of the medical

knowledge base. Possibilistic reasoning mechanisms are

also developed in order to support the case classification

by the physician.

This possibilistic representation transforms the ex-

pert linguistic knowledge into a model useable by a de-

cision support system. To tackle the case classification

issue, the compatibility (based on necessity and pos-

sibility measures) has been defined between the target

case and different potential diagnoses.

The proposed approach has been applied in the con-

text of Digestive Endoscopic Image Analysis where the

medical expert knowledge was successfully modeled

with results in full coherence with the expert’s expecta-

tion.

In this study, we have considered the complete case

description (i.e., all features that should have been de-

scribed by the expert are considered as fulfilled and

present). Nevertheless, an important decision making

difficulty has not been tackled; this concerns the par-

tial description context where some features, considered

by the user (not the expert) as less important, are not

filled. This situation makes some the application of deci-

sion support systems very difficult, even to the extent of

blocking. In the proposed framework, and due to the use

of the possibilistic distance, a decision proposition can

always be suggested to the user associated with a perti-

nence value. In a further research work, this pertinence

value will be upper and lower bounded allowing thus to

improve user confidence in the employed system.
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Probability Hypothesis Density (PHD) filter is a framework for

multitarget tracking, which provides estimates for the number of

targets as well as the individual target states. Sequential Monte

Carlo (SMC) implementation of a PHD filter can be used for non-

linear non-Gaussian problems. However, the application of PHD-

based state estimators for a distributed sensor network, where each

tracking node runs its own PHD-based state estimator, is more

challenging compared with single sensor tracking due to commu-

nication limitations. A distributed state estimator should use the

available communication resources efficiently in order to avoid the

degradation of filter performance. In this paper, a method that effi-

ciently communicates encoded measurements between nodes while

maintaining the filter accuracy is proposed. This coding is com-

plicated in the presence of high clutter and instantaneous target

births. This problem is mitigated using adaptive quantization and

encoding techniques. The performance of the algorithm is quan-

tified using a Posterior Cramér-Rao Lower Bound (PCRLB) that

incorporates quantization errors. Simulation studies are performed

to demonstrate the effectiveness of the proposed algorithm.
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1. INTRODUCTION

The use of a large number of networked sensors,

which can be deployed all over the surveillance region,

has become feasible in tracking applications because of

the availability of cheap sensors. The multisensor data

need to be fused in order to fully utilize the information

obtained in the network. A common practice in sensor

network applications has been to process the collected

data in a central processor. This architecture is known

as the centralized sensor network [10, 26]. Centralized

architectures are generally simpler to execute since the

processing of data at one location can reduce the com-

putational requirements of an algorithm. It is theoreti-

cally optimal if the network has enough communication

bandwidth to send all the sensor data to the fusion node

at every sampling time [3].

However, there are several drawbacks associated

with the centralized architecture. First, the network re-

lying on one processor to perform the task of every

node in the network may result in a single-point fail-

ure. Second, in real-time applications, the central node

may reside many hops away and sending data from

one node to a central node may take too long. This

may introduce latency, synchronization problems and

imbalanced workload in the network. Further, the cen-

tralized architecture may utilize significant resources in

communicating the data across the network. Distributed

processing over the sensor network can be used to alle-

viate the problems inherent to the centralized architec-

ture. Further, the distributed architecture requires lighter

computational power at each fusion node due to the dis-

tribution of processing over multiple nodes.

Distributed algorithms based on particle filters have

gained much attention. In [5], methods based on like-

lihood factorization of particles and adaptive data-

encoding scheme are proposed for nonlinear/non-

Gaussian systems with distributed architecture. An im-

provement to the approach proposed in [5] has been

presented in [13] using a better encoding scheme and

measurement vectorization. More particle-based imple-

mentations are given in [18], [22]. The adaptive data-

encoding scheme uses the histogram of expected mea-

surements to encode the target-generated measurements

effectively. However, the false measurements might end

up transmitting a larger number of bits than transmitting

measurements without encoding. Hence, the effective-

ness of the encoding scheme might degrade dramati-

cally if no method is in place to identify and remove

false measurements before transmitting over the net-

work. Also, target birth must be taken care of while

removing the false alarms in order to handle the time-

varying number of targets.

The primary focus of this paper is on creating dis-

tributed algorithms that minimize network communica-

tion relating to sensor data fusion when multiple time-

varying number of targets are present in the monitored
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area. In this paper, a decentralized version of the Prob-

ability Hypothesis Density (PHD) filter is used to track

multiple targets. The PHD filter eliminates the hard

measurement-to-track association problem, unlike the

Multiple Hypothesis Tracker (MHT) [4]. Furthermore,

the PHD filter has been shown an effective way of track-

ing time-varying multiple number of targets that avoids

model-data association problems [15]. Gaussian mix-

ture implementation of PHD filter (GM-PHD) is pre-

sented in [25]. Sequential Monte Carlo (SMC) imple-

mentation of the PHD filter is used to handle the non-

linear measurements [24]. There are two options avail-

able to perform distributed tracking with a SMC-PHD

filter in a sensor network. The first option is to send

all the particles that represent the posterior density of

targets. However, this option requires high bandwidth

communications, which can not be handled by practi-

cal wireless sensor networks. The second option is to

send the most relevant measurements after eliminating

the false alarms to update the global estimates of the

targets.

In this paper, measurements are communicated

among nodes to update the filters. In this case, data

transmission requires higher bandwidth channels un-

less the quantization of those data are done intelli-

gently [16, 19]. To be effective, non-uniform quan-

tization schemes can be made to match the distribu-

tion of the quantity to be discretized. Companding is

a widely used method for implementing non-uniform

quantizers [17]. It has been observed in non-uniform

quantization that the communication can be consider-

ably reduced with the right selection of the compander

[16]. Quantized measurements need to be encoded be-

fore transmission. It is assumed that an optimal noise-

less source code will be employed to minimize trans-

mission needs between nodes. In this paper, Huffman

coding is used to encode the quantized measurements.

Handling multiple target-originated measurements at the

quantization stage and producing identical symbols for

encoding and decoding at each node are challenging.

This paper proposes “cascaded companders” to nonlin-

early quantize multiple target measurements. Predicted

probability density is used in generating identical set of

symbols and to place the companders at right positions.

The measurement quantization and encoding techniques

proposed this paper can be applied to distributed track-

ing with GM-PHD and other PHD filter realization al-

gorithms as well.

Among the various methods to quantify the perfor-

mance, verifying the closeness of the estimates mean

square error matrix to the lower bound is a commonly

known method in target tracking applications. The Pos-

terior Cramer-Rao Lower Bound (PCRLB) is defined to

be inverse of the Fisher Information Matrix (FIM) for

random vector and provides lower bound on the per-

formance of unbiased estimators of the unknown target

state [23]. The PCRLB for state estimation with quan-

tized measurements is complicated due to nonlinearity

of the quantizer. Previously, in [28] the PCRLB for dy-

namic target tracking with measurement origin uncer-

tainty and in [8] the PCRLB for state estimation with

quantized measurement were developed. In this paper,

the PCRLB calculation with quantized measurement is

extended to incorporate measurement origin uncertainty

for bearing only tracking.

This paper is structured as follows. Section 2 ex-

plains the proposed distributed implementation of SMC-

PHD filter. Quantization and encoding methods are ex-

plaiined in Section 3. Section 4 provides the derivation

of the PCRLB with quantized measurements and mea-

surement origin uncertainty. Simulations that demon-

strate the effectiveness of the proposed quantization

strategy are presented in Section 5. Conclusions are

given in Section 6.

2. DISTRIBUTED TRACKING USING SMC-PHD
FILTER

2.1. State and Measurement Models

In this paper, the problem of tracking a time-varying

number of multiple targets is considered. The general

parameterized target dynamics is given by

xk+1 = Fkxk + ºk (1)

where xk denotes the target state, Fk is a known matrix
and ºk is the process noise at time k.
The measurements originate from either targets or

clutter. The target-originated measurement is given by

zk = hk(xk) +!k (2)

where hk is a nonlinear function and !k is the measure-
ment noise at time k. For simplicity it is assumed that vk
and !k are Gaussian with zero means and covariances
¡k and §k, respectively.
It is assumed that the number of false alarms is

Poisson-distributed with the average rate of ¸k and that
the probability density of the spatial distribution of false

alarms is ck(zk).

2.2. PHD Filter

In tracking multiple targets, if the number of targets

is unknown and varying with time, it is not possible

to compare states with different dimensions using or-

dinary Bayesian statistics of fixed dimensional spaces.

However, the problem can be addressed by using Finite

Set Statistics (FISST) [15] to incorporate comparisons

of state spaces of different dimensions. FISST facilitates

the construction of multitarget densities from multiple-

target transition functions by computing set derivatives

of belief-mass functions [15], which makes it possible to

combine states of different dimensions. The main prac-

tical difficulty with this approach is that the dimension

of the full state space becomes large when many targets

are present, which increases the computational load ex-

ponentially in the number of targets. Since the PHD is

defined over the state space of one target in contrast
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to the full posterior distribution, which is defined over

the state space of all the targets, the computational cost

of propagating the PHD over time is much lower than

propagating the full posterior density.

In general, a PHD-based multitarget tracker will ex-

perience more difficulty in resolving closely-spaced tar-

gets than a tracker based on the full target posterior.

However, if the probability density functions of indi-

vidual targets is highly concentrated around their means

compared to the target separation, such that the indi-

vidual target pdfs do not overlap significantly, it will

become possible to resolve the targets using the PHD

filter as well. A theoretical explanation on the capabil-

ity of the PHD filter to resolve closely-spaced targets

in Gaussian context is given in [15]. By definition, the

PHD Dkjk(xk j Z1:k), with single target state vector xk,
and given all the measurements up to and time step k, is
the density whose integral on any region S of the state
space is the expected number of targets Nkjk contains in
S. That is,

Nkjk =
Z
X

Dkj(xk j Z1:k)dxk: (3)

This property uniquely characterizes the PHD and the

first-order statistical moment of the full target posterior

distribution possesses this property. Hence, the first-

order statistical moment of the full target posterior, or

the PHD, given all the measurement Z1:k up to time step
k, is given by the set integral [14]

Dkjk(xk j Z1:k) =
Z
fkjk(fxkg[Y j Z1:k)±(Y): (4)

More detailed mathematical explanations and derivation

of the PHD filter can be found in [14]. The approximate

expected target states are given by the local maxima of

the PHD. The prediction and update steps of one cycle

of PHD filter are given in the following section.

2.2.1. Prediction
In a general scenario of interest, there are target dis-

appearances, target spawning and entry of new targets.

The probability that a target with state xk¡1 at time
step (k¡ 1) will survive at time step k is denoted by
ekjk¡1(xk¡1), the PHD of spawned targets at time step

k from a target with state xk¡1 by bkjk¡1(xk j xk¡1), and
the PHD of newborn spontaneous targets at time step k
by °k(xk). Then, the predicted PHD, Dkjk¡1(xk j Z1:k¡1),
at time k given all measurements up to time k¡ 1 is
given by

Dkjk¡1(xk j Z1:k¡1)

= °k(xk) +

Z
[ekjk¡1(xk¡1)fkjk¡1(xk j xk¡1) + bkjk¡1(xk j xk¡1)]

£Dk¡1jk¡1(xk¡1 j Z1:k¡1)dxk¡1 (5)

where fkjk¡1(xk j xk¡1) denotes the single-target Markov
transition density. The prediction equation (5) is lossless

since there are no approximations.

2.2.2. Update
The predicted PHD can be corrected with the avail-

ability of measurements Zk at time step k to get the
updated PHD. It is assumed that the number of false

alarms is Poisson-distributed with the average rate of ¸k
and that the probability density of the spatial distribution

of false alarms is ck(zk). Let the detection probability of
a target with state xk at time step k be pD(xk). Then, the
updated PHD at time step k is given by

Dkjk(xk j Z1:k)

»=
24X
zk2Zk

pD(xk)fkjk(zk j xk)
¸kck(zk) +Ãk(zk j Z1:k¡1)

+ (1¡pD(xk))
35

£Dkjk¡1(xk j Z1:k¡1) (6)

where the likelihood function Ã(¢) is given by
Ãk(zk j Z1:k¡1)

=

Z
pD(xk)fkjk(zk j xk)Dkjk¡1(xk j Z1:k¡1)dxk

(7)

and fkjk(zk j xk) denotes the single-sensor/single-target
likelihood. The update equation (6) is not lossless since

approximations are made on predicted multitarget pos-

terior to obtain a closed-form solution. The reader is

referred to [14] for further explanations.

2.3. Sequential Monte Carlo PHD Filter

This section describes the SMC approach to the PHD

filter [24]. This approach provides a mechanism to rep-

resent the posterior probability hypothesis density by

a set of random samples or particles, which consist of

state information with associated weights, to approxi-

mate the PHD. The advantage of this method is that

the number of particles can be adaptively allocated such

that a constant ratio between the number of particles and

the expected number of targets is maintained. This has

a significant effect on the computational complexity of

the algorithm. The complexity does not increase expo-

nentially, but only linearly with the increasing number

of targets. The SMC implementation considered here is

structurally similar to the Sampling Importance Resam-

pling (SIR) type of particle filter [2]. Let the posterior

PHD Dk¡1jk¡1(xk¡1 j Z1:k¡1) be represented by a set of
particles fw(p)k¡1,x(p)k¡1gLk¡1p=1 . That is,

Dk¡1jk¡1(xk¡1 j Z1:k¡1) =
Lk¡1X
p=1

w(p)k¡1±(xk¡1¡ x(p)k¡1)

(8)

where ±(¢) is the Dirac Delta function. In contrast to par-
ticle filters, the total weight of the particles

PLk¡1
p=1 w

(p)
k¡1 is

not equal to one; instead, total weight gives the expected
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number of targets nXk¡1 at time step (k¡ 1), which fol-
lows from the property that the integral of the PHD over

the state space gives the expected number of targets.

2.3.1. Prediction
Importance sampling is applied to generate state

samples that approximate the predicted PHD Dkjk¡1(xk j
Z1:k¡1). State samples fx(s)kjk¡1gLk¡1p=1 are generated from the

proposal density qk(¢ j xk¡1,Zk) and i.i.d. state samples
fx(p)kjk¡1gLk¡1+Jkp=Lk¡1+1

corresponding to new spontaneously

born targets from another proposal density pk(¢ j Zk).
That is,

x(s)kjk¡1 »
½
qk(¢ j xk¡1,Zk) p= 1, : : : ,Lk¡1
pk(¢ j Zk) p= Lk¡1 +1, : : : ,Lk¡1 + Jk

:

(9)

Then, the weighted approximation of the predicted PHD

is given by

Dkjk¡1(xk j Z1:k¡1) =
Lk¡1+JkX
p=1

w(p)kjk¡1±(xk ¡ x(p)kjk¡1)

(10)
where

w(p)kjk¡1 =

8>>>>><>>>>>:

ekjk¡1(x
(p)
kjk¡1)fkjk¡1(x

(p)
kjk¡1 j x(p)k¡1)+ bkjk¡1(x(p)kjk¡1 j x(p)k¡1)

qk(x
(p)
kjk¡1 j x(p)k¡1,Zk)

w(s)k¡1 p= 1, : : : ,Lk¡1

°k(x
(p)
kjk¡1)

pk(x
(p)
kjk¡1 j Zk)

1
Jk

p= Lk¡1 +1, : : : ,Lk¡1 + Jk

: (11)

The functions that characterize the Markov target tran-

sition density fkjk¡1(:), target spawning bkjk¡1 and entry
of new targets °k(¢) in (11) are conditioned on the target
motion model.

2.3.2. Update
With the available set of measurements Zk at time

step k, the updated particle weights can be calculated by

w¤(p)k =

24(1¡pD(x(p)kjk¡1)) + NZ
kX
i=1

pD(x
(p)
kjk¡1)fkjk(z

i
k j x(p)kjk¡1)

¸kck(z
i
k) +ªk(z

i
k)

35w(p)
kjk¡1

(12)
where

ªk(z
i
k) =

Lk¡1+JkX
p=1

pD(x
(p)
kjk¡1)fkjk(z

i
k j x(s)kjk¡1),w(p)kjk¡1

(13)

and fkjk(¢) is the single-target/single-sensor measure-
ment likelihood function.

2.3.3. Resample
To perform resampling, since the weights are not

normalized to unity in PHD filters, the expected num-

ber of targets is calculated by summing up the total

weights, i.e.,

n̂Xk =

Lk¡1+JkX
p=1

w¤(p)k : (14)

Then the updated particle set fw¤(p)k =nXk ,x
(p)
kjk¡1gLk¡1+Jkp=1 is

resampled to get fw(p)k =nXk ,x(p)k gLkp=1 such that the total
weight after resampling remains nXk . Now, the discrete
approximation of the updated posterior PHD at time

step k is given by

Dkjk(xk j Z1:k) =
LkX
p=1

w(p)k ±(xk ¡ x(p)k ): (15)

2.4. Distributed Architecture

Distributed processing over the sensor network can

be used to alleviate the problem inherent to centralized

architectures. A sample distributed architecture is shown

in Fig. 1, where S indicates the sensor. The underly-

ing sensor network architecture consists of two differ-

ent types of devices: sensors and nodes. Sensors col-

lect measurements from the targets and report them to

computational nodes. Nodes are responsible for running

filters to track targets. Information gathered at one node

are shared among various nodes. The efficient utiliza-

tion of communication resources without compromising

accuracy is essential.

2.5. Distributed Tracking Algorithm

The objective in this paper is to develop a distributed

algorithm based on the SMC-PHD filter while minimiz-

ing the communication requirements of the distributed

network in the presence of multiple time-varying num-

ber of targets and false alarms. It is assumed that the

optimization of sensor resources to collect data and

communication issues such as network protocols are al-

ready efficient enough. The proposed algorithm main-

tains SMC-PHD filters at all the computational nodes.

There are a number of different options to perform

distributed tracking with an SMC-PHD filter in a sen-

sor network. One option is to send all the particles that

represent the posterior density of target states. Another

is to send Gaussian mixture representation of the poste-

rior density. These two options require high bandwidth

communications, which cannot be handled by practical

wireless sensor networks. The third option is to send

only most relevant measurements after eliminating the
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Fig. 1. A sample distributed architecture.

false alarms to update the global estimates of the tar-

gets. In this paper, the option of communicating the rel-

evant measurements among nodes to update the filters is

used. In a sensor network, it is possible that each node

has enough active sensors to track an object by itself

with reasonable tracking accuracy. Therefore, a PHD

filter can be used to obtain the estimates based on the

measurements collected from sensors local to that node.

Since these nodes maintain PHD filters based on local

measurements, they can also be used in the encoding

strategy. The proposed framework will be performed in

two layers. The first layer collects measurement data

that are local to each node and maintains a local PHD

filter using its associated sensors. In the second layer,

all measurements are exchanged to all other nodes in

the network and the global PHD filters are maintained.

In the proposed algorithm, identical copies of the

SMC-PHD filter are maintained at each node. Initially,

this is achieved by initializing filters using the same ran-

dom seed. In order to encode the measurement data, an

intelligent quantization and encoding strategy is used.

From time step k¡ 1 to k, particles are propagated while
taking into account the measurement prediction covari-

ance. The range of expected measurements is divided

into bins depending on the required accuracy level.

The contribution of each propagated particle’s distri-

bution is integrated over the bins to form the proba-

bility density. The measurements are quantized with a

non-uniform quantizer where companders are used to

perform non-uniform quantization. The probability den-

sity in the measurement space is then transformed to

the companded measurement space. Then, the quantized

measurements are encoded using Huffman encoding al-

gorithm with the transformed bin probabilities. The en-

coded measurements are transmitted to all other nodes

where each node decodes and decompands the data to

obtain the quantized measurements. The details of quan-

tization and encoding strategy used in this algorithm is

presented in Section 3.

Each node performs filtering using quantized mea-

surements to obtain the target state estimates. All nodes

use the same set of measurement data to update the fil-

ter, thereby maintaining the identical copy of filter.

The steps of the distributed SMC-PHD filter are

given below.

1) Initialization at k = 0:

² Initialize SMC PHD filter on each node n=
1, : : : ,N using the same random seed to generate

identical particle distribution on all the nodes.

² For each node n= 1, : : : ,N
– Generate samples fx(p)0 gL0p=0

2) Quantization and encoding (For implementation de-

tails of this step the reader is referred to Section 3):

² Local Estimation
– Perform filtering using the SMC PHD filter

acting only on the measurements local to the

node.

² Quantization
– For each node n= 1, : : : ,N

* For s= 1, : : : ,Lk¡1, predict x
(p)
kjk¡1

* Calculate the bin probabilities, p(zk j bj ,
z
(p)
1:k¡1), in the measurement space using

predicted measurements and construct the

probability density where bj is the jth mea-
surement bin.

* Identify the regions where the companders

need to be placed and the number of com-

panders needed. One compander per target

is used and the width of the companding

region is limited to 3¾cp, where the ¾
c
p is

the standard deviation of the cth cluster. The
compander is placed on the mean value, ¹cp,
of the cluster. In other regions linear quan-

tizer is used.

* Quantize the measurements, z̃k
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Fig. 2. Calculation of bin probabilities.

Fig. 3. Quantization.

² Encoding
– For each node n= 1, : : : ,N

* Calculate the bin probabilities, p̃(zk j bj ,
z
(p)
1:k¡1), in the transformed measurement

space.

* Use the bin probabilities to form Huffman

tree Hk¡1
f and encode quantized measure-

ments.

3) Reducing the false measurements transmitted over

the network:

² Remove the measurements from the queue if the

number of bits in each encoded measurement ex-

ceeds a predefined threshold, l. This process is
done using the local estimates of the target.

4) Global estimate:

² For each node n= 1, : : : ,N, create the Huffman
tree Hk¡1

f and the quantizer to reconstruct the

quantized data, z̃0k.
² Using the obtained set of measurements, perform
filtering to obtain the global state estimates.

3. QUANTIZATION AND ENCODING

Measurements reported by sensors in a sensor net-

work need to be transmitted in order to perform track-

ing at high computational nodes called fusion centers.

Quantization and encoding play a crucial role whereby

measurements are quantized and encoded before be-

ing transmitted. Intelligent quantization and encoding

schemes are necessary to effectively use the communi-

cation resources. This section explains how quantization

and encoding can be effectively implemented to perform

distributed target tracking with SMC-PHD filters.

The proposed algorithm needs an efficient nonlinear

non-uniform quantization for measurements. Therefore,

the concept of “cascaded companders,” which can quan-

tize measurements from multiple targets, is proposed.

This section briefly explains the process of developing

the compander. The first step is to construct a proba-

bility density of expected measurements to identify the

regions where the target originated measurements would

lie. The details of this process are given in Section 3.01.

Measurements that fall in this region are quantized with

minimum quantization error via Gaussian companders.

Section 3.13 explains the cascaded companders. Details

of encoding and decoding process using Huffman cod-

ing are given in Section 3.23. Sections 3.3 and 3.14

provide details on the false alarm elimination process

and the incorporation of quantization errors into track-

ing, respectively.

3.0.1. Construction of a Probability Density
The necessity to have identical and accurate prob-

ability densities of targets at each node, where global

SMC-PHD filter is running, is clear from the fact that

the measurements are quantized, encoded and commu-

nicated across these nodes based on the probability den-

sity. The construction of probability density begins with

propagating the densities of particles from time step

k¡1 to k, taking into account the measurement predic-
tion covariance. The range of expected measurements

is divided into bins depending on the required accu-

racy level. The contribution of each propagated parti-

cle’s distribution is integrated over the bins to form the

probability density. Figure 2 shows the distribution of

three sample particles and the quantizer decision bound-

aries ai¡1 and ai. The probability density of predicted
particles p(zsk) in the measurement space is given by

p(zpk ) =N (zsk;hk(xpkjk¡1),Sk) (16)

where hk(:) is a nonlinear function and Sk is the measure-
ment prediction covariance. Then the bin probability is

given by

p(zk j bj ,z(p)1:k¡1) =
Lk¡1X
s=1

Z ai

ai¡1
p(zsk)dz: (17)

3.1. Quantization

One dimensional quantizer Q with L levels may be
defined by a set of L+1 decision levels a0,a1, : : : ,aL
and a set of L output levels y1,y2, : : : ,yL, as shown in
Fig. 3. When a sample x, the quantity to be quantized,
lies in the ith quantizer interval si = ai¡1 < x· ai the
quantizer produces the output value Q(x) = yi [9]. The
value of yi is usually chosen to lie within the interval
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Fig. 4. Nonuniform quantization.

Fig. 5. A typical compander.

si. The end levels a0 and aL are generally chosen to be
the smallest and largest values the input samples may

obtain. The L output levels generally have a finite value
and if L= 2n, a unique n-bit binary word can identify a
particular output level. The input-output characteristics

of a one-dimensional quantizer resemble a staircase.

The quantizer intervals, or steps, may vary in size.

Uniform and non-uniform quantizer strategies are

investigated in this paper.

3.1.1. Uniform Quantization
Uniform quantizer is where the measurement space

is divided into equal bins based on the number of bits

used to encode. The output points are located at the mid-

point of these intervals. If the step size is denoted by 4,
then the maximum absolute error is given by 4=2. In
general, uniform quantization is not the most effective

way to obtain good quantizer performance [9].

3.1.2. Non-uniform Quantization
The non-uniform quantization essentially has a non-

uniform spacing of decision levels based upon the input

probability density [16]. The general model used to rep-

resent the non-uniform quantizer is shown in Fig. 4. The

combined function of compression, quantization and

expansion is termed companding [17]. The quantized

samples are transmitted over the network while at the

receiver end of the network the quantized samples are

decompanded to its original values plus the quantization

noise. The variance of the quantization noise associated

with the received samples is related to the shape of the

companding function G(:) and the number of the bits,

n, used for quantization. A typical companding function
is shown in Fig. 5. With reference to the figure,

G(y+¢y)¡G(y) = ± (18)

in which the right hand side is the resolution of the uni-

form quantizer. Using standard companding techniques,

¢y can be given as

¢y ¼
±
_G(y)

(19)

where _G denotes differentiation of G.

3.1.3. Measurement Quantization with Cascaded
Companders

The non-uniform quantization is performed based on

probability density of the targets. Figures 6 and 7 show

quantizers at two different time steps, when one and

two targets are present in the environment, respectively.

The companders are placed in the measurement space

such that the target-originated measurements have less

quantization errors than other measurements. In this

paper, a Gaussian compander law, which is centered

on the expected target position and whose curvature

is dictated by the standard deviation of the expected

position [16], is used. The compander and expander

functions are as follows:

² Compander: erf(»=¾p6)
² Expander: ¾p6erf(»)

where erf(») = 2=
p
pi
R »
0
exp(¡t2)dt. One compander per

target is used and the width of the companding region

is limited to 3¾cp, where ¾
c
p is the standard deviation of

the cth cluster. The compander is placed on the mean

value, ¹cp, of the cluster. A maximum quantization error
is set in other regions of the measurement space, where

the compander is not placed, by a liner quantizer. The

companders are cascaded when multiple targets mea-

surements are to be quantized.
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Fig. 6. A 32-bin compander with one target.

Fig. 7. A 32-bin compander with two targets.

3.1.4. Incorporating Quantization Errors
The insertion of quantized measurement to the SMC-

PHD filter is done by updating the current particles by

the quantized measurements while taking into account

the extra error introduced by the quantization. The er-

ror arising from quantization has a uniform distribution.
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Fig. 8. Construction of Huffman Encoding Table.

The variances of errors introduced due to quantization

is given by

² Uniform quantization

Var(zik j xk) = ¾2w+
±2

12
: (20)

² Non-uniform quantization

Var(zik j xk) = ¾2w+
±2

12 _G(yik)
2
: (21)

3.2. Encoding

In information theory, an entropy coding is a lossless

data compression scheme that is independent of the spe-

cific characteristics of the medium. A common method

of entropy coding defines a codebook by assigning a

code to each symbol. By assigning smaller codes to the

more frequent symbols, the average size of each coded

symbol can be minimized. This leads to compression

over sufficiently large number of encoded symbols. This

technique is known as variable length coding. Generally,

variable length coding shows a better performance than

fixed-length codes where same size is assigned to all

symbols [20].

Two widely used entropy coding techniques are

Huffman coding [12, 6] and arithmetic coding [27].

Huffman coding is simple to implement and is efficient

when the probabilities of symbols to be sent can be cal-

culated in advance. Hence it is best suited for application

in this paper.

Encoding will help reduce the communication load

only for uniform quantization. In non-uniform quanti-

zation, the probability of getting measurement at each

measurement bin is almost equal. As a result, it is not

possible to achieve communication reduction by encod-

ing for non-uniform quantization.

3.2.1. Huffman Coding
Huffman coding assigns a variable length code to

each input symbol where the code and its size are based

on the probability of occurrence of the associated sym-

bol. It is necessary to calculate probability of symbols

before the assignment and construction of a dictionary.

By sorting and analyzing the probability of symbols, a

conversion table is constructed so that the symbols with

higher probability have the fewer number of bits and no

symbol is a prefix to another symbol [20]. Greater com-

pression can be achieved with the accurate estimation of

probability distribution.

3.2.2. Building Huffman Codes
The construction of Huffman encoding table is a

lengthy process. The probabilities must be sorted so that

the two lowest probabilities can be found. These prob-

abilities are added together to create a new probability

table. This table is sorted, and the process is repeated un-

til only two probabilities are left. These probabilities are

assigned a value of zero and one. The process is now re-

versed. At each stage the two expanded probabilities are

given a one or zero as they are expanded. The process

continues until the table is expanded to its original state.

For example, assume that the message “ASAFAFDAS”

is being encoded. The first step is to find the probability

for each symbol. “A” has a probability of 0.4, while S

has 0.3, D has 0.1 and F has 0.2. These probabilities are

sorted and added to create the table as in Fig. 8. Once

the table is constructed, the data can be compressed.

The compression process is accomplished by a direct

conversion of symbols. The entire message is encoded

as “10010101010011100,” which requires 17 bits. The

unencoded message would normally require 18 bits.

3.2.3. Measurement Encoding and Decoding
The original probability density constructed based

on expected measurements is transformed to com-

panded measurement space in order to create a global

Huffman dictionary for encoding. The term global refers

to the process or information that is related to global

SMC-PHD filter running on every node. Companded

measurements are encoded and transmitted over the net-

work. In the receiver, measurements are decoded before

expanding. The same steps are followed to construct a

decoding dictionary.

3.3. False Alarm Elimination

Reducing the number of false measurements com-

municated over the network is important as they con-

sume most of the communication resources. The num-

ber of bits in each encoded measurement, based on the
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local Huffman dictionary, can effectively be used to re-

duce the number of false measurements transmitted over

the sensor network. In this approach, it is assumed that

since the local PHD filters have the most up-to-date in-

formation including the birth of a new target and the

target generated measurements are most likely to be in

a region in which the value of the probability is high.

Thus the target-generated measurements are most likely

to have a lesser number of bits in their encoded form

compared to false measurements when encoded with lo-

cal Huffman dictionary. It is reasonable to assume that

the measurements that have a higher number of bits are

not target generated and, by having a threshold value on

the number of bits, they can be removed from the set

of measurements that are transmitted over the network.

Once the measurements are selected to be transmitted,

those measurements are encoded with the global Huff-

man dictionary in order to transmit over sensor network.

However, when measurements corresponding to new

targets are encoded with global Huffman dictionary may

produce higher number of bits. It could be noted that the

new targets can be identified by the global PHD filter

quickly. An indicator function, I(k,i)h is used to identify

whether the measurement has been communicated or

not.

I(k,i)h =

(
1 Hk¡1

f (z̃ik)· l
0 Hk¡1

f (z̃ik)> l
(22)

Hk¡1
f (z̃ik) is a function that generates Huffman codes for

each measurement. l is the cutoff number of bits per
measurement. If a measurement in its encoded form is

less than the cutoff number of bits, then the measure-

ment is communicated and not otherwise.

4. POSTERIOR CRAMER-RAO LOWER BOUND

In this section, the recursive Riccati-like formula

for the PCRLB is derived for state estimation using

measurements with quantization and origin uncertainty.

The Section 4.1 provides a brief review on PCRLB.

Incorporating the measurement origin uncertainty in

PCRLB is discussed in Section 4.2. In Section 4.3 the

PCRLB with quantized measurements is derived.

4.1. Background

Consider the estimation of the state of a dynamical

system given by (1) and (2). The quantized measure-

ments at time k are denoted by z̃k. Let x̂kjk denote the
updated state estimate at time instant k, using measure-
ment z̃1:k. The estimation error covariance matrix, Pkjk,
for unbiased estimator is bounded as follows:

Pkjk = E[(xk ¡ x̂kjk)(xk ¡ x̂kjk)T]¸ J¡1k (23)

where Jk is the Fisher information matrix, which is the
inverse of PCRLB.

For linear Gaussian systems, Riccati-like recursion

is given by [11]

Jk+1 = (Qk +FkJ
¡1
k FTk )

¡1 +E[¡¢xk+1xk+1
logp(z̃k+1 j xk+1)]| {z }
Jzk+1

(24)
with J¡10 = P0.

4.2. Effect of Measurement Origin Uncertainty

Consider ns (¸ 1) sensors, and let z̃sk be the quantized
measurement vector from sensor s. It is assumed that the
measurement noises of sensors are independent. Also,

due to false alarms, the total number of measurements

can vary among sensors at each time step. Let msk be the
total number of measurements from sensor s at time k.
Let the observation set at time k from sensor s be

z̃sk = fz̃sk(i)g
ms
k

i=1 (25)

where msk in general is random quantity.

Under the assumption that false alarms are uni-

formly distributed in the measurement space, and the

number of false alarms is Poisson distributed, probabil-

ity of getting msk is given by [11]

p(msk) = (1¡PsD)
(¸V)mk exp(¡¸V)

mk!

+PsD
(¸V)mk¡1 exp(¡¸V)

(mk ¡1)!
(26)

where PsD is the probability of detecting the target by
sensor s, V is the gated volume of the measurement

space.

If false alarms are removed by setting a cut-off

length for the number of bits to be sent after encoding,

then P̄sD must be calculated by considering the possibility
of removing a target originated measurement. In the

PCRLB calculation, PsD must be replaced by P̄sD. V
is must also be calculated using the predicted target

distribution and the false alarm removal cut-off limit.

Even though the cut-off is set on the number of bits, it

can be converted to the probability and can be used to

decide the gate size.

Using measurement independent assumption, the

measurement information, Jk(z̃), is given by [11]

Jzk(z̃) =

nsX
s=1

1X
ms
k
=0

p(msk)J
s
zk(m

s
k) (27)

where

Jszk(m
s
k) = E[¡¢xkxk logp(z̃sk j xk,msk))] (28)

p(z̃sk j xk,mk) is given by

p(z̃sk(i)
ms
k

i=1 j xk) =
24 (1¡ ²(msk))

Vm
s
k

+
²(msk)

mskV
ms
k
¡1

ms
kX

i=1

p1(z̃
s
k(i))

35
(29)
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Fig. 9. The simulation environment.

where

²(msk) =
PsD
p(msk)

(¸V)mk¡1 exp(¡¸V)
(mk ¡ 1)!

(30)

and p1(z̃
s
k(i)) is the pdf of the true observation, which

is function of xk. The details of obtaining p1(z̃
s
k(i)) with

the quantized measurement are given in the following

section.

4.3. Effect of Measurement Quantization

Due to the essence of quantization, it is known that

z̃sk(i) has a discrete distribution and the only fact that can

be inferred from z̃sk(i) =Q(z
s
k(i)) is that a

s
(i,k) · z̃sk(i)<

as(i+1,k) [8]. Under the assumption that the measurement

error is a zero-mean Gaussian variable with standard

deviation ¾s!, p1(z̃
s
k(i)) can be written as

p1(z̃
s
k(i)) = Pfz̃sk(i)) =Q(ysk(i)) j xkg

= Pfas(i,k) · hk(xk)+ vsk < as(i+1,k) j xkg

=

Z as
(i+1,k)

¡h(xk)

as
(i,k)
¡h(xk)

1

¾sw
p
2¼
exp

½
¡ t2

2(¾sw)
2

¾
dt:

(31)

It can be shown that

@p1(z̃
s
k(i))

@xak
=¡ 1

¾sw
p
2¼

@h(xk)

@xak

μ
exp

·
¡ (a

s
(i+1,k)¡ h(xk))2
2(¾sw)

2

¸
¡exp

·
¡ (a

s
(i,k)¡ h(xk))2
2(¾sw)

2

¸¶
:

(32)

From (28) and (32), it can be shown that

@ logp(z̃sk j xk,msk)
@xak

=
²(msk)

p(z̃sk j xk,msk)mskVm
s
k
¡1

ms
kX

i=1

@p1(z̃
s
k(i))

@xak
: (33)

Jszk(m
s
k) can be calculated using (33) and

¡@2 log(p(¢))
@xa@xb

=
@ log(p(¢))
@xa

@ log(p(¢))
@xb

: (34)

5. SIMULATION

In this section, results of the simulation studies for

the proposed distributed algorithm with quantization

and encoding strategies are presented.

5.1. Simulation Setup

In the simulations studies, a two dimensional track-

ing example is considered to show the effectiveness of

the proposed algorithms. As shown in Fig. 9, it con-

sists of two computational nodes placed at (¡15£ 103,
15£ 103) and (15£ 103,15£ 103). Each node has three
sensors reporting bearing-only observations at a time

interval of T = 30 s. The target motion model, which
is nearly constant velocity, has the following linear-

Gaussian target dynamics,

xk+1 = Fxk + vk (35)

where the target transition matrix F is given by

F=

26664
1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

37775 (36)

124 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 7, NO. 2 DECEMBER 2012



Fig. 10. Position RMSE comparison with 128-bit quantization for

target 1.

Fig. 11. Position RMSE comparison with 128-bit quantization for

target 2.

and vk is zero-mean white Gaussian noise with covari-
ance Q given by

Q=

266664
1
3
T3 1

2
T2 0 0

1
2
T2 T 0 0

0 0 1
3
T3 1

2
T2

0 0 1
2
T2 T

377775q (37)

where q= 0:001 is the level of process noise in target
motion.

Targets have different stating times and starting posi-

tions within the surveillance region. Target 1 and target

2 are present at k = 0, and their initial target positions
are (¡10£ 103,¡15£103) and (¡5£ 103,9£ 103) m.
Target 3 enters later at time k = 10 from the position

Fig. 12. Position RMSE comparison with 128-bit quantization for

target 3.

(15£103,¡10£ 103) m. The targets’ initial velocities
are (5,5), (¡4,3), (¡5,2) ms¡1. The target trajectories
and sensor network arrangement are shown in Fig. 9.

The target generated measurements corresponding

to target j on sensor i

zi,jk = tan
¡1
Ã
yjk ¡ yiS
xjk ¡ xiS

!
+ vik (38)

where vik is an i.i.d. sequence of zero-mean Gaussian
variables with standard deviation 0.01 rad. The jth
target location is denoted by (xjk,y

j
k) and that of ith

sensor are denoted by (xiS ,y
i
S). Additional parameters

used in the simulations are: the probability of target

survival = 0:99; the probability of target birth = 0:05;
the probability of target spawning = 0; number of par-

ticles representing one target = 1000; the false alarm

density ¸= 4£ 10¡3 rad¡1. The simulation results are
based on 100 Monte Carlo runs.

5.2. Simulation Results

Figures 10, 11 and 12 show position Root Mean

Square Errors (RMSEs) comparison for target 1, 2 and

3, respectively. RMSE values are computed from 100

Monte-Carlo runs. In those figures, ‘Local 1’ indi-

cates the tracker at the fusion center 1 using only the

measurement from local sensors; ‘Global-Uniform’ and

‘Global-Non-uniform’ indicate the trackers that use the

uniformly and non-uniformly quantized measurement

from all the fusion centers, respectively; ‘Combined 1’

indicates the tracker running at fusion center 1 that uses

the quantized measurements from neighboring fusion

center and the non-quantized local measurements. As

expected, ‘Combined 1’ gives better performance than

all the other trackers. Non-uniform quantization gives

better performance than uniform quantization as well.

Since the measurements from fusion center 2 are not
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Fig. 13. OSPA comparison with 128-bin quantization.

used, the performance of the ‘Local 1’ tracker is the

worst. Even though ‘Combined 1’ gives the best per-

formance, its estimates cannot be used for quantiza-

tion and encoding, since ‘Combined 1’s results, which

are needed for decoding and decompanding, are not

available at fusion center 2. However, ‘Combined 1’

can be used to eliminate the false alarms. Figure 13

shows Optimal Subpattern Assignment (OSPA) [21]

distance comparison of the aforementioned approaches

with OSPA parameters, c= 25 m, p= 1.
The PCRLB comparison for target 1 with various

approaches is given in Fig. 14. From this figure, it can

be noticed that non-uniform quantization performs close

to the optimal performance, i.e., without quantization.

Also, non-uniform quantization with 64 bits performs

better than uniform quantization with 128 bits. Hence,

non-uniform quantization can also be used to reduce

the communication load in addition to improving the

tracking performance.

The numbers of bits transmitted with and without

Huffman coding are shown in Figs. 15, 16 and 17,

where the overhead bits are not included. The effect of

false alarms on communication load is shown in Fig. 15.

In general, most of the false alarms are away from

the target originated measurements. Hence, the number

of bits allocated for the false alarms using Huffman

coding, which used the probability density function of

the target originated measurement, is very high. As a

result Huffman coding will result in poor performance

unless the false alarms are not eliminated.

After false alarms are eliminated as explained in Sec-

tion 3.3, the number of bits transmitted is significantly

reduced when Huffman coding is used with uniform

quantization (see Fig. 16). When a new target enters and

is detected by the local fusion center, the number of bit

allocated for the new target originated measurement is

high as the global estimate does not have information

about the new target. Once the target is initialized the

Fig. 14. Position PCRLB comparison for target 1.

Huffman dictionary takes into account the new target

so the encoded measurements have fewer bits. This can

be observed at time step 11. Also, it is not possible

to eliminate all the false alarms at all the times. Es-

pecially, it is hard to eliminate a false alarm if it falls

close to any of the existing targets. This could be the

reason for the slight increase in the number of bits at

time step 24.

The number of bits transmitted using Huffman cod-

ing with non-uniform quantization is shown in Fig. 17.

During the non-uniform encoding, the probability dis-

tribution is uniform over the measurement bins. As a

result, there is no reduction in the number of bits trans-

mitted. Hence, it is better to use no encoding with non-

uniform quantization.

6. CONCLUSIONS

In this paper, a distributed implementation of

SMC-PHD filter and an efficient quantization and en-

coding for communicating measurements were consid-

ered. Communication resources need to be handled effi-

ciently in sensor networks while maximizing the track-

ing performance. False alarms take significant commu-

nication resources unless their communication is han-

dled properly. A non-uniform quantization via com-

panding was implemented to take advantages of the fil-

ter properties. It ensures that the target-originated mea-

surements are quantized with less errors than others. An

effective way of eliminating false alarms was also im-

plemented. Posterior covariance was derived to access

the algorithm using a recursive formula for the Fisher

Information Matrix. Simulation studies confirm that the

proposed quantization, encoding and false alarm elim-

ination techniques are shown to be more efficient in

terms of communication resource utilization and track-

ing performance than unencoded techniques. The pro-
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Fig. 15. Number of bits transmitted without false alarms

elimination (with 3 false alarms at each time step).

Fig. 16. Number of bits transmitted with uniform quantization and

false alarm elimination.

posed distributed algorithm for SMC-PHD filter is also

shown effective when the results were compared to its

performance bound.

REFERENCES

[1] A. Aravinthan

Distributed tracking with probability hypothesis density

filters using efficient measurement encoding.

Open Access Dissertations and Theses, Paper 4322, 2009.

[2] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp

A tutorial on particle filters for online nonlinear/non-

Gaussian Bayesian tracking.

IEEE Transactions on Singal Processing, 50, 2 (Feb. 2002),

173—188.

[3] Y. Bar-Shalom and X. R. Li

Multitarget-Multisensor Tracking: Principles and Techniques.

Storrs, CT: YBS Publishing, 1995.

Fig. 17. Number of bits transmitted with non-uniform quantization

and false alarm elimination.

[4] S. S. Blackman

Multiple hypothesis tracking for multiple target tracking.

IEEE Aerospace and Electronic Systems Megazine, 19, 1

(Jan. 2004), 5—18.

[5] M. J. Coates

Distributed particle filters for sensor networks.

Proceedings of Third International Symposium on Informa-

tion Processing in Sensor Networks, Apr. 2004, pp. 99—107.

[6] T. M. Cover and J. A. Thomas

Elements of Information Theory.

New York: Wiley, 1991.

[7] A. Doucet, N. De Freitas, and N. Gordon

An Introduction to Sequential Monte Carlo Methods.

New York: Springer-Verlag, 2001.

[8] Z. Duan, V. P. Jilkov, and X. R. Li

Posterior Cramer-Rao bounds for state estimation with

quantized measurement.

Proceedings of 40th Southestern Symposium on System The-

ory, New Orleans, LA, Apr. 2008, pp. 376—380.

[9] R. M. Gray and D. L. Neuhoff

Quantization.

IEEE Transactions on Information Theory, 44, 6 (Oct. 1998).

[10] D. L. Hall

Mathematical Techniques in Multisensor Data Fusion.

Norwood, MA: Artech House, 1992.

[11] M. L. Hernandez, T. Kirubarajan, and Y. Bar-Shalom

Multisensor resource deployment using posterior Cramer-

Rao bounds.

IEEE Transaction on Aerospace and Electronic Systems, 40,

2 (Apr. 2004), 399—416.

[12] D. A. Huffman

A method for the construction of minimum-redundancy

codes.

Proceedings of the I.R.E., 40 (Sept. 1952), 1098—1101.

[13] G. Ing and M. J. Coates

Parallel particle filters for tracking in wireless sensor net-

works.

Proceedings of IEEE 6th Workshop on Signal Processing

Advances in Wireless Communications, June 2005, pp. 935—

939.

[14] R. P. S. Mahler

Multitarget Bayes filtering via first-order multitarget mo-

ments.

IEEE Transactions on Aerospace and Electronics Systems,

39, 4 (Oct. 2003), 1152—1178.

HABTEMARIAM, ET AL.: DISTRIBUTED TRACKING WITH A PHD FILTER 127



[15] R. P. S. Mahler

Multitarget moments and their application to mulitarget

tracking.

Proceedings of the Workshop on Estimation, Tracking and

Fusion: A Tribute to Yaakov Bar-Shalom, Monterey, CA,

2001, pp. 134—166.

[16] F. Palmieri, S. Marano, and P. Willett

Measurement fusion for target tracking under bandwidth

constraints.

Proceedings of the 2001 IEEE Aerospace Conference on

Information Fusion, Big Sky, MT, Mar. 2001.

[17] P. Peebles

Digital Communication Systems.

Upper Saddle River, NJ: Prentice-Hall, 1987.

[18] M. Rosencrant, G. Gordon, and S. Thrun

Decentralized sensor fusion with distributed particle filters.

Proceedings of the Conference on Uncertainty in Artificial

Intelligence, Acapulco, Mexico, Aug. 2003.

[19] Y. Ruan, P. Willett, A. Marrs, F. Palmieri, and S. Marano

Practical fusion of quantized masurements via particle fil-

tering.

IEEE Transactions on Aerospace and Electronic Systems, 44,

1 (Jan. 2008), 15—29.

[20] K. Sayood

Introduction to Data Compression.

Morgan Kaufman Publishers, 2nd ed., 2000.

[21] D. Schuhmacher, B-T. Vo, and B-N. Vo

A consistent metric for performance evaluation in multi-

object filtering.

IEEE Transactions on Signal Processing, 56, 8 (Aug. 2008),

3447—3457.

Biruk K. Habtemariam received the B.Sc. degree in electrical engineering from

Mekelle University, Ethiopia, in 2007, and M.A.Sc. degree in electrical and com-

puter engineering from McMaster University, Canada, in 2010.

Currently he is a research assistant/Ph.D. student in the Electrical and Computer

Engineering Department at McMaster University. From 2007 to 2008 he was a

graduate assistant in the Electrical Engineering Department at Mekelle University.

His research interests include information fusion, detection/estimation theory, and

target tracking. He is a recipent of International Excellence Award in 2011.

Ampikathasan Aravinthan received the B.Sc.Eng. and M.Sc.Eng. degrees in elec-
tronic and telecommunication engineering from University of Moratuwa, Sri Lanka,

in 2002 and 2005, respecteively. He received his M.A.Sc. degree in electrical and

computer engineering from McMaster University, Canada in 2009.

His research interests include estimation, target tracking and information theory.

[22] X. Sheng, Y. H. Hu, and P. Ramanathan

Distributed particle filter with GMM approximation for

multiple targets localization and tracking in wireless sensor

network.

Proceedings of Fourth International Symposium on Informa-

tion Processing in Sensor Networks, Apr. 2005, pp. 181—188.

[23] H. Van Trees

Detection, Estimation and Modulation Theory, vol. I.

New York: Wiley, 1968.

[24] B-N. Vo, S. Singh, and A. Doucet

Sequential Monte Carlo methods for multitarget filtering

with random finite sets.

IEEE Transactions on Aerospace and Electronic Systems, 41,

4 (Oct. 2005), 1224—1245.

[25] B-N. Vo and W-K. Ma

The Gaussian mixture probability hypothesis density filter.

IEEE Transactions on Signal Processing, 54, 11 (Nov. 2006),

4091—4104.

[26] E. Waltz and J. Llinas

Multisensor Data Fusion.

Norwood, MA: Artech House, 1990.

[27] I. H. Witten, R. M. Neal, and J. G. Cleary

Arithmetic coding for data compression.

Communications of the ACM, 30, 6 (June 1987), 520—540.

[28] X. Zhang and P. Willett

Cramer-Rao bounds for discrete-time linear filtering with

measurement origin uncertainties.

Proceedings of the Workshop on Estimation, Tracking and

Fusion: A Tribute to Yaakov Bar-Shalom, Monterey, CA,

May 2001, pp. 546—560.

128 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 7, NO. 2 DECEMBER 2012



Ratnasingham Tharmarasa received the B.Sc.Eng. degree in electronic and

telecommunication engineering from University of Moratuwa, Sri Lanka in 2001,

and the M.A.Sc. and Ph.D. degrees in electrical engineering from McMaster Uni-

versity, Canada in 2003 and 2007, respectively.

From 2001 to 2002 he was an instructor in electronic and telecommunication

engineering at the University of Moratuwa, Sri Lanka. During 2002—2007 he was

a graduate student/research assistant in ECE Department at McMaster University,

Canada. Currently he is working as a research associate in the Electrical and Com-

puter Engineering Department at McMaster University, Canada. His research inter-

ests include target tracking, information fusion and sensor resource management.

Kumaradevan Punithakumar received the B.Sc.Eng. (with First class Hons.)

degree in electronic and telecommunication engineering from the University of

Moratuwa, Moratuwa, Sri Lanka, in 2001, and the M.A.Sc. and Ph.D. degrees

in electrical and computer engineering from McMaster University, Hamilton, ON,

Canada, in 2003 and 2007, respectively.

From 2002 to 2007, he was a teaching assistant in the Electrical and Computer

Engineering Department, McMaster University, where he became a postdoctoral

research fellow in 2008. He is currently an imaging research scientist at GE

Healthcare, London, ON, Canada. His research interests include medical image

analysis, target tracking, sensor management, and computer vision.

Dr. Punithakumar was the recipient of the Industrial R&D Fellowship by the

National Sciences and Engineering Research Council of Canada in 2008.

Tom Lang received Bachelor (1983) and Master (1985) of Engineering degrees in

engineering physics from the Faculty of Engineering at McMaster University in

Hamilton, Ontario, Canada.

Since 1985, he has been employed by General Dynamics Canada in Ottawa,

Ontario, where he pursues research and development in sonar signal and data

processing. In 2007, he was appointed an adjunct professor in the Department of

Electrical and Computer Engineering at McMaster University. His primary research

interests include sonar signal processing, multitarget tracking, and multisensor data

fusion. He currently holds memberships in the IEEE Aerospace and Electronic

Systems Society and the Acoustical Society of America.

HABTEMARIAM, ET AL.: DISTRIBUTED TRACKING WITH A PHD FILTER 129



Thiagalingam Kirubarajan received the B.A. and M.A. degrees in electrical and

information engineering from Cambridge University, England, in 1991 and 1993,

and the M.S. and Ph.D. degrees in electrical engineering from the University of

Connecticut, Storrs, in 1995 and 1998, respectively.

Currently, he is a professor in the Electrical and Computer Engineering Depart-

ment at McMaster University, Hamilton, Ontario. He is also serving as an Adjunct

Assistant Professor and Associate Director of the Estimation and Signal Process-

ing Research Laboratory at the University of Connecticut. His research interests

are in estimation, target tracking, multisource information fusion, sensor resource

management, signal detection and fault diagnosis. His research activities at Mc-

Master University and at the University of Connecticut are supported by U.S. Mis-

sile Defense Agency, U.S. Office of Naval Research, NASA, Qualtech Systems,

Inc., Raytheon Canada Ltd. and Defense Research Development Canada, Ottawa.

In September 2001, Dr. Kirubarajan served in a DARPA expert panel on unattended

surveillance, homeland defense and counterterrorism. He has also served as a con-

sultant in these areas to a number of companies, including Motorola Corporation,

Northrop-Grumman Corporation, Pacific-Sierra Research Corporation, Lockhead

Martin Corporation, Qualtech Systems, Inc., Orincon Corporation and BAE sys-

tems. He has worked on the development of a number of engineering software

programs, including BEARDAT for target localization from bearing and frequency

measurements in clutter, FUSEDAT for fusion of multisensor data for tracking. He

has also worked with Qualtech Systems, Inc., to develop an advanced fault diagnosis

engine.

Dr. Kirubarajan has published about 100 articles in areas of his research interests,

in addition to one book on estimation, tracking and navigation and two edited

volumes. He is a recipient of Ontario Premier’s Research Excellence Award (2002).

130 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 7, NO. 2 DECEMBER 2012



Association Performance

Enhancement Through

Classification

QUIRIN HAMP

LEONHARD REINDL

Association of spatial information about targets is convention-

ally based on measures such as the Euclidean or the Mahalanobis

distance. These approaches produce satisfactory results when tar-

gets are more distant than the resolution of the employed sensing

principle, but is limited if they lie closer. This paper describes an

association method combined with classification enhancing perfor-

mance. The method not only considers spatial distance, but also

information about class membership during a post-processing step.

Association of measurements that cannot be uniquely associated to

only one estimate, but to multiple estimates, is achieved under the

constraint of conflict minimization of the combination of mutual

class memberships.

With Monte Carlo simulations the performance of this new

method is compared with a Kalman filter. This evaluation is per-

formed in a multi-target environment with unknown correspon-

dence between measurements and targets. The evaluation can not

be only based on the root mean square error (RMSE) of the position

estimate, but requires a performance assessment of the underlying

target number estimation and the association. Therefore, two new

measures are introduced.

The new method outperforms the Kalman filter approach with

respect to association performance and RMSE.
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1. INTRODUCTION

This paper describes the improvement of localization
of targets through information fusion. In particular,
information about static targets is fused, that are closely
lying below surface, for so named Ground Penetrating
Localization (GPL).
GPL is used in various fields such as in geology,

mine sweeping, and Urban Search and Rescue (USAR).
This paper focuses on USAR. The employed methods
for GPL can be classified into three categories illus-
trated in Fig. 1: detection, localization, and verification
methods.

Fig. 1. Ground-penetrating localization (GPL) of targets ti by

different types of methods in xz-plane: Detection, Localisation, and

Verification. In the scan volume of the detection method, two targets

can not be discerned because they lie within the resolution of the

sensing principle.

Detection methods produce a binary result with a
given detection probability of whether there is a target
within their scan volume. The detection probability
density is uniform within the scan volume as detection
methods are unable to localize targets. A detection is
determined by the signal to noise ratio and the detection
threshold. An example detection method is a search dog
sniffing out a victim.
In contrast, a localization method not only detects

(with a given detection probability) a target within its
scan volume, but can also localize its position. Local-
ization can consist of a one-dimensional range measure-
ment, a direction, or three-dimensional coordinates. Ex-
amples for localization methods are: Ground Penetrating
Radar (GPR) systems [29], cellular phone localiza-
tion [13].
Whereas both of the previous methods can only

produce uncertain results with respect to the exis-
tence of a target, verification methods can provide ev-
idencethrough visual or physical inspection. The prob-
lem with verification methods consists of knowing
where evidence about a target has been collected. This is
often not trivial during ground-penetrating exploration
that is often operated in an unknown environment with-
out a map. Endoscopes and rescue robots can for in-
stance be classified under verification methods since
they can penetrate into a rubble pile and provide evi-
dence about the whereabouts of victims [15].
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GPL with detection and localization methods corre-

sponds to remote sensing because the perceptive organs

or devices remain at the surface while the targets are

in the ground (see Fig. 1). In such remote sensing sit-

uation, a single sensor often only provides an incom-

plete, imprecise, and uncertain (for definitions refer to

[5]) picture about the target location. Therefore, it is

common practice to employ multiple sensors of differ-

ent types–i.e., heterogeneous sensors–and to fuse the

readings. However, if multiple targets lie close to each

other, the resolution capabilities are limited to that of

each single sensor.

The idea behind the proposed performance enhance-

ment solution is that the sensing by heterogeneous sen-

sors is based on target attributes that are not necessar-

ily the same among all targets and can be sensed by

search methods. These attributes are for instance the

health condition, respiration frequency, and size of a

buried victim. For instance, the GPR is capable of mea-

suring the respiration frequency which might be differ-

ent for every individual. Association is compromised

if a measurement can be associated to multiple closely

lying position estimates of a target. In this case, if the

association method not only considers spatial aspects

but previously detected unique attributes of the targets

as well, measurements can be unambiguously attributed

to the appropriate targets. The hypothesis is that imple-

menting this idea enhances localization performance.

Unknown material between the surface and the tar-

get impedes not only the target position estimation, but

also the fundamental detection accuracy. The scan vol-

ume is commonly unknown as well. The sensing range

corresponds to the maximal distance between target and

surface for which a true-positive detection occurs with

sufficient probability. Resolution expresses the minimal

mutual distance at which two targets can be detected

individually. For instance, the distribution of steel re-

inforced walls may be unknown, but will influence the

range and resolution of GPR. If the localization method,

despite some expectable position measurement error, is

capable of identifying the targets within its scan vol-

ume, the distinction of targets is easy, but this is often

not possible. In order to circumvent these limitations,

sensing can be carried out multiple times at different

locations and orientations, as presented in Fig. 1.

When errors are random, redundant fusion may be

used to increase the reliability, accuracy of and con-

fidence in the information [21]. Systematic errors can

be minimized using heterogeneous GPL methods. For

instance, a systematic error may only affect one sensor

type, but not others. Applying multiple sensing princi-

ples may allow decreasing, or even detecting and elim-

inating systematic errors.
In terms of the Joint Directors of Laboratories (JDL)

Data Fusion Working Group, this paper is limited to
Level 1 Object Refinement [12]. In multi-target track-
ing applications using multiple sensors, several fusion
architectures exist [11, 21]. The particularity of the

Association with Classification (AC) method presented
in this paper, is that it combines centralized fusion of

locational and feature information. However, we restrict

the focus to features that do not allow for the identifi-

cation of a target. AC only demonstrates its full poten-

tial, if the sensing by heterogeneous sensors is based on

multiple attributes. It is applicable for GPL of multiple,

unique targets, such as USAR of trapped victims or for

geologic exploration.

In Section 2, the state of the art is presented. In Sec-

tion 3, the problem of uncertain and imprecise informa-

tion association is formulated. The AC method based on

an initial probabilistic association and post-processing

using a possibilistic approach, is presented in Section 4.

The simulation environment and the performance mea-

sures used for benchmarking AC with a Kalman Filter

with an association gate are described in Section 5. The

results of a Monte Carlo simulation are presented in

Section 6 and discussed in Section 7.

2. STATE OF THE ART

Combining data originating from different sources

with the goal to improve the quality of information, is

called data fusion [28]. In pattern recognition, the data

originates mostly from a single source and is “complete”

when processed [16]. This paper focuses on scenarios

where information can be “incomplete” because it is

collected on demand.

Data fusion techniques have been developed for

tracking mobile targets. Hence, they are particularly

suited for dynamic worlds. In early work, the filters

were restricted to situations where a single target is be-

ing monitored. At every time step, only one measure-

ment was selected to update the state. Filters such as

Nearest Neighbor or Strongest Neighbor satisfied these
requirements. However, multiple observations may be

available to improve the accuracy of the estimate for the

single target. The Probabilistic Data Association (PDA)
filter is an “all-neighbor” approach that uses all neigh-

boring observations within some gated region and im-

proves the state estimation ([2], p. 299). However, the

tracking performance of multiple targets using the PDA

filter is poor, since “: : : the computation of the associ-
ation probabilities separately for each target is not ef-

fective in the presence of a neighboring target.” ([3],

p. 325) The stability of target tracks while crossing is

compromised by the persistent interference of the mea-

surements of neighboring targets. This applies also to

static worlds.

The Joint PDA (JPDA) filter suggested by Bar-

Shalom jointly calculates the probability of measure-

ments belonging to targets, to overcome the mentioned

limitations of PDA filters. However, the underlying as-

sumption of a JPDA filter is that a measurement only

originates from one target at every time step of a scan.

In static worlds, multiple measurements may sup-

port a single target. The bijective constraint between

measurement and target has to be withdrawn to be able
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to associate multiple measurements with a single tar-

get. Probabilistic association techniques for multi-target

environments in data fusion systems rely on validation

gates.1 The gates around position estimates allow the

association of measurements based on a probabilistic

approach. An alternative is Multiple Hypothesis Tracker

(MHT) that represents a measurement centric approach.

Because it is difficult to consider all association vectors,

this approach requires pruning [27]. Furthermore, it is

designed to make a single inference on one target ob-

ject [17]. Hence, it would need to be extended to handle

multiple targets.

To overcome the resolution limitation in dense multi-

target environments, the JPDA with Merged measure-
ments filter (JPDAM) has been suggested. It accounts

for situations where a measurement may have originated

from the detection of multiple targets that are indistin-

guishable. The membership of a merged measurement

to a track is calculated depending on its respective sig-

nal strength ([3], p. 366), i.e., an unresolved or merged

measurement carries less information (relative to its sig-

nal strength) than a resolved measurement. In GPL this

approach is often not possible since a measurement’s

relative signal strength can not be expressed. Hence,

hard association is favored.

The possibilistic association of Ayoun, et al. [1]

based on the Transferable BeliefModel (TBM) of Smets

[24] is limited on the one hand by a discretized resolu-

tion grid and on the other by the computational effort

[14], but has the interesting distinction of allowing to

search for the target location based on conflict min-

imization within a finite set of measurements. Possi-

bilistic approaches of association based on class mem-

bership for target type estimation are presented in Chap-

ter 13 of [23], but are limited to a single target and are

designed for dynamic worlds.

Clustering methods such as k-means are inappropri-

ate because they require the number of expected tar-

gets which is unknown. There are methods to iteratively

evaluate the measurements with varying estimated tar-

get number and choose the one which minimizes or

maximizes a given measure. However, this represents

a bigger computational burden which decreases effi-

ciency. Furthermore, the results of k-means clustering

are not reproducible since they are dependent upon the

initial conditions. Methods of statistical pattern recog-

nition such as Expectation Maximization or density es-

timation have the advantage of considering class mem-

bership, but need a considerable amount of information

1The validation gate is depicted by an ellipse centered about the nom-

inal position estimate that represents the contour of constant probabil-

ity (in two dimensions) for a multivariate Gaussian distribution [26].

To filter measurements that are not associated with an estimate (i.e.,

the information source) is the purpose of a validation gate that corre-

sponds to the volume around the position estimate ([20], p. 157). If

the Mahalanobis distance between an estimated target and a measure-

ment is smaller than a predefined threshold, the latter is associated

with the former.

to work properly, their computational effort is greedy

[16]. Furthermore, their design is particularly adapted

for static fusion and not for dynamic fusion.

3. FORMULATION OF THE ASSOCIATION
PROBLEM

The association aims to link measurements to a po-

sition estimate (M2E). A measurement ~r and a position

estimate ~̂r are both described by a position (x,y,z) and
a class membership mass function m. In the following,
the vector sign is omitted.

The challenge in M2E association lies in initiating

and revising a position estimate.2 If the sparsity of a

scenario (i.e., the minimal distance between targets) is

smaller than the resolution, accurate position estimates

are challenging3 [6].

The description of the association problem will be

twofold. First, we explain the processing of measure-

ments without considering their class membership, rep-

resented by the orientation of the shapes of the mea-

surements in Fig. 2. Second, the same case is revisited

considering the class membership.

Association without classification: The following

example is based on Bar-Shalom’s terminology [3] and

illustrates the complexity of the association problem

without classification consideration. The binary valida-

tion matrix −ij (see Eq. 2) expresses all feasible asso-
ciation events between measurements r and estimates
r̂ and is illustrated in Fig. 2. The rows represent the
measurements (r1, : : : ,ri, : : : ,r8 from top to bottom), the

middle column the estimate r̂1, and the right column
r̂2. The left column of the matrix indicates that every
measurement may originate from a spurious source. A

conjunctive area (A\B) is determined by intersecting
validation gates. Measurements that are within this area,

such as r5,r6,r7 in Fig. 2, require particular attention be-
cause there is more than one possible way of associating

them.

A measurement that could be simultaneously asso-

ciated to multiple estimates is called unresolved mea-

surement and is member of set Cur. A measurement

which can be associated to only one estimate r̂j is called
resolved measurement and is member of set Crej . Conse-
quently, if there is no associated estimate the measure-

ment is called unassociated measurement and is member

of set Cua (see r4 in Fig. 2). Whether r4 will initiate a
new estimate is determined by its detection probability.

The cases in following expression reflect these three

conditions quantitatively. The distinction is based on a

sum for a row of the validation matrix over the columns

from the first estimated target to the total estimated

number of targets N̂t.

2Tracking of mobile targets i.e., a dynamic state consists of revising

the state up to date, since it changes. However, the belief about the

static state is revised (not updated), because the state does not change.
3See measurements r5,r6,r7 in Fig. 2 which could be associated either

to estimate r̂1, to r̂2, to both, or to none.
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Fig. 2. Measurements (triangles ri) originating from two unknown targets (squares: t1 from top class and t2 from left class). Intersecting

validation regions (solid circles) around position estimates r̂1 (not filled triangle) categorized as top class member and uncategorized r̂2
(not filled star) based on resolved measurements (xy-plane). The validation regions A, B have the same size because the distribution of

measurements is unknown and presumed to be equal for any estimate.

ri 2

8>>>>>>>>>>>><>>>>>>>>>>>>:

Crej if

N̂tX
j=2

−ij = 1;

Cur if

N̂tX
j=2

−ij > 1;

Cua if

N̂tX
j=2

−ij = 0:

(1)

Association with classification: This processing re-
duces the feasible association events as presented in
Eq. 2:

−ij =

2666666666666664

1 1 0

1 0 1

1 0 1

1 0 0

1 1 1

1 1 1

1 1 1

1 1 0

3777777777777775
processing¡! −¤ij =

2666666666666664

1 1 0

1 0 1

1 0 1

1 0 0

1 1 1

1 1 0

1 0 1

1 1 0

3777777777777775
: (2)

In the following, three mutually exclusive classes
will be examined corresponding to the orientation of
the triangles in Fig. 2: top, bottom, left.
The relative complement areas of AnB and of BnA

are predominant for classification of estimates r̂1 and
r̂2, respectively. The measurements r1 and r8 are located
in the predominant area of estimate r̂1 (AnB). Based
on its membership to the top class, it can be inferred
that the estimate r̂1 most likely belongs to class top as
well. In contrast, no stringent inference on the class
membership of estimate r̂2 can be achieved, because
in its predominant region (BnA), conflicting classes
are present: left and bottom of r2 and r3, respectively.
However, it can be assumed that with an increasing
number of measurements present in the predominance
area, the classification errors become negligible.

Unresolved measurements for which association is

not unique can actually be assessed with respect to the

estimates’ class that was determined by the resolved

measurements. Top, unresolved measurement r6 can be

associated uniquely to r̂1 and becomes resolved. For
measurement r7 the situation is more complex since r̂2
has conflicting class membership. r̂2 could be left or
bottom. However, the left class corresponds more to

r̂2 than to r̂1. Hence, unresolved measurement r7 can be
associated uniquely to r̂2, and thus is resolved.
The class membership of measurement r5 is not

known. Hence, it can not be associated uniquely to any

of the two estimates and remains unresolved.

− becomes −¤ (see Eq. 2) when considering class
membership. It contains less feasible association events

than −.
These examples convey the complexity of associa-

tion considering class membership. Resolved measure-

ments must allow the determination of the estimate’s

class. The estimates must be of different classes in

order to be able to associate unresolved measurements

uniquely. If these constrains are fulfilled, unresolved

measurements in the conjunctive area can be resolved.

4. DESCRIPTION OF AC METHOD

Before presenting the two main steps of the AC

method, which consist of an initial probabilistic associ-

ation followed by a post-processing of unresolved mea-

surements, the underlying assumptions and simplifica-

tions will be explained.

4.1. Assumptions and Simplifications

The presented method can only be applied under the

following assumptions:

The localization performed by the sensors may be

based on different attributes of the targets. Since these

attributes may not be common to all targets, classi-

fication becomes feasible depending on the detected

attributes of the target. A sensor may be able to de-

tect multiple attributes at once, or heterogeneous sensor

technologies can be employed, which offer the opportu-

nity for complementary fusion,4 and can thus recognize

different classes. In this preliminary paper, the classi-

fication capability of sensors is assumed to be perfect

even if this can not be expected in reality.

4Definition provided in [8].

134 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 7, NO. 2 DECEMBER 2012



Furthermore, not only do the sensors need to recog-

nize different classes, but targets must be of different

classes. It is also presumed that a measurement only

originates from one information source, unlike with a

JPDAM filter where (to some extent) the model tries to

associate a measurement to two targets.

The distribution of measurements around a target is

unknown, but is constant in static worlds, and its estima-

tion depends upon the number of measurements avail-

able. The measurement noise is usually modeled by a

Gaussian distribution ([27], p. 154). An erroneous esti-

mation of the number and position of targets can have

two sources. Either there are not enough measurements

concerning all targets, or the processing is incorrect.

In order to focus on latter, we consider only situations

where sufficient measurements for each target are avail-

able to determine their number and position.

In situations where not many measurements are to

be expected such as during USAR, the initiation can not

be based on multiple measurements. Hence, a position

estimate is initiated as soon as a new measurement is

generated that can not be associated.

4.2. Initial Step of Association Method

Association of measurements is based on the Maha-

lanobis distance, and consists of finding the correlation

between measurements and an information source. This

statistical squared distance indicates the probability that

measurement ri belongs to estimate r̂j . In the follow-
ing, matrices are represented by uppercase letters while

vectors are lowercase.

Assuming that a positional error of a measurement

r in two dimensions (x,y) can be described with a
Gaussian distribution, the following covariance matrix

can be used, where ½ is the correlation coefficient for x
and y [26]:

C =

Ã
¾2x ½¾x¾y

½¾x¾y ¾2y

!
: (3)

Since the distribution of measurements around the

target is unknown but constant, it is assumed to be

Gaussian. The validation gate is based on an estimate

of this distribution. The distance between measurement

and estimate is based on the sum of the covariance

matrices of the gate G and of the measurement Ri.
Unlike Kalman filters, G remains constant. Otherwise

it would converge, because fusion leads to a reduction

of uncertainty ([3], p. 444), i.e., the fused uncertainty

ellipse is strictly contained in the intersection of the

two ellipses prior to fusion (see Eq. 6). Hence, for an

increasing number of measurements, the probability of

association would decrease considerably and hinder the

association.

The Mahalanobis distance d2ij is defined in Eq. 4.
The gate threshold ° gives the maximal distance for the
association of measurements to an estimate.

d2ij = (ri¡ r̂j)T(Ri+G)¡1 (ri¡ r̂j)| {z }
innovation

· °: (4)

Following Smith and Cheeseman [26] the revision

of an estimate’s position r̂0j is calculated by:

r̂0j = r̂j +Ri(Ri+§j)
¡1(ri¡ r̂j) (5)

and its corresponding covariance matrix expressing im-

precision is:

§0j = Ri¡Ri(Ri+§j)¡1Ri: (6)

The standard application of Kalman filters is to process

random signals that are represented “: : :as the output
of a linear dynamic system excited by independent

or uncorrelated random signals (“white noise”)” [18].

This application differs from the standard application,

because it is not a dynamic system.

The processing order of measurements fusion, par-

ticularly when targets are spaced close together, influ-

ences the association and leads to erroneous associa-

tions. This is especially true with unresolved measure-

ments. In order to correct these erroneous associations,

a post-processing step is performed.

4.3. Post-Processing of Initial Association

The post-processing is based on fusion of class

membership information, where the chosen framework

is TBM. The advantage of this approach is that inference

from contradictory class information is possible. There-

fore, the finite set of propositions £ is extended to the

set of all subsets 2£ by conjunction and to the empty

set. The set of all subsets is also called frame of discern-

ment. With this extension, the exhaustive and the ex-

clusive assumptions on the proposition framework can

be disregarded. This disregard is equivalent to the open

world assumption. This assumption accepts that none of

the propositions may be true [24]. No matter how large

the frame of discernment is, it contains three different

proposition classes: the empty set Ø, the atomic proposi-

tions corresponding to £, and conjunctive propositions
(number: 2£¡£¡1). Belief in a proposiiont is quan-
tized by a function called basic belief assignment (bba)

m(A), A 2£. Let m : 2£! [0,1], where following con-

straints hold:X
Aμ£

m(A) = 1, m(Ø) = 0: (7)

(8)

It is worth noting that the conjunction of all atomic

propositions corresponds to the vacuous function, also

referred to as total ignorance. The main difference of

the seminal proposition of Dempster and Shafer [22] is

that the conjunctive combination of beliefs

m12(A) =
X
B\C=A

m1(B)m2(C) (9)
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in the TBM is not normalized, since:X
B\C=Ø

m1(B)m2(C)> 0: (10)

For this reason, TBM is able to express conflict

among beliefs. The conflict is given by the mass al-

located to the empty set. It is advantageous that the

combination is commutative and associative. Conflict,

reliability and uncertainty can be expressed quantita-

tively.

The method is also attractive because of the ease of

implementation by matrices, as presented in [25].

4.3.1. Class Membership of Predominant Areas
Class membership is computed by combining all

class membership mass vectors mi of the resolved mea-
surements (ri 2 Crej ) (i.e., measurements in the predom-
inant area of an estimate). The result is again a class

membership mass vector for r̂j : m
p
j . If estimates are very

close, there are most likely no resolved measurements

available. This will prove to be a limitation, and will be

evaluated in Monte Carlo simulations.

4.3.2. Resolving Unresolved Measurement
To determine the most likely association, the mass

vector m of an unresolved measurement (r 2 Cur) is
combined with the mass vector mpj of each r̂j , and the
minimal conflict is determined. The bijective association

is given by the combination with the minimum conflict.

mcij =mi ¢mpj 8ri 2 Cur: (11)

−ij =

½
1 if j =minmcij(Ø);

0 if j 6=minmcij(Ø):
(12)

ALGORITHM 1 Association with classification (AC)

Input: association threshold °, ri
Output: position estimates r̂j

1: Evaluate number N̂t and r̂j 8fri 2 Crej g
2: −ij Ã 1 if d2ij · °
3: if 9ri 2 Cur then
4: mpj Ãmi ¢mpj 8fri 2 Crej g
5: for 8ri 2 Cur do
6: for j = 1 to N̂t do
7: mcij Ãmi ¢mpj

fSave the association of minimal conflictg
8: if minmcij(Ø) then
9: kÃ j
10: end if

11: end for

fResolve measurementg
12: −¤ij Ã 0 8j 6= k^ j > 1
13: end for

14: end if

15: return r̂j Ã r̄i

8
½
ri j −¤ij = 1^

PN̂
t

j=2−
¤
ij = 1

¾

Fig. 3. Measurements (Nm = 20 with normal spatial error ¾e = 1 m)

around two targets (squares, distance dt = 4 m). The difference in

the class of the measurements (circle or dot) indicates the original

target (xy-plane).

The estimates’ positions of the post-processed mea-

surements are calculated by taking the average instead

of using Eq. 5, as for Kalman filters.

5. SIMULATION

The evaluation of the performance of the proposed

fusion method AC will be carried out in a Monte Carlo

simulation. It is compared with a Kalman filter approach

which is called Kalman Gating (KG). It corresponds

to the AC method, with the difference that the post-

processing step is omitted. The position of the estimates

is calculated using the sequential Kalman update Eq. 5.

Two targets will be considered in this simulation, but

the methods can cope with multiple targets. The distance

dt between the two targets is the main evaluation vector,
because it simulates various densities which may occur

in real scenarios. The scale of the scenario is assumed

to be in the order of meters.

Parameters determining AC and KG are the standard

deviation ¾ = 1 m of the constant gate covariance matrix
G and the gate threshold ° = 4.

5.1. Generation of Simulated Measurements about the
World State

Measurements around targets are presumed to be

subject to a normal measurement error with standard de-

viation ¾e. Each target is supported by the same number
of measurements. Each measurement’s spatial uncer-

tainty is assumed radially symmetric, and is expressed

by a covariance matrix Ri.
There are no outliers and no classification errors.

Only two classes are considered. Figure 3 represents

such a scenario.

The scenario and the simulation parameters are

given in Tables I and II, respectively.

5.2. Performance Measures

The quantitative evaluation of fusion methods re-

quires performance measures which are general enough

to be applied to all types of scenarios, including those

with more than two targets. The determination of the

estimates’ positions relies on a consecutive order of pro-
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TABLE I

Parameters of the GPL Scenario

Nt Nm ¾ of Ri=m ¾e=m

2 20 0.4 0.5

TABLE II

Parameters of the Monte Carlo Simulation

dt=m Step Size/m Repititions

0—5.5 0.1 1500

cessing steps. First, the number of targets has to be esti-

mated. Then the measurements have to be associated to

these estimates and finally, the positions of the estimates

are calculated based on the associated measurements.

The accuracy of the position estimate is expressed with

the RMSE, which depends on the correct estimation of

the number of targets and the correct association of mea-

surements to the estimates.

It is worth noting that the performance can only be

evaluated if all knowledge about the world is available.

The so called ground truth gives information about the

target position and the origin of a measurement.

Even if the RMSE is conditioned by the underlying

association performance, the performance of estimating

the number of targets and of associating measurements

to these position estimates will be evaluated individu-

ally.

5.2.1. Target Estimation

The fusion methods may generate a number of posi-

tion estimate N̂t that do not correspond to the real num-
ber of targets Nt.
A method’s performance in estimating the correct

number of targets is given by T: the quotient of the
number of estimated N̂t over the number of real targets
Nt as given in Eq. 13. For values T < 1 the method un-
derestimates and for T > 1 it overestimates the number
of targets.

T =
N̂t
Nt
: (13)

5.2.2. Association

The association performance A is the quotient of

the correctly associated measurements (Nm¡Nerr) over
the total measurements Nm originating from a target

(Eq. 14). A is strictly bound in the interval (1=Nt,1].

A=
Nm¡Nerr
Nm

: (14)

The evaluation of Nerr requires particular attention.
When the measurements are created, the index of their

original target is saved in an array. The aim of any as-

sociation method is to reconstruct this array (or “code

word”), but there are two complicating factors. First,

there might be Nerr errors that must be detected in the re-
constructed code and second, the sequence could possi-

bly be generated with a different character concordance.

For instance, following two code words5 c1 =
123123 and c2 = 321321 contain the same informa-
tion. However, characters “1” and “3” in c1 correspond
to character “3” and “1” in c2, respectively. The code
words use different permutations of the character set ª :

©1 = [1,2,3] 6=©2 = [3,2,1]:
Since the concordance is unknown, the generated

code word is transcribed with any possible concor-

dances that are all possible permutations ofª . The num-
ber of all possible permutation is: q! (in the example:
3! = 6).

For each of these possible permutations, the

Damerau-Levenshtein distance dDL is computed [4, 9].
The Damerau-Levenshtein distance is particularly suited

for the evaluation of q-ary codes. The number of asso-

ciation errors corresponds to the smallest dDL distance

between these transcribed code words c
©
i
trans and the orig-

inal code word corig (see Eq. 15).

Nerr = min
i
dDL(corig,c

©
i
trans) 8©i 2ª: (15)

5.2.3. Root Mean Square Position Error

The position estimate error is given by the mean of

the root mean square distance between estimated posi-

tions r̂j and target positions tk given in Eq. 16. Since in
GPL practice, the correspondence between estimate and

target remains unknown, only the most likely associa-

tion can be considered. At most, the presumption can be

made that the correct correspondence is the one with the

minimal Euclidean distance among their positions. The

significance of the RMSE is limited, even if the number

of estimated targets corresponds to the number of targets

(N̂t =Nt) because two estimates can be associated with
the same target. It is even more detrimental if the esti-

mation of the number is erroneous (N̂t 6=Nt), which is
why previously presented performance indicators about

target estimation and association are crucial.

RMSE=

vuuut 1

N̂t¡ 1

N̂
tX

j=1

min
k
(kr̂j ¡ tkk)2: (16)

6. RESULTS

The results of the Monte Carlo simulation are pre-

sented in Figs. 4, 5, and 6. The analysis of the results

represented in Figs. 4 and 5 is performed by comparison

with the cumulative intersection distribution function

Pint, i.e., the separation of two Gaussian distributions.
Eq. 17 expresses the cumulative intersection probabil-

ity of two uni-variate normal distributions with equal

5Length n= 6, character set ª = f1,2,3g, character set cardinality
q= jª j= 3.
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Fig. 4. The target estimation performance T evaluated through a

Monte Carlo simulation is represented over the distance dt between

two targets for the method KG and AC (lines interpolated). The

intersection probability Pint represents the overlap of the

measurements’ distribution. The methods’ performances are

identical.

Fig. 5. The association performance A is represented over the

distance dt between two targets for the KG and the AC method (lines

interpolated). AC outperforms the KG with respect to A when their

validation intersect, but do not match.

Fig. 6. The RMSE is represented over the distance dt between two

targets for KG and AC (lines interpolated). The characteristic peak in

the RMSE is dependent on the methods’ capability to detect the two

targets.

standard deviation ¾ as a function of dt:

Pint = 1¡ erf
μ

dt

2
p
2¾2

¶
: (17)

As AC is based on the KG for target number estima-

tion, their performances with respect to T are identical

as visible in Fig. 4. The graph is classified into two

regions depending on whether the target number Nt is
underestimated (region I) or overestimated (region II).

The AC method enhances the performance of cor-

rect association to estimates whenever validation gates

intersect, but do not match. An increase in the distance

dt in region I (see Fig. 5) improves the association per-
formance A. The maximal difference in association per-
formance (¢A) is reached at an intersection probability
of Pint = 3%.
The positional RMSE for both methods increases

in region I with an increasing distance dt. However,
the maximal error is reached for both methods before

the limit of region I. AC reaches its maximum RMSE

around dt = 1:0 m and KG around dt = 1:3 m. After
the maximum the RMSE monotonically decreases. The

RMSE of AC is always smaller that of KG.

7. DISCUSSION AND OUTLOOK

The performance of any parametric fusion method

depends upon an accurate estimation of parameters. To

avoid, for instance, an overestimation of the number of

targets (T > 1), the standard deviation of the measure-
ments ¾e around the targets has to correspond to the
standard deviation of validation gate G. If ¾ of G is

larger than ¾e, the association performance A deterio-
rates. In contrast, if ¾ of G is smaller than ¾e, the number
of estimates Nt is overestimated at a smaller distance of
dt, enhancing A.
Comparing Fig. 5 with Fig. 6 allows to reason that

the smaller RMSE of AC in region II–in average 0.25 m

better–is not due to better association performance,

since in region II, A converges to the optimum for

both. Hence, the smaller position RMSE must be due

to the difference on how the estimates’ position is

evaluated. In region I however, there is an improvement

of association performance with ACwhich explains why

the maximal RMSE is reached at smaller dt and why it
constantly decreases in comparison to KG.

The presented method is based on Kalman filtering

which intrinsically is based on a motion model for the

targets. Despite the focus of this paper on static states,

the authors hope to extend the presented framework to

dynamic states where situations of limited resolution

may also arise. The Kalman filter in the static case

behaves like a median or low-pass filter.

The evaluation of the position error (Eq. 16) could

be based on an optimal assignment method such as

the Hungarian method [19]. However, the Hungarian

method may as well produce unsatisfactory results due

to its global optimization nature, especially in cases

where the estimated target number does not correspond

to the true one.

The revisable reasoning characteristic of the TBM

method is questionable because the mass of the empty

set corresponding to the conflict is a strictly monotonic

increasing function. More combinations of conflicting
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class information decrease the specificity of informa-

tion. Robust combination rules such as suggested by

Florea or Dezert might be beneficial [7, 10]. What is

missing in the TBM combination rule is an expression

of the reliability dependent on the total amount of fused

information.

8. CONCLUSION

This paper demonstrates the potential of basing asso-

ciation not only on spatial aspects, but on classification

attributes as well. The post-processing of the ACmethod

enhances the association performance for closely lying

targets while diminishing the RMSE. The belief com-

bination framework of the TBM is a valuable tool to

quantitatively express conflict, and to infer from class

membership even for contradictory class information,

which is to be expected for closely lying targets.
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A Fusion Analysis and

Evaluation Tool for

Multi-Sensor Classification

Systems

ROMMEL NOVAES CARVALHO

KUOCHU CHANG

Multi-Sensor Fusion is founded on the principle that combin-

ing information from different sensors will enable a better under-

standing of the surroundings. However, it would be desirable to

evaluate how much one gains by combining different sensors in

a fusion system, even before implementing it. This paper presents

a methodology and tool that allows a user to evaluate the classi-

fication performance of a multi-sensor fusion system modeled by

a Bayesian network. Specifically, we first define a generic global

confusion matrix (GCM) to represent classification performance in

a multi-sensor environment, we then develop a methodology with

analytical convergence bounds to estimate the performance. The

resulting system is designed to answer questions such as: (i) What

is the probability of correct classification of a given target using

a specific sensor individually? (ii) What if a specific set of sensors

combined together are used instead? (iii) What is the performance

gain by adding another sensor to this set? and (iv) Which sensors

provide a better cost/benefit ratio? These questions are answered

based on the probability of correct classification that can be ana-

lytically estimated using Bayesian inference with the given sensor

models defined by confusion matrices. The principle that combin-

ing information enhances the understanding of the surroundings

is also supported by the analysis made in example models for air

target tracking and classification using the developed tool.
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1. INTRODUCTION

Fusion of information from multiple sources to

achieve performances exceeding those of individual

sources has been recognized in diverse areas [17] such

as reliability, forecasting, pattern recognition, neural

networks, decision fusion, and statistical estimation. In

engineering systems, the fusion methods have proven to

be particularly important since they can provide system

capabilities with multiple sensors significantly beyond

those of single sensor systems. Multi-sensor data fu-

sion allows the combination of information from sen-

sors with different physical characteristics to enhance

the understanding of the surroundings and provide the

basis for planning, decision-making, and control of au-

tonomous and intelligent machines. It seeks to com-

bine information from multiple sensors and sources to

achieve inferences that are not feasible from a single

sensor or source.

To fully exploit the capabilities of a fusion system,

modeling and performance evaluation methodologies

are critical in order to optimally design and effectively

evaluate fusion performance of multiple heterogeneous

sensor data. In particular, a systematic approach to eval-

uate the overall performance of the system is indispens-

able. To allow developers and users to assess their fusion

system performance under various conditions before a

data fusion system is deployed, a tool based on the Fu-

sion Performance Model (FPM) [8] was developed with

a focus on one of the most important performance mea-

sures, spatial and classification performance modeling

and prediction. Note that the purpose of the FPM is to

predict performance given sensor suite and operating

conditions.

For a sensor fusion system, typical questions that

could be asked would be “what is the best achievable

performance, and is it good enough?” The FPM will

be able to answer the first question and if the answer

is “not good enough,” a sequence of “what if” scenar-

ios can be added for FPM to conduct new assessments.

Those scenarios may include changing operating con-

ditions, such as signal-to-noise ratio (SNR), geometry,

and revisit rate, to name a few of the existing sensors

or adding new sensors. The assessment results can then

be used to better manage sensors and allocate system

resources.

While the FPM model described in [8] developed

a kinematic performance prediction methodology and

defined the classification performance model and [7]

described an analytical method to predict classification

performance and an efficient approximate formula to

estimate the average probability of correct classifica-

tion given sensor characteristics, there is still a lack of

effective tools to evaluate a fusion system performance

as described in [8] and [7] in an easy and accessible

way in order to make the assessment results promptly

available to better control sensors and allocate system

resources.
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In particular, for the case of discrete reporting

elements–the sensor exploitation system’s estimate of

target type or activity, it is more complicated to pre-

dict fusion performance for target/activity identifica-

tion or situation assessment. For example, observations

of the target’s attributes, such as feature-modulation

frequency, radar emissions characteristics, and visual

image, may be used to establish target identity. They

are based on a transformation between observed tar-

get attributes and a labeled identity. Methods for iden-

tity estimation involve [15] pattern recognition tech-

niques based on clustering algorithms, neural networks,

or decision-based methods such as Bayesian inference,

Dempster-Shafer’s method, or weighted decision tech-

niques.

The focus of this paper is on developing a method-

ology and software tool to model and evaluate perfor-

mance of a multi-sensor classification system. Specif-

ically, we define a generic classification performance

metric for multi-sensor fusion, called global confusion

matrix (GCM), from the local sensor confusion matri-

ces described by Bayesian network models. We then

develop a stochastic simulation methodology with ana-

lytical convergence bounds to estimate the performance.

Based on the methodology, a software tool is devel-

oped to help a decision maker answer the following

questions: (i) What is the probability of correct clas-

sification of a given target using a specific sensor in-

dividually? (ii) What if a specific set of sensors com-

bined together is used instead? (iii) What is the perfor-

mance gain by adding another sensor to this set? and

(iv) Which sensors provide a better cost/benefit ratio?

We apply Bayesian network (BN) to model the relation-

ship between target variable and various levels of ob-

servables and compute the defined performance accord-

ingly. We assume that the BN model is given, should

that be created from expert knowledge, learning from

past data or any other method, and our goal is to as-

sess its performance. In other words, the methodology

is generic and independent of the source of the model.

However, if the model itself is inaccurate due to limited

training data or insufficient domain expertise, then we

have to take into account the model uncertainty when

assessing the performance. We demonstrate the types

of evaluation and conclusions that can be achieved with

this tool using an example model from a model-based

identification (MBID) component described in [5].

The evaluation process described was implemented

as an extension of a free, Java based, and open-

source probabilistic network framework, UnBBayes

[2—4, 10, 13]. This framework proved to be an inter-

esting alternative since it already had Bayesian net-

works representation, simulation, and inference algo-

rithms built-in, making the development of the evalu-

ation module much easier and faster.

This paper is organized as follows. Section 2 reviews

the main concepts concerning the Fusion Performance

Model described in [7, 8]. Section 3 describes the tech-

nical approach used to implement the method to pre-

dict classification performance based on the FPM. Sec-

tion 4 derives an analytical convergence property of the

evaluation methodology and predicts number of simu-

lation trials needed in order to achieve a desirable error

bound. Section 5 shows an overview of the probabilis-

tic network framework used, UnBBayes, to implement

the evaluation module. Section 6 presents the evaluation

tool and its use in several example models. Finally, Sec-

tion 7 relates the main contributions of this paper and

some future work.

2. MODELING CLASSIFICATION FUSION
PERFORMANCE

Currently, data fusion systems are used extensively

for target tracking, automated identification of targets,

situation assessments, and some automated reasoning

applications [15]. This paper uses a Bayesian network

model that is a part of a model-based identification

(MBID) component of an effort to design a decision-

theoretic sensor management system. This model, de-

scribed in [5], is used for incorporating target identifi-

cation (ID) into a multiple-hypothesis tracking (MHT)

system in a multi-sensor environment.

Bayesian networks [9] are directed acyclic graphs

(DAGs), where the nodes are random variables, and the

arcs specify the independence assumptions that must

hold between the random variables (the arc points from

the parent to the child node). These independence as-

sumptions determine what probability information is re-

quired to specify the probability distribution among the

random variables in the network.

To specify the probability distribution of a Bayesian

network, one must give the prior probabilities of all root

nodes (nodes with no parents) and the conditional prob-

abilities of all other nodes given all possible combina-

tions of their parents. Bayesian networks allow one to

calculate the conditional probabilities of the nodes in

the network given that the values of some of the nodes

have been observed.

In addition to the convenient and flexible represen-

tation, a major benefit of using BNs is the existence of

many powerful probabilistic inference algorithms, such

as the distributed algorithm [16], the influence diagram

algorithm [18], the evidence potential algorithm [14],

simulation algorithms [11, 20], and the symbolic prob-

abilistic inference (SPI) algorithm [19].

For MBID system mentioned earlier [5], the BN is

used to relate the target states to the detected measure-

ments at the sensors. Each evidence node represents the

detected observation from a source at a given sensor.

The conditional probabilities depend on the propaga-

tion from the target to the sensor, array gain, detection

thresholds, etc. Other information such as relative ge-

ometry between target and sensor, the strength of the

target, and the transmitted energy can also be summa-

rized in the conditional probability of the received mea-

surement given the target state.
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Fig. 1. A Bayesian network model example for a model-based identification (MBID) system.

It is assumed that in the system, there are two types

of sensors: electronically scanning radar (ESA) and

Infrared search and track (IRST). In addition to the

regular search and update capabilities, the ESA radar

is modeled to have three identification modes: ultra-

high-resolution radar (UHRR), radar signal modulation

(RSM), and radar electronic support mode (RESM).

Since the radar detection and observation processes are

fairly complicated and cannot be easily expressed in a

simple form, a Bayesian network is used to model the

processes and compute the association likelihoods as

well as manipulate the target state distribution. In this

system, a centralized fusion architecture is assumed, i.e.,

data collected from multiple sensors are pooled together

in a central site where they are combined.

UHRR is an active technique and is basically an

imaging technique that will be able to identify features

of an airplane and therefore infer the target type. RSM

is an active technique that can detect a target feature-

modulation frequency. RESM is a passive technique

that can observe the characteristics of the target’s radar

emissions. Based the observed features of the radar

signal, the MBID system will infer a radar mode that

will, in turn, be an evidence for a target type.

Figure 1 shows the BN that contains all three identi-

fication modules. Note that at any given moment, only

one module can be active. In other words, only one type

of evidence can be attached to the network. In the figure,

the UHRR module is represented by the node “UHRR

Confusion,” RSM is represented by the node “Modu-

lation Frequency” (MF), and RESM is represented by

the remaining three nodes, “Center Frequency” (CF),

“PRI,” (pulse repetition interval) and “PRF” (pulse rep-

etition frequency). Note that in all three radar modes, the

observation is dependent on the probability of detection

represented by the node “Detected.” Probability of de-

tection is a function of target range and aspect angle.

The measurements from the three radar modes can ei-

ther be discrete or continuous values. For example, the

observation of UHRR is the actual target type, which

can only be one of the given values. On the other hand,

the observations for other radar modes have continu-

ous values and can assume any value within the defined

ranges.

Despite these qualitative notions and quantitative

calculations of improved system operation by using

multiple sensors and fusion processes, actual implemen-

tation of effective data fusion systems is far from sim-

ple. In practice, the combination of sensor data may

actually produce worse results than could be obtained

by tasking the most appropriate sensor in a sensor suite.

This is caused by the attempt to combine accurate (i.e.,

good data) with inaccurate or biased data, especially if

the uncertainties or variances of the data are unknown

[15]. Before a data fusion system is deployed, develop-

ers and users need to be able to assess their fusion sys-

tem performance under various conditions. This paper

develops a tool based on the Fusion Performance Model

(FPM) described in [8]. The focus is on predicting the

classification performance. To do so, first we define the

following terminologies [7].

Local Confusion Matrix (LCM): Local confusion

matrices are the ones based on single sensor classi-

fication system observations. There are two types of

LCMs–feature level LCM defined as the conditional

probability/likelihood tables of the observable/evidence

nodes given their parent nodes, and label (target ID)

level LCM, Pr(Obs j T = j), defined as the conditional
probability tables of the observable/evidence given true

target ID. It is the latter that will be used to obtain the

global confusion matrix (GCM).

Global Confusion Matrix (GCM): Global confu-

sion matrix is obtained based on multiple sensor clas-

sification observations with a given LCM over time.

Each element in the GCM is defined as the proba-

bility of inferred1 target class given true target class,

GCM(i,j) = Pr(I = i j T = j). Note that the GCM is ap-

plicable to both single sensor and multiple sensor sys-

tems.

1The posterior probability of the target class being true given the

sensor observations.
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TABLE I

“Target Type” Node’s Global Confusion Matrix Example

B1 B2 R1 R2 N Unk

B1 0.80 0.02 0.10 0.02 0.02 0.04

B2 0.02 0.70 0.02 0.14 0.08 0.04

R1 0.10 0.02 0.80 0.02 0.02 0.04

R2 0.02 0.14 0.02 0.70 0.08 0.04

N 0.02 0.15 0.04 0.15 0.60 0.04

Unk 0.04 0.04 0.04 0.04 0.04 0.80

Average Probability of Correct Classification (Pcc):
Average probability of the class corresponding to the

true class of the associated target. It is the average value

of the diagonal elements of GCM, computed as,

Pcc=
1

k

X
i

GCM(i, i) =
1

k
Trace(GCM) (1)

where k is the total number of target classes.
Table I illustrates a global confusion matrix example

for the “Target Type” node in Fig. 1, where the columns

represent the predicted class and the rows the true

class.2 Therefore, the diagonal elements represent the

probabilities of correct classification. In this example,

the probability of correct classification is 0.733.

3. COMPUTING CLASSIFICATION FUSION
PERFORMANCE

To compute the GCM is to infer the target ID/type

based on a series of sensor reports. This is similar to

state-estimation, where the state of a system is esti-

mated based on observed measurements. Similar to the

Kalman filter, which allows for off-line estimation of

the expected tracking performance (covariance matrix),

there is a need for a systematic approach to evaluate

the classification performance of a sensor, or multiple

sensors.

In order to predict classification performance with

a Bayesian network model, we need Pr(Obs j T = j),
the sensor target ID level LCM. This can be done by

“predicting” the observation distribution using forward

inference given a target ID with either a simulation

method or an exact (e.g., Junction tree [14]) algorithm

depending on the network configuration. Given the

LCM, the GCM can then be computed as,

GCM(i,j) = Pr(I = i j T = j)
=
X
Obs

Pr(I = i jObs,T = j)Pr(Obs j T = j)

¼
X
Obs

Pr(I = i jObs)Pr(Obs j T = j) (2)

where I is the inferred target ID, T is the true target ID,
and Obs is the sensor observation.3

2“B1” and “B2” are for Blue classes, “R1” and “R2” are for red

classes, “N” is for neutral class, and “Unk” is for unknown class that

do not belong to any other class.
3Note that to derive (2), a Markov chain property of TObs I is assumed.

Note that this will give us a square matrix where
each row indicates that if the target T = j is true, what
is the probability of the sensor/classifier inferring it as
I = i given a single report Obs from a sensor. The per-
formance measure can then be defined as the average
correct classification probability as described earlier.
When a total of n observations are reported by the sen-
sors, the expression in (2) will need to be summed over
all possible realizations of Obs, namely, an exponential
enumeration of all jObsjn possible realizations.
In general, the calculations for the elements of the

GCM are computationally extensive. There are two
ways to do so. One is to use the Monte Carlo approach
where we randomly simulate the sensor observations
based on a given BN model and recursively update the
target state probability. Another way is to use analytical
performance model.
Our goal here is to develop a mixed approach where

analytical calculations will be performed whenever fea-
sible. Otherwise, a stochastic simulation will be used.
We have developed a very efficient polynomial-time an-
alytical approach to approximate the GCM based on the
assumption that the sensor observations are condition-
ally independent given the target ID [21]. Due to po-
tentially high model complexity, we also developed an
approximation method based on stochastic simulation.
The algorithm is briefly summarized in Figure 2.

1. Select the target node, the corresponding
evidence nodes, the condition on which we want
to evaluate the BN, and the number of simulation
trials to be generated from the model. Note that,
in this implementation, only one target node is
allowed.
2. Simulate the data based on the number of tri-

als desired from the BN model using the stochas-
tic sampling algorithm (see [6, 11—12, 20—21] for
details). Note that in general the error of the esti-
mated probabilities is inversely proportional to the
sample size. More detail is given in Section 4.
3. Compute the approximate conditional

probabilities, based on its frequency of occur-
rence, of the evidence nodes given target node,
Pr(Obs j T = j).
4. Compute probabilities for predicted target

ID given evidences using the probabilities com-
puted in step 3.

Pr(I = i jObs) = Pr(Obs j I = i)Pr(I = i)
Pr(Obs)

=
Pr(Obs j I = i)Pr(I = i)P
j Pr(Obs j I = j)Pr(I = j)

(3)

where the prior probability Pr(I = i) is retrieved
from the marginal distribution of the target node.
5. Finally, compute the global confusion ma-

trix, as described in equation (2), by using the val-
ues computed in steps 3 and 4.

Fig. 2. Estimating GCM with stochastic simulation.
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Some of the nodes in the network are neither target

nor evidence nodes, however these “hidden” nodes are

essential to describe the sensor models. For sensitivity

analysis, they can be defined by “conditioning” on a

set of specific values. Although the estimation error

is inversely proportional to the sample size, its true

value also depends on the number of nodes (evidences

and target) considered and their size (number of sates).

Therefore, the estimation error obtained here might be

much smaller than its actual value.

4. ALGORITHM CONVERGENCE ANALYSIS

As mentioned above, due to high complexity and

possible hybrid nature (mixed variables) of the model,

we may have to apply approximate method to estimate

Pr(Obs j T = j) based on stochastic simulation and sub-
sequently compute the posterior probability according

to the Bayes rule, namely, (3). To do so, one critical

question to be answered is how fast the simulation algo-

rithm converges when estimating the GCM and does it

converge to the correct probability. This section derives

an analytical convergence rate of the FPM algorithm and

estimates the number of simulation trials needed in or-

der to achieve a desirable accuracy level (error bounds).

With (2), let YOj be the indicator function for estimat-
ing Pr(Obs j T = j), i.e., YOj = 1 when “Obs” is realized
given T = j in a particular simulation trial and YOj = 0
otherwise. Then it can be easily shown that when the

sample size n is large, the probability distribution of
XOj ´

P
YOj=n can be approximated by the normal dis-

tribution,

p(XOj)»N[XOj ;X̄Oj ,¾2Oj] (4)

where X̄Oj = POj ´ Pr(Obs j T = j) is the mean and ¾2Oj
= var(Xoj)¼ POj(1¡POj)=n is the variance of the ran-
dom variable Xoj respectively.
To estimate the probability of correct classification,

as shown in (1), we only need to focus on the diagonal

elements of the GCM. From (1)—(3), it can be easily

shown that,

GCM(i, i) = Pr(I = i)
X
Obs

Pr(Obs j I = i)2
Pr(Obs)

= Pr(I = i)
X
Obs

¾2Oi
Pr(Obs)

·
Pr(Obs j I = i)

¾Oi

¸2
:

(5)

Assuming the size of the state space of Obs is relatively

large, i.e., jObsj ´mÀ 1, and assuming that POi¿ 1

and PO ´ Pr(Obs)¼ POi,4 then

GCM(i, i) =
Pr(I = i)

n

X
Obs

·
Pr(Obs j I = i)

¾Oi

¸2
: (6)

4This approximation could be poor.

Let Gi,i be the indicator function of GCM(i, i), then the
sample mean of Gi,i can be approximated by,

5

Ḡi,i ¼
Pr(I = i)

n

X
Obs

·
XOi
¾Oi

¸2
(7)

where Z ´PObs[XOi=¾Oi]
2 follows a non-central Chi-

square distribution with Z̄ =m+¸ and ¾2z = 2(m+2¸),
where

¸=
X
Obs

"
X̄Oi
¾Oi

#2
=
X
Obs

"
X̄2Oi

X̄Oi(1¡ X̄Oi)=n

#

= n
X
Obs

"
X̄Oi

(1¡ X̄Oi)

#
(8)

In the case when POj is approximated by a uniform

distribution, X̄Oi ¼ 1=m, then ¸=mn=(m¡ 1)·mn,
and ¾2z = 2(m+2¸)· 2m(1+2n). Therefore, with Pi ´
Pr(I = i), the variance of Ḡi,i is,

¾2
Ḡi,i
= (Pi=n)

2¾2z < P
2
i

2m(1+2n)

n2
: (9)

Finally, assume Pr(I = i) is approximately uniform,

since from (1), PCC = (1=k)
Pk
i=1GCM(i, i), the variance

of the estimate P̂CC is ¾
2
CC = (1=k

2)
P
i=1,:::,k ¾

2

Ḡi,i
, where

k is the state space size of the ID node, then

¾2CC =
1

k2

X
i

(Pi=n)
2¾2z <

2m(1+2n)

k3n2
: (10)

With Chebyshev’s inequality, for any " > 0,

Pr(jPCC¡ P̂CCj< ")¸ 1¡
¾2CC
"2
: (11)

Equations (10)—(11) provide a performance bound for

the absolute error of the average correct classification

probability given the observation state space size, the

target state space size, and the number of simulation

trials. When PCC is normally distributed, then a tighter
bound can be obtained as follows,

Pr(jPCC¡ P̂CCj< ") = ® (12)

where "=©¡1((1+®)=2)¾CC, ® is the confidence level,
and © is the CDF of the standard normal distribution.

5. PERFORMANCE EVALUATION

Recall that the main objective of the tool developed

in this paper is to evaluate the fusion performance and

quantify how much one gains by combining different

sensors in a fusion system. Specifically, the system is

designed to help a decision maker answer the following

questions: (i) What is the probability of correct clas-

sification of a given target using a specific sensor in-

dividually? (ii) What if a specific set of sensors com-

bined together is used instead? (iii) What is the perfor-

mance gain by adding another sensor to this set? and

(iv) Which sensors provide a better cost/benefit ratio?

5Likewise, this could be a rough approximation.
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Fig. 3. UnBBayes’ evaluation module input panel.

Fig. 4. UnBBayes’ evaluation module output panel.

These questions can be answered by using the tech-

nical approach described in Sections 3—4. Figure 3

shows the necessary inputs that need to be specified

for the FPM evaluation module. The inputs are:

Target node: Select the target node of interest.

Evidence nodes: Choose the evidence nodes, they

are the sensor observables in a Multi-Sensor Classifica-

tion System.

Cost: The cost associated with the evidence node.

It is assigned heuristically or based on a priori knowl-

edge of the cost of allocating the corresponding sensor

resource.

Condition: Choose the state for the conditioning

nodes, which represent an optional artificial context for

sensitivity analysis. These nodes cannot be target or

evidence.

Sample size: The number of trials to be generated

from the model. The larger the number the more accu-

rate the result, however the longer it will take to com-

pute.

Error bound: In case the error bound is given, the

sample size will be automatically computed based on

the analysis given in Section 4.

Figure 4presents the outputs computed inUnBBayes’

evaluation module that can answer such questions. The

outputs include:

GCM: The global confusion matrix computed for

the selected target node and all the chosen evidence

nodes.

Error: As explained in Section 4, the error can be

approximately computed by equations (11) and (12).

Probability of Correct Classification (Pcc): The

probability of correct classification computed from the

GCM considering all evidence nodes.

Marginal PCC (MPCC): The probability of cor-

rect classification computed from the GCM given all

evidence nodes other than the one presented in the row

(see “Node” column).

Marginal Improvement (MI): The probability of

correct classification gained by adding the node pre-

sented in the row to the rest of other nodes,

MI = PCC¡MPCC: (13)

Individual PCC (IPCC): The probability of cor-

rect classification computed from the LCM considering

only the evidence presented in the row.

Cost Rate: The individual probability of correct

classification over the cost,

Cost Ratio =
IPCC

Cost
: (14)

Using the tool and its output just presented we were able

to analyze the example model described in Section 2

for air target tracking and classification. Recall that

in this example we have three identification modules

that represent the evidence nodes. UHRR is an active

technique and is basically an imaging technique that

will be able to identify features of an airplane and
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therefore infer the target type. RESM (represented by

nodes “Center Frequency”–CF, “PRF,” and “PRI”) is

an passive technique that can detect a target feature-

modulation frequency. RSM (represented by the node

“Modulation Frequency”–MF) is an active technique

that can observe the characteristics of the target’s radar

emissions. Based the observed features of the radar

signal, the MBID system will infer a radar mode that

will in turn be an evidence for a target type.

In the BN model, the target type node has 6 differ-

ent possible labels: [B1, B2, R1, R2, Neutral, Unknown]
with a given prior probability distribution. The feature

of UHRR is an identification of target type with condi-

tional probability of a UHRR ID given the true target

type. This confusion matrix is indexed by relative target

elevation, which we assume is known at the time of the

UHRR action. The detailed description of each node and

their conditional probability tables were given in [5].

As shown in the BN model, for all identification

modules, the observation is dependent on the probability

of detection represented by the node “Detected.” The

detection probability of each target is a function of the

relative geometry between the target and the sensor.

In reality, the values of the kinematic states need to

be assigned dynamically for each target. In the test

scenario, we selected the values of three kinematic state

nodes, “Range,” “Azimuth,” and “Elevation,” such that

the detection probability is approximately 0.95.

Table II shows different sets of evidence nodes used

to detect the node “Target Type” using exact and an

approximate (with an error strictly lower than 2%)

computation. To be concise we did not include all

the information computed in UnBBayes in this table,

but most of them can be derived from the table. For

instance, the MI for the node UHRR in the evidence set

UHRR+RSM is 65.36% minus the IPCC of the RSM,

which is also, in this case, the MPCC of the node UHRR

in this set. So MI for UHRR= 65:36%¡ 29:27%=
35:69%, while the MI for RSM= 65:36%¡ 61:90%=
3:46%.
With the information obtained in Table II, the deci-

sion maker is able to understand how the system works

and which set of sensors work better together by com-

paring individual performance as well as marginal im-

provements when more than one sensor is used. For

example, with RESM (CF+PRI+PRF) alone, the Pcc is

about 33%; with RSM alone, the Pcc is about 29%; and

with UHRR alone, the Pcc is about 62%. With the first

two together, the Pcc increases to only 43%, while with

all three of them, the Pcc increases to over 71%.

Another benefit of using the tool is that the decision

maker could analyze the cost/benefit ratio of each sensor

resource to determine the best allocation strategy. The

cost ratio can also be integrated into an automatic sensor

resource management (SRM) algorithm for changing

the sensor mode dynamically on a real time basis.

The Pcc is used to evaluate the performance of the

model given that the model is available and assumed

TABLE II

Classification Performance Prediction with Different Evidence Sets

# Ev. Pcc Pcc

Nodes Evidence Set Exact 2% Error

1 RESM (CF) 22.28% 22.88%

RESM (PRF) 23.73% 24.36%

RESM (PRI) 23.82% 25.01%

RSM 28.67% 29.27%

UHRR 61.02% 61.90%

2 RESM (CF+PRI) 27.85% 29.75%

RESM (CF+PRF) 27.81% 29.08%

RESM (PRI+PRF) 28.91% 30.18%

UHRR+RSM 65.48% 65.36%

3 RESM (CF+PRI+PRF) 31.72% 32.93%

RSM+RESM (CF+PRI) 38.76% 39.85%

RSM+RESM (CF+PRF) 38.72% 39.72%

RSM+RESM (PRI+PRF) 39.67% 40.70%

UHRR+RESM (CF+PRI) 65.61% 66.15%

UHRR+RESM (CF+PRF) 65.58% 66.37%

UHRR+RESM (PRI+PRF) 66.16% 66.39%

4 RSM+RESM (CF+PRI +PRF) 42.14% 43.30%

UHRR+RESM (CF+PRI+PRF) 67.55% 68.54%

UHRR+RSM+RESM (CF+PRI) 69.32% 70.14%

UHRR+RSM+RESM (CF+PRF) 69.31% 69.99%

UHRR+RSM+RESM (PRI+PRF) 69.78% 70.61%

5 UHRR+RSM+RESM (CF+PRI+PRF) 70.95% 71.72%

TABLE III

Pcc for Models with Different Evidence Nodes

Pcc

Noise Exact Approximate

0% 70.95% 72.73%

5% 67.82% 69.79%

10% 66.36% 68.37%

correct. However, it is not used to judge the accuracy of

the model. To test the robustness of the FPM evaluation

methodology, we evaluated the same structure model

but with different parameter values, meaning we kept

the nodes and arcs the same but changed the conditional

probability tables (CPT) by adding some noise to them.

The goal is to verify that even if the model is somewhat

imprecise, we can still apply the evaluation process

to obtain a reasonable result. The results in Table III

show that the estimated Pcc performance is relatively

insensitive to the model uncertainty. Note that the noise

level in Table III represents the uncertainty magnitude

in the model quantified by the random variations in

percentage of the conditional probabilities.

To compare the analytical performance bounds de-

rived in Section 4 and the simulation results, Figs. 5—7

show the relationship between sample size and the ab-

solute estimation error given different observation state

space sizes with 99% confidence bounds (®= 0:99) pre-
dicted by (12). The target state space size is assumed to

be fixed (k = 6). As can be seen from the figures, the

theoretical analysis provides good performance bounds
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Fig. 5. Absolute error as a function of sample size with m= 90.

Fig. 6. Absolute error as a function of sample size with m= 900.

under different conditions (i.e., various observation state

space sizes). The bounds work well particularly when

the sample sizes are relatively small or relatively large.

However, the analytical bounds are somewhat conserva-

tive otherwise due to various approximations employed

in the analysis.

Finally, we evaluated the fusion performance of

a classification system based on a Bayesian network
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Fig. 7. Absolute error as a function of sample size with m= 9000.

model used for Combat ID and threat assessment de-

scribed in [1] (see Fig. 8). According to [1] the model

can be used in a number of ways to infer information

about the Hostility, ID Platform and Threat variables.

Table IV shows the Pcc for different target nodes

given all evidence nodes or a subset of them, which

has the nodes IFF, ATR, ESM, Speed, OnDataLink, and

Intelligence. The Pcc values were all computed with a

sample size of 2.5M. If the classifications were selected

at random the Pcc for Hostility, ID Platform, and Threat

would be 16.66%, 12.50%, and 50.00%, respectively,

since Hostility has 6 possible states, ID Platform has

8, and Threat has 2 states. Therefore, it can be seen

that this model has almost the same performance for

the classification of Hostility and Threat as if the clas-

sification were being selected at random. Although the

Pcc for the ID Platform is slightly better, the decision

maker might still consider it low. Note that, however,

the correct classification performance is estimated with

a single sample observation from each sensor. For multi-

ple observations from different sensors or from a single

sensor over multiple sampling times, additional analysis

is required. For details, see [21].

With these two models analyzed, we can see the full

benefit of using our tool for performance evaluation.

We were not only able to detect when a model is useful

for classification but also able to detect when it is not as

efficient. Furthermore, the same model might not have a

good performance for classifying a specific target node,

but it might be good for classifying a different one.

6. CONCLUSIONS

In this paper, we present a tool that allows a user to

evaluate the classification performance of a multi-sensor

fusion system modeled by a Bayesian network. With

the Fusion Performance Model (FPM) described in [7]

and [8], we developed a new module and integrated it

with the free, open-source, and platform independent

probabilistic network framework UnBBayes.

We demonstrate the functionalities of the tool with

a model-based ID example for air target tracking and

classification. We were able to answer questions related

to probability of correct classification of a given target

using a specific individual sensor resource or a set of

resources. We were also able to evaluate the marginal

performance gain and cost/benefit ratio of each sensor

resource. This tool is very valuable for a decision maker

to analyze trade-off between performance and costs and

to select proper sensor suites according to requirements

and constraints. As far as we could tell, there is no

other tool available for evaluating a fusion system per-

formance as described in this paper.

We developed an analytical convergence analysis

where we derived theoretical formulae to estimate the

convergence rate and predict the number of simulation

trials needed in order to achieve a desirable accuracy

level (error bounds). We also compared the simulation
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Fig. 8. A simplified model of a Bayesian network used for Combat ID and threat assessment.

results with the analytical ones and we showed that the

bounds work well under different conditions.

We also showed that the tool developed is useful to

identify the quality of the classification models. More-

over, the performance of the model depends on the node

to be classified, i.e., the same model might not have a

good performance for classifying a specific target node,

but it might be good for classifying a different one.

This research was conducted as part of a larger ef-

fort to design an integrated multi-sensor tracking and ID

performance evaluation system. A major advantage of

using the current approach is the flexibility of modify-

ing the Bayesian models to account for various potential

environmental or sensor changes. One important future

research direction is to integrate the kinematic tracking

module into a combined track/ID performance evalua-

tion system and to extend the system to accommodate

for high level fusion. Additionally, we intend to incor-

porate other efficient analytical or simulation algorithms

to improve the computational efficiency of the tool. Fi-

TABLE IV

Pcc for Different Target Nodes Given all Evidence Nodes or a Subset

of Them (IFF, ATR, ESM, Speed, OnDataLink, and Intelligence)

Pcc Given Evidence Nodes
Target

Node All Subset

Hostility 38.99% 19.18%

ID Platform 61.35% 48.16%

Threat 65.64% 52.84%

nally, since the model itself might be inaccurate due to

limited training data or insufficient domain expertise, it

is important to take into account the model uncertainty

while assessing its performance.
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Modified Scoring in

Multiple-Hypothesis Tracking

STEFANO CORALUPPI

CRAIG CARTHEL

Track-oriented multiple-hypothesis tracking is a powerful and

widely-accepted methodology in multi-target tracking. We show

that the target-death problem inherent in the probability hypothesis

density filter does not arise in the MHT. However, the MHT suffers

from a problem of its own: excessive competition for measurements

from tentative tracks. We introduce a mechanism to mitigate this

effect by favoring confirmed tracks in the association process. A

heuristic justification for the technique is that it mitigates the sub-

optimality associated with hypothesis pruning and sequential track

extraction. Perhaps more convincingly, the modification to the MHT

equations is provably optimal in the limiting case of cardinality

tracking with unity detection probability. We show that modified-

scoring MHT improves upon standard MHT in several benchmark

studies.
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1. INTRODUCTION

Track-oriented multiple hypothesis tracking (MHT)
is well-established as a paradigm for multi-sensor multi-
target tracking. The fundamental approach includes
many variants. Hypothesis-oriented MHT was first pro-
posed by Reid [10]. The initial integer-programming
formulation of the problem is due to Morefield [8]. The
hybrid-state decomposition that allows for computation-
ally-efficient track-oriented MHT is due to Kurien [7].
An efficient solution to the optimization problem re-
quired for nscan hypothesis pruning via Lagrangian re-
laxation is due to Poore and Rijavec [9]. A linear-
programming based relaxation approach to the same
optimization problem was proposed independently by
Coraluppi et al [3] and by Storms and Spieksma [12].
In practice, MHT implementations must limit the

number of local (or track) hypotheses. This can be
achieved by measurement gating, by limiting hypoth-
esis generation, and by pruning or merging existing
hypotheses. Additionally, sequential track extraction
schemes are adopted in lieu of optimal (batch) track
extraction [1]. These techniques, while necessary for
computationally-realizable and real-time MHT process-
ing, lead to suboptimal data association decisions and
track extraction. In this paper, we show that the subop-
timality can be mitigated by favoring nearly-confirmed
and confirmed tracks over tentative ones in the data-
association process with suitable modification to the
MHT track scoring equations.
This paper is organized as follows. In Section 2,

we summarize the hybrid-state derivation of the track-
oriented MHT, with some modifications with respect
to the original derivation [7]. In Section 3, we address
briefly the target-death problem that arises in probability
hypothesis density (PHD) filtering as discussed in Erdinc
et al [6], and show that it does not arise in track-oriented
MHT. In Section 4, we introduce the modified-scoring
MHT equations and considering a limiting case of the
general tracking problem that we call cardinality track-
ing. Section 5 provides simulation results that demon-
strate the improved performance of modified-scoring
MHT over standard MHT. Concluding remarks are in
Section 6.

2. MULTIPLE-HYPOTHESIS TRACKING

A key challenge in multi-sensor multi-target tracking
is measurement origin uncertainty. That is, unlike a
classical nonlinear filtering problem, we do not know
how may objects are in the surveillance region, and
which measurements are to be associated. New objects
may be born in any given scan, and existing objects may
die.

We assume that for each sensor scan, contact-level

(or detection-level) data is available, in the sense that

signal processing techniques are applied to raw sensor

data yielding contacts for which the detection and lo-

calization statistics are known. We are interested in a

scan-based (or real-time) approach that, perhaps with
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some delay, yields an estimate of the number of objects

and corresponding object state estimates at any time.

Several approaches to contact-level scan-based

tracking exist. In this section, we employ a hybrid-

state formalism to describe the track-oriented multiple-

hypothesis tracking approach. Our approach follows

closely the one introduced in [7]. We assume Poisson

distributed births at each scan with mean ¸b, Poisson
distributed false returns with mean ¸fa, object detection
probability pd, object death or termination probability
pÂ at each scan. (We neglect the time-dependent nature
of birth and death probabilities as would ensue from an

underlying continuous-time formulation, and we neglect

as well inter-scan birth and death events.)

We have a sequence of sets of contacts Zk = (Z1, : : : ,
Zk), and we wish to estimate the state history X

k for all

objects present in the surveillance region. Xk is com-
pact notation that represents the state trajectories of tar-

gets that exist over the time sequence (t1, : : : , tk). Note
that each target may exist for a subset of these times,

with a single birth and a single death occurrence i.e.

targets do not reappear. We introduce the auxiliary dis-

crete state history qk that represents a full interpretation
of all contact data: which contacts are false, how the

object-originated ones are to be associated, and when

objects are born and die. There are two fundamental

assumptions of note. The first is that there are no tar-

get births in the absence of a corresponding detection,

i.e. we do not reason over new, undetected objects. The

second is that there is at most one contact per object per

scan.

We are interested in the probability distribution

p(Xk j Zk) for object state histories given data. This
quantity can be obtained by conditioning over all pos-

sible auxiliary states histories qk.

p(Xk j Zk) =
X
qk

p(Xk,qk j Zk)

=
X
qk

p(Xk j Zk,qk)p(qk j Zk): (1)

A pure MMSE approach would yield the following:

X̂MMSE(Z
k) = E[Xk j Zk] =

X
qk

E[Xk j Zk,qk]p(qk j Zk):

(2)

The track-oriented MHT approach is a mixed MMSE/

MAP one, whereby we identify the MAP estimate for

the auxiliary state history qk, and identify the corre-
sponding MMSE estimate for the object state history

Xk conditioned on the estimate for qk.

X̂(Zk) = E[Xk j Zk, q̂k] (3)

q̂k = q̂MAP(Z
k) = argmaxp(qk j Zk): (4)

The MHT recursion. Each feasible qk corresponds
to a global hypothesis. (The set of global hypotheses

is generally constrained via measurement gating and

hypothesis generation logic.) We are interested in a

recursive and computationally efficient expression for

p(qk j Zk) that lends itself to maximization without the
need for explicit enumeration of global hypotheses. We

do so through repeated use of Bayes’ rule. Note that

f(¢) denotes the probability density function and p(¢)
denotes the probability mass functions. The normalizing

constant ck does not impact MAP estimation.

p(qk j Zk) = f(Zk j Zk¡1,qk)p(qk j Zk¡1)
ck

=
f(Zk j Zk¡1,qk)p(qk j Zk¡1,qk¡1)p(qk¡1 j Zk¡1)

ck

(5)

ck = f(Zk j Zk¡1) =
X
qk

f(Zk j Zk¡1,qk)p(qk j Zk¡1):

(6)

Recall that we assume that in each scan the number

of target births is Poisson distributed with mean ¸b,

the number of false returns is Poisson distributed with

mean ¸fa, targets die with probability pÂ, and targets are

detected with probability pd. The recursive expression

(5) involves two factors that we consider in turn.

Computation of p(qk j Zk¡1,qk¡1). It will be useful

to introduce the aggregate variable Ãk (consistent with

the approach in [7]) that accounts for the number of

detections d for the ¿ existing tracks, the number of

track deaths Â, the number of new tracks b, and the

number of false returns r¡ d¡b, where r is the number
of contacts in the current scan.

p(qk j Zk¡1,qk¡1) = p(Ãk j Zk¡1,qk¡1)p(qk j Zk¡1,qk¡1,Ãk)
(7)

p(Ãk j Zk¡1,qk¡1) =
½μ

¿

Â

¶
pÂÂ(1¡pÂ)¿¡Â

¾

¢
½μ

¿ ¡Â
d

¶
pdd(1¡pd)¿¡Â¡d

¾

¢
½
exp(¡pd¸b)pbd¸bb

b!

¾

¢
½
exp(¡¸fa)¸r¡d¡bfa

(r¡ d¡ b)!

¾
(8)

p(qk j Zk¡1,qk¡1,Ãk) =
1μ

¿

Â

¶μ
¿ ¡Â
d

¶μ
r!

(r¡ d)!

¶μ
r¡ d
b

¶ :
(9)

Substituting (8—9) into (7) and simplifying yields the

following.
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p(qk j Zk¡1,qk¡1) =
½
exp(¡pd¸b ¡¸fa)¸rfa

r!

¾
¢pÂÂ((1¡pÂ)(1¡pd))¿¡Â¡d

¢
Ã
(1¡pÂ)pd

¸fa

!dÃ
pd¸b
¸fa

!b
:

(10)

Computation of f(Zk j Zk¡1,qk). This quantity is

given by (11), where Zk = fzj ,1· j · rg, Jd is the set
of measurements associated with detections of existing

tracks, Jb is the set of measurements associated with
target births, Jfa is the set of measurements hypothe-
sized as false, jJdj+ jJbj+ jJfaj= r, and the factors on
the R.H.S. are derived from filter innovations, filter ini-

tiations, and the false contact distribution (generally uni-

form over measurement space).

f(Zk j Zk¡1,qk) =
Y
j2Jd

fd(zj j Zk¡1,qk)

¢
Y
j2Jb

fb(zj j Zk¡1,qk)
Y
j2Jfa

ffa(zj j Zk¡1,qk):

(11)

For example, in the linear Gaussian case, fd(zj j Zk¡1,qk)
is a Gaussian residual, i.e. it is the probability of ob-

serving zj given a sequence of preceding measure-

ments. If there is no prior information on the tar-

get, fb(zj j Zk¡1,qk) is generally the value of the uni-
form density function over measurement space. Simi-

larly, ffa(zj j Zk¡1,qk) is as well usually taken to be the
value of the uniform density function over measurement

space, under the assumption of uniformly distributed

false returns. Note that the expressions given here are

general and allow for quite general target and sensor

models.

Final form of the MHT recursion. Substituting

(10—11) into (5) and simplifying results in (12—13).

This expression is the key enabler of track-oriented

MHT. In particular, it provides a recursive expression

for p(qk j Zk) that consists of a number of factors that
relate to its constituent local track hypotheses.

p(qk j Zk) = pÂÂ((1¡pÂ)(1¡pd))¿¡Â¡d ¢
Y
j2Jd

"
(1¡pÂ)pdfd(zj j Zk¡1,qk)
¸faffa(zj j Zk¡1,qk)

#
¢
Y
j2Jb

"
pd¸bfb(zj j Zk¡1,qk)
¸faffa(zj j Zk¡1,qk)

#
p(qk¡1 j Zk¡1)

c̄k

(12)

c̄k =
ck½

exp(¡pd¸b ¡¸fa)
r!

¸rfa

¾Q
j2Jd[Jb[Jfa ffa(zj j Zk¡1,qk)

: (13)

Note that the constant c̄k normalizes the recursion with
respect to the case in which all returns in the current

scan are false. That is, for the case b = 0 (no births) and
¿ = d = Â= 0 (no current tracks, and correspondingly

no detections or terminations on current tracks), we

have

p(qk j Zk) =
½
exp(¡pd¸b¡¸fa)

r!
¸rfa

¾
¢

Y
j2Jd[Jb[Jfa

ffa(zj j Zk¡1,qk)
p(qk¡1 j Zk¡1)

ck
:

That is, the denominator in (13) is precisely the product

of the probability of no detected births, i.e. exp(¡pd¸b)
¢p0d¸0b=0!, the probability of r false alarms, i.e.

(exp(¡¸fa)=r!)¸rfa, and the filter residuals associate

with all measurements being false.

An implicit reduction in the set of hypotheses in

(12—13) is that target births are assumed to occur only

in the presence of a detection (i.e. there is no reasoning

over un-detected births). Correspondingly, the factor

pd reduces the effective birth rate to pd¸b (though
surprisingly the factor is absent in [7]). Further, in the

first scan of data, it would be appropriate to replace

pd¸b by pd¸b=pÂ to account properly for the steady-state
expected number of targets. (More generally, target birth

and death parameters should reflect sensor scan rates,

as the underlying target process is defined in continuous

time.) Further reduction in the set of hypotheses is

generally achieved via measurement gating procedures

[1]. Finally, for a given track hypothesis, one usually

applies rule-based spawning of a missed detection or

termination hypothesis, but not both (e.g. only spawn

a missed detection hypothesis until a sufficiently-long

sequence of missed detections is reached).

One cannot consider too large a set of scans be-

fore pruning or merging local (or track) hypotheses in

some fashion. A popular mechanism to control these hy-

potheses is nscan pruning. This amounts to solving (4),
generally by a relaxation approach to an integer pro-

gramming problem [3, 8—9, 12], followed by pruning

of all local hypotheses that differ from q̂k at a depth of
nscan. That is, all remaining global hypotheses are iden-
tical up to scan k¡ nscan. Note that, if one were to set
nscan = 0, this would amount to immediate resolution of
association hypotheses up to the current time. The nscan
pruning methodology is applied after each new scan of

data is received, resulting in a fixed-delay solution to

the tracking problem.
Often, nscan pruning is referred to as a maximum

likelihood (ML) approach to hypothesis management.
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ML estimation is closely related to maximum a posteriori

(MAP) estimation. In particular, we have:

X̂MAP(y) = argmaxf(y j X)f(X) (14)

X̂ML(y) = argmaxf(y j X): (15)

Note that ML estimation is a non-Bayesian approach

as it does not rely on a prior distribution on X. ML
estimation can be interpreted as MAP estimation with a

uniform prior. In the track-oriented MHT setting, nscan
pruning relies on a single parent global hypothesis, thus
the ML and MAP interpretations are both valid.

Once hypotheses are resolved, in principle one has

a state of object histories given by X̂(Zk). In practice, it
is common to apply track confirmation and termination

logic to all object histories [1]. A justification for this is

that it provides a mechanism to remove spurious tracks
induced by the sub-optimality inherent in practical MHT

implementations that include limited hypothesis gener-

ation and hypothesis pruning or merging. Further, se-
quential track extraction allows for real-time processing

which optimal (batch) track extraction would not.

Given the use of post-association track confirmation
and termination logic, a reasonable simplification that

is pursued in [3] is to employ equality constraints in the

data-association process, which amounts to accounting
for all contact data in the resolved tracks. Spurious

tracks are subsequently removed in the track-extraction

stage.
To summarize, at each stage of processing, track-

oriented MHT maintains a set of track trees with depth

nscan. When a scan of measurements is received, each
measurement is compared with each (local) track hy-

pothesis, and a new level of leaf nodes is created. All

track hypotheses continue as well in the absence of a
measurement. Additionally, each measurement defines

the root of a new track tree. Following hypothesis gen-

eration, the MAP global hypothesis is determined via
a linear programming relaxation approach [3]. Corre-

spondingly, the set of track trees is pruned so that a

single global hypothesis exists at depth nscan +1. The
process then repeats for the next scan. (If one were to

set nscan, the procedure reverts to a standard 2D assign-
ment solution.)
Data association is followed by track extraction.

Tentative tracks are reported at the tracker output only

once a suitable track-confirmation criterion is achieved.
Similarly, once a track has degraded sufficiently (or

once it is determined that a still-tentative track cannot

achieve the confirmation criterion), the track is termi-
nated. This information flows back to the data associ-

ation module from the track extraction module, invali-

dating subsequent association hypotheses for the termi-
nated track.

3. THE TARGET-DEATH PROBLEM

A useful re-interpretation of the probability hypoth-

esis density (PHD) filter, known as the bin-occupancy

filter, is given in [6]. This paper describes as well the

target death problem that the authors had earlier identi-

fied, and which in turn has led to the cardinalized PHD

(CPHD) filter.

Consider the single-target case with no false alarms.

In the absence of a target measurement, the PHD surface

follows (16). Note that the PHD surface Dkjk(x) at each
time tk is a function of all data received up to tk and is
computed recursively. Dkjk(x) admits the interpretation
that it identifies the probability of target presence at a

given state.

Dkjk(x) = (1¡pd(x))Dkjk¡1(x): (16)

While (16) may appear reasonable, it can be shown that

it is inconsistent with the following simple Bayesian

argument. Let Yk¡1 be the existence state for the target at
scan k¡ 1, and assume that the death probability at any
scan is given by pÂ, as before. The updated probability
of existence after a missed detection is given by (17).

p(Yk = 1 j jZkj= 0)
= p(Yk = 1 j Yk¡1 = 1, jZkj= 0)p(Yk¡1 = 1)

=
p(Yk = 1, jZkj= 0 j Yk¡1 = 1)p(Yk¡1 = 1)

p(jZkj= 0 j Yk¡1 = 1)

=
(1¡pÂ)(1¡pd)
1¡ (1¡pÂ)pd

p(Yk¡1 = 1): (17)

Comparing (16) and (17), we see that the PHD filter

penalizes missed detections too heavily; it is claimed in

[6] that the CPHD appears to follow (17).

What happens with the track-oriented MHT ap-

proach? We compare the ratio of the probability as-

sociated with the track coast hypothesis (track is alive

in the absence of a measurement) with the probability

of track coast or death. That is, in the numerator we

want the case “no detection and target alive,” and in

the denominator we want the case “no detection (target

alive or dead.” Let qki and q
k
j denote global hypotheses

that include coast and death events, respectively, for the

target of interest. From (12), we see that (18) follows

immediately. Indeed, all factors in the global hypothesis

probability cancel except for those associated with the

(undetected) track.

p(qki j Zk)
p(qki j Zk)+p(qkj j Zk)

=
(1¡pÂ)(1¡pd)

(1¡pÂ)(1¡pd) +pÂ

=
(1¡pÂ)(1¡pd)
1¡ (1¡pÂ)pd

: (18)

Note that this validation is quite general, and in particu-

lar it is directly applicable to the multi-target case, under

the assumption that no contacts satisfy the hypothesis

gating criterion for the (undetected) object of interest

here. We conclude that track-oriented MHT properly

handles missed detections, and no target-death problem

is observed.
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4. MODIFIED-SCORING MHT AND CARDINALITY
TRACKING

In scan-based processing, assume that a track hy-

pothesis is confirmed when it achieves an M-of-N crite-
rion, with the start of the (tentative) track defined with

the first of the relevant M measurements, and that ten-

tative tracks that have no chance to achieve the M-of-N
criterion are discarded. Also, a track hypothesis is ter-

minated if K missed detections are exceeded. Note that,
under multiple-hypothesis processing, a confirmed track

may be pruned under a hypothesis-reduction scheme

such as nscan pruning. Following hypothesis resolution,
a single global hypothesis exists that is composed of

a number of resolved tracks. Next, the set of resolved

tracks undergoes a track extraction process based on the

same M, N, and K parameters. With these notions of

confirmed, resolved and extracted tracks, we now in-

troduce a modification to (12) that will prove useful.

In particular, confirmation reward factors »2 > »1 > 1
are applied to track updates for confirmed and nearly-

confirmed track hypotheses. The later refers to tentative

tracks that reach confirmation in the current scan. The

measurement sets for confirmed, nearly-confirmed, and

tentative tracks are denoted by Jd, Jc, and Jt, respectively.

p(qk j Zk) = pÂÂ((1¡pÂ)(1¡pd))¿¡Â¡d

¢
Y
j2Jt

"
(1¡pÂ)pdfd(zj j Zk¡1,qk)
¸faffa(zj j Zk¡1,qk)

#

¢
Y
j2Jc

"
(1¡pÂ)»1pdfd(zj j Zk¡1,qk)

¸faffa(zj j Zk¡1,qk)

#

¢
Y
j2Jd

"
(1¡pÂ)»2pdfd(zj j Zk¡1,qk)

¸faffa(zj j Zk¡1,qk)

#

¢
Y
j2Jb

"
pd¸bfb(zj j Zk¡1,qk)
¸faffa(zj j Zk¡1,qk)

#
p(qk¡1 j Zk¡1)

c̄0k
:

(19)

We refer to standard MHT as solution to (4) based on

(12—13) with a fixed hypothesis tree depth (nscan). We
refer to modified-scoring MHT as the solution to (4)

based on (13, 19) with a fixed hypothesis tree depth

(nscan). Note that the normalization factor c̄
0
k in (19)

differs slightly from the normalization factor in (12),

since the track hypothesis scores have been modified

with the confirmation reward factors.

The use of the reward factors »2 > »1 > 1 amounts
to favoring confirmed and nearly-confirmed tracks in

the association process. While this appears reasonable

in (sub-optimal) MHT processing, we provide justifica-

tion for the procedure on two grounds: (1) optimality

of modified-scoring MHT in the limiting case of the

tracking problem known as cardinality tracking; (2) sim-

ulation results for the general case. We address (1) next,

while (2) is treated in Section 5.

Let us consider now the case where measurements

are not informative with respect to target state: we are

given only a sequence of cardinality measurements.

Assume we are given birth, death, detection and false

alarm statistics as well as a sequence that specifies the

number of measurements received. An example might

be (1, 2, 3, 3, 1: : :). We must decide how many targets
there are as a function of time.

Note that all filter residuals in (12) are identical,

leading to (20); correspondingly, (19) leads to (21) with

c1 the number of nearly-confirmed tracks and c2 is the
number of confirmed tracks. In this context, note that

measurement gating is not a meaningful concept as all

track updates are equivalent. Then, cardinality tracking

involves identifying the sequence of target cardinali-

ties jXjk given the sequence of measurement cardinali-
ties jZjk.

p(qk j Zk) = pÂÂ(1¡pÂ)¿¡Â(1¡pd)¿¡Â¡dpb+dd ¸bb

¸d+bfa

p(qk¡1 j Zk¡1)
c̄k

(20)

p(qk j Zk) = pÂÂ(1¡pÂ)¿¡Â(1¡pd)¿¡Â¡d»c11 »c22 pb+dd ¸bb

¸d+bfa

¢ p(q
k¡1 j Zk¡1)
c̄k

: (21)

For purposes of the ensuing analysis, it is useful to intro-

duce some assumptions regarding the parameters in (20)

so that the form of the optimal solution to (4) yields a

reasonable structure as explained below. It will be useful

to represent a tracking solution Xk in a compact man-
ner, where each track is represented as a sequence of

existence states, with 1 denoting measurement update,

0 denoting existence with no measurement update i.e. a

track coast, and x denoting non-existence. For example,

(x,x,1,1,0) represents a track that exists beginning with
the third sensor scan, involves two measurements and

one track coast and then terminates.

As a reminder, the assumptions below apply only to

the cardinality-tracking problem.

Assumption 1 (preference for longer tracks).

pd
¸fa

(1¡pÂ)> 1:

Consider jZjk = f1,1g. Assumption 1 insures that
solution X̄k = f(1)g or X̄k = f(x,1)g has lower proba-
bility than X̃k = f(1,1)g, i.e. p(X̃k j Zk)> p(X̄k j Zk).
Assumption 2 (singleton tracks discarded).

¸bpÂ
pd
¸fa

< 1:

Consider jZjk = f1g. Assumption 2 insures that so-
lution X̄k = f(1)g has lower probability than X̃k =Ø, i.e.
p(X̃k j Zk)> p(X̄k j Zk).
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Fig. 1. For jZjk = f1,2,6,4,3,1,2,2,2,1,0,0,2,3,2,1,2,0,3,1g, a Tetris solution with parameter 3 is illustrated above, for which
jXjk = f1,2,3,3,3,1,2,2,2,1,0,0,2,3,2,1,1,0,0,0g. Measurements that are part of the solution are denoted by grey cells.

Fig. 2. A violation of Tetris structure.

Assumptions 1—2 imply the following (preference

for track association). ¸bpÂ < 1¡pÂ.
Consider jZjk = f1,1g. The above inequality insures

that solution X̄k = f(1),(x,1)g has lower probability than
X̃k = f(1,1)g, i.e. p(X̃k j Zk)> p(X̄k j Zk).
Note that Assumptions 1—2 place limits on allowable

clutter rates for non-empty optimal tracking solutions;

the interested reader is referred to [2] for further dis-

cussion of this issue.

We consider now a special case of cardinality track-

ing (pd = 1) for which a number of results can be estab-
lished. First, we define a Tetris solution to be the solu-

tion obtained with sequential track extraction maximiz-

ing track length with contiguous sequences of measure-

ments. The Tetris solution is parameterized by a min-

imum track length parameter, such that tracks shorter

than a specified threshold are extracted. The solution is

best described by illustration: see Fig. 1.

Result 1 (structure of optimal solution). Let pd =
1. An optimal solution to (4) is given by the Tetris

solution with minimum track length parameter

k0 = min
i

(
i,
¸b(1¡pÂ)i¡1pÂ

¸ifa
¸ 1
)
:

Indeed, since tracks with length less than k0 contribute a
score less than unity to the posterior probability, a Tetris

solution with parameter less than k0 is not optimal.
Similarly, a Tetris solution with parameter greater than

k0 will not include tracks that contribute a score greater
than unity to the posterior probability. Thus, such a

Tetris solution is not optimal either. It remains to show

that a non-Tetris solution cannot outperform the Tetris

solution with parameter k0. Assume a non-Tetris optimal
solution exists, and that it cannot be re-expressed as

a Tetris solution by a re-ordering of entire rows (else

the solution is equivalent to a Tetris one). In particular,

the non-Tetris solution must contain two (possibly non-

neighboring) row portions that are as shown in Fig. 2,

where each cell denotes a sequence of zeros or ones of

arbitrary dimension.

We now show that dropping 1B to the lower row (i.e.

partial row reordering) yields a posterior probability that

Fig. 3. Equivalent solution (top) or improved solution in the case

of a short track 1A (bottom).

is equal or higher. Indeed, if 1A is a track of length k0
or greater, the two posterior probabilities are the same

(Fig. 3-top). If 1A is a track of length less than k0,
the solution with the top-row 1A replaced by zeros has

larger posterior probability (Fig. 3-bottom). Thus, by

a sequence of steps of this kind, we recover a Tetris

structure. This shows that a non-Tetris solution cannot

outperform the optimal Tetris one.

Result 2 (optimality of modified MHT). The mod-

ified MHT solution with M = k0, N = k0, K = 0 and
nscan ¸ k0¡ 3 is optimal.
Result 2 is best illustrated by example. First, as-

sume that the target and sensor parameters are such

that k0 = 3 in Result 1. According to Result 2, modi-
fied MHT with nscan ¸ 0 is optimal. Consider the mea-
surement sequence jZjk = f1,2,1g. With standard MHT
with arbitrary nscan, one obtains either the set of tentative
track Xktentative = f(1,1,1)g or Xktentative = f(1,1),(x,1,1)g.
Indeed, there is no preference in terms of posterior prob-

abilities in associating the measurement in the third

scan with the longer or shorter tentative track. Cor-

respondingly, after track extraction, one obtains either

Xk = f(1,1,1)g or Xk =Ø. The cardinality-tracking re-
sult is thus either jXjk = f1,1,1g or jXjk = f0,0,0g. With
modified-scoring MHT, one is guaranteed that the mea-

surement in the third scan is associated to the tenta-

tive track of length two; indeed, this track is nearly-

confirmed, and »1 > 1 in (21) insures that the solution to
(4) yields jXjk = f1,1,1g. Thus, modified-scoring MHT
achieves optimality while standard MHT is not guaran-

teed to do so.

Next, assume once again that k0 = 3 in Result 1 and
consider the measurement sequence jZjk = f1,2,2,1g.
By similar reasoning, we see that standard MHT results

in either Xktentative = f(1,1,1,1),(x,1,1)g or Xktentative =
f(x,1,1,1),(1,1,1)g. After track extraction, one thus ob-
tains either Xk = f(1,1,1,1)g or Xk = f(1,1,1),(1,1,1)g.
The posterior probability associated with the latter so-

lution is the same as for the solution Xk = f(1,1,1,1),
(x,1,1)g. This is immediately seen to have posterior
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TABLE I

Simulation Parameters for the Cardinality Tracking Problem

Parameter Description Setting

Target birth rate 1

Target death probability 0.1

Sensor probability of detection 1

Sensor false alarm rate 0.33

Track initiation 3-of-3

Hypothesis tree depth (nscan) 1

Confirmation reward factors (modified-scoring MHT) 2 (confirmed tracks), 1.5 (nearly-confirmed tracks)

Track termination (maximum missed detections) 0

Number of scans in each scenario realization 100

Number of realizations 1000

probability that does not exceed that of Xk =
f(1,1,1,1)g, since a track of length two does not con-
tribute to the posterior probability (see definition of k0 in
Remark 1). With modified-scoring MHT, the measure-

ment in the fourth scan is guaranteed to be associated to

the confirmed track rather than to the nearly confirmed

one, since »2 > »1 in (21) insures that the solution to (4)
yields jXjk = f1,1,1,1g.
Finally, assume that the k0 = 4 in Result 1 and

consider the measurement sequence jZjk = f1,2,1,1g.
Result 2 tells us that modified-scoring MHT requires

nscan ¸ 1 to insure optimality. Indeed, with nscan = 0, the
measurement in the third scan will be associated with

either the shorter or longer track, since neither is nearly

confirmed. Thus, either Xktentative = f(1,1,1,1),(x,1)g or
Xktentative = f(1,1),(x,1,1,1)g results, from which we

have Xk = f(1,1,1,1)g or Xk =Ø, respectively. This in
turn leads either to solution jXjk = f1,1,1,1g or jXjk =
f0,0,0,0g. Conversely, with nscan = 1, we do not de-
cide on which track is updated with the measurement

in the third scan until the fourth scan is received. Ac-

cordingly, »1 > 1 in (21) insures that the solution to (4)
yields Xk = f(1,1,1,1)g and thus jXjk = f1,1,1,1g.
The importance of this section is that it demonstrates

the superiority of modified MHT over standard MHT

in a limiting case. For this case, we are able to show

that modified MHT with a sufficiently large hypothesis

tree depth achieves optimality in the sense of maximiz-

ing the posterior probability over all hypotheses. Modi-

fied MHT processing introduces a mechanism whereby

preference is given to tracks that have achieved or will

achieve track confirmation. This is an interesting result

in its own right, and provides motivation for use of mod-

ified MHT in a more general setting.

We now illustrate the performance of modified-

scoring MHT and standard MHT approaches to the car-

dinality tracking problem for a specific numerical ex-

ample. The example provides experimental validation

of the claims in Results 1—2. A nice aspect of eval-

uating cardinality tracking is that it is much easier to

provide statistically significant results for which track-

ing parameters are matched to target and sensor charac-

teristics. Indeed, ground truth is obtained via a Poisson

birth-death process and kinematic-space realizations are

absent, so that we are not limited to a small set of
benchmark scenarios. The simulation parameters are
captured in Table I.
The parameters in Table I satisfy Assumption 1—2.

Note that, as sensor measurements are not informative
with regard to target state and are only relevant to target
existence, the tolerable false alarm rates are quite low
compared to a general tracking problem. The tracking
initiation and termination settings and the choice of nscan
are consistent with the requirements for Result 1—2:

¸b(1¡pÂ)2pÂ
¸3fa

> 1>
¸b(1¡pÂ)pÂ

¸2fa
) k0 = 3,

nscan ¸ k0¡ 2) nscan ¸ 1:
An illustration of one realization is given in Fig. 4,
along with the corresponding modified-scoring MHT
output. Note that we provide a compact representation
of ground truth Xk, sensor measurements Zk, and tracker
output X̂k: we illustrate the sequence of cardinalities
jXjk, jZjk, and jX̂jk.
Statistical performance results are based on compu-

tation of the posterior probability p(qk j Zk). We find as
expected that the modified-scoring MHT is optimal in
the posterior-probability sense. Standard MHT suffers a
performance loss resulting in a (normalized) posterior
probability of 0.958. (By normalized posterior proba-
bility, we mean the ratio of the probabilities associated
with the standard and modified MHT solutions, respec-
tively.)

5. SIMULATION RESULTS FOR THE GENERAL
TRACKING PROBLEM

We now evaluate modified MHT and standard MHT
approaches to the general tracking problem for several
scenarios of interest. First, we identify the performance
metrics for this analysis. Our approach to tracker per-
formance evaluation is somewhat novel as we do not
identify a global mapping of tracks to targets. Indeed,
a global mapping can be problematic due to track swap
phenomena, true tracks that are seduced by false con-
tacts and become false tracks, etc. Instead, we rely on
a scan-based association of tracks to targets consistent
with the recently-introduced Optimal Subpattern As-
signment (OSPA) metric [11].
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Fig. 4. One realization of truth, measurement and optimal track cardinality sequences.

For each scan time ti 2 (t1, : : : , tN), we have an Ni£Mi
cost matrix Ai where Ni and Mi are the number of

targets and tracks in existence, respectively. Given a

distance threshold » on feasible track-truth assignments,

we determine the optimal OSPA assignment between

tracks and targets for each scan in a given dataset as

described in [11]. For a given scan, those tracks that are

assigned to targets are deemed to be true track instances.

Correspondingly, there is a detected target instance. Let

gi denote the number of such (target, track) pairs for the

scan at time ti. Next, we compute the following metrics

for each scenario realization:

² Track PD–ratio of total number of true track in-
stances (summed over all scan times) to total number

of target existence instances (summed over all targets

and all scan times):
PN
i=1gi=

PN
i=1Ni;

² Track quality–ratio of number of true track instances
and total number of track instances:

PN
i=1 gi=

PN
i=1Mi;

² Track purity–ratio of number of true track instances
that are as well from the mode assignment (i.e. from

the most frequently associated target) and total num-

ber of track instances:
PN
i=1 ḡi=

PN
i=1Mi; here, ḡi · gi

is the number of truth-track assignments where truth

is the mode target for the track, i.e. the target to which

the track is associated the most.

² Track rate–ratio of total number of tracks to total
number of targets;

² Track localization error–average displacement be-
tween true track instances and corresponding target

location that we denote by ¾T.

Since our metrics do not rely on classifying each

track as true or false, the false track statistics are un-

derstood as follows. First, the track rate metric answers

the question: how many tracks does the system gener-

ate, relative to the true number of targets? Secondly, the

track quality metric answers the question: for any given

track at any given time, what is the probability that it is

target originated? That is, track quality is the total dura-

tion of good tracks as a fraction of the overall duration

of all tracks. Thus, these metrics provide an assessment

of how much false track (both in number and in dura-

tion) is generated by the system, without the need for

global track assessment that is often problematic when

tracks are partially target-originated and partially false.

We report here on our metrics, where for each of

three benchmark scenarios the metrics are averaged over

multiple Monte Carlo realizations. Complete simulation

parameters are identified in Table II. Illustrations of

one modified MHT tracker output realization of each of

three scenarios are given in Figs. 5—7; Fig. 8 illustrates

the realization of the corresponding measurement data

for the third scenario. Scenario 1 includes three linear-

motion targets that move with identical speeds but dis-

placed in the y dimension and with different birth and
death times. Scenario 2 includes a single maneuvering

target. Scenario three includes three maneuvering tar-

gets that are matched in birth and death times and in

velocities and are displaced in the x dimension.
Monte Carlo performance results are given in Ta-

bles III—IV.

Encouragingly, for all scenarios we find improved

performance with respect to all performance metrics

of interest for modified MHT processing over standard
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TABLE II

Simulation Parameters for the General Tracking Problem

Parameter Description Setting (for scenario 1; 2; 3 respectively)

Monte Carlo realizations 100 (for each of the three scenarios)

Scenario duration 150 sec

Number of targets 3; 1; 3

Target birth (x,y) positions (¡40,5), (¡20,0), (¡40,¡5); (¡40,¡5); (¡40,¡5), (¡35,¡5), (¡30,¡5) m/sec
Target (x,y) velocities (0:5,0);(0:5,0:5) or (0:5,¡0:5); (0:5,0:5) or (0:5,¡0:5) in m/sec-all turns after 25 s

Target birth times from start (10,50,10); 10; (10,10,10) sec

Target death times from start (140,140,100); 110; (110,110,110) sec

Sensor footprint 2000 m2

Sensor revisit rate 1 Hz

Sensor probability of detection 0.8

Sensor false alarm rate 5

Sensor measurement error covariance in x,y 1 m2

Track initiation 6-of-6

Hypothesis tree depth (nscan) 1

Target birth rate 0.01

Target death probability 0.01

Confirmation reward factor (modified MHT) 2 (confirmed tracks), 1.5 (nearly-confirmed tracks)

Track termination (maximum missed detections) 2

Prior velocity covariance in x,y 1 m2/s2

Filter process noise in x,y 0.001 m2/s3

Data association gate 99%

Distance threshold for track-truth association 2

TABLE III

Performance Results for the Benchmark Scenarios

(Numerical results are based on 100 Monte Carlo realizations for each of the three scenarios.)

Scenario (description) Tracker Modality Track PD Track Quality Track Purity Track Rate Track Loc. Error

1 (3 linear) standard MHT 0.915 0.850 0.780 1.90 0.825

1 (3 linear) modified MHT 0.925 0.918 0.867 1.58 0.755

2 (1 maneuvering) standard MHT 0.739 0.847 0.847 3.45 1.111

2 (1 maneuvering) modified 3.45 1.111

2 (1 maneuvering) modified MHT 0.759 0.869 0.869 3.41 1.092

3 (3 maneuvering) standard MHT 0.780 0.778 0.682 4.20 1.242

3 (3 maneuvering) modified MHT 0.809 0.820 0.727 3.97 1.235

TABLE IV

Incremental Performance Benefit of Modified MHT, Averaged Across Scenarios, with Respect to all Metrics of Interest: Higher Track PD,

Track Quality, and Track Purity; Lower Track Rate and Track Localization Error

(Numerical results accounts for all 300 Monte Carlo realizations.)

Metric Track PD Track Quality Track Purity Track Rate Track Loc. Error

Percent change 2.43% 5.34% 8.10% ¡6:09% ¡3:02%

MHT. (Note that for track rate and track localization er-

ror, a reduction indicates improved performance.) Not

surprisingly, since the scenarios are of increasing com-

plexity we find consistently lower performance as we

move from scenario 1 to scenario 2, and again from

scenario 2 to scenario 3, as can be seen in the track

quality, track rate, and track localization error. The one

exception to the trend is track PD as we go from sce-

nario 2 to scenario 3, though this can be explained: for

multi-target scenarios, it is sufficient for a track instance

by be close to any target to be deemed a detection, thus

the presence of multiple nearby targets makes this easier

to achieve.

Track purity is the same as track quality in the

single-target scenario (scenario 2); in multi-target sce-

narios, track purity is lower than track quality as we re-

quire not only good track instances but from the same

target as well. Indeed, track purity reflects the impact

of track switching, whereby the target associated with a

track may change over time. If no switching occurs,

track purity equals track quality. Figure 6 illustrates

what occasionally occurs, even in single-target settings:

track fragmentation whereby the first track is seduced

by false returns, and a second track is initiated. Note that

our OSPA-based metrics correctly classify at most one

track update as associated with each target at any time.
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Fig. 5. An example realization of scenario 1 (target trajectories are

dotted lines and modified MHT tracks are solid lines).

Fig. 6. An example realization of scenario 2 (target trajectories are

dotted lines and modified MHT tracks are solid lines).

TABLE V

Fusion Gain Computation (1:18 = 0:959=0:813)

Tracker Modality IQ-scenario 1 IQ-scenario 2 IQ-scenario 3 IQ-average

Standard MHT 1.249 0.686 0.510 0.813

Modified MHT 1.610 0.729 0.532 0.959

Thus, the fragmentation and track redundancy observed

here are reflected in degraded track rate, track quality,

and track purity values.

It is helpful to capture tracker performance improve-

ment with a single scalar metric, using the notion of

information quality [4]; as discussed in [4], this notion

can be related to the information reduction factor dis-

cussed in [15]. Information quality (IQ) is the average

information content (in a Fisher information sense) of

an arbitrarily-selected output track instance. With some

probability, the track is associated with a true target: this

Fig. 7. An example realization of scenario 3 (target trajectories are

dotted lines and modified MHT tracks are solid lines).

Fig. 8. Measurement data for one run of scenario 3 (crosses are

target-originated returns and dots are false alarms).

is given by the track qualitymetric. Correspondingly, the

information content is given by the Fisher information,

which in turn is the inverse of the track error covari-

ance matrix. Thus, IQ is the product of track quality

and Fisher information:

IQ =

PN
i=1gi

¾2T
PN
i=1Mi

: (22)

Further, we can evaluate fusion gain as the IQ ratio of

two competing tracking solutions. For the results cap-

tured in Table III, we find that modified MHT provides a
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fusion gain of 1.18 (or 18%) over standard MHT. This

is obtained by computing the ratio of average IQ for

modified MHT and average IQ for standard MHT. Fur-

ther details are in Table V. Note that, not surprisingly,

for both tracker solutions the IQ metric degrades with

increasing scenario difficulty.

6. CONCLUSIONS

This paper provides a compact and accessible intro-

duction to track-oriented multiple-hypothesis tracking

(MHT). It shows that track-oriented MHT does not suf-

fer from the so-called target-death problem that has been

observed in the probabilistic hypothesis density (PHD)

filter. Unfortunately, the MHT exhibits a problem of its

own, whereby unconfirmed tracks are often found to

take contacts away from confirmed or nearly-confirmed

tracks, degrading their quality.

We first study this problem in a simplified context

with no measurement state information: this formula-

tion reduces to the cardinality tracking problem. For

this problem, and with the further assumption of unity

detection probability, we are able to establish structural

results for the optimal tracking solution and, remark-

ably, we find that the modified MHT solution with

appropriately-selected track initiation and termination

criteria and with sufficient hypothesis tree depth is guar-

anteed to achieve optimality. Simulation results are con-

sistent with our theoretical findings.

The performance characteristics of modified-scoring

MHT in the simplified cardinality-tracking context mo-

tivate its use for more general tracking problems. We

study several benchmark scenarios and find improved

performance for modified-scoring MHT over standard

MHT. It is important to note that in all scenarios, all

targets die before the scenario end; thus, there appear

to be no negative side-effect to modified-scoring MHT

processing whereby confirmed tracks are kept alive de-

spite target death.

In a nutshell, modified MHT scoring is needed since

we cannot perform batch track extraction from the set of

track hypotheses. Indeed, batch extraction would incur

computational infeasibility (unbounded nscan) as well
as large reporting latency. Accordingly, we must use

(suboptimal) sequential track extraction. Favoring good

(i.e. confirmed or nearly-confirmed) tracks over tenta-

tive ones in the extraction process can be motivated on

two grounds: (1) empirically, as the scheme is found

to perform better; (2) in a limiting (albeit simplistic)

case–cardinality tracking, the scheme matches the per-

formance of optimal batch extraction, provided nscan is
large enough (where the lower bound is quantified).

While (1—2) do not prove that modified MHT is better

than standard MHT, they do provide meaningful prac-

tical & theoretical motivation.

Our scheme is similar in its effects to the two-stage

assignment scheme that has been adopted in an MHT

setting [13—14]; indeed there is a need to balance track

initiation and maintenance. A merit of our work, we

think, is to emphasize an often-ignored aspect of mak-

ing MHT work well in practice. Interestingly, giving

preference to established tracks is a scheme whose ap-

plicability is not limited to the MHT approach; a re-

cent example in the context of the Histogram Probabilis-

tic Multi-Hypothesis Tracker (H-PMHT) may be found

in [5].
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