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The sensor bias estimation problem is crucial in autonomous driv-

ing systems for perception and target tracking. This work consid-

ers the bias estimation for two collocated synchronized sensors with

slowly varying additive biases. The differences between the two sen-

sors’ observations are used to eliminate the target state. Consequently,

the bias estimation is independent of the target-state estimation. The

biases’ observability condition is met when the two sensors’ biases

are Ornstein–Uhlenbeck stochastic processes with different time con-

stants. The bias models, including the time constants and measure-

ment noises, can be identified based on a sample autocorrelation or

using the maximum-likelihood estimation technique. A maximum-

likelihood measurement fusion technique is introduced for the bias-

compensated observations. Simulation results, for several scenarios

with various bias model parameters, prove the consistency of the es-

timator. It is shown that the uncertainties of biases are significantly

reduced by the estimation algorithm presented. The sensitivity of the

proposed algorithm is also tested with mismatched filters as well as

the estimated bias models. Finally, the benefits of bias estimation in

measurement fusion are evaluated.

I. INTRODUCTION

Target tracking has always been an important prob-
lem for autonomous driving systems where multiple
sensors are utilized to improve the tracking accuracy.
Unfortunately, these sensors, such as radars, lidars,
and cameras, are prone to biases, which can lead to
a problematic association and hence poor results in
target tracking. The sensors used in autonomous driving
vehicles can only be placed together or very close (prac-
tically collocated), which makes the bias estimation
challenging. Consequently, only a few works partially
addressed this problem. Sensor calibration via off-line
preprocessing is supposed to eliminate the sensor biases.
However, it requires the knowledge of ground truth,
and to be of value, the biases must be time-invariant.
For the case where the sensor biases are dynamic and
slowly varying, off-line calibration is not sufficient. This
work proposes a real-time bias-estimation method for
collocated sensors independent of the target-motion
tracking and approaches for identifying the bias models.

Kastella and Yeary [7] considered the bias-
estimation problem for radars on moving platforms
by decoupling the tracking of targets of opportunity and
the estimation of the radar and platform biases.Lin et al.
[10] solved exact bias estimation for an active sensor
by using pairs of range and angle measurements to
create pseudo-measurements of the biases of both sen-
sors relying on the nonlinearity of the range and angle
measurements. Bar-Shalom [3] considered time-varying
bias estimation along with the target state. This work
is based on [3] and uses the subtraction between the
sensor measurements as in [10] to eliminate the target
state in estimating the sensor biases, i.e., the biases can
be estimated independently of the target. In [4], the
authors considered the problem of estimating sensor
biases from measurements of targets flying on known
trajectories by augmenting the kinematic state vector
with sensor bias parameters. In [10] and [11], the bias
model includes scale biases and unknown locations of
the sensors, as well as the usual offset biases. Kowalski
et al. [8] considered three-dimensional sensor bias esti-
mation using sine space measurements and showed the
achievability of the Cramér–Rao lower bound.

To handle bias estimation for collocated sensors,
this work considers slowly varying sensor biases that
are modeled as Ornstein–Uhlenbeck (OU, a class of
Gauss–Markov) processes (as discussed in [3]) and deals
with bias estimation with the following contributions: (i)
solving the problem for collocated synchronized sensors;
(ii) estimation of biases independent of target motion by
using the difference between the associated sensor ob-
servations; and (iii) application of the proposed method
to all kinds of observations (i.e., bearings, range, etc.)
from various types of sensors.

The bias models (parameters of the OU process)
are typically unknown with limited prior information. In
[12] and [13], the mean-reverting OU process parameter
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estimation is discussed along with a long-term predic-
tion. Two approaches are introduced in this paper to
identify the bias model: (i) sample autocorrelation based
method; and (ii) maximum-likelihood (ML) estimation
of the model parameters. The prior information about
the sensor biases consists of initial distributions,assumed
to beGaussianwith zeromean and certain variances.Af-
ter the bias estimation, one can fuse the local observa-
tions, according to Fusion Configuration III [2], with the
bias compensation taking into account the error in the
bias estimates. The fusion is carried out using the ML
criterion. The performance of the proposed method is
tested via simulations based on Monte Carlo (MC) runs
by showing the reduction in the mean-square (MS) er-
ror of the bias-compensated fused measurements versus
fusion without compensation. The estimator and fuser
presented are shown to be consistent.

The process flowchart for bias estimation, fusion, and
system identification is shown in Fig. 1. This paper is
organized as follows. Section II formulates the prob-
lem by introducing the bias dynamic model and the bias
measurement model (using the subtraction between the
sensor observations) and discusses the bias observabil-
ity. The bias model identification methods are presented
in Section III. In Section IV, the fusion of the bias-

compensated observations is presented. Section V gives
the simulation results of several scenarios. Conclusions
and remarks are in Section VI.

II. PROBLEM FORMULATION

The challenge of this work is to estimate the (collo-
cated) sensor biases efficiently given synchronized ob-
servations defined as

z1(k) = h [x(k), s(k)] + b1(k) + w1(k), (1)

k = 1, 2, . . . ,N,

and

z2(k) = h [x(k), s(k)] + b2(k) + w2(k), (2)

k = 1, 2, . . . ,N,

where x is the true (common) target state, which is un-
known, s is the sensor state, and h[·, ·] is the generic ob-
servation model (angle or range). Since the sensors are
collocated, they share the same sensor motion. The ob-
servations obtained from the sensors depend on both
the sensor and target motions as well as the biases and
noises. The bias estimation introduced in the following
does not require the target state. The observation noises

Fig. 1. Process flowchart for bias estimation and fusion.
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w1 and w2 are assumed to be zero mean,white with vari-
ances σ 2

w1
and σ 2

w2
, and are independent of each other and

of the sensor biases. The above observations are not re-
stricted to the type of sensors; only the same kind of ob-
servation is required, i.e., radars, lidars, and cameras can
provide angle observations; lidars and radars can also
provide range observations. It will be shown in the sequel
that bias estimation is independent of the target-state es-
timation, i.e., bias estimation and state tracking are de-
coupled. The observations considered are using generic
models in one coordinate (i.e., with a dimension of 1) to
aid in the clarity of the exposition.

The sensor biases are slowly varying, modeled as an
OU (first-order Gauss–Markov) process [7]. The dis-
crete dynamic model used for the biases [1], [3] is (two
collocated sensors are considered in this work)

bi(k+ 1) = αibi(k) + vi(k), i = 1, 2, (3)

with

αi = e−T/τi , (4)

where T is the sampling interval and τi is the time con-
stant of the bias evolution (assumed to be known; its es-
timation is discussed in Section III).

The time constant is given in terms of αi as

τi = −T lnαi. (5)

The above expression can be rewritten using the first-
order Taylor expansion for τ � T as

τi ≈ T
1 − αi

. (6)

The driving process noises vi are assumed to be zero
mean, white with variances σ 2

vi
. All the noises vi and wi

are independent.Using the abovemodel guarantees that
the bias estimates are bounded since (3) is stable.

The MS value of the bias bi is σ 2
bi
and its relationship

to the corresponding process noise variance is

σ 2
vi

= (1 − α2
i )σ

2
bi . (7)

Since the sensor biases bi will be estimated indepen-
dently of the target state,only the difference between the
observations is used:

z(k) = z1(k)− z2(k) = b1(k)− b2(k)+ w1(k)− w2(k).
(8)

The bias state to be estimated is

b(k) = [b1(k) b2(k)]′ (9)

with the state equation

b(k+ 1) = Fb(k) + v(k), (10)

where

F =
[
α1 0

0 α2

]
, (11)

and the process noise vector is

v = [v1 v2]′ (12)

with the covariance matrix

Q =
[
σ 2

v1
0

0 σ 2
v2

]
. (13)

The measurement model based on (8) is

z(k) = Hb(k) + w(k), (14)

where

H = [
1 −1

]
(15)

and the measurement noise w(k) is

w(k) = w1(k) − w2(k), (16)

which has variance σ 2
w1

+ σ 2
w2
.

A Kalman filter (KF) is then used for the estimation
of b(k), which gives the estimate at time k [1]

b̂(k) = [b̂1(k) b̂2(k)]′. (17)

The observability of the above system can be verified
via the observability matrix [9]

O =
[
H

HF

]
=

[
1 −1
α1 −α2

]
, (18)

which has full rank under the conditions (i) α1 �= α2, and
(ii) none is unity.1 Assuming that the sensors are differ-
ent, the biasmodels will be different due to their physical
properties, i.e., different αi in (3). Using a discrete-time
Wiener process to model both sensor biases will lead to
lack of observability of the system with αi = 1, and the
bias becomes the integral (sum) of the white noise se-
quence terms (and diverges). Thus, both the observabil-
ity conditions can be met with reasonably realistic as-
sumptions.

It can be easily seen that the pair (F,C), where C is
the Cholesky factor of the covariance matrix Q, is com-
pletely controllable. Thus, the solution of the discrete-
time Riccati equation for such a time-invariant system
will converge to a finite steady-state (SS) covariance [1],
which can obtained via KF.

III. BIAS MODEL IDENTIFICATION

The sensor biases are assumed to be OU processes,
as shown in (3); however, the time constants τi are, in
general, unknown. To identify the system (bias model)
as well as the process and measurement noise variances,
two approaches are introduced: (i) system parameter es-
timation based on sample autocorrelation, and (ii) ML
estimation. Note that the bias model identification is in-
dependent of and prior to the bias estimation.

For simplicity, only one system is analyzed for illus-
tration; however, the approach can be used for multiple
sensors with the same model but different parameters.

1The bias model should not diverge.
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Consider the discrete-time OU bias model (with a
slowly varying bias2)

b(k+ 1) = αb(k) + v(k) (19)

and noisy observation model (k = 1, 2, . . . ,N)

z = h [x(k), s(k)] + b(k) + w(k), (20)

o(k) � z(k) − h [x(k), s(k)] = b(k) + w(k), (21)

with α defined in (4), v is the process noise with variance
σ 2

v , and w is the measurement noise with variance σ 2
w; x

and s are as defined in (2). The observation o(k) is ob-
tained assuming that the truth is known, which can be
done in the off-line precalibration. However, note that
h [x(k), s(k)] will cancel in (8),which will be used in esti-
mating the two biases (17). The identification of the bias
models will rely on (21).

A. Bias Model Parameter Estimation Using Sample
Autocorrelation

The autocorrelation of o(k), assumed to be wide-
sense stationary (WSS), is

r(m) = E{o(k)o(k−m)}
= E{[b(k) + w(k)][b(k−m) + w(k−m)]}
= E{b(k)b(k−m)} + σ 2

wδ(m)

= rb(m) + σ 2
wδ(m), (22)

where δ(k) is the Kronecker delta function and rb(m) is
the autocorrelation of b(k), also assumed to be WSS,

rb(m) = E{b(k)b(k−m)}
= E{[αb(k− 1) + v(k− 1)][b(k−m)]}
= αmrb(0) (23)

and

rb(0) = E{b(k)b(k)}
= E{[αb(k− 1) + v(k− 1)]

· [αb(k− 1) + v(k− 1)]∗}
= α2rb(0) + σ 2

v . (24)

The above equation yields

rb(0) = σ 2
v

1 − α2
. (25)

Substituting (25) into (22) gives

r(m) = αm
σ 2

v

1 − α2
+ σ 2

wδ(m), (26)

which can be used to estimate α, σ 2
v , and σ 2

w. That is, as-
suming that the sample autocorrelations are available

2This implies that α is near unity and σv is small.

(sufficiently accurate since one can have only sample au-
tocorrelations, i.e., time averages), one has

α = r(2)
r(1)

, (27)

σ 2
v = r(1)2 − r(2)2

r(2)
, (28)

σ 2
w = r(0) − r(1)2

r(2)
. (29)

Note that the above solution is highly dependent
on the accuracy of sample autocorrelations (especially
when α is very close to 1), which cannot be guaranteed
with limited sample data. Assuming that more autocor-
relations (i.e., more than r(2)) are available, the param-
eters can be estimated using all sample autocorrelations
to improve the accuracy as discussed in the following.

Equation (26) can be written for m > 0 as

ln r(m) = mβ + γ , m > 0, (30)

where

β = lnα, (31)

γ = ln
σ 2

v

1 − α2
. (32)

The least-squares (LS) estimate of parameters β̂

and γ̂ , given (r(1), . . . , r(M)), can be obtained as (see
Appendix)[

β̂

γ̂

]
=

[∑M
m=1m

2 ∑M
m=1m∑M

m=1m
∑M

m=1 1

]−1 [∑M
m=1m ln r(m)∑M
m=1 ln r(m)

]
,

(33)
and, using (31) and (32), one has

α̂ = eβ̂ , (34)

σ̂ 2
v = (1 − e2β̂ )eγ̂ . (35)

The full set of model parameter estimates is given
by (34), (35), and (29). Note that the parameter σ 2

w does
not require an additional LS estimator since it is not sen-
sitive to the accuracy of sample autocorrelations since
σ 2

v � σ 2
w.

B. ML Estimation of the System Parameters

The above equations can provide an explicit solution
for system parameter estimation in terms of the sample
autocorrelations, and due to computational and speed
demands, this is of high interest. However, the accuracy
of these estimated autocorrelations is highly dependent
on the data batch length.Alternatively, theMLapproach
can be used for estimating the system parameters of in-
terest [5], [6].
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The observation model (21) can be modified taking
into account the bias model (19) as

o(k) = αo(k− 1) + w(k) − αw(k− 1) + v(k− 1)

= αo(k− 1) + u(k), (36)

where

u(k) � w(k) − αw(k− 1) + v(k− 1) (37)

is zero mean but not white.
Consider an observation batch of length

L (L ≤ k− 1)

OL(k) =

⎡
⎢⎢⎢⎣

o(k)

o(k− 1)

. . .

o(k− L+ 1)

⎤
⎥⎥⎥⎦

= α

⎡
⎢⎢⎢⎣
o(k− 1)

o(k− 2)

. . .

o(k− L)

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

u(k)

u(k− 1)

. . .

u(k− L+ 1)

⎤
⎥⎥⎥⎦

= αOL(k− 1) + UL(k). (38)

The noise vector UL(k) is zero mean with a covari-
ance matrix of dimension L

RU (L) ≈

⎡
⎢⎢⎢⎢⎢⎣

2σ 2
w −ασ 2

w 0

−ασ 2
w

...
...

...
... −ασ 2

w

0 −ασ 2
w 2σ 2

w

⎤
⎥⎥⎥⎥⎥⎦ (39)

under the assumptions that (i) α is very close to 1,and (ii)
the effect of the process noise v is negligible [σ 2

v � σ 2
w,

which can be seen from (7) as the difference on the right-
hand side is close to zero] and will not be estimated.3

The likelihood function (LF) of α and σ 2
w based on

(38) is

�(α, σ 2
w|OL(k))

= |2πRU (L)|−1/2 exp
[
1
2

O(k)′[RU (L)]−1
O(k)

]
,

(40)

where


O(k) = OL(k) − αOL(k− 1). (41)

The ML estimates (MLEs), α̂, and σ̂ 2
w can be found

by maximizing (40) via a numerical search. In practice,
a two-dimensional grid can be used for this. The process
noise σ 2

v estimate can be obtained via (7) using

σ̂ 2
v = σ 2

o − σ̂ 2
w, (42)

where σ 2
o is the MS value of the noisy observation (21).

3The process noise variance σ 2
v would appear added to each diagonal

term.

IV. FUSION OF THE OBSERVATION WITH BIAS
COMPENSATION

Under the Gaussian assumption, the fusion of bias-
compensated observations can be solved using the ML
criterion, i.e., by maximizing the LF or by minimizing
the negative log-likelihood function (NLLF) of the tar-
get position based on the observations from the two sen-
sors.4 Note that for the linear Gaussian case, the LS es-
timator and ML estimator, as well as the minimum MS
error (MMSE) estimator, coincide [1], [2].

With the bias estimates, the current observation can
be expressed as

zi(k) = ζ (k)+ b̂i(k)+ b̃i(k)+wi(k), i = 1, 2, (43)

where

ζ (k) = h [x(k), s(k)] (44)

is the noiseless fused observation that needs to be es-
timated given zi(k) and the bias estimates b̂i(k), and
by accounting for the residual bias error b̃i(k). The es-
timates for sensor biases are obtained using a KF and
thenwe directly estimate the fused observation with bias
compensation.

The bias-compensated (“bc”) observations, omitting
the time argument k for simplicity, are

zbc1 = z1 − b̂1 = ζ + b̃1 + w1 (45)

and

zbc2 = z2 − b̂2 = ζ + b̃2 + w2. (46)

Under the ML criterion, the fusion is carried out by
estimating ζ based on the bias-compensated observation
vector [zbc1 zbc2 ]′. The fused observation5 with bias com-
pensation (“Fbc”) is [1, Eq. (3.4.1-9)]

ζ̂ Fbc =
[
(HFbc)′(RFbc)−1HFbc

]−1

· (HFbc)′(RFbc)−1[zbc1 zbc2 ]′, (47)

where, in this case,

HFbc =
[
1
1

]
(48)

and

RFbc = E

{[
b̃1 + w1

b̃2 + w2

] [
b̃1 + w1 b̃2 + w2

]}
(49)

=
[
P11 + σ 2

w1
P12

P12 P22 + σ 2
w2

]
. (50)

4The LF of a parameter of interest (in this case, the target position) is
the probability density function (pdf) of the observation conditioned
on the parameter [1]. In the literature,one can find the term “likelihood
of the observation,” which is incorrect.
5The ML estimator is implemented using the LS technique [1].
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Table I
Steady-State Bias Error Variances and Standard Deviations for Each

Scenario

Scenario (1−α1, 1−α2) (τ1, τ2) P11 σb̂1
P22 σb̂2

1 (10−4, 10−2) (103, 101) 0.1673 0.4091 0.3084 0.5553
2 (10−5, 10−2) (104, 101) 0.0598 0.2445 0.2220 0.4712
3 (10−4, 10−3) (103, 102) 0.3689 0.6074 0.4014 0.6336

In (50), Pmn is the (m,n) element of the calculated co-
variance matrix associated with the bias estimate vector
(17).

The variance corresponding to the fused bias-
compensated observation (47) is

PFbc = [
(HFbc)′(RFbc)−1HFbc]−1

. (51)

The naïve fusion (with no bias compensation—
“Fnbc”) is

ζ̂ Fnbc = σ−2
w1
z1 + σ−2

w2
z2

σ−2
w1

+ σ−2
w2

, (52)

which has an MS error

PFnbc = σ−4
w1

(σ 2
w1

+ σ 2
b1
) + σ−4

w2
(σ 2

w2
+ σ 2

b2
)

(σ−2
w1

+ σ−2
w2

)2
. (53)

Note that the (non-Bayesian)ML fusion technique is
the same as the (Bayesian) MMSE fusion technique for
dependent tracks (with Gaussian errors), as discussed
in [2].

V. SIMULATION RESULTS

Numerical examples are shown in this section with
simulation results. For simplicity and illustration, con-
sider the stochastic biases to be estimated have MS val-
ues σ 2

b1
= σ 2

b2
= 1 for both sensors. The observation

noises σ 2
w1

and σ 2
w2

share the same variance 1. The sam-
pling interval T = 0.1 s. Simulation results are obtained
based on 100 MC runs.

Table II
Calculated Bias Estimate Variances for Various Numbers of Scans

for Each Scenario

Scans Scenario (1 − α1, 1 − α2) (τ1, τ2) P11 P22 PFbc

500 1 (10−4, 10−2) (103, 101) 0.2529 0.3786 0.7698
2 (10−5, 10−2) (104, 101) 0.2308 0.3620 0.7505
3 (10−4, 10−3) (103, 102) 0.4686 0.4959 0.9662

1000 1 (10−4, 10−2) (103, 101) 0.1952 0.3313 0.7171
2 (10−5, 10−2) (104, 101) 0.1512 0.2969 0.6779
3 (10−4, 10−3) (103, 102) 0.4405 0.4692 0.9388

2000 1 (10−4, 10−2) (103, 101) 0.1709 0.3113 0.6949
2 (10−5, 10−2) (104, 101) 0.0963 0.2519 0.6277
3 (10−4, 10−3) (103, 102) 0.4062 0.4363 0.9054

Table III
Bias NEES for Each Scenario With Various Numbers of Sampling

Scans From 100 Runs; 95% Probability Interval is [1.63 2.41]

Scenario N = 500 N = 1000 N = 2000

1 1.7321 2.1496 2.1339
2 2.1413 2.0102 1.8412
3 2.0802 2.1724 2.0791

A. Numerical Results

Three scenarios are considered in this section with
different values of the pair (1− α1, 1− α2): (10−4, 10−2),
(10−5, 10−2), and (10−4, 10−3). The corresponding time-
constant pairs (τ1, τ2) are (103, 101) s, (104, 101) s, and
(103, 102) s. With the same sampling interval, a smaller
1 − αi (αi closer to 1) indicates a larger time constant
and the corresponding bias has a smoother trajectory [7].
As discussed at the end of Section II, the covariance of
the bias estimates will converge to an SS value. Table I
lists the solutions of the SS variances from the discrete-
time Ricatti equation for each scenario. Note that for
such a system with αi close to 1, the convergence rate
is slow due to the small Kalman gain. The calculated co-
variances (variances for each bias, specifically) for each
scenario with respect to various numbers of scans N are
shown in Table II. The total simulation duration is NT .
The filter consistency is tested using the normalized es-
timation error squared (NEES) [1], which is Chi-square
distributed with the number of degrees of freedom given
by the number of MC runs (nMC) and the dimension of
the parameter vector (2 in this case). The 95% proba-
bility interval with nMC = 100 for the bias estimate is
[1.63 2.41]. It can be seen from Table III that the NEES6

for all the cases falls into the above interval and the es-
timator is thus consistent, i.e., the actual MSE matches
the filter-calculated variance.

In all the cases considered, the estimator reduced the
uncertainty of the biases. In Scenario 2 with 1000 scans,
the MS value of each bias is 1 before the biases are esti-
mated, which is reduced to 0.1512 for b1 (61% standard
deviation reduction) and 0.2969 for b2 (46% standard
deviation reduction). Similarly, for Scenario 1 with 1000
scans, the standard deviation reduction is 56% for b1 and
42% for b2. It can be seen that with 2000 scans (total
observation time 200 s), the calculated variance almost
reaches its SS value. The performance of the estimator
is sensitive to the bias models, i.e., when α1 and α2 are
close, such as in Scenario 3, the estimation performance
(uncertainty reduction) is not as significant due to the
marginal observability (the observability matrixO being
nearly singular).

In Table II, the variances of the fused observations
(51) for each scenario are also shown. The uncompen-

6The number of degrees of freedom is 100 × 2 = 200 and the NEES
uses division by 100, i.e., it should be around 2.
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Table IV
Sensitivity of MSE of Each Bias Estimate (MSEb1 , MSEb2 ) for Various Filter Model Time Constants (τMOD

1 , τMOD
2 ) From 1000 Runs With

True Model τTRUE
1 = 103 s, τTRUE

2 = 10 s. Note that Unless τMOD = τTRUE the Filters Are Mismatched

τMOD
2

(MSEb1 , MSEb2 ) 0.5τTRUE
2 τTRUE

2 2τTRUE
2 5τTRUE

2

τMOD
1 0.5τTRUE

1 (0.1971, 0.3391) (0.1826, 0.3163) (0.1897, 0.3333) (0.2358, 0.4155)
τTRUE
1 (0.1812, 0.3236) (0.1760, 0.3109) (0.1846, 0.3309) (0.2239, 0.4087)

2τTRUE
1 (0.1792, 0.3194) (0.1801, 0.3145) (0.1882, 0.3354) (0.2228, 0.4102)

5τTRUE
1 (0.1884, 0.3240) (0.1897, 0.3225) (0.1947, 0.3423) (0.2252, 0.4141)

Table V
Sensitivity of the Fused Observation MSE (MSEFbc) With Bias

Compensation From 1000 Runs

τMOD
2

MSEFbc 0.5τTRUE
2 τTRUE

2 2τTRUE
2 5τTRUE

2

τMOD
1 0.5τTRUE

1 0.7041 0.6878 0.6991 0.7557
τTRUE
1 0.6939 0.6863 0.6985 0.7479

2τTRUE
1 0.6956 0.6938 0.7050 0.7492

5τTRUE
1 0.7070 0.7056 0.7136 0.7533

sated sensor observation bias has MS values σ 2
bi

= σ 2
wi

=
1 and the naïvely fused error has an MS value PFnbc = 1
in all cases. After bias estimation and the compensated
fusion, the MS values have been significantly reduced.
The MS reduction is up to 37% (with PFbc = 0.63 for
Scenario 2).

B. Sensitivity

In the real world, the true bias models are not avail-
able inmost cases,whichwill result in amismatched filter
in estimation. The sensitivity of the proposed estimation
method is shown in Table IV, where the MSEs of the
bias estimate (obtained through a mismatched filter for
Scenario 1) are listed. The true bias dynamic models
have time constants τTRUE

1 = 103 s and τTRUE
2 = 101 s.

To test the sensitivity of the proposed estimator, dif-
ferent time constants are considered in the KF. The bi-
ases’ time constants used in the KF are τMOD

1 and τMOD
2 ,

respectively. The calculated variances for the bias esti-
mates are independent of the actual measurements with
P11 = 0.1709 and P22 = 0.3113 for all the cases consid-
ered. Since the bias dynamic models used in the filter are
different from the true ones, the consistency is lost. It can
be seen that, if the true bias model has time constants
different from those assumed in the estimator, the MSE
of the estimate increases. Nevertheless, there is always a
reduction in the bias error uncertainty.

The corresponding MSEs of the fused observations7

with bias compensation for various filter bias models
are shown in Table V. The simulation results are ob-

7These areMS errors,not covariances, in the case ofmismatched filters.

Table VI
Sample Autocorrelation Based Estimation of Bias b1 Model for

Various Data Batch Sizes

Batch length 5 × 105 106 107

e1 0.122 0.371 0.621
m1 1.001 1.000 1.000

tained from 1000MC runs. It can be seen that, even with
mismatched models in the filter, the fusion of the ob-
servations with bias compensation always achieves a
smaller MSE than the MSE of the “naïve” fusion, which
is 1.

C. Bias Model Identification

In this subsection, the scenario with decorrelation
true time constants τTRUE

1 = 103 s and τTRUE
2 =

101 s is considered. The two approaches introduced in
Section III are tested in the following.

Define the ratio of the estimated time constant to the
true constant as

ei = τ̂i/τ
TRUE
i , i = 1, 2, (54)

which indicates the accuracy of the estimation and can
be used for sensitivity analysis, and

mi = σ̂ 2
wi

/(σ̂TRUE
wi

)2, i = 1, 2, (55)

to be the ratio of the estimated measurement noise vari-
ance and the truth, taken as (σ̂TRUE

wi
)2 = 1. The simu-

lation results of ei and mi from the sample autocorrela-
tion based estimation of the corresponding bias model
are shown in Tables VI and VII with various data batch
lengths for i = 1 and i = 2, respectively. It can be seen
that, with more data, the accuracy of the model esti-
mation has been better. Note that bias model 1, with a
higher time constant, requires a longer batch.

Table VII
Sample Autocorrelation Based Estimation of Bias b2 Model for

Various Data Batch Sizes

Batch length 5 × 104 105 5 × 105

e2 0.650 0.736 0.916
m2 0.995 0.986 0.999
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Table VIII
MLE From 100 MC Runs (Batch Size L = 250)

i 
α 
σ 2
w 1 − α grid σ 2

w grid ēi RMSE(ei) m̄i RMSE(mi)

1 0.001 0.01 [0.95 0.999] [0.5 1.5] 5.489 4.611 1.000 0.087
2 0.00001 0.01 [0.999 0.99999] [0.5 1.5] 1.369 1.265 1.001 0.095

The MLE is obtained via numerical search, where
the search intervals for time constants and measure-
ment noises as well as the grid steps are shown in
Table VIII. The observation batch size is L = 250 and
the simulation results [mean and variance of the ratios,
(54) and (55), respectively] are based on 100 MC runs.
The MSEs of bias estimation and fusion with bias com-
pensation based on the result of system identification
are are shown in Table IX for the two approaches dis-
cussed. The degradation of MSEFbcMI (MSE of fusion
with bias compensation based on model identification)
versus MSEFbc (MSE from correct filter) is around 11%
for the autocorrelation-based model identification, and
is around 6% for ML-based identification due to the es-
timated model in the filter. Note that the MSE of fused
observation is the most important, and, even with a rela-
tively high error in the bias model estimation, the fused
MSE is clearly better with bias compensation than with-
out. Also note that the ML procedure requires a much
shorter batch length.

VI. CONCLUSIONS

In this work, the bias estimation for collocated syn-
chronized sensors is solved using a target of opportu-
nity. The sensor biases are slow varying, modeled as OU
processes. Only the difference between the sensor ob-
servations is used for the bias estimation, which is thus
independent of the target-state estimation. The system
is observable when the biases have different eigenval-
ues in their noise-driven discrete time dynamic models.
The bias model parameters can be obtained directly via
sample autocorrelations or viaML estimation.With bias
estimates and by accounting for the residual biases, the
fusion of the bias-compensated observations is carried
out under the ML criterion. The standard deviation of
the fused measurement is significantly reduced.The per-
formances, in terms of both accuracy and convergence
time, are sensitive to and depend on the bias dynamics.
The bias-estimation consistency is proved via simulation

Table IX
MSE of Fused Observation Based on System Identification From

100 Runs

Bias estimation approach MSEb1 MSEb2 MESFbcMI

Autocorrelation based
(batch length 5 × 106)

0.2278 0.3416 0.7728

ML (batch length 250) 0.1650 0.3351 0.7378

results. Using the ML criterion, the fusion of the obser-
vations carried out with bias compensation results in a
significant MSE reduction for the fused measurement.
The proposed algorithm is also shown to provide bene-
fits even with mismatched filers with bias dynamic mod-
els different from the true ones.

APPENDIX

A LEAST SQUARES ESTIMATOR OF BIAS MODEL
PARAMETERS

Given the sample autocorrelations {r(1), r(2), . . . ,
r(M))}, the LS estimates are[

β̂

γ̂

]
= argmin

β,γ
E(β, γ )

= argmin
β,γ

{
M∑
m=1

[ln r(m) − (mβ + γ )]2
}

. (A1)

Minimization of the above expression

∂E(β, γ )
∂β

= 0,
∂E(β, γ )

∂γ
= 0, (A2)

where

∂E(β, γ )
∂β

=
M∑
m=1

−2[ln r(m) − (mβ + γ )]m, (A3)

∂E(β, γ )
∂γ

=
M∑
m=1

−2[ln r(m) − (mβ + γ )]. (A4)

Setting ∂E(β,γ )
∂β

= ∂E(β,γ )
∂γ

= 0 gives

M∑
m=1

[ln r(m) − (mβ + γ )]m = 0, (A5)

M∑
m=1

[ln r(m) − (mβ + γ )] = 0. (A6)

Rewriting the above equations as(
M∑
m=1

m2

)
β +

(
M∑
m=1

m

)
γ =

M∑
m=1

m ln r(m), (A7)

(
M∑
m=1

m

)
β +

(
M∑
m=1

1

)
γ =

M∑
m=1

ln r(m), (A8)
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the LS estimates are (the solution to these equations)[
β̂

γ̂

]
=

[∑M
m=1m

2 ∑M
m=1m∑M

m=1m
∑M

m=1 1

]−1 [∑M
m=1m ln r(m)∑M
m=1 ln r(m)

]
.

(A9)
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