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In this paper a real-time cooperative path decision algorithm
for UAV surveillance is proposed. The surveillance mission includes
multiple objectives: i) navigate the UAVs safely in a hostile environ-
ment; ii) search for new targets in the surveillance region; iii) clas-
sify the detected targets; iv) maintain tracks on the detected targets.
To handle these competing objectives, a layered decision framework
is proposed, in which different objectives are deemed relevant at
different decision layers according to their priorities. Compared to
previous work, in which multiple objectives are integrated into a
single global objective function, this layered decision framework
allows detailed specification of the desired performance for each
objective and guarantees that an objective with high priority will
be better satisfied by eliminating possible compromises from other
less important ones. In addition, specific path decision strategies
that are suited to the individual objectives can be used at different
decision layers. An important objective of the path decision algo-
rithm is to navigate the UAV safely in the hostile environment. To
achieve this, it is shown necessary to increase the time horizon of the
path decisions. In order to overcome the computational explosion of
an optimal multi-step look-ahead path decision strategy, a Rollout
Policy is proposed. This policy has moderate complexity and, when
used in the layered decision framework, it is able to find safe paths
effectively and efficiently. When the number of UAVs is large, the
formation of UAV decision groups based on a nearest neighbor rule
is proposed to control the complexity of the path decision algorithm.
Further flexibility of assigning different objectives to the UAVs is
also discussed. Simulation results show that the proposed path de-
cision algorithm can guide the group of UAVs efficiently and safely
for the multi-objective surveillance mission.
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1. INTRODUCTION

Recently a considerable amount of research effort
has been directed toward the navigation and coopera-
tive control of groups of unmanned (or uninhabited)
aerial vehicles (UAVs). The advantages of UAVs include
greater mobility, removal of risk to human operators,
potentially lower cost, smaller size/weight, and the pos-
sibility of effective coordination. These features make
them ideal for repetitive or dangerous tasks in both mil-
itary and civilian applications [17]. A number of UAV
management algorithms that serve various applications
can be found in the literature. Ref. [14] addresses the
problem of cooperatively controlling multiple UAVs so
that they reach a predetermined target location simul-
taneously, while maximizing the survivability of the
UAVs against exposed threats and adhering to the fuel
constraints. A hierarchical decision mechanism is pro-
posed in which at the team level the estimated time until
arrival is computed and at the UAV level path planning
is performed. In [5] a similar approach, which includes a
Voronoi diagram in path planning, is used for the simul-
taneous intercept problem in the presence of dynamic
threats. Similar approaches can be found in [6, 13, 15].
In [8] another hybrid control structure is proposed for
the simultaneous intercept problem. Ref. [22] studies
the task assignment problem for a group of UAVs.

We focus on the surveillance application of UAVs.
The scenario considered involves a group of UAVs that
search and track ground moving targets in a hostile
environment. The objectives in the surveillance mis-
sion include: i) navigate the UAVs safely in a hostile
surveillance environment; ii) search for new targets; iii)
classify the detected targets; iv) maintain tracks on the
detected targets. The conventional method of handling
multiple objectives is to construct a combined objective
function, e.g., the weighted sum approach used in [16,
23]. Our previous work [18] also uses the weighted sum
approach, where the path decision problem is formu-
lated as a nonlinear programming problem and solved
by optimizing the global objective function over the
continuous control variables (turn rates of the UAVs).
However, there are several drawbacks to this. First,
since different objectives have different meanings, the
weighted sum of the objective functions is difficult to
interpret and validate. Second, when the path decisions
are made by maximizing a combined global objective
function, it is hard to specify the requirements for the
individual objectives. For example, for the objective
tracking, it would be more reasonable to require the
RMS errors of a given target to be no larger than a pre-
defined level as opposed to requiring the errors to be
as small as possible. Third, the simultaneous impact of
multiple objectives on the path decisions could compro-
mise the satisfaction of one or another objective in an
unpredictable manner. As shown in Section 4, the sur-
vival probabilities of the UAVs can drop significantly
when a combined global objective function is used for
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path decisions. Ref. [11] proposes an algorithm for the
design of the weights for the weighted sum approach
in order to achieve a desirable tradeoff in the different
objectives. However, the computational requirements of
this algorithm are too involved for complex coopera-
tive tasks and may preclude the possibility of multi-step
look-ahead policies.

In this paper, a novel approach—Iayered decision
framework—is proposed to handle multiple objectives
in a surveillance mission. In the layered decision frame-
work, instead of combining different objectives into a
single objective function, multiple objectives are in sep-
arate decision layers according to their priorities. The
control options' are evaluated first in the top decision
layer, which results in a subset of controls that yields
satisfactory results for the primary objective. Then, this
subset of controls are passed down to the next decision
layer for further selection. Proceeding through the de-
cision layers, the control options are sifted and reduced
to the final decision with the best overall performance.
Major benefits of this approach include: 1) it allows the
specification of desired performance for each individ-
ual objective in different layers; ii) an objective with
a higher priority will be better satisfied by eliminating
possible compromises from other less important ones;
iii) depending on the nature of the objective, suitable
path decision strategies can be used at each decision
layer, which may lead to significant savings in com-
putation. iv) computation can be saved when the path
decisions can be made through some of the decision lay-
ers, because there is no need to evaluate the remaining
less important ones.

In the surveillance problem considered, the objec-
tive of safe navigation is assigned the highest priority;
this is based on the premise that the safety of a UAV is
more important than gathering one extra measurement.
The problem of navigating a single UAV in a hostile
environment while chasing a target has been studied in
[25], in which the UAV tries to stay within a defined
proximity of its target while avoiding restricted regions
and obstacles. A gradient search algorithm with a ge-
ometry based strategy is used for the path decisions.
In the present paper, the threats come not only from
fixed positions, but also from moving targets. A dif-
ferent approach based on a Rollout Policy [3] is pro-
posed for path decisions. This is used in the decision
layer for safe navigation and is shown to be able to find
safe path decisions effectively with moderate complex-
ity. For other surveillance objectives including—search,
classification and tracking, following [18], specific ob-
jective functions are constructed based on certain infor-
mation criteria. These objective functions, along with
suitable path decision strategies, form the rest of the
decision layers.

IThe control variables are discretized into a set of control options.
As shown later, this also facilitates the multi-step look-ahead path
decision policy.
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Two additional features are also incorporated into
the path decision algorithm, which make it more ef-
ficient and flexible for a large number of UAVs. One
is the formation of decision groups based on a nearest
neighbor rule. By doing this, the complexity of the al-
gorithm increases linearly with the number of UAVs.
Another is to assign different objectives to UAVs, since
it is common to require the UAVs to focus on different
tasks in the surveillance region.

The paper is organized as follows. Section 2 for-
mulates the surveillance problem. Section 3 is devoted
to the layered decision framework for surveillance with
multiple objectives. In Section 4, the problem of safe
navigation in a hostile environment is studied. The
multi-step look-ahead path decision strategy is proposed
using a Rollout Policy, and it is shown to be effective in
solving the problem of safe navigation. In Section 5, the
construction of small decision groups and how to assign
different objectives to the UAVs are discussed. Simula-
tion results are also presented to show the effectiveness
of the algorithm. Section 6 presents the conclusions.

2. THE SURVEILLANCE MODELS AND OBJECTIVE
FUNCTIONS

In this paper, the surveillance scenario follows most-
ly [19]. To make this paper self-contained, all models
used are described in this section, including UAV spec-
ifications, models for threats in the surveillance region,
as well as, tracking, search and classification models. It
is worth mentioning that, for the sake of simplicity, we
assume the surveillance mission takes place in a 2-D
plane, namely, altitudes of the UAVs are not taken into
account. This, however, does not compromise the main
ideas of the paper, which are the layered decision frame-
work and the multi-step look-ahead path decision policy
for UAV navigation.

2.1. UAV Characteristics

Assume that fixed wing unmanned aerial vehicles
are used for surveillance. The UAVs can fly only within
a speed interval and have limited maneuverability. Fol-
lowing the formulation in [18], it is assumed that the
UAVs move with a constant speed V,, and the max-
imum turn rate the UAVs can take is @, . Unlike in
[18], the control of the UAVs is discretized into D lev-
els, namely the UAVs can only take turn rates from a
finite set. For example, when D = 3 the control set is
{=P x>0, @,y }- It is assumed that the path decisions
are made every T seconds. For cooperation, the UAVs
need to exchange information of their states and mea-
surements from the onboard sensors. In this paper, a
centralized data processing framework is used, that is
all the information from the UAV network is available
for data fusion and path decisions. While the proposed
path decision algorithm works best in a centralized set-
ting, it can be used in a distributed system by treating
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each individual UAV as a duplication of the decision
center. The issue of synchronizing information among
distributed agents (UAVSs) in a distributed system is be-
yond the scope of this paper.

2.2. The Model of the Threats in the Surveillance

Region

In the surveillance, UAV losses may happen due to
hostile fire and collisions among the UAVs. As in [18],
these potential threats are incorporated into the survival
probabilities of the UAVs. The survival probability of
UAV s equals the product of target-fire survival proba-
bility 7§ (s), stationary-attack survival probability 73(s),
and collision survival probability m3(s), i.e.,

ey

where 7i(s), is the product of target-fire survival prob-
abilities of UAV s in view of each target j, i.e.,

HOES || EXCH))
J

75(8) = TH(S)TE(s)TI(S)

(2)

Similarly, for the attacks from stationary threats, sur-
vival probability of the UAV is

m3(s) = [ [m5(s.D) 3)
l

and m3(s) is the product of collision survival probabili-
ties corresponding to all other UAVs,

7@@=H@@u
ifi#s

“

The nature of these survival probabilities is application-
dependent. In this paper, the probabilities are modeled
as functions of distance as shown in Fig. 1: (a) for
74 and 7% and (b) for 73. For safe navigation, the sur-
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Detection and survival probabilities as functions of distance to target.

vival probabilities of the UAVs should be above a
threshold,” e.g., 0.9, which is a design parameter of the
algorithm.

2.3.  The Tracking Model

Using a 2-D model, the kinematic state of the target
is defined as

&)

The target motion is modeled by the Discrete White
Noise Acceleration (DWNA) model [1]. The UAVs are
assumed to be equipped with Ground Moving Target
Indicator (GMTI) radars, which measure the loca-
tions of moving ground targets as well as their radial
velocities (Doppler). A 2-D measurement model is
used

X=[x x y yl.

F,=r+w, (6)
o, = atw, )
Py =F+W; ®)

in which w,, w, and w; are Gaussian noise with standard
deviations o¢,, o, and o; respectively. Applying the
Polar to Cartesian conversion [1], the measurement is
converted to

Z, =%y Y Tl €))

where
X, =71, CoSq, (10)
YV =1,8100,. 11

2This threshold serves as a soft boundary, the path decision algorithm
should be able to keep the survival probabilities above or close to this
safety bound.



The noise in the converted measurement is zero-mean?

with covariance matrix

Ry R, O
R= R, Ry, 0 (12)
0 0 o?
where
Ry, =rpoZsina;, + o cosay, (13)
Ry, = r2o?cosal +o’sina’, (14)
Rl,z—(o r2a?)sina,, cosa,,. (15)

The observation matrix corresponding to (9) is (see, e.g.,
(24])

1 0 0 0
H=1|0 0 1 0 (16)
0 cosa 0 sina

where o, can be used in H, as shown in [24].

The detection probability is a function of range and
range rate of the target with respect to the GMTI radar.
Denoted as 7, the detection probability is given by

T = TH ()T (F) (17)

wll)(r) is shown in Fig. 1(c). For a GMTI radar, if the
range rate for a target falls below a threshold r,;, then
the target will not be detected. Hence,

7rD(r) =1—Prob{—r, <r<r

max }

(18)

IIllIl

For tracking, it is assumed that the UAVs obtain
measurements from the detected targets every T sec-
onds. Following [18], at decision time k7, the expected
track update for target j at time (k + 1)T is

N
I+ 1 k+1)=1I(k+1]|k) +Z7}D(s,j,k + DH(s, j.k+ 1)

s=1

X R(s,j.k+ 1) "H(s, jk+1) (19)

in which /; denotes the information matrix from the
track of target j, namely, I; = P, ' N is the number
of the UAVs; s is the mdex of the UAV. The “hat”
marks indicate the values are expectations that depend
on the relative positions of target j to the UAVs atk + 1.
Clearly, 1. (k +1]k+1) is a function of the collective
path dec1s10ns (controls) of the UAVs at k. To evaluate
the expected quality of the track, the expected mean
square position error can be used, since it is directly
related to the RMS position error (components 1 and 3
of the state vector). For target j one has,

MSE(j,k + 1)
=P k+1|k+1)(11)+P(k+1|k+1)(”)
(20)

3Since the condition for the unbiasedness conversion [1] is satisfied,
the noises in x,, and y,, can be assumed to be zero-mean.
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The construction of the objective function for tracking
is based on (20). Further details will be discussed in
Section 3.

2.4. The Model for Search

Studies on the problem of cooperative search using
multiple autonomous UAVs can be found in [10, 9, 16].
For different applications, formulations of the problem
may change. In the surveillance problem considered, the
surveillance region is divided into a number of sectors.
It is assumed that each UAV scans a fixed number N, of
such sectors in each period of its operation. As in [18]
in each sector, the arrival of new targets is modeled as
a Poisson process.

Let B, (k) denote the probability that there is no
new target in sector {m,n} and ), denote the Poisson
parameter (expected spatial density of new targets) of
this sector. At the kth decision time one has

P, (k)="P,, (k- “Hmal

1exp 21)

If the sector is scanned by UAV s at k with a detection
probability of 7, (m,n,s,k), it follows (assuming there
are no false alarms) that the updated probability £, (k™)
is given by

Bak™) =
Bua(k)
B,,() + [1 =B, (DIl —7p(m,n,s,k)]
if scanned and no target was detected
1 if scanned and a target was detected

(22)

An intuitive interpretation of (22) is as follows. When
scanned, no target is detected with probability B, (k) +
[1-8,,"I[1 —7p(m,n,s,k)]. So, the updated proba-
bility P, (k*) is as given in the first probability of (22).
If a target is detected, no new target is in that sector
with probability 1. From (22), the payoff of a specific
scan can be calculated as

A(m,n,s,k) = E[F, ,(k*)] =P, (k)

= (k)1 p(m,n,s,k).

mn

(23)

For a single UAV its scan decision can be made by
selecting the most profitable (largest A given by (23)) N,
sectors, which favors the sectors that are more likely to
have new targets (low P, ,(k)) and the potential new tar-
gets are more likely to be detected (high 7,,(m,n,s,k)).
In the multiple UAV case, the optimal scan decision is
a complicated assignment problem. However, a near-
optimal solution can be found using simple heuristics.
Since the UAVs tend to operate in different regions (to
produce good coverage to the whole surveillance area),
their N, best sectors to scan are very unlikely to overlap,
which allows the UAVSs to make their scan decisions in-
dependently; rare conflicts can be resolved by making
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their scan decisions sequentially in the order of the UAV
indices.

2.5. The Model for Target Classification

An important objective of surveillance is to clas-
sify the detected targets. Studies of optimal search with
joint detection and classification can be found in [20,
6, 12]. An integrated algorithm for tracking and clas-
sification with data association is presented in [2]. In
this paper, following [19], the classification and track-
ing are considered as different problems as it is as-
sumed that the GMTI radar mounted on the UAV does
not provide classification information; instead, it is as-
sumed that classification information is provided by a
closed circuit digital (CCD) camera. A classifier as-
sociated with the camera processes the data from the
camera. The outputs are class decisions and their as-
sociated class confusion matrix. The class confusion
matrix gives the probabilities of class decision out-
put given the actual class of the target. It is assumed
that the class confusion matrix is only a function of
target-UAV distance, i.e., spatial diversity does not im-
prove classification results. Let ((j,s,k) denote the out-
put of the classifier on UAV s at the kth decision
time for target j and C(j,s,k) be the corresponding
class confusion matrix. Element ¢, (j,s,k) of C(j,s,k)
is given by

Cap(J»5:k) = P(C(j.8,k) = b | r; = a)

in which «; denotes the true class of the target.

To facilitate classification, when a new target is de-
tected, the UAV closest to that target is assigned to
perform the classification. The UAV will start to use
the classification sensor when it gets close enough to
the target. Notice that classification is a special case
when the UAVs are focusing on different objectives.
Such needs are common in multiple UAV surveillance.
For example, some of the UAVs may focus on tracking
while others focus on search. In Section 5.2, the prob-
lem of assigning different objectives to the UAVs will
be discussed.

For a detected target, a class probability vector is
used as the state for classification. Let x; denote the
class probability vector for target j which can be ini-
tialized, e.g., as a uniform distribution over all possible
classes. If the output of the classifier is {(j,s,k) = b,
then 4i; is updated as [2]

(24)

,LL+ _ Ch(.]as7k)®:u’]
/ Ch(j,S,k)/,uj
where C,(j,s,k) is the bth column of the class confusion

matrix and ® is the Schur-Hadamard product (term by
term). The classification of target j is completed when

(26)

(25)

max{ﬂj} > TcLs

in which 7 g is a confidence threshold, e.g., 0.95.

TABLE I
Decision Layers in the Path Decision Algorithm for Surveillance
(s is the index of the UAVs and j is the index of targets)

Decision
Layer  Satisfactory Evaluation Criterion
Objective (priority) Level for the Accomplishment
Safe Navigation 1 Tps min{m(s), Tpg }
Classification 2 TeLs min{max{u i hTerst
Tracking 3 Tnvse() max{MSE(j), s ()}
Search 4 TPNNT mll’l{Pm n’ TPNNT}

3. LAYERED DECISION FRAMEWORK FOR
SURVEILLANCE MISSION WITH MULTIPLE
OBJECTIVES

In this paper, a layered decision framework is used
for handling multiple objectives, in which each objec-
tive occupies a decision layer according to its priority.
A decision layer consists of: i) the objective; ii) a func-
tion that evaluates the degree of accomplishment of the
objective; iii) a satisfactory level, at which point no fur-
ther improvement on the objective is necessary. Table I
shows an example of arrangement of the decision layers.

In the layered decision framework, an objective with
a higher priority will be considered first. The key idea is
that once a satisfactory level is reached, the “satisfied”
objective will have no effect on the path decisions, thus
freedom in the path decisions can be passed on to the
next decision layer. To illustrate this, consider a sim-
ple case of a group of N =2 UAVs tracking two tar-
gets while performing search in the surveillance region
(classification is omitted in this example). Suppose the
control of each UAV is discretized into D =3 levels.
Thus, at every decision epoch, the number of control
options for the UAV group is DV =9. For simplicity,
the example will stay with one-step look-ahead path de-
cision (multi-step will be introduced later) and all the
data in this example are for the purposes of illustration
only.*

In this example, the control options are first evalu-
ated by the top decision layer of safe navigation. Table II
shows the m-best control options (m =5 in this case)
indicated by a check mark.’

When m = 1, this is the control option that yields
the best result for the current objective and it is chosen
directly as the path decision, since there is no freedom in
control left for the remaining decision layers. If m > 1,
these m best control options will be passed on to the next
decision layer of tracking. As shown in Table III, the

“In actual simulations, the differences between different control op-
tions are much smaller than those shown in this example. However,
by always following the best control option, the UAVs will navigate
to desired positions by capturing the gradient information of the ob-
jective functions.

SIn Tables II-III, control index (C,,C,) denotes a combination of
the controls taken by the two UAVs, C, € {1,2,3} for UAV 1, C, €
{1,2,3} for UAV 2.

MULTI-STEP LOOK-AHEAD POLICY FOR AUTONOMOUS COOPERATIVE SURVEILLANCE 7



TABLE II
Decision Layer 1: Control decisions for Safe Navigation with N =2 UAVs and 7,5 = 0.9

Control Index (C,,C,) (1,1 1,2) 1.3 .0 (2,2) 2,3) 3.1 (3.2) (3.3)

g 0.92 0.95 0.87 0.99 0.82 0.81 0.93 0.83 0.91

(Expected 7y at k + 1) 1 0.98 0.91 0.92 0.87 0.95 1 0.91 0.92

g 0.9 0.9 0.87 0.9 0.82 0.81 0.9 0.83 0.9

(min{7, 7o P 0.9 0.9 0.9 0.9 0.87 0.9 0.9 0.9 0.9

Control Evaluation 0.81 0.81 0.783 0.81 0.713 0.729 0.81 0.747 0.81

(I17s) v v v v v
TABLE 111 e The layered decision framework allows different path

Decision Layer 2: Control decisions for Tracking with 7;gp. = 25 m?

Control Index (C;,C,)  (L,1) (1,20 @21 @G (33
MSE(m2) 17 20 30 32 23
(Expected MSE at k + 1) 23 22 27 29 31
MSE(m?) 25 25 30 32 25
(max{MSE, 7y;s }) 25 25 27 29 31
Control Evaluation 50 50 57 61 56
(S°MSE())) v v

output of the second decision layer is a further reduced
set of controls indicated by columns with a check mark.
If the size of this reduced control set is greater than 1,
it will be passed to the next decision layer for further
selection.

The path decision algorithm ends when the best
control option is found. The uniqueness of the final
path decision can be guaranteed by simply setting the
“satisfactory level” of the last decision layer to the
“ideal” one. In this example, the last decision layer is
“Search,” thus TN can be set to 1, which is an “ideal”
level that can never be simultaneously achieved at all
the sectors due to the limited scan capability of the UAV
group. A similar procedure as in Tables II and III can be
used for “Search” and it is omitted here for conciseness.

Compared to the weighted sum approach, the lay-
ered decision framework has the following advantages:

e Multiple objectives in the surveillance are clearly de-
lineated. Thus, objectives with higher priorities are
free from possible compromises from the less impor-
tant ones. Section 4 will show that this is particularly
important for the objective of safe navigation.

e For each objective, the “satisfactory” levels allow the
path decision algorithm to be sensitive to the entities
(e.g., targets in the tracking layer, sectors in the search
layer) that demand more attention. Take tracking for
example. The objective function is a combination of
sub-objectives related to the tracks of all the targets.
The use of the satisfactory level rq €liminates the
impact of those sufficiently accurate tracks and allows
the inaccurate tracks have more influences on the path
decisions.
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decision strategies to be used for the objectives. For
example, depending on the nature of the objectives,
they may or may not benefit from multi-step look-
ahead strategies. Significant computation cost can be
saved by decomposing the objectives among multiple
decision layers.

e When a path decision is determined by the first few
decision layers, the remaining layers do not need to
be evaluated.

4. MULTI-STEP LOOK-AHEAD PATH DECISION
STRATEGY FOR UAV NAVICGATION

An important objective for the path decision algo-
rithm is to navigate the UAV group safely in the surveil-
lance region. As specified in Section 2.2, the threats to
the UAVs are modeled in terms of survival probabilities
(1). In [18] the survival probabilities of the UAVs are
incorporated into the global objective function through
the track update as

N
Lk+1[k+1)=ILk+1]k)+ Zfrs(s,k + D)y (s, jok + 1)
s=1
x H(s, jk + 1YR(s, jk + 1) H(s, jk + 1)

(27)
which is a variation of (19). If the UAV survival prob-
abilities, er(s,k + 1), drop, there will be a reduction in
the expected information gain. As a result, the path de-
cision algorithm tends to avoid drops in the survival
probabilities of the UAVs. While this formulation in-
tuitively makes sense, it turns out to be incapable of
preventing the UAV survival probabilities from signif-
icant drops. There are two reasons for this problem.
First, tracking and safe navigation are two competing
objectives. Particularly when a UAV is tracking a sin-
gle target it tends to get close to the target, while safe
navigation requires the UAV to keep adequate distance
from the target. The combination of competing objec-
tives into a single global objective function can lead to
unpredictable compromises. Second, due to limited ma-
neuverability of the UAV, a one-step look-ahead path
decision strategy can result in late detections of poten-
tial safety risks. In the rest of this section, a multi-step
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Fig. 2. Greedy Heuristic and Rollout Policy.

look-ahead path decision strategy is proposed based on
the Rollout Policy [3]. When used in the decision layer
of safe navigation, it is shown to produce significantly
improved results.

4.1. Multi-step Look-ahead Path Decision and Rollout
Policy

By discretizing the controls of the UAVs, a multi-
step look-ahead path decision for the UAV group can
be modeled as a combinatorial optimization problem.
However, the problem is NP-hard, e.g., for a UAV
group that consists of N UAVs, the optimal solution
for a K-step look-ahead path decision needs to con-
sider DVX possible paths, which can be far too ex-
pensive for a real-time algorithm even with modest
N and K. Instead of seeking the optimal solution,
a suboptimal solution requiring less computation is
much more desirable. The Rollout policy proposed in
[3] is a suboptimal solution to the combinatorial op-
timization problems. Based on a heuristic solution to
the problem (called a base heuristic), the Rollout pol-
icy is guaranteed to find a solution that is no worse
than the base heuristic. Successful applications of the
Rollout policy can be found in [4, 21], in which it
works surprisingly well by producing near-optimal so-
lutions.

In [3], the Rollout Policy was introduced in a Dy-
namic Programming (DP) context. Consider a problem
with a finite set of feasible solutions and a cost func-
tion g(u), u € U. Each u has K components, namely, u =
(t),uy,...,ug). In the K-step look-ahead path decision
algorithm, the components u,,...,u, correspond to the
controls at different times. An i-tuple (u;,u,,...,u;), i <
K, consisting of i components of the solution is called
an i-solution. The optimal solution u* = (uj,u3,...,ux)
can be obtained via DP, which gives

* . * 7ok * *
u; = arg min JT, Uy, 0, uy) o
u; €U (u 15, ur_ )

i=1,2,...K  (28)

where J* is the optimal cost-to-go function for any
i-solution. However, the evaluation of J* is, in most
cases, not feasible. In the Rollout policy, a base heuris-
tic algorithm H is used. From any i-solution u =
(#1,u,,...,u;), the heuristic algorithm H can generate
a complete K-solution u = (u;,u,,...,ux) whose cost
is denoted by h(u,,u,,...,u;). The suboptimal solution
u = (ty,uy,...,ug) is found by replacing J* in (28) with
the heuristic cost-to-go function 4, namely,

u; = arg min _ hQuy, Uy, U, U) s
u; €U (U ,U,....U; 1)

i=1,2,... K. (29)

For the K-step look-ahead path decision strategy, at k,
the control that produces the best control sequence from
k+1 to k+K is selected; the Greedy heuristic, which
is equivalent to the one-step look-ahead path decision,
is used as the base heuristic to generate the control
sequences. Fig. 2 illustrates the greedy heuristic and
its corresponding Rollout policy in a 3-step look-ahead
path decision strategy for a single UAV.

Assume that at each node, there are 3 controls (turn
rates) available for the UAV. Using the Greedy heuris-
tic, the control that leads to the next “node” with the
best immediate result will be selected. Fig. 2(a) shows
the path (control sequence) from k to k + K (=k + 3)
generated by Greedy heuristic (highlighted by the thick
dashed arrows). In the Rollout policy, instead of starting
from k, the greedy heuristic starts from k + 1 to gener-
ate the remaining paths to k + 3. The control at k that
produces the best path to k + 3 (highlighted by the thick
dashed arrows in Fig. 2(b)) will be selected as the con-
trol decision. Note that the evaluations of the paths from
k to k + K are based on the information available at k
and the procedure is repeated at every decision time with
updated information. Compared to the exhaustive search
which requires one to evaluate Sk DV “nodes,” the
Rollout policy only evaluates DV + (K — 1)D?N nodes.
The computational cost increases linearly with the de-
cision horizon K.

MULTI-STEP LOOK-AHEAD POLICY FOR AUTONOMOUS COOPERATIVE SURVEILLANCE 9
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A variation of the Rollout policy RH is the Roll-
square-out policy [3] (denoted as R*H). As shown in
Fig. 3(a), in R’H the greedy heuristic (indicated by the
dashed arrows) starts from k + 2. R*H (which needs to
evaluate DY + DX + (K —2)D3" “nodes”) is more ex-
pensive than RH, while its results are guaranteed to be
no worse than RH. In view of the specific feature of
the path decision problem, it is reasonable to assume
two close paths will produce similar performance. In
Fig. 3(a), the dotted squares mark out 3 similar solu-
tion sets. By taking representative sample paths from
the similar solution sets, R?H can be simplified to a
sampling R*H policy (SR*H). As illustrated in Fig 3(b)
SR?H is much less expensive than R?H, which re-
quires one to evaluate only 2DV + (K —2)D?" nodes.
SR?H is useful in UAV path decisions, since it increases
the volume of the search space for optimal paths (the
K-step look-ahead increases the time horizon of the
search).

4.2. The Decision Layer for Safe Navigation

The proposed multi-step look-ahead path decision
strategy (see Section 4.1) can be used in any decision
layer in the layered decision framework (see Section 3).
Instead of seeking one best control at &, at each decision
layer, the path decision algorithm looks for m best
controls which will be passed on to the next decision
layer for further selection. An important issue in a K-
step look-ahead path decision algorithm is to evaluate
and compare the control sequences from k to k + K.
Figs. 2—-3 show that the evaluation of a control sequence
from k to k + K requires the evaluations of the nodes
from k+ 1 to k + K. In the layer of safe navigation, a
node at k + i can be evaluated by

Jok +) =" In(min{fg(s.k + i), 7)) (30)

where s is the index of the UAVs and 7pg is the sat-
isfactory level introduced in Table II. Accordingly, the
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Roll-square-out Policy and Sampling Roll-square-out Policy.

evaluation of a control sequence from & to k + K is given
by

K
> Jstk +i). (31)
i=1

In addition, a control sequence is considered to be
“safe” if the expected survival probabilities of the UAVs
are above 7pg along the path, namely,

min{7g(s,k + i)} > Tpg vV i=1,....K. (32)
N
Therefore, all “safe” control sequences have the same

value (31), namely

K
S Ug(k +i) = KN In(rpg).
i=1

(33)

Based on the above definitions, at the kth decision time,
the procedure for a K-step look-ahead path decision
algorithm for safe navigation is as follows:

e Use the Rollout Policy to generate control sequences
from k to k + K.

e If “safe” control sequences that satisfy (33) are de-
tected, pass the corresponding controls at k to the next
decision layer.

e If no “safe” sequence is found, use the Sampling
Rollout strategy to generate control sequences from k
tok+K.

o If “safe” sequences are detected, pass the correspond-
ing controls at k to the next decision layer.

e If still no “safe” sequence is found, the value of u, that
leads to the “best” control sequence (evaluated using
(31)) is selected. The evaluations in the remaining
decision layers are not needed.

4.3. Simulation Results for UAV Safe Navigation:

Rollout vs. One-step Look-ahead

Consider first a “toy example” in which one UAV
searches for and tracks one target. For simplicity, clas-
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TABLE IV
Decision Layers in the Simulation

Decision Layer
(priority)

Satisfactory

Objective Level

Evaluation Criterion
for the Accomplishment

Strategy for
Path Decision

Safe Navigation 1 Tpg = 0.9
Tracking

Search 3

_ 2
Tvsg = 0 m

TpnnT =

multi-step
one-step
one-step

min{m(s), Tpg }
max{MSE(}), Ty;sg }

min{F, . Toxnr)

sification is not included here. Table IV shows the
decision layers of the path decision algorithm.® Note
that 7 in the tracking layer is set to zero, which
means once the target is detected the UAV will “fo-
cus” on tracking. The surveillance region is 40 km x
40 km and is divided into 10 x 10 sectors. The tar-
get starts from [2000,14200] m with initial veloc-
ity [10,—2] m/s. The process noise of the target has
intensity /g = 0.01 m/s%. Tt is assumed that Voay =
40 m/s and the control set is {—3,0,3} deg/s. The on
board GMTI radar has measurement standard devia-
tions of [10 m, 1 mrad, 1 m/s]. There are 3 stationary
threats located at [5000,15000] m, [7000,7000] m and
[20000, 10000] m (indicated by the “asterisks”). The cir-
cles show the boundaries of the corresponding restricted
zones within which the survival probability of the UAV
from the threat is below the satisfactory level 7. Spec-
ifications of the UAV survival probability and the target
detection probability follow those in Section 2. Fig. 4
shows trajectories of the UAV and the target in one
simulation. In this case the UAV has to circle around
the target which is slower while avoiding certain re-
gions.

For comparison, the combined objective approach,
in which the survival probability of the UAV is incor-
porated into the expected update of the track in (27), is
also tested. Notice that in the layered decision frame-
work, safe navigation is treated separately from the ob-
jective of tracking; thus, unlike (27), the objective of the
expected track update given in (19) does not deal with
survival probabilities of the UAVs. A modified version
of (27)

L+ 1]k+1)
= min{#g(s,k + D}k + 1] k)

N
+ Y Ag(sk+ Dip(s,j.k +1)

s=1
x H(s,j,k+ 1YR(s, j,k + 1) ""H(s, jk + 1)
(34)

is tested as well, which places greater penalty to the
drops in the survival probabilities.

SIf the tactical value of the information is very high, safe navigation
can be moved to a layer with lower priority.

10

Fig. 4. UAV trajectory in one simulation using the layered decision
framework (9-step look-ahead decisions for safe navigation).

Figs. 5-6 show the minimum survival probability of
the UAV over 100 MC runs, in which “combined ob-
jective 17 refers to the approach that uses the expected
update in (27) as the objective function and “combined
objective 2” refers to the approach that uses the ex-
pected update (34) as the objective function. As shown
in Fig. 5, the one-step look-ahead path decision strat-
egy can not meet the requirement for safe navigation,
no matter which objective function for path decision
is used. In Fig. 6, although a 9-step look-ahead path
decision strategy is used, significant drops in the sur-
vival probability of the UAV are still observed in the
two combined objective approaches. However the 9-
step look-ahead path decision strategy with the layered
decision framework is able to keep the survival prob-
ability of the UAV close to the satisfactory threshold
Tps = 0.9. The rare drop to 0.8 occurred only once in
the 100 runs. Fig. 7 compares the RMS position errors
of the algorithms. Notice that, around the 100th deci-
sion time, the layered decision framework has larger
RMS position errors than those of the combined ob-
jective function approaches, but the drops in the sur-
vival probability are avoided, as shown in Fig. 6. This
is an example where an objective with higher priority

MULTI-STEP LOOK-AHEAD POLICY FOR AUTONOMOUS COOPERATIVE SURVEILLANCE 11
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Fig. 5. Minimum survival probability (one-step look-ahead, 100

MC runs).
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Sample Index (k)

Fig. 6. Minimum survival probability (9-step look-ahead, 100 MC
runs).

(safe navigation) will not be compromised by objec-
tives with lower priorities (tracking and search), which
is a desirable feature of the layered decision framework.
Also notice that, most of the time, the three approaches
have no significant differences in the RMS position er-
rors.

5. MULTIPLE UAV COOPERATIVE PATH DECISION
ALGORITHM FOR SURVEILLANCE MISSIONS

The multi-step look-ahead path decision algorithm
proposed in Section 4 has no limitation on the number
of UAVs. However, its complexity increases geometri-
cally with respect to the number of UAVs. To keep the
complexity of the path decision algorithm under control,
clustering of UAVs into small decision groups will be
discussed. Another feature also incorporated is to allow
the UAVs to focus on different tasks in the surveillance
mission.
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Fig. 7. RMS position error of the track (100 MC runs).

5.1. Formation of Decision Groups Based on a
Nearest Neighbor Rule

As discussed in Section 4.1, using the Roll-policy,
the K-step look-ahead path decision algorithm needs to
evaluate DV + (K — 1)D?" nodes. However, as the num-
ber of UAVs increases, the complexity of the algorithm
increases geometrically. To avoid this explosion in com-
plexity, the formation of small path decision groups is
proposed. For the cooperative path decision problem,
it is reasonable to assume that the larger the distance
between two UAVs, the less their path decisions are
coupled. Thus, to control the number of UAVs involved
in each path decision, it is reasonable to: i) set a max-
imum distance Dist,, beyond which the two UAVs’
path decisions are decoupled; ii) construct small groups
for path decisions with maximum number of N, UAVs
based on a Nearest Neighbor Rule (NNR). The NNR
can be found in chapter 10 of [7], where it was used
for the problem of hierarchical clustering. Fig. 8 is
an example of the formation of decision groups for a
group of 7 UAVs with N, = 3. The procedure is as fol-
lows:

1. Find the “nearest neighbors™” of all the ungrouped
UAVs. (As shown in Fig. 8, the arrows start from the
UAVs point to their “nearest neighbors.”)

2. The two UAVs that have the shortest distance to each
other form a basic decision group ({UAV 3, UAV 5}
in this example).

3. This decision group increases by including a UAV
whose “nearest neighbor” is in the decision group.
(In this example, both UAV 7 and 4’s “nearest neigh-
bors” are inside the basic decision group {UAV 3,

"The “nearest neighbor” of a UAV is defined as the closest UAV
within a range of Dist_, . Notice that, in the example, the distance
of UAV 6 to all the other UAVs is above Dist,,, . Therefore, UAV 6
has no “nearest neighbor.” Consequently, it forms a decision group
by itself.
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TABLE V
Decision Layers in the Simulation

Decision Layer Satisfactory Evaluation Criterion Strategy for
Objective (priority) Level for the Accomplishment Path Decision
Safe Navigation 1 Tpg = 0.9 min{m(s), Tpg } multi-step
Classification 2 Ters = 0.95 min{max{x,;},7¢; s} one-step
Tracking 3 TMSE max{MSE(j), Tysg } one-step
Search 4 TonnT = 1 min{P, . TpnnT) one-step
N S o Do o A T A = T e oo Tmse(S, 7) specifies the satisfactory level of the track ac-

Decision .

- “m_';‘?\\\igf%;;;“t;;f

| Decision
| group 1

Decision | | 7 ..]
|_gowd | {

l

Fig. 8. Formation of decision groups.

UAV 5}; UAV 7 is first selected since it has a shorter
distance to UAV 5 than the distance between UAV 4
and UAV 3.)

4. Repeat 3 on the current decision group, until it
reaches the capacity limit N, or there is no unas-
signed UAV that should be added based on the NNR.
(In this example, {UAV 3, UAV 5, UAV 7} form the
first decision group.)

5. Repeat this procedure from step 1 for the ungrouped
UAVs, until all the UAVs are assigned to their re-
spective decision groups.

For the path decisions in a decision group, the UAVs
outside it are assumed to use their latest known con-
trols throughout the path decision procedure; thus, their
existence will not increase the complexity of the path
decisions in this decision group. By incorporating the
mechanism of decision group, the complexity of the
path decision algorithm only increases linearly with the
number of UAVs.

5.2. Cooperative Path Decision for UAVs with

Different Objectives

In practical applications, it might be desirable to al-
low the UAVs to focus on different tasks. The func-
tion of assigning different objectives to the UAVs can
be conveniently incorporated into the layered decision
framework using satisfactory level matrices. This is il-
lustrated by an example of multi-UAV surveillance with
heterogeneous objectives, where some of the UAVs are
dedicated to tracking, while the other UAVs focus more
on other surveillance tasks. In this case, instead of using
a satisfactory level in the decision layer of tracking, a
satisfactory level matrix 7qg is used, whose element

curacy of target j to UAV s. Thus the desired track ac-
curacy of a target can be different for different UAVs. In
the path decision algorithm, _once track j is sufficiently
accurate to UAV s, that is, MSE(j, k) < 7ygp(s, /), a de-
fault turn rate (0 rad/s) will be used for UAV s when
evaluating the sub-objective function (20) for target j.
This makes the sub-objective MSE(j,k) indifferent to
the control evaluations of UAV s, so that freedom in the
path decision of UAV s can be saved for other “unsat-
isfied” objectives.

5.3. Simulation Results

The proposed multiple UAV cooperative path deci-
sion algorithm is tested in a similar surveillance scenario
as in Section 4.3 but with 4 UAVs and 4 targets. The
decision layers of the path decision algorithm are shown
in Table V. The UAVs start out searching for targets in
the surveillance region. When a target is detected, the
UAV that is closest to the target will carry out the clas-
sification. Meanwhile the UAV group tracks the target
cooperatively. As in Section 5.2, the satisfactory level
matrix for tracking rgg i @ N x M matrix, where N is
the number of the UAVs and M is the number of targets.
The components in 7y,q; can be set dynamically during
the surveillance mission. In the simulation, for the sake
of simplicity, a predefined matrix

0 100 100 100
100 100 100 100|

™SE= | 100 100 100 100|™ O
100 100 100 100

is used. By setting 7y;s(1,1) = 0 m?, UAV 1 will focus
on the tracking of target 1 once it is detected, except
when there is a target for it to classify. Fig. 9 shows
the trajectories in single run of the simulation. Notice
that at the early stage of the simulation, UAV 1 moves
farther from target 1 to classify target 4, then it always
stays close to target 1, while the other 3 UAVs will not
try to stay as close to target 1 due to their relatively low
requirements in tracking accuracy.

Fig. 10 shows the minimum survival probabilities of
the UAVs. Like the results of the single UAV tracking
case in Section 4.3, drops in the survival probabilities
are very rare. The drops to about 0.75 occurred only
twice over the 100 MC runs. Fig. 11 is the RMS position

MULTI-STEP LOOK-AHEAD POLICY FOR AUTONOMOUS COOPERATIVE SURVEILLANCE 13
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Fig. 10. Minimum survival probabilities of the UAVs (100 MC
runs).

error of the targets. The initial zero RMS position
errors indicate that the targets were not detected. Targets
1 and 3 were detected around time k = 20. Target 4
was detected around k = 40 and Target 2 was detected
around k = 70 (There were some slight variations from
run to run). It can be seen that target 1 is more accurately
tracked due to the effort of UAV 1. The RMS position
errors of the other targets satisfied the desired accuracy
of the other UAVs (10 m as defined in (35)) soon
after their detections, thus when the objectives with
higher priorities (classification and tracking) have been
accomplished, UAV 2-4’s path decisions are optimized
for search as long as the control decisions are “safe” for
the UAVs.
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To summarize, the proposed path decision algorithm
for UAV group is able, with moderate complexity, to i)
guide a group of UAVs cooperatively for surveillance
missions with multiple objectives, and ii) achieve bal-
anced performance according to the various objective
specifications.

6. CONCLUSIONS

For a surveillance mission by a group of UAVs with
multiple objectives, generally the UAVs are guided by
the gradient information from a certain “combination”
of the objective functions. In this paper, the control of
the UAV is discretized into a finite set, which amounts
to sampling the objective functions over the continuous
control space. Comparisons of the sample values are
able to capture the gradient information in the objective
functions, thus guiding the UAV group for the surveil-
lance task.

More importantly, the discretization of control vari-
ables provides extra freedom in dealing with multiple
objectives in the surveillance mission. Accordingly, a
layered decision framework is proposed. Instead of us-
ing a single global objective function that is a weighted
sum of all the objectives, different objectives are treated
in separate decision layers in the order of their pri-
orities. Compared to the weighted sum approach, the
layered decision framework has the following advan-
tages: 1) multiple objectives in the surveillance mission
are isolated; thus objectives with higher priorities are
free from possible compromises from the less important
ones; ii) for each objective, the specification of “satis-
factory” levels allow the algorithm to be more sensitive
to the entities (targets in tracking, sectors in search) that
demand more attention; iii) the layered decision frame-
work allows different path decision strategies to be used
for the objectives, which makes the algorithm efficient.

The discretized controls also allow the extension of
the time horizon of the path decisions, which is particu-
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larly important for the safe navigation of the UAVs. Ac-
cordingly, a multi-step look-ahead path decision strat-
egy based on the Rollout policy is proposed. When used
in the decision layer of safe navigation, this approach
produces significantly improved results.

To keep the algorithm computationally feasible for
large groups of UAVs, clustering of UAVs into small
decision groups is discussed. Further flexibility of as-
signing different tasks to the UAVs is also incorpo-
rated into the path decision algorithm. Simulation re-
sults show that the proposed multi-step look-ahead path
decision algorithm can effectively guide the UAV group
for multi-objective surveillance missions and its perfor-
mance is superior to the one-step look-ahead combined-
objective approach.
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