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This article addresses the performance of Dempster-Shafer (DS)
theory, when it is slightly modified to prevent it from becoming too
certain of its decision upon accumulation of supporting evidence.
Since this is done by requiring that the ignorance never becomes
too small, one can refer to this variant of DS theory as Thresholded-
DS. In doing so, one ensures that DS can respond quickly to a
consistent change in the evidence that it fuses. Only realistic data
is fused, where realism is discussed in terms of data certainty
and data accuracy, thereby avoiding Zadeh’s paradox. Performance
measures of Thresholded-DS are provided for various thresholds
in terms of sensor data certainty and fusion accuracy to help
designers assess beforehand, by varying the threshold appropriately,
the achievable performance in terms of the estimated certainty,
and accuracy of the data that must be fused. The performance
measures are twofold, first in terms of stability when fused data
are consistent, and second in terms of the latency in the response
time when an abrupt change occurs in the data to be fused. These
two performance measures must be traded off against each other,
which is the reason why the performance curves will be very
helpful for designers of multi-source information fusion systems
using Thresholded-DS.
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1. INTRODUCTION

Potential users of Dempster-Shafer (DS) theory
[5, 10] are often faced at the outset with a list of its
pitfalls, which they must somehow solve or at least live
with:

1. When confronted with Bayesian reasoning over N
identities, DS theory seems at a disadvantage. In-
deed, since DS theory reasons over the power set,
which has 2¥ — 1 elements, excluding the null set,
the storage of all of the intermediate fusion results
and the processing of them quickly can become over-
whelming, when compared to Bayesian reasoning.
However, many solutions were developed from 1993
until 1997, such as those of Simard et al. [4, 11],
Tessem [14], and Bauer [1]. They all involve ap-
proximation (or truncation) schemes with 3 tunable
parameters, and some have been researched exten-
sively [2, 3] as to which values are appropriate for
a given situation. One therefore takes the view that
this problem can be solved, and we will then focus
on cases with small values of N.

2. When the evidence to be fused is too consistent,
DS theory will become certain of it after a suffi-
cient number of steps, and will have an extremely
hard time to react to a sudden real change in the
evidence to be fused. This was solved by Simard et
al. [4, 11] by preventing the ignorance from falling
below a certain threshold, hereafter called I, after

each fusion step, one of the three tunable parameters

mentioned previously. After setting the ignorance to

I, all the other masses are rescaled proportion-

ately, so that these rescaled masses now sum up to

(1 —1,;,). This is the approach we will follow here.

3. When evidence is too conflicting, the normalization
step in DS theory can cause wild behaviours from
one extreme to another. This is partially a problem
in modeling the uncertainty of the data to be fused.
We take the approach that the data must correctly be
modeled by specifying its accuracy and certainty in
a reasonable and realistic manner.

At this point, one should make more precise what is
meant by data certainty and accuracy:

1. Certainty is a feature of the sensor that declares that
a certain proposition is true with a given mass value
m. With little loss of generality, one can assume for
simplicity that the sensor declares only one propo-
sition with mass m, and that the rest is assigned to
the ignorance. This is likely the case, when the time
allowed for decisions is critical, since it provides at
each time step only one likely candidate for the dec-
laration. In the example scenario described later, an
Electronic Support Measures (ESM) sensor is likely
to provide such a behaviour. In order to stress this
point, the article will always mention in the text “sen-
sor certainty.”
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2. Accuracy refers here to how often the data is likely
to be wrong. For example, the association mecha-
nism that is necessary to select which sensor data
is to be associated to which track can sometimes be
erroneous, particularly if it is single scan in nature.
Accuracy is therefore a characteristic of the fusion
process, not the sensor itself. In the case of the ESM
sensor, miss-associations can occur for the bearing-
only reports when the targets are densely found in
that bearing angle. In order to stress this point, the
article will always mention in the text “declaration
accuracy.”

One should point out at this time that any sensor will
have a value for the uncertainty (or certainty) of its dec-
laration(s), and that, however complex the association
mechanism, the association mechanism will occasion-
ally err in its contact-to-track (or track-to-track) correla-
tions, which will provide an inaccuracy in the fusion re-
sults. In this sense, the performance characteristics that
will be provided later below for Thresholded-DS can be
applied to a wide range of sensors and positional fusion
algorithms, with only very minor modifications.

2. STATEMENT OF THE PROBLEM AND SCENARIO

The selected problem was already used in publica-
tions [6-8] that addressed the use of Dezert-Smarand-
ache (DSm) theory [12, 13] and compared it to Thresh-
olded-DS. When the two approaches were compared
in these publications, the focus was on DSm perfor-
mance, while neglecting Thresholded-DS performance.
It became quickly clear that, if one did not insist on
conformance to STANAG 1241 [9] (which only DSm
can provide), Thresholded-DS theory performed quite
well. This article aims to fill this gap by exploring at
much greater length the stability and response time of
the theory for various threshold levels I, in terms of
sensor data accuracy and declaration certainty.

A possible illustration of the problem chosen is
through the fusion of three types of ESM reports: Friend
(*gq,), Neutral (6,), or Hostile (6,). Since N =3, the
first pitfall of DS theory mentioned in the introduction is
avoided, and no approximation schemes are necessary.

The approach followed in this article will be to study
the ESM problem using a Modeling and Simulation
(M&S) approach, first on specific representative scenar-
ios, followed by a thousand Monte-Carlo runs to con-
firm the conclusions that can be reached.

The list of the prerequisites that any scenario must
address are:

e Should have a clearly defined ground truth, which is
sufficiently complex to test stability and latency in the
response time.

e Should contain sufficient miss-associations, leading
to values of average fusion accuracy that are in a
realistic range.

e Should only provide partial knowledge about the
ESM sensor declaration and to varying degrees,
which therefore leads to sensor uncertainty (or sensor
certainty) values that are in a realistic range.

The following scenario parameters have therefore
been chosen accordingly:

1. The known ground truth is Friend (6,) for the first
50 time stamps of the scenario, and Hostile (65) for
the last 50 time stamps.

2. The percentage of correct associations is approxi-
mately Acc%, corresponding to countermeasures ap-
pearing (100 — Acc)% of the time. Acc% will be ex-
plored over a realistic range between 60% and 90%.
If the accurate allegiance is Friend (as is the case
for the first 50 time stamps), then the declarations
which correspond to miss-associations are equally
distributed between Neutral and Hostile. Similarly,
for the last 50 time stamps when Hostile is the cor-
rect allegiance, the miss-associations are distributed
evenly between Friend and Neutral.

3. The ESM declaration has a mass of m, with the rest
(1 —m) being assigned to the ignorance, reflecting a
certainty percentage Cer% in the declaration. Cer%
will be explored over a realistic range between 60%
and 90%.

This section will show a representative example of
such a scenario, but the rest of the paper addresses the
general trends that can be established from 1000 Monte-
Carlo runs, where a different random seed is chosen for
each member of the sequence in each Monte-Carlo run.

Thresholded-DS should be able to adequately rep-
resent the main features of the ground truth (which is
known in an M&S approach), namely

1. Show stability under occasional miss-associations,
namely show stability when fused data are generally
consistent, specifically for the first 50 time stamps
(after a short ramp-up time) and the last 50 time
stamps (after the ramp-up time, or latency, due to
the allegiance change).

2. Switch allegiance when the ground truth does so,
namely have a reasonable measured latency in the
response time (or delay, hereafter denoted A) when
an abrupt change occurs in the data to be fused.

A typical scenario, with the random number gener-
ator set to produce on average (for a set of Monte-Carlo
runs) an Acc% = 80%, is shown in Fig. 1, with the x-
axis representing the time index.

For this scenario, Thresholded-DS achieves the re-
sults shown in Fig. 2, given a typical value of I ;,
0.02. In Fig. 2, the x-axis represents the time index,
and the y-axis represents the value of basic belief as-
signment (or mass) associated with the given hypothe-
sis. Note that Thresholded-DS therefore never becomes
more than 98% sure of its fused result (as mentioned in
the introduction).
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Fig. 2. Thresholded-DS for the typical scenario with Acc% = 80% and Cer% = 70%.

DS never becomes confused, shows good stabil- sonably quickly and takes about 8—10 reports before
ity when miss-associations arrive randomly spaced out, switching allegiance as it should. Furthermore, after be-
which is the case until iteration 50. It then reacts rea- ing confused for an iteration around the sequence of
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Fig. 3. Good decision rate for the scenario with Acc% = Cer% = 80% and 1000 runs.

four Friend reports starting at iteration 76, it quickly
reverts to the correct Hostile status.

Fig. 3 shows a sample of a good decision rate
of the target identification for Thresholded-DS using
an input case such as the one from Fig. 1 generated
randomly 1000 times. More specifically, it is the result
of a Monte-Carlo simulation run of 1000 with an ESM
sensor having values of accuracy and certainty both at
80% with the DS threshold at /_;, = 0.05 at every fusion
step.

In order to evaluate the latency in the reaction time
around iteration 50, we first determine the empirical
mean averaged over time index 15 to 45 and 65 to 95,
and then we subtract three times the value of the em-
pirical standard deviation (30) averaged over the same
interval. This interval has been chosen arbitrarily to ex-
clude most of the instability that is mostly due to the
initialization instability and the change of allegiance in-
stability. So it will only include the instability of the
decision system and the input data. The measure of
latency then starts at time index 50, and ends at the
time index at which the good decision rate reaches the
threshold for reaction time performance shown as a hor-
izontal line in Fig. 3. This horizontal line corresponds
to the mean determined by the method above minus
three standard deviations o, which indicate the stability
in the above mentioned time periods, according to the
formulae for o

1 < 1 &
n_1 ;(xi—u)z, n= Z;%-

The standard deviation o tends to a fixed value as a
function of increasing n, as shown in Figs. 4(a) for 100
Monte-Carlo iterations and 4(b) for 1000 Monte-Carlo
iterations (0.16% in this case on the y-axis, with the x-
axis being again the time index), but show less noise as
n increases. This shows that ¢ is a dynamical feature of
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the process, rather than being dependent on the number
of Monte-Carlo runs.

Please note that this is just a practical definition of
the latency, in order to show the trends in latency, when
the parameters are varied, particularly / ;.. Other defi-
nitions may be more appropriate for other applications.

3. NUMERICAL GRAPHICAL RESULTS FROM
MONTE-CARLO RUNS

This section shows the graphs for stability in the first
subsection and reaction time latency (or delay) in the
second subsection, for 1000 Monte-Carlo runs, for var-
ious values of the threshold in Thresholded-DS. Since
one has three parameters to vary (certainty, accuracy,
and /), the presentation in this section focuses on
showing the stability (in Subsection 3.1), and the re-
action time latency (in Subsection 3.2) as a function
of certainty and accuracy, with different figures corre-
sponding to different choices for values of I ;.

3.1, Stability

For an increase in the threshold of the minimum
ignorance of 0.01 for each different figure, we have the
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following results for the standard deviation o indicative
of stability, for I ;, = 0.01 (Fig. 5), I.,;, = 0.02 (Fig. 6),
1., =0.03 (Fig. 7), =0.04 (Fig. 8), and I, = 0.05

(Fig. 9).

Imin
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Fig. 11. Reaction time latency or delay for I ; = 0.02.

Any much smaller value than 0.01 would result in
too much rigidity when an allegiance changes, resulting
in longer reaction time latency or delay (as will be
shown in the next subsection). These figures show
that any much larger result than 0.05 adversely affects
stability, as can be seen when comparing Fig. 9, which
becomes concave and has higher o over all of the values
of certainty and accuracy, with Fig. 5, which is convex
and has lower o over all of the values of certainty
and accuracy. The intermediate figures show the slow
deterioration in stability as /,;, increases.

3.2. Reaction time latency

For an increase in the threshold of the minimum
ignorance of 0.01 for each different figure, we have
the following results for the reaction time latency (or
delay A) in time units of the simulation scenario, with
I.., =0.01 (Fig. 10), I, = 0.02 (Fig. 11), I, = 0.03
(Fig. 12),1;, = 0.04 (Fig. 13), and [ ,;, = 0.05 (Fig. 14).
Again this corresponds to 1000 Monte-Carlo runs.
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Fig. 12. Reaction time latency or delay for _; = 0.03.

80 7 . ; &
a0 75

%0 gy 85
accuracy

certainty

Fig. 13. Reaction time latency or delay for /_; = 0.04.
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Fig. 14. Reaction time latency or delay for 7 ; = 0.05.

These figures show that much smaller values of I,
than 0.01 result in too much rigidity when an allegiance
changes, resulting in longer reaction time latency or
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delay. This is clearly seen by the much higher values for
the delays in the surface of Fig. 10 when compared to
Fig. 14, over all of the values of certainty and accuracy.

This is particularly notable for low values of cer-
tainty and accuracy: the delay exceeds 25 time units (or
more than half the total time to recover from an alle-
giance change) when compared to Fig. 14, where it is
about 20 time intervals. The effect is also very notice-
able for high accuracy values (towards the reader). The
intermediate figures show the slow improvement in the
reaction time latency as [, increases.

4.  ANALYSIS OF THE GRAPHICAL RESULTS IN
ORDER TO IDENTIFY TRENDS

The large amount of graphical data shown in the
previous section can be interpreted rather simply for
the instability (in Subsection 4.1 for Figs. 5-9) and
reaction time latency A (in Subsection 4.2 for Figs. 10—
14). Although the trends discussed in the following
subsections can be phrased rather straight-forwardly, the
trends themselves are non-linear, as can be seen by close
inspection of the figures in the previous section.

4.1. Instability

Analysis of the performance measure of stability
(or instability) of the Thresholded-DS system can iden-
tify the following trends from our various simulations
shown in the last section.

1. For a fixed value of certainty, the value of instability
increases when the accuracy decreases.

2. For a fixed value of accuracy, the value of instability
increases when the certainty increases.

3. For fixed values of certainty and accuracy, the value
of the instability increases when the value of the
total ignorance threshold / ;. is increased.

4. A change in accuracy affects more the instability than
the certainty does.

5. Lower values of instability (good) are achieved with
higher accuracy and lower certainty, and vice versa.

4.2. Reaction time latency

Analysis of the performance measure of reaction
time latency (or delay A) of the Thresholded-DS sys-
tem can identify the following trends from our various
simulations shown in the last section.

1. For a fixed value of certainty, the value of the delay
increases when the accuracy decreases.

2. For a fixed value of accuracy, the value of the delay
increases when the certainty decreases.

3. For fixed values of certainty and accuracy, the value
of the delay increases when the value of the total
ignorance threshold /_; is decreased.
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4. A change in accuracy affects more the delay than the
certainty does.

5. Lower values of delay (good) are achieved with
higher accuracy and higher certainty, and vice versa.

Points 3 in the above two lists clearly show that a
compromise must be achieved when using Thresholded-
DS between being responsive to any real change in the
data, yet not being too responsive to fluctuations in the
data, due to either poor sensor data certainty or fusion
accuracy. In general, a high value for [, will tend
to respond to a stream of false reports rather quickly
(bad) but will be very responsive to a real change in the
data (good). A low value for I_;, will provide excellent
stability (good), but will react slowly to a real change
in the data (bad).

The trends shown above are correct over the vast ma-
jority of the 16 points shown in the preceding Figs. 5—
14. Only the exact values are shown in those figures,
without the estimated errors from the Monte-Carlo runs.

The following Fig. 15 shows such a compromise as
a function of I ; , for a value of %Acc = %Cer = 80%
with an estimate of errors, which cannot easily be
portrayed in Figs. 5-14. The vertical axes represent o
(in % on the left) and A (in time units of the simulation)
on the right, with the dashed lines showing approximate
error bars given the limited number of Monte-Carlo runs
(about 1000 runs). The figure shows that the interval
I in €10.025,0.04] with a best value around 0.0325 can
be selected.

5. CONCLUSIONS

This paper has provided performance measures of
Thresholded-DS for various thresholds in terms of sen-
sor data certainty and fusion accuracy to help designers
assess beforehand, by varying the threshold appropri-
ately, the achievable performance in terms of the esti-
mated certainty and accuracy of the data that must be
fused, i.e., an operating point for the application.

The threshold that the designers can choose accord-
ing to figures similar to Fig. 15 depends on appropriate
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definitions for sensor certainty and latency (or delay) for
their given application. Reasonable values were chosen
here for an ESM application. In real applications, one
should have an independent way of assessing the sen-
sor certainty and the fusion accuracy in real-time. The
Monte-Carlo runs provide the operating points, but it
has to be assumed that the user can assess these operat-
ing points by monitoring the performance of the sensor
as the mission develops (for example on well-isolated
targets), and has calibrated the performance of the as-
sociation mechanism in various conditions, which any
manufacturer of such software should have done.

The performance measures are twofold, first in terms
of stability when fused data are consistent, and second
in terms of the latency in the response time when an
abrupt change occurs in the data to be fused. These two
performance measures must be traded off against each
other, which is the reason why the performance curves
will be very helpful for designers of identification fusion
using Thresholded-DS.
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