
Approaches to Obtain a Large
Number of Ranked Solutions
to 3-Dimensional Assignment
Problems

LINGYI ZHANG

DAVID SIDOTI

SPANDANA VALLABHANENI

KRISHNA R. PATTIPATI

DAVID A. CASTAÑÓN

A generalized 3-dimensional assignment problem is a decision-

making process that involves allocating limited resources to a set

of tasks over time, where the objective is to optimize a cost func-

tion subject to a set of generalized assignment constraints. The 3-

dimensional (3-D) assignment problems are known to be NP-hard.

In this paper, we propose a novel approach to efficiently solve an

m-best 3-D assignment problem with non-unity right-hand side con-

straints (also referred to simply as 3-D assignment problem), where

m may be large (as many as 104 solutions), by decomposing it into

two sequential phases. In phase I, we partition the original prob-

lem space into a series of subproblems via Murty’s m-best search

space decomposition procedure. Modifications previously proposed

in the literature for the 2-dimensional (2-D) assignment problem

are applied to optimize the search space decomposition for the 3-

D assignment problem. In phase II, we solve each subproblem by

using Lagrangian relaxation and solving the 3-D assignment prob-

lem as a combination of relaxed 2-D assignment problems and 2-D

transportation problems. The 2-D assignment problem is solved by

the JVC or auction algorithms, and the 2-D transportation prob-

lem is solved by the simplex-based transportation, Transauction or

RELAX-IV algorithms. The sequence of relaxed 2-D problems are

interchangeable, while adhering to the relaxed constraints. We vali-

date and compare the performance and utility of the proposed algo-

rithms and search space decomposition optimizations via extensive

numerical experiments. Overall, the fully optimized algorithm took

less than 50 seconds, on average, to obtain 104 soutions for a tensor

of dimension 30£ 30£ 8.

Manuscript received Sept. 9, 2016; revised February 7, 2017; released

for publication June 26, 2017.

Refereeing of this contribution was handled by Stefano Coraluppi.

Authors’ addresses: L. Zhang, D. Sidoti, S. Vallabhaneni, and

K. R. Pattipati, Department of Electrical and Computer Engineer-

ing, University of Connecticut, Storrs, CT, 06269 USA (E-mail:

lingyi.zhang@uconn.edu; krishna.pattipati@uconn.edu). D. A.

Castañón, Boston University, Boston, MA, 02215 USA (E-mail:

dac@bu.edu).

Research supported by the U.S. Office of Naval Research under con-

tract #N00014-16-1-2036 and by the Department of Defense High

Performance Computing Modernization Program under subproject

contract #HPCM034125HQU.

1557-6418/18/$17.00 c° 2018 JAIF

1. INTRODUCTION

1.1. Motivation

Assignment problems are applicable to a diverse ar-

ray of real world problems [1]—[3]. This set of prob-

lems takes the form of how best to assign a number of

items or objects to some (possibly different) number of

machines or people during different time periods. As-

signment problems are of a combinatorial nature, each

requiring some form of an objective function to indi-

cate the value or utility of individual assignments. A

sampling of how diverse and widely applicable such

assignment problems are can be seen from the follow-

ing: multi-target tracking, quadratic assignment prob-

lems, traveling salesman problems, or vehicle routing

problems. Such problems also occur in academia or the

military, where a set of military troops [1] or teach-

ers [2] must be assigned to locations or classrooms that

are temporally dependent in value or utility. Assignment

problems have even been motivated from a telecommu-

nications standpoint, where a set of satellites must be

launched from a set of locations to maximize their cov-

erage [1].

A 2-dimensional (2-D) assignment problem may be

viewed as a weighted bipartite graph matching problem,

where arcs must link two sets of nodes together such

that an objective function is optimized, while satisfying

a set of one-to-one constraints. The 3-dimensional (3-

D) extension of this problem has been proven to be NP-

hard [4]—[6]. In particular, one application that we focus

on in this paper is a nuclear fuel assembly (FA) loading

pattern optimization. The core of a nuclear reactor is

formed by large sets of elongated, rectangular FAs

arranged in a cylindrical fashion, as shown in Fig. 1.

Fig. 1. The core of a nuclear reactor is formed by large sets of fuel

assemblies where position, type, and rotation/orientation must be

chosen for each one. Illustrated here is a nuclear fuel assembly

loading operation at Fangchenggang nuclear power plant in China’s

Guangxi province [7].

The nuclear fuel assembly loading pattern optimiza-

tion problem involves choosing: 1) the position of the

FA in the nuclear reactor core, 2) the type of FA to put

50 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 13, NO. 1 JUNE 2018

in the chosen position, and 3) the rotation/orientation

of the chosen FA type in the chosen position. Each di-

mension of the 3-D assignment corresponds to each of

the decision variables above. In general, this problem is

treated as a multiple objective combinatorial problem,

but what separates it from the traditional 3-D assign-

ment problems is the requirement for a dense set of

new discrete loading patterns though a dynamically es-

timated probability distribution (represented by a reward

tensor). This conversion to a 3-D assignment problem

is a completely new approach for nuclear fuel loading

pattern optimization. The reward tensor is dynamically

updated based on the “best” solutions taken from the

multi-objective Pareto front. “Best” in this case may not

necessarily refer to the optimal, but one of a large num-

ber of solutions (assignments). By “large,” we mean on

the order of 104 solutions. Evaluation of each loading

pattern by reactor-physics-based external code may be

very time consuming (¼ 0:1 to 10 minutes, depending
on the required accuracy of loading pattern response

evaluation), so there exists a need to evaluate only new

(unique) loading patterns (assignments).

In such scenarios, an m-best 3-D assignment prob-

lem is needed, wherein a large set of solutions is gener-

ated in a reasonable amount of time (< 10 minutes for

104 solutions), so that the set of assignments may be

externally evaluated (each of which, in turn, may take

0.1 to 10 minutes). It may also be a viable approach to

obtain a dense set of solutions that are near-optimal and

satisfy the decision maker (such as in the case of re-

source allocation or military troop allocation problems)

or customer preferences (as in [2], where they attempt to

satisfy both student and tutor requirements or requests).

Having a large set of solutions offers a range of options

that may be of interest to a decision maker attempting to

optimize with respect to multiple, possibly conflicting,

objectives.

This paper offers an effective solution approach

for finding a large number of m-best solutions to the

3-D assignment problems with non-unity right-hand

side constraints with application to many real world

challenges. The problem space may be decomposed into

multiple partitions based on the optimal assignment,

as detailed in [8]. Through a two-phase approach, we

offer a method for rapidly generating large numbers of

solutions to the 3-D assignment problems.

1.2. Related Research

There exist a number of well-known algorithms to

obtain the optimal solution to a 2-D assignment prob-

lem, including the Hungarian algorithm [9], the Jonker-

Volgenant-Castañón (JVC) algorithm [10], [11], the

auction algorithm [12], and the signature method [13].

However, the assignment problem becomes NP-hard

when a third dimension is added [4]—[6]. One of the

first approaches for solving the 3-D assignment problem

was developed by Pierskalla [1], where he proposed a

tri-substitution algorithm based on the simplex method.

Hansen [14] proposed a primal-dual implicit enumera-

tion algorithm, while [15], [16] proposed branch-and-

bound approaches to obtain the optimal solution to such

3-D assignment problems. However, branch-and-bound

methods suffer from exponential computational com-

plexity and are unsuitable for large-scale real-world ap-

plications where accurate bounds cannot be obtained.

In order to overcome the 3-D assignment prob-

lem’s inherent computational intractability, a wide range

of algorithms have been developed to obtain subopti-

mal solutions, including greedy heuristics, genetic al-

gorithms, simulated annealing, tabu search, neural net-

works, and Lagrangian relaxation approaches [2], [17]—

[20]. Mazzola [17] proposed a heuristic branch-and-

bound method to reduce the computation time. In con-

trast, Frieze and Yadegar [2] applied Lagrangian relax-

ation theory to a more general 3-D assignment problem

with application to teaching practice scheduling. The

Lagrangian relaxation method of obtaining solutions to

3-D assignment problems has become extremely preva-

lent in data association applications due to the real time

computation speed and solution quality [3], [18], [19].

Poore [20] combined these two approaches, proposing

a hybrid branch-and-bound and Lagrangian relaxation

algorithm to the 3-D assignment problem.

In this paper, we seek to solve the aforementioned

3-D assignment problem, but instead of finding a single

solution, we aim to provide a large set of ranked solu-

tions. The process of finding the first best, second best,

third best, and so on, solution is known as the m-best

optimization problem. The m-best optimization prob-

lem occurs in a variety of contexts, including the short-

est path [21]—[23], spanning tree [24]—[26], traveling

salesman [27], directed network [28], multi-target track-

ing [29]—[33] and many other problems. The general

approach to the m-best optimization problem involves

partitioning the solution space into smaller subspaces,

which are subproblems of the original problem. Murty’s

search space decomposition [8] is the most common and

widely used technique, where the best solution is found

for each partitioned subproblem, given a modified solu-

tion subspace. Lawler [34] applied Murty’s search space

decomposition procedure within a more general frame-

work for a discrete optimization problem. Pascoal [35]

proposed a variant of Murty’s search space decomposi-

tion to reduce the algorithm’s complexity. This variant

involved solving the partitioned subsets in reverse order.

Miller et al. [36] proposed modifications to optimize

Murty’s search space decomposition procedure to the

2-D assignment problem via: 1) inherited dual variables

and partial solutions from the initial subproblems; 2)

sorting the subproblems based on lower bounds on the

optimal reward before solving the assignment problem;

and 3) partitioning in an order based on lower bounds

on cumulative reward. These modifications substantially

reduce the complexity of Murty’s search space decom-

position and are implemented in this paper.

APPROACHES TO OBTAIN A LARGE NUMBER OF RANKED SOLUTIONS TO 3-DIMENSIONAL ASSIGNMENT PROBLEMS 51

Another alternative way to solve the m-best opti-

mization problem is by Gabow’s [24] binary heap par-

tition method. Similarly, Hamacher [37] also proposed

using a binary search tree procedure, while also com-

bining an approach developed by Carraresi and Sodini

[38] to rank the paths. Chegireddy and Hamacher [39]

extended this work further and developed an m-best per-

fect matching algorithm based on the binary partition of

the solution space to apply to a bipartite matching prob-

lem in O(kn3) time. Recently, a modified version of the
Chegireddy and Hammacher’s algorithm was developed

for large datasets [40]. We suggest comparison of our

algorithm with those in [40] as future research.

1.3. Paper Organization

The primary focus of this paper is on combining

a Lagrangian relaxation method and m-best optimiza-

tion to obtain a very large number of ranked solutions.

Motivated by an approach developed by Pattipati [18],

we apply the Lagrangian relaxation approach that suc-

cessively solves a series of 2-D problems, since a key

advantage of using the Lagrangian relaxation method is

that it prunes the solution space by computing the up-

per and lower bounds. The first 2-D problem is a bipar-

tite graph matching problem (2-D assignment problem),

which can be solved using either the auction algorithm

or the JVC algorithm [10]; the latter is more efficient

for dense problem spaces [11]. The feasible solution is

obtained by solving a 2-D transportation problem (via

a simplex algorithm or Transauction algorithm) recon-

structed from the relaxed solution of the 2-D assign-

ment problem. The second step corresponds to imposing

the originally relaxed constraint on the first subprob-

lem’s solutions. As in [33], we generate m-best solu-

tions by exploiting Murty’s search space decomposition

procedure; however, unlike the formulation in [33], the

present 3-D formulation has general constraints that re-

quire a transportation problem to be solved. Moreover,

we optimize Murty’s search space decomposition via

Miller’s [36] proposed modifications, resulting in fur-

ther speedup and improved computational performance.

An alternate Lagrangian relaxation method involves first

solving a 2-D transportation problem at each iteration

of the 3-D assignment algorithm using either a sim-

plex algorithm or the Transauction algorithm, and sub-

sequently reconstructing the feasible solution via a 2-D

assignment problem. We will show that the former La-

grangian relaxation method is two orders of magnitude

faster than the latter.

This paper is organized as follows. We begin by in-

troducing the problem formulation in Section 2. In Sec-

tion 3, we solve the m-best 3-D assignment problem via

Murty’s search space decomposition and the Lagrangian

relaxation method. In Section 4, we detail Miller et al.’s

[36] search space optimizations and extend them to the

3-D assignment problem. We provide the pseudocode

of the fully optimized m-best 3-D assignment solution

TABLE I

Summary of Notation

wijk Reward of allocating resource i to task j at time k

xijk Binary decision variable for the primal problem

yij Binary decision variable for the 2-D assignment

problem

zjk ,zik Binary decision variables for the 2-D transportation

problem

i Resource index

j Task index

k Time index

mk Maximum number of assignment allowed for each k

W Reward tensor

N Total number of tasks/resources

R Total number of time units

¹ Lagrange multiplier

q Upper bound found from the relaxed 2-D assignment

problem (dual)

f Lower bound found via simplex-based transportation

or Transauction problem (primal)

g Gradient vector for the subgradient update

P0 Original problem space

A Solution space

S Feasible assignment in solution space A

X Solution tensor

© Column for row solution

Á Optimal reward from the 2-D assignment problem

− Layer for row solution

! Optimal reward from the 2-D transportation problem

B Slack value for upper bound reward computation

C Relaxed 2-D reward matrix in the 2-D assignment

problem

T 2-D reward matrix for the transportation problem

algorithm in Section 5. In Section 6, we present the

results of the m-best 3-D assignment algorithm and the

performance of each different optimization technique.

Finally, we provide concluding remarks in Section 7.

2. PROBLEM FORMULATION

The notation used in the remainder of this paper is

listed in Table I.

2.1. Problem Formulation

Given a 3-D reward tensor W = [wijk] of dimension

N £N £R, our problem is the following:

max
xijk2f0,1g

NX
i=1

NX
j=1

RX
k=1

wijkxijk (1)

s:t:

NX
j=1

RX
k=1

xijk = 1, i= 1, : : : ,N (2)

NX
i=1

RX
k=1

xijk = 1, j = 1, : : : ,N (3)

NX
i=1

NX
j=1

xijk ·mk, k = 1, : : : ,R (4)

52 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 13, NO. 1 JUNE 2018

Fig. 2. Network flow view of the 3-D assignment problem,

originally presented in [42].

where xijk is a binary decision variable such that xijk = 1

if resource (row) i is assigned to task (column) j at time

(layer) k, and 0 otherwise. Constraints (2) and (3) ensure

that each resource i is allocated to exactly one task j and

vice versa. Constraint (4) requires that there may be no

more than mk assignments at each time k and makes this

assignment problem non-standard.

Figure 2 shows the 3-D assignment problem as a

network flow problem. Consider the first set, indexed

by i, and the second set, indexed by j, each consisting of

N nodes. Also, consider a third set, indexed by k, with a

total of R nodes. There are a total of N assignments that

may be made between sets i and j based on constraints

(2) and (3). We view this as a 2-D assignment problem

(indicated by the solid box in Fig. 2). Additionally,

each node in set j must be assigned to one of the

nodes in set k (indicated by the dashed (blue) box in

Fig. 2). Due to constraint (4), for every k, there may

be no more than mk assignment pairs of (i,j) mapped

to each layer. This may be viewed as an unbalanced

transportation problem, where the nodes in set (i,j) are

the sources and the nodes in set k are the sinks. Note that

fmk : k = 1,2, : : :Rg should be such that
PR
k=1mk ¸N so

that each (i,j) can be assigned to a node k.

2.2. Special Cases

Note that our 3-D assignment problem formulation

covers a wide range of problems.

2.2.1. Tri-index Assignment problem: The problem

in (1)—(4) may be viewed as a traditional tri-index

assignment problem by setting mk = 1 and R =N [1].

2.2.2. Scheduling problem: By setting mk =m, the

problem in (1)—(4) is related to some resource-con-

strained assignment scheduling problems [41].

2.2.3. Transportation problem: Note that our prob-

lem formulation is a special case of the transportation

problem. The general transportation problem involves

altering the unity constraint to some non-unity values.

2.2.4. Nuclear Fuel Loading Pattern Optimization:

In some nuclear reactor fuel assembly loading pattern

optimization problems, mk =N on the right hand side

of the constraint (4). In this case, the problem can be re-

duced to the traditional 2-D assignment problem, since

constraint (4) can be subsumed under constraints (2)

and (3) and is, thus, unnecessary. The 3-D assignment

problem posed in (1) then devolves to a 2-D assignment

problem, detailed later in Section 3.1.4. An m-best 2-D

assignment problem is adequate for this version of the

problem.

3. SOLUTION APPROACH
In order to solve this NP-hard problem, we propose

a two-phase solution approach. In phase I, we utilize

Murty’s search space decomposition to partition the

original problem space into a series of subproblems.

Each subproblem is then relaxed and solved by a 3-D

assignment algorithm in phase II.

3.1. 3-D Assignment Relaxations
We adopt the solution approach of the 3-D assign-

ment problem in [18] by relaxing one of the three con-

straints and solving the 3-D assignment problem as a

series of 2-D subproblems. Since sets i and j have the

unity constraint, a similar solution approach can be ap-

plied to the 3-D assignment problem here by relaxing

either of the two sets of constraints. We then denote Re-

laxation Method I and Relaxation Method II as the solu-

tion approaches for the 3-D assignment problem when

constraints (4) or (2)/(3) are relaxed, respectively.

3.1.1. Relaxation Method I: Relaxation Method I is

developed by relaxing constraint (4) via a set of La-

grange multipliers f¹k : k = 1,2, : : : ,Rg. The result is the
Lagrangian function

L(x,¹) = max
xijk2f0,1g

0@ NX
i=1

NX
j=1

RX
k=1

(wijk ¡¹k)xijk

1A
+mk

RX
k=1

¹k (5)

Equation (5) is then a relaxed 2-D assignment problem

of the form,

max
yij2f0,1g

NX
i=1

NX
j=1

max
k
(wijk ¡¹k)yij (6)

s:t:

NX
i=1

yij = 1, j = 1, : : : ,N (7)

NX
j=1

yij = 1, i= 1, : : : ,N (8)

APPROACHES TO OBTAIN A LARGE NUMBER OF RANKED SOLUTIONS TO 3-DIMENSIONAL ASSIGNMENT PROBLEMS 53

where,

yij =

RX
k=1

xijk; i,j = 1, : : : ,N: (9)

The upper bound q of the relaxed 2-D assignment prob-

lem is easily solvable via a 2-D assignment algorithm.

To obtain a feasible solution, we reimpose constraint

(4) by reconstructing the reward tensor and viewing the

asymmetric bipartite graph as a transportation problem

based on the solution of the relaxed 2-D assignment

problem. For each hi¤,j¤i of the relaxed 2-D assignment
problem at each iteration, the reward matrix is dynam-

ically updated for each layer k. Given a new reward

matrix w̃hi,jik, the transportation variation of the problem
is as follows.

max
zjk2f0,1g

NX
j=1

RX
k=1

w̃hi,jikzjk (10)

s:t:

NX
j=1

zjk = 1, k = 1, : : : ,R (11)

RX
k=1

zjk ·mk, j = 1, : : : ,N (12)

Through this sequence, we obtain a feasible solution and

a lower bound f. The upper and lower bounds serve as

measures of the solution quality. The distance between

these bounds is referred to as the approximate duality

gap (because it is overestimated by (f¡f¤), where f¤
is the optimal solution). For discrete 3-D assignment

problems, the duality gap may be nonzero. The relative

approximate duality gap is given by

gap=
jq¡fj
f

, (13)

where q and f are the upper and and lower bounds,

respectively, obtained by solving the series of 2-D

subproblems. The 3-D assignment algorithm termi-

nates for a sufficiently small gap, which implies that

a near-optimal solution has been obtained. In scenar-

ios where the duality gap is large, the 3-D assign-

ment algorithm updates its Lagrange multipliers via the

method proposed in Pattipati [18]. Let us denote g as

an R-dimensional subgradient vector with components

given by

gk = R¡
NX
i=1

NX
j=1

Xijk k = 1, : : : ,R, (14)

where X is the solution tensor related to the optimal

value of the relaxed 2-D assignment variables fy¤ijg via

Xijk =

½
y¤ij , if k = argmin®(wij®¡¹®)
0, otherwise

We then update the Lagrange multipliers by

¹k =max

Ã
¹k ¡

(p¡f)
kgk22

gk,0

!
: (15)

After updating the Lagrange multipliers, the algorithm

iterates back to the relaxation step. The process con-

tinues until either the maximum number of iterations

is reached or the duality gap is sufficiently small. The

flow diagram of the 3-D assignment algorithm when the

constraint in (4) is relaxed is shown in Fig. 3.

3.1.2. Relaxation Method II: Note that a relaxed

problem is also obtainable by interchanging the se-

quence of 2-D subproblems. In other words, we may

apply the Lagrangian relaxation on constraints (2) or

(3). When constraint (3) is relaxed via Lagrange multi-

pliers ¹j , the Lagrangian function is:

L(x,¹) = max
xijk2f0,1g

0@ NX
i=1

NX
j=1

RX
k=1

(wijk ¡¹j)xijk

1A
+

NX
j=1

¹j (16)

The 3-D assignment problem is then relaxed into a 2-D

transportation problem of the form

max
zik2f0,1g

NX
i=1

RX
k=1

max
j
(wijk ¡¹j)zik (17)

s:t:

RX
k=1

zik = 1, i= 1, : : : ,N (18)

NX
i=1

zik ·mk, k = 1, : : : ,R, (19)

where

zik =

NX
j=1

xijk; i= 1, : : : ,N; k = 1, : : : ,R (20)

The upper bound q can be obtained by solving the re-

laxed 2-D transportation problem. The 2-D assignment

problem is obtained by reimposing constraint (3) and

reconstructing the reward tensor based on the solution

of the relaxed 2-D transportation problem. The assign-

ment variation of the problem is as follows.

max
yij2f0,1g

NX
i=1

NX
j=1

w̃hi,kijyij (21)

s:t:

NX
i=1

yij = 1, j = 1, : : : ,N (22)

NX
j=1

yij = 1, i= 1, : : : ,N (23)

A feasible solution and a lower bound f can be obtained

through this sequence. The duality gap is then computed

and compared for algorithm termination. The subgradi-

ent is updated in a similar fashion to the first relaxation

54 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 13, NO. 1 JUNE 2018

Fig. 3. Flow diagram of the 3-D assignment algorithm when

relaxing constraint (4).

method, except that it is with respect to dimension j and

uses binary decision variables fzikg.
3.1.3. Algorithm selection for 2-D subproblems: To

optimize the 3-D assignment algorithm, state-of-the-art

2-D assignment and transportation algorithms were se-

lected for comparison purposes. The JVC and auction

algorithms were selected for comparison when solving

the 2-D assignment problem. We solve the 2-D trans-

portation problem via three approaches. The first algo-

rithm utilizes the Transauction algorithm developed by

Bertsekas and Castañón [43], which solves the trans-

portation problem by mapping it to an assignment prob-

lem and obtains a solution via a modified auction algo-

rithm. In the second algorithm, we exploit the findings

in [6], [44], [45], where the transportation problem was

found to be equivalent to the minimum cost network

flow problem, and solve the 2-D transportation prob-

lem via a (strongly polynomial) simplex-based method.

We refer to this simply as simplex-based transportation.

The third algorithm is the RELAX-IV algorithm devel-

oped by Bersekas and Tseng [46] and further detailed in

[47]. It is one of the most efficient algorithms to solve

problems of the network flow type.

3.1.4. Solution approach for a variant of the nuclear

FA loading pattern optimization problems: for this

problem, constraint (4) is such that mk =N. In this case,

the summations over sets i and j are always less than

or equal to N for each k, and, consequently, constraint

(4) is always satisfied. This implies that the constraints

in (4) are inactive and the Lagrange multipliers ¹k = 0

for k = 1,2, : : : ,R. Consequently, the 3-D assignment

problem takes the form,

max
yij2f0,1g

NX
i=1

NX
j=1

max
k
(wijk)yij (24)

s:t:

NX
i=1

yij = 1, j = 1, : : : ,N (25)

NX
j=1

yij = 1, i= 1, : : : ,N (26)

This problem can be easily solved by an m-best 2-D

assignment algorithm. Furthermore, the approach is the

same for the general case when mk ¸N.

3.2. m-best 3-D Assignment

Let P0 be the original problem in equations (1)—

(4) and let A be the corresponding assignment solution

space. Further, let A¤0 be the best feasible assignment
found by the 3-D assignment algorithm detailed in Sec-

tion 3.1. In general, to find the (n+1)th best solution,

we have to partition the (n+1)th problem space, Pn,
into N subproblems, denoted by Pnr, 1· r ·N. Then,
the complete solution space corresponding to problem

space Pn is

An =

N[
r=1

Anr = A¡
n¡1[
i=0

A¤i for n= 1,2, : : : ,m (27)

Anr \Ans =Ø for r,s= 1,2, : : : ,N r 6= s, (28)
where Anr denotes a set of tuples in which each i and

j appear exactly once, but k may be repeated. Equation

(27) is a formalization of the constraint that the solution

space An for the (n+1)th best solution will not contain

any of the best solutions obtained for the previous n

problems. Here, a complete feasible solution is assumed

to be a set of tuples. Hence, some solutions may have a

similarity, however, as seen in (28), the set of solution

tuples as a whole are unique, differing by at least one

element for each of the previous n problems. Let an

assignment Anr consist of multiple tuples (in this paper,

triples), where we index the triples within by t. Let `nrt
be the individual reward of the tth triple, sub-indexed

as hinrt ,jnrt ,knrti, in the solution space Anr. We can then
augment the triple into a 4-tuple and write a feasible

assignment in Anr as

Snr = fhinrt ,jnrt ,knrt ,`nrtig for t= 1, : : : ,N: (29)

The primal value of the corresponding assignment Snr
is denoted by fnr, which can be obtained by summing

`nrt over t= 1,2, : : : ,N.

fnr =

NX
t=1

`nrt (30)

APPROACHES TO OBTAIN A LARGE NUMBER OF RANKED SOLUTIONS TO 3-DIMENSIONAL ASSIGNMENT PROBLEMS 55

The best assignment A¤nr with the corresponding primal
value f¤nr in the solution space Anr is found via the 3-
D assignment algorithm described earlier and pertains

specifically to partition r. The best assignment A¤n is
found by iterating over all active partitions and finding

the argument r¤ which has the maximum primal value.

A¤n = A
¤
nr¤ (31)

r¤ = argmax
r
f¤nr (32)

Given the original problem space and its optimal

assignment, denoted by P0 and A¤0, respectively, we
partition P0 into N problem subspaces P11 to P1N
in order to find the next best solution. To generate

subproblem P11, we remove the first of N tuples in

the assignment A¤0. We then use the 3-D assignment

algorithm to obtain the best possible solution A¤11 to
problem P11. To partition the subspace P1s, 2· s·N,
we remove the sth tuple in A¤0 as a feasible assignment
in P1s, while fixing the first (s¡1) triples to those
in the original assignment A¤0. Thus, as the solution
and problem spaces are reduced at every search space

decomposition, the complexity of the problem decreases

substantially, since the first (s¡1) triples are reused
from the previous assignments. We then only need to

find assignments for the remaining N ¡ s assignments,
such that the sth triple from the original assignment A¤0
is not contained in the solution, while satisfying the

constraints. The enforcement of tuples to be either in or

be removed from the problem spaces P11 to P1N during
partitioning ensures the disjointness of the individual

subproblems, as in equation (28).

Each of the best solutions A¤11 to A
¤
1N is saved into

a heap and accordingly sorted based on the respective

primal values, f¤11 to f¤1N . The best solution within

the heap is then removed and saved as the second

best solution. The problem corresponding to the second

best solution is then partitioned into the subproblems

P21 to P2N . The best assignment from the top of the

heap is then marked as the third best assignment with

respect to the original problem P0. We continue to apply
this process until the mth best solution is found or,

alternatively, the heap becomes empty.

Murty’s search space decomposition is an ingenious

way of decomposing the search space, and has a num-

ber of applications in combinatorial optimization [34],

[48]. Optimizations of the decomposition technique to

improve the computational efficiency are discussed in

Section 4.

REMARK For small size problems and large m, if we

apply the Lagrangian relaxation on constraint (4), the

transportation problem reconstructed from the best (i,

j) pair of the 2-D assignment problem may contain too

many removed arcs and, thus, no feasible solution may

exist. In this case, by interchanging the sequence of re-

laxed problems solved (i.e., solve the 2-D transportation

problem first, as opposed to the assignment problem

(normally solved first)), we can obtain a feasible solu-

tion to the 3-D assignment problem. This situation arises

in small size problems (e.g., of dimension 3£ 3£ 2).
However, since the tensor dimensions used in this pa-

per are large, the solution space is vast and this anomaly

did not arise.

4. OPTIMIZED IMPLEMENTATION OF MURTY’S
SEARCH SPACE DECOMPOSITION

We extend the 2-D optimization modifications in

[36] to the 3-D assignment problems. These include: 1)

inheriting the dual variables and partial solutions from

the subproblems being decomposed; 2) sorting the sub-

problems by an upper bound on reward before solving;

and 3) partitioning the subproblems in an optimized or-

der. All three modifications exploit the primal-dual as-

pects of the JVC algorithm. The following sections ex-

plain each modification in detail for the case when the

constraints in (4) are relaxed in the m-best 3-D assign-

ment algorithm. Similar optimization techniques can be

applied for the case when the constraints in (3) are re-

laxed.

4.1. Inheriting dual variables and partial solutions
during partitioning

Solving the 3-D assignment problem via the JVC al-

gorithm provides dual variables u and v, which can be

inherited by the partitioned subproblem using Murty’s

search space decomposition. The solution tensor Xn, for

the problem space Pn and the reward tensor W, con-
tains N solution triples hi¤,j¤,k¤i. During each step of
Murty’s search space decomposition, a new subproblem

Pnr is generated, associated with a new reward tensor

W0. Removing the triple hi¤,j¤,k¤i from the subproblem
space Pnr is equivalent to setting whi¤,j¤,k¤i =¡1. This
implies we may skip the initialization step for the JVC

algorithm and go directly to the augmentation step with

only one arc left to assign in the 2-D assignment prob-

lem, following the procedure outlined in Algorithm 1. In

this case, the initialization step is only required for the

first feasible solution to the 3-D assignment problem.

ALGORITHM 1 Upper bound reward calculation when
inheriting dual variables

1: for each hi¤,j¤,k¤i 2 A do
2: whi¤,j¤,k¤i =¡1
3: u0 = u, v0 = v,
4: X 0 Ã X ¡Xhi¤,j¤,k¤i
5: end for

Note that we can not inherit the Lagrange multipliers

¹k from the previous problem Pn in the process of
partitioning the subproblems. The Lagrange multipliers

from the previous problem Pn may be too large for
the subproblems Pnr, r = 1,2, : : : ,N. This may cause the
duality gap to remain above the threshold value required

56 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 13, NO. 1 JUNE 2018

to terminate. Thus, the algorithm will continue to run

until the maximum iteration limit is reached.

4.2. Sorting subproblems via an upper bound

The upper bound reward of individual subproblems

is easily obtainable and can be used to avoid solving

subproblems that are unlikely to produce the next best

solution. For an m-best assignment problem, the best

solution from problem Pn is always better than the best
solution obtained from the subproblems obtained by

partitioning Pnr, r = 1,2, : : : ,N. Therefore, for an m-best
2-D assignment problem, the objective function of the

solution to Pn can be used as an initial upper bound
on the objective function value of the best solution to

its corresponding subproblems. Since 3-D assignment

problems may have a nonzero duality gap, the com-

putation of the upper bound can be determined using

either the dual value (denoted by Á) or the primal value

(denoted by !) as initial upper bounds to the partitioned

subproblems.

When a subproblem Pnr is created by removing a
triple hi¤,j¤,k¤i from a copy of P, we can compute
the upper bound objective function value by finding

the best slack (i.e., next possible best assignment) of

all the alternative assignments for a row i. The upper

bound objective function value will be the sum of the

initial upper bound and the row slack, denoted by Br.

The calculation of the upper bound is shown in detail

in Algorithm 2.

ALGORITHM 2 Upper bound reward calculation when
sorting subproblems

1: for each row i do

2: whi¤,j¤,k¤i =¡1
3: Br =maxj,kfwijk ¡ u(i¤)¡ v(j)¡¹(k)g
4: f 0 = f+Br
5: end for

A similar procedure can be followed for column j

to find the column slack, Bc. By combining both the

row and the column slack, a tighter upper bound can be

obtained. The heap of subproblems can be modified to

sort its elements (in descending order) based on each

element’s respective upper bound reward. This implies

that the problems located at the top of the heap are most

likely to have the best solutions.

In this optimization method, the initial problem is

partitioned into a series of subproblems when it is

solved by the 3-D assignment algorithm. Both the orig-

inal problem and its corresponding subproblems are

saved into a heap. During each iteration of Murty’s

search space decomposition, if the top problem Pn re-
moved from the heap has a feasible solution, then the

solution will be saved as the mth best assignment. If Pn
has not yet been solved (i.e., it has a partial solution),

then we find its best solution A¤n using the 3-D assign-

ment algorithm and add it back into the heap. A new

partitioning process is then invoked on Pn and its solu-
tion A¤n. The process is repeated until the heap is empty
or a total of m solutions are obtained. This method al-

lows us to eliminate subproblems by focusing on their

corresponding upper bounds, thus reducing the number

of problems needed to be solved by the 3-D assignment

algorithm.

4.3. Partition in an optimized order

The third optimization method proposed here is to

carefully select the order in which the partitioning is
performed. This modification maximizes the probability

that the subsequent smaller subproblems (with a greater

number of fixed arcs) have better solutions. For problem

Pn with solution A¤n that contains N triples, we first

compute each upper bound reward that would result

from excluding each individual arc. These upper bounds

are computed via the method explained in Section 4.2.

We then select the triple that corresponds to the lowest

upper bound reward computed and exclude it from the

current subproblem, while fixing the corresponding arc

in the next subproblem.

In this modification, the heuristic tends to ensure that

the largest problem (maximum number of unassigned

arcs) has the lowest upper bound. In other words, the

largest problem has the highest probability of containing

the worst solution and to be pushed to the bottom of

the heap (and in turn, will most likely remain unsolved

upon algorithm termination). The next worst problem

will tend to be the second largest subproblem, and so on.

By doing this, we increase the chance that the smallest

problem (that which has the least amount of unassigned

arcs) contains the best solution.

5. PSEUDOCODE

The following variants were used and/or combined

for different optimization methods:

(A) Inheritance of the dual variables and partial solu-

tions during partitioning

(B) Sorting subproblems by an upper bound reward

before solving, where the upper bound is calculated via:

i !+Br
ii !+Br+Bc
iii Á+Br
iv Á+Br+Bc

(C) Partitioning the problem in an optimized order

These variants are denoted as listed for the remain-

der of the paper and may be combined, e.g., when com-

bining variant A with variant B(ii) and variant C, the al-

gorithm variant will be categorized as A+B(i)+C. The

pseudocode for Murty’s modified search space decom-

position, optimized via variants A, B(ii), and C, is de-

tailed in Algorithm 3. These variants assume JVC and

Transauction to be applied in the m-best 3-D assignment

algorithm.

APPROACHES TO OBTAIN A LARGE NUMBER OF RANKED SOLUTIONS TO 3-DIMENSIONAL ASSIGNMENT PROBLEMS 57

ALGORITHM 3 m-best 3D assignment algorithm

1: HÃfg Initialize binary heap

2: UÃ [] Initialize solution list

3: hA¤0,P0,f¤0 i=3DASSIGN(wijk)
4: PARTITION(H,P0,A¤0) Invoke PARTITION method

5: HÃ hA¤0,P0,f¤0 i Add to the heap

6: counter=0

7: while counter ·m¡ 1 and H 6=Ø do
8: hA¤n,Pn,f¤n i=H:pop
9: if A¤n is feasible then
10: counter=counter+1

11: UÃ A¤n,f
¤
n

12: else

13: hA¤n,Pn,f¤n i=3DASSIGN(wijk,hA¤n,Pn,f¤n i)
14: if 9 solution then
15: PARTITION(H,hA¤n,Pn,f¤n i)
16: HÃ hA¤n,Pn,f¤n i
17: end if

18: end if

19: end while

1: function PARTITION(H,hA¤n,Pn,f¤n i,wijk)
2: for each hi¤,j¤,k¤i 2 A¤n do
3: wi¤,j¤,k¤ =¡1
4: end for

5: for each hi¤,j¤,k¤i 2 A¤n do
6: for each row i¤ 2 A¤ do
7: Br =maxj,kfwijk ¡ u(i¤)¡ v(j)¡¹(k)g
8: Bc =maxi,kfwijk ¡ u(i)¡ v(j¤)¡¹(k)g
9: Bi¤ = Br+Bc
10: end for

11: (B, i¤) = min(Bi¤ 6=¡1)
12: hi¤,j¤,k¤i= A¤n(i¤)
13: f¤nr = f

¤
n +B

14: A¤nrÃ A¤n¡hi¤,j¤,k¤i
15: PnrÃPn¡hi¤,j¤,k¤i
16: HÃ hA¤nr,Pnr,f¤nri
17: A¤n(r+1):FixListÃ hi¤,j¤,k¤i
18: for each j,k do

19: w[i¤,j,k] =¡1
20: end for

21: for each row 6= i¤,k do
22: w[row, j¤,k] =¡1
23: end for

24: end for

25: end function

1: function 3DASSIGN(wijk,hA¤n,Pn,f¤n i)
2: f¤ =¡1; lb=¡1; q¤ =1; maxIter= 20
3: MAX= true,n3 = R

4: FixList,v,©Ã A¤n
5: for curIter= 1 to maxIter do

6: C =maxk(wijk ¡¹k)
7: for hi¤,j¤,k¤i 2 A¤n:FixList do
8: C[i¤,j¤] = w[i¤,j¤,k¤]
9: end for

10: if ©==Ø then

11: (©,u,v,Á) =JVC(C, MAX)

12: else

13: (©,u,v,Á) =Augment(C,©,v, MAX)

14: end if

15: q¤ =min(q,Á+ n3 ¤
P
k(¹k))

16: for each row do

17: T[row] = w[row, ©[row], k] 8k
18: end for

19: (−,!) =Transportation(T, MAX)

20: if ! ¸ lb then
21: lb= !

22: f¤ =lb
23: end if

24: gap=
jq¤ ¡f¤j
jf¤j

25: if gap · 0:05 then
26: return

27: end if

28: Update Lagrangian multiplier

29: end for

30: end function

6. RESULTS

The proposed m-best 3-D assignment algorithm was

implemented in the MATLAB 2016b and runs on an

Intel Core i7-4712HQ CPU processor @2.30 GHz with

16 GB RAM. In all experiments, the top 104 ranked

solutions were computed.

6.1. Relaxation Method I vs. Relaxation Method II

We first performed 10 Monte Carlo runs to com-

pare the simulation runtimes of the 3-D assignment

algorithm when relaxing either constraint (3) or con-

straint (4). The reward tensor elements were uniformly

distributed in the interval [0,1] and of dimension 60£
60£ 8. The JVC and Transauction algorithms were im-
plemented to solve the 2-D assignment and the trans-

portation problems, respectively. As shown in Table II,

speedup of as much as 2.28 and an average speedup of

1.63 were observed when comparing the two relaxation

methods. In general, solving a 2-D assignment problem

is significantly faster than solving a transportation prob-

lem. The transportation problem obtained from relaxing

constraint (3) is complex, and thus takes a longer time

to solve compared to the transportation problem recon-

structed from the best 2-D assignment solution when

constraint (4) is relaxed. Relaxing constraint (4) also

consistently resulted in a smaller duality gap compared

to when constraint (3) was relaxed due to the fact that

jkj= R < N = jjj. This implies that when constraint (4)
is relaxed, a smaller number of elements in the 3-D

reward tensor are removed when constructing the 2-D

subproblem, i.e., since a smaller number of elements

are removed, there is a higher likelihood that a better

58 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 13, NO. 1 JUNE 2018

TABLE II

10 Monte Carlo Runs for different Lagrangian Relaxation methods

Relaxation on constraint (3) Relaxation on constraint (4)

Objective Objective

Function Runtime Function Runtime

MC Gap Values (CPU s) Gap Values (CPU s) Speedup

1 0.015 59.021 0.065 0.003 59.627 0.040 1.628

2 0.010 59.281 0.064 0.004 59.599 0.045 1.422

3 0.013 59.100 0.054 0.003 59.618 0.038 1.413

4 0.011 59.219 0.053 0.002 59.664 0.033 1.613

5 0.011 59.209 0.053 0.001 59.764 0.031 1.692

6 0.010 59.249 0.053 0.002 59.699 0.032 1.664

7 0.009 59.335 0.070 0.002 59.719 0.031 2.279

8 0.013 59.124 0.057 0.005 59.513 0.034 1.700

9 0.012 59.184 0.053 0.008 59.347 0.034 1.563

10 0.010 59.290 0.049 0.003 59.632 0.036 1.344

Fig. 4. Example objective function values for a tensor of dimension

30£ 30£ 8 with values uniformly distributed on the interval [0,1].

solution remains. For these reasons, the remaining ex-

periments used the m-best 3-D assignment algorithm

with the relaxation of constraint (4) only.

6.2. JVC vs. Auction Algorithm

To measure and quantify which algorithms best

solve the 2-D assignment and transportation problems

within the 3-D assignment problem, we compared the

runtimes of the 3-D assignment algorithm when us-

ing the JVC or the auction algorithms for the 2-D as-

signment problem, and Transauction or simplex-based

transportation algorithms for the transportation prob-

lem. A tensor was generated with elements sampled

from a uniform distribution in the interval [0,1] for ten-

sor sizes ranging from 30£30£ 8 to 60£ 60£ 8 with
increments of N = 5. Any combination of the 2-D as-

signment algorithms with the transportation algorithms

resulted in the same assignments and objective function

values. An example of the objective function values of

a sample tensor of dimension 30£ 30£ 8 is shown in

Fig. 5. The CPU runtime for the JVC and auction algorithms were

compared as a function of varying tensor dimensions. The JVC

algorithm consistently outperformed the auction algorithm.

Fig. 4 when the algorithm was run to obtain the top

104 solutions. As shown in Fig. 4, even when 104 as-

signments were obtained, the maximum and minimum

objective function values obtained from the assignment

solutions had minimal variation and the difference was

relatively small for all tensor dimensions tested; how-

ever, as shown in Fig. 5, the m-best 3-D assignment

algorithm, which invoked the JVC algorithm was, on

average, 3 times faster when compared to the case when

the auction algorithm was used. The RELAX-IV algo-

rithm was used to solve the transportation problem in

this experiment.

6.3. Transportation vs. Transauction vs. RELAX-IV
Algorithm

Similar tests were performed to evaluate the best

algorithm to solve the transportation problem. Assum-

ing that the JVC algorithm would be invoked to solve

the 2-D assignment portion of the problem, Fig. 6

APPROACHES TO OBTAIN A LARGE NUMBER OF RANKED SOLUTIONS TO 3-DIMENSIONAL ASSIGNMENT PROBLEMS 59

Fig. 6. The CPU runtime for the Transauction and simplex-based

transportation algorithms were compared as a function of differing

tensor dimensions. The Transauction algorithm remained relatively

unaffected by the increase in the reward tensor size, while the

transportation algorithm took orders of magnitude more time to find

the same assignments.

demonstrates that the simplex-based transportation al-

gorithm was significantly slower compared to both the

Transauction and RELAX-IV algorithms. In general,

the RELAX-IV algorithm had the fastest runtime speed.

The maximum observed speedup of RELAX-IV in com-

parison to the simplex-based transportation and the

Transauction algorithms was 21.4 and 2.4, respectively.

Overall, the RELAX-IV algorithm dominated both the

simplex-based transportation and the Transauction ap-

proaches to the transportation problem, on average solv-

ing it nearly 17 and 1.6 times faster, respectively. Based

on these findings, the JVC and RELAX-IV algorithms

were selected to solve the 2-D assignment and trans-

portation problems within the m-best 3-D assignment

problem, respectively, for the remaining computational

experiments. We optimized the m-best 3-D assignment

algorithm via the methods detailed in Section 4.

6.4. Solution quality evaluation for decomposition
methods

A sample test tensor of dimension 30£ 30£ 8 with
elements uniformly distributed in the interval [0,1] was

used to measure the solution quality and to compare

the simulation runtimes of the m-best 3-D assignment

algorithm when exploiting different combinations of

the search space decomposition optimization methods.

As shown in Fig. 7, the optimization combinations

of A+B(iii) and A+B(iv) resulted in approximately a

10% reduction in the solution quality compared to the

original Murty’s proposed search space decomposition

method. This is because the dual value in our problem

setup did not serve as an accurate estimate of the initial

upper bound. All other combinations of optimization

Fig. 7. Objective function values for tensor size 30£ 30£ 8 with
various optimization combinations.

methods were comparable to the Murty’s search space

decomposition. Therefore, optimization method combi-

nations A+B(iii) and A+B(iv) were removed from the

remaining tests.

6.5. Runtime comparison for decomposition methods

Similar tests were performed on all the remaining

combinations of optimization methods for tensor sizes

varying from 30£30£ 8 to 60£ 60£ 8 with an incre-
ment of N = 5. Table III shows the simulation run-

time in CPU seconds for 104 solutions and for the

various search space optimization combinations, given

a sample test tensor for each incremented dimension.

Methods A, A+B(i) and A+B(ii) on average ran 20%,

52% and 32% slower, respectively, within the m-best

3-D assignment algorithm, as compared to the origi-

nal Murty’s search space decomposition. As shown in

Fig. 8, methods A+B(i)+C and A+B(ii)+C were able

to obtain speedups with very minimum variation in the

objective function values originally found by Murty’s

search space decomposition for all tensor sizes except

that of dimension 60£ 60£ 8. The reason for such a
slow down is explained later in Section 6.6. Further-

more, combinations A+B(i)+C and A+B(ii)+C were

able to obtain objective function values slightly better

(higher) than the proposed method by Murty (on the or-

der of 10¡6). This phenomenon is due to the Lagrangian
relaxation algorithm’s approximation of the 3-D assign-

ment problem. The search space decomposition method

is suboptimal when applied to the 3-D assignment prob-

lem (due to the suboptimal nature of the Lagrangian

relaxation algorithm), and so from our analysis we ob-

served that, through the particular optimization method

combinations of A+B(i)+C and A+B(ii)+C, better fea-

sible solutions were found. These methods were also

significantly faster, offering an average of 2.1 and 2.4

60 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 13, NO. 1 JUNE 2018

TABLE III

Simulation runtime in CPU seconds for various combinations of decomposition methods

Decomposition Methods

Tensor Size Original Murty A A+B(i) A+B(ii) A+B(i)+C A+B(ii)+C

30£ 30£ 8 139.17 157.32 193.45 124.30 51.69 44.96

35£ 35£ 8 189.03 230.78 400.78 284.66 74.95 62.67

40£ 40£ 8 235.56 293.40 429.86 391.12 76.85 73.50

45£ 45£ 8 178.70 226.16 398.22 337.41 102.21 87.33

50£ 50£ 8 288.11 370.07 803.69 491.81 99.15 79.73

55£ 55£ 8 244.75 303.14 489.72 477.44 207.71 204.60

60£ 60£ 8 152.72 209.78 463.33 427.37 309.65 232.06

Fig. 8. Percentage error compared against the speedup for the

combinations of optimization methods tested for all tensor sizes,

varied from 30£ 30£ 8 to 60£ 60£ 8 with an increment of N = 5.

speedup, respectively, as illustrated in Fig. 8. To investi-

gate these combinations more thoroughly, Monte Carlo

runs were performed on these two combinations only.

6.6. Scalability with N

To measure both the overall scalability and consis-

tency, 10 Monte Carlo runs were performed for each

tensor size varying from 30£ 30£ 8 to 60£ 60£ 8
in increments of N = 10 and using the two specific

optimization method combinations of A+B(i)+C and

A+B(ii)+C. Each test tensor was generated with ele-

ments uniformly distributed in the interval [0,1] and 104

solutions were obtained for each tensor. In each run, the

objective function values and the simulation runtime,

were monitored and compared against both combina-

tions, as well as with respect to Murty’s decomposition

method. Fig. 9 shows the percentage error of the two op-

timization methods as compared to the original Murty’s

search space decomposition. The average percentage

error increased with each increment in the tensor di-

mensions. Overall, the optimization method combina-

tion of A+B(ii)+C had a lower median compared to the

combination of A+B(i)+C; however, the combination

Fig. 9. Box plot for the average percentage error (as compared to

the original Murty search space decomposition method) for the

optimization method combinations A+B(i)+C and A+B(ii)+C.

of variants A+B(i)+C had less variation with respect

to the average percentage error. Table IV details the

minimum, maximum, and average runtimes observed

in CPU seconds for the Monte Carlo runs. The method

A+B(ii)+C had the fastest runtime, as shown in Fig.

10, with an observed maximum average of 3.1 speedup

over Murty’s search space decomposition method, while

having 2.14 speedup on average, when averaged over all
Monte Carlo runs. The tensor of dimension 60£ 60£ 8
resulted in a slow down of 32% and 25%, respectively,

with optimizations A+B(i)+C and A+B(ii)+C.

In the fully optimized m-best 3-D assignment algo-

rithm, there exists a tradeoff (when N ¼ 55) in compu-
tation time between obtaining a feasible solution and

the m-best optimization methods (e.g., partitioning or

sorting), as seen in Fig. 10. The increase in dimension

N does not necessarily mean an increase in the com-

putation time of the 3-D assignment algorithm, since

both optimization methods A+B(i)+C and A+B(ii)+C

reduce the frequency of calling the 3-D assignment al-

gorithm; however, partitioning and/or sorting the larger

subproblems may become more difficult. A more favor-

able speedup may be observed if the algorithms were to

be implemented in a fast object oriented-programming

APPROACHES TO OBTAIN A LARGE NUMBER OF RANKED SOLUTIONS TO 3-DIMENSIONAL ASSIGNMENT PROBLEMS 61

TABLE IV

Minimum, maximum, and average runtimes in CPU seconds to

obtain 104 solutions

30£ 30£ 8 Original Murty A+B(i)+C A+B(ii)+C

Min 111.84 53.72 45.01

Mean 146.03 63.50 49.64

Max 195.41 76.68 53.55

40£ 40£ 8 Original Murty A+B(i)+C A+B(ii)+C

Min 147.44 78.07 69.83

Mean 245.27 103.74 79.19

Max 284.48 128.17 92.61

50£ 50£ 8 Original Murty A+B(i)+C A+B(ii)+C

Min 151.15 98.25 80.24

Mean 247.28 155.13 139.05

Max 320.79 271.20 243.48

60£ 60£ 8 Original Murty A+B(i)+C A+B(ii)+C

Min 142.19 226.88 203.46

Mean 214.01 314.57 284.93

Max 294.43 586.10 542.90

Fig. 10. The average CPU runtimes for 10 Monte Carlo runs for

the two optimization method combinations tested.

language. Overall, for a 30£30£ 8 tensor, the m-best
3-D assignment algorithm utilizing optimization method

A+B(ii)+C took an average of 4.9 milliseonds to obtain

a single solution to the 3-D assignment problem.

6.7. Scalability with R

As mentioned in Sections 2.1 and 3.1.4, the value

of mk should be such that
PR

k=1mk ¸N. For problems
where mk = R ¸N, the 3-D assignment problem re-

duces to a 2-D assignment problem. We analyze the

scalability of the algorithms with respect to increment-

ing R by performing 10 Monte Carlo runs for each in-

crement and requesting 104 solutions with tensor size

N = 30 and R = 6, 10, 15, 20, 25, 29 (R = 30 is omit-

ted because, as mentioned earlier, this devolves into

TABLE V

Minimum, maximum, and average runtimes in CPU seconds to

obtain 104 solutions

30£ 30£ 6 Original Murty A+B(i)+C A+B(ii)+C

Min 83.33 78.24 62.51

Mean 103.77 93.48 79.00

Max 119.63 108.27 93.91

30£ 30£ 10 Original Murty A+B(i)+C A+B(ii)+C

Min 161.03 56.47 42.03

Mean 232.45 65.78 51.33

Max 276.15 73.7 56.32

30£ 30£ 15 Original Murty A+B(i)+C A+B(ii)+C

Min 477.91 87.00 68.20

Mean 640.89 102.21 75.71

Max 886.40 113.97 84.40

30£ 30£ 20 Original Murty A+B(i)+C A+B(ii)+C

Min 747.44 133.35 108.31

Mean 1077.13 150.95 115.24

Max 1587.85 172.55 125.67

30£ 30£ 25 Original Murty A+B(i)+C A+B(ii)+C

Min 1519.77 186.74 162.13

Mean 1902.02 218.85 176.63

Max 2507.46 230.53 187.83

30£ 30£ 29 Original Murty A+B(i)+C A+B(ii)+C

Min 1704.44 265.57 235.14

Mean 2572.39 298.28 249.87

Max 3343.91 330.11 268.99

a 2-D assignment problem). Fig. 11 shows the rela-

tive percentage error of the two optimization methods,

as compared to the original Murty’s search space de-

composition. The average percentage error is zero for

R ¸ 10, since the problem constraint (4) is less likely to
be violated, and therefore, the duality gap is zero. The

minimum, average and maximum runtimes are listed in

Table V. As shown in Fig. 12, the speed of the original

m-best 3-D assignment algorithm increases significantly

with R. A maximum speedup of 10.8 and an average

speedup of 7.5 were observed when comparing the op-

timization method A+B(ii)+C with the original m-best

3-D assignment algorithm. The total number of arcs in-

put to the RELAX-IV algorithm is bounded above by

R3; hence increasing R has an exponential impact on

the complexity of the problem solved by the algorithm

and, in turn, the CPU runtime of the original m-best 3-

D assignment. On the other hand, the optimized m-best

3-D assignment is able to reduce the need for the 3-

D assignment routine invocation and, therefore, is able

to obtain 104 solutions in a relatively short amount of

time (< 5 minutes). The tensor of dimension 30£ 30£ 6
had an increase in average CPU runtime compared to a

tensor of dimension 30£30£ 10 when considering the
optimized methods A+B(i)+C and A+B(ii)+C. This is

due to nonzero duality gap which impacts the partition-

ing procedure and subsequently requires more subprob-

62 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 13, NO. 1 JUNE 2018

Fig. 11. Box plot for the average percentage error (as compared to

the original Murty search space decomposition method) for the

optimization method combinations A+B(i)+C and A+B(ii)+C,

where N = 30.

Fig. 12. The average CPU runtimes for 10 Monte Carlo runs with

each increment of R for the two optimization method combinations

tested.

lems to be solved before obtaining all m-best solutions.

Intuitively, due to the nature of the problem, a tensor

of dimension 30£ 30£ 6 is more likely to violate con-
straint (4).

7. CONCLUSION

In this paper, we formulated a 3-D assignment prob-

lem and developed an efficient method to solve the

problem, including 1) a rigorous mathematical formu-

lation that is applicable to multiple domains; 2) a novel

two-phase solution approach to obtain a large number

of ranked solutions. The first phase of our solution ap-

proach involves partitioning the original problem space

into a series of subproblems via Murty’s m-best decom-

position procedure, while in the second phase, we solve

each of these subproblems using a combination of re-

laxed 2-D assignments through reformulation into either

a transportation problem. The solution converges with

a sufficiently small duality gap.

We compared the simulation runtime of the m-best

3-D assignment algorithm when relaxing either the as-

signment constraints or the transportation constraints.

We also compared the performance of different com-

binations of 2-D assignment algorithms with a given

transportation algorithm and found the combination of

JVC and RELAX-IV algorithms, while relaxing the

transportation constraints, to be the best performing

combination when one is interested in solving the m-

best 3-D assignment problem for a large number of so-

lutions (in this paper, we were interested in obtaining

104 ranked solutions).

We also evaluated different decomposition methods

and compared their scalability and consistency with

Murty’s search space decomposition. From our analy-

sis, it can be seen that, when solving for a large number

of solutions within a 3-D assignment problem, utiliz-

ing dual variable inheritance, tight upper bounds on the

feasible reward, and partitioning in an optimized order

offer the best performance, solving for all m-best solu-

tions in a fraction of the time of the original Murty’s

decomposition method, with little to no sacrifice in so-

lution quality. These optimizations offered a maximum

speedup of 10.8 over Murty’s search space decomposi-

tion. On average, it took 49.64 s to obtain 104 solutions

for a tensor of dimension 30£ 30£ 8 required for the
nuclear fuel loading problem, which was well within

the 10 minute time limit placed on the algorithm.

ACKNOWLEDGMENT

We would like to thank Dr. Michal Kvasnicka

for bringing this unique variation of the m-best 3-D

assignment problem to our attention and Dr. David

Crouse for initial discussions. We thank them for their

valuable comments and suggestions during the plan-

ning and development of this research work. We also

would like to thank Antonio Frangioni for providing

the C++ version of the RELAX-IV algorithm. This

research was supported by the U.S. Office of Naval

Research under contract #N00014-16-1-2036 and by

the Department of Defense High Performance Comput-

ing Modernization Program under subproject contract

#HPCM034125HQU.

REFERENCES

[1] W. P. Pierskalla

“The tri-substitution method for the three-dimensional as-

signment problem,”

CORS Journal, vol. 5, pp. 71—81, 1967.
[2] A. M. Frieze and J. Yadegar

“An Algorithm for Solving 3-Dimensional Assignment

Problems with Application to Scheduling a Teaching Prac-

tice,”

Palgrave Macmillan Journal, vol. 32, no. 11, pp. 989—995,
1981.

APPROACHES TO OBTAIN A LARGE NUMBER OF RANKED SOLUTIONS TO 3-DIMENSIONAL ASSIGNMENT PROBLEMS 63

[3] S. Deb, M. Yeddanapudi, K. Pattipaii, and Y. Bar-Shalom

“A generalized s-d assignment algorithm for multisensor-

multitarget state estimation,”

IEEE Transactions on Aerospace and Electronic Systems,
vol. 33, no. 2 PART 1, pp. 523—538, 1997.

[4] R. M. Karp

“Reducibility among combinatorial problems,”

in Complexity of computer computations. Springer, 1972, pp.
85—103.

[5] A. Frieze

“Complexity of a 3-dimensional assignment problem,”

European Journal of Operational Research, vol. 13, no. 2,
pp. 161—164, 1983.

[6] C. H. Papadimitriou and K. Steiglitz

Combinatorial optimization: algorithms and complexity.
Courier Corporation, 1982.

[7] “Fuel loading completed at fangchenggang 2,”

http://www.world-nuclear-news.org/NN-Fuel-loading-

completed-at-Fangchenggang-2-2505164.html, accessed:

2016-09-22.

[8] K. G. Murty

“An Algorithm for Ranking all the Assignments in Order

of Increasing Cost,”

Operations Research, vol. 16, no. 3, pp. 682—687, 1968.

[9] H. W. Kuhn

“The hungarian method for the assignment problem,”

Naval research logistics quarterly, vol. 2, no. 1—2, pp. 83—
97, 1955.

[10] R. Jonker and A. Volgenant

“A shortest augmenting path algorithm for dense and sparse

linear assignment problems,”

Computing, vol. 38, no. 4, pp. 325—340, 1987.

[11] O. Drummond, D. A. Castanón, and M. Bellovin

“Comparison of 2-d assignment algorithms for sparse, rect-

angular, floating point, cost matrices,”

in Proceedings of the SDI Panels on Tracking, vol. 4, 1990,
pp. 4—81.

[12] D. P. Bertsekas

“The auction algorithm: A distributed relaxation method for

the assignment problem,”

Annals of operations research, vol. 14, no. 1, pp. 105—123,
1988.

[13] M. Balinski

“Signature methods for the assignment problem,”

Operations research, vol. 33, no. 3, pp. 527—536, 1985.

[14] P. Hansen and L. Kaufman

“A primal-dual algorithm for the three-dimensional assign-

ment problem,”

Cahiers du CERO, vol. 15, pp. 327—336, 1973.

[15] E. Balas and M. J. Saltzman

“An algorithm for the three-index assignment problem,”

Operations Research, vol. 39, no. 1, pp. 150—161, 1991.

[16] R. Burkard and R. Rudolf

“Computational investigations on 3-dimensional axial as-

signment problems,”

Belgian Journal of Operations Research, Statistics and Com-
puter Science, vol. 32, pp. 85—98, 1992.

[17] J. B. Mazzola and A. W. Neebe

“Resource-constrained assignment scheduling,”

Operations Research, vol. 34, no. 4, pp. 560—572, 1986.

[18] K. R. Pattipati, S. Deb, Y. Bar-Shalom, and R. B. Washburn

“A new relaxation algorithm and passive sensor data asso-

ciation,”

IEEE Transactions on Automatic Control, vol. 37, no. 2, pp.
198—213, 1992.

[19] A. P. Poore and N. Rijavec

“A lagrangian relaxation algorithm for multidimensional

assignment problems arising from multitarget tracking,”

SIAM Journal on Optimization, vol. 3, no. 3, pp. 544—563,
1993.

[20] A. B. Poore and X. Yan

“K-near optimal solutions to improve data association in

multiframe processing,”

in SPIE’s International Symposium on Optical Science, Engi-
neering, and Instrumentation. International Society for Op-
tics and Photonics, 1999, pp. 435—443.

[21] W. Hoffman and R. Pavley

“A method for the solution of the n th best path problem,”

Journal of the ACM (JACM), vol. 6, no. 4, pp. 506—514,
1959.

[22] E. de Queirós Vieira Martins, M. M. B. Pascoal and J. L. E. D.

Santos

“Deviation algorithms for ranking shortest paths,”

International Journal of Foundations of Computer Science,
vol. 10, no. 03, pp. 247—261, 1999.

[23] K. N. Androutsopoulos and K. G. Zografos

“Solving the k-shortest path problem with time windows in

a time varying network,”

Operations Research Letters, vol. 36, no. 6, pp. 692—695,
2008.

[24] H. N. Gabow

“Two algorithms for generating weighted spanning trees in

order,”

SIAM Journal on Computing, vol. 6, no. 1, pp. 139—150,
1977.

[25] H. W. Hamacher and G. Ruhe

“On spanning tree problems with multiple objectives,”

Annals of Operations Research, vol. 52, no. 4, pp. 209—230,
1994.

[26] ²Z. Agić

“K-best spanning tree dependency parsing with verb va-

lency lexicon reranking,”

in 24th International Conference on Computational Linguis-
tics (COLING 2012), 2012.

[27] E. S. Van der Poort, M. Libura, G. Sierksma, and J. A. van der

Veen

“Solving the k-best traveling salesman problem,”

Computers & operations research, vol. 26, no. 4, pp. 409—
425, 1999.

[28] P. M. Camerini, L. Fratta, and F. Maffioli

“The k best spanning arborescences of a network,”

Networks, vol. 10, no. 2, pp. 91—109, 1980.
[29] I. J. Cox and M. L. Miller

“On Finding Ranked Assignments with Application to Mul-

titarget Tracking and Motion Correspondence,”

IEEE Transactions on Aerospace and Electronic Systems,
vol. 31, no. 1, pp. 486—489, 1995.

[30] I. J. Cox, M. L. Miller, R. Danchick, and G. E. Newnam

“A comparison of two algorithms for determining ranked

assignments with application to multitarget tracking and

motion correspondence,”

IEEE Transactions on Aerospace and Electronic Systems,
vol. 33, no. 1, pp. 295—301, 1997.

[31] R. L. Popp

“Dynamically adaptable m-best 2-d assignment algorithm

and multilevel parallelization,”

IEEE Transactions on Aerospace and Electronic Systems,
vol. 35, no. 4, pp. 1145—1160, 1999.

[32] J. Berclaz, F. Fleuret, E. Turetken, and P. Fua

“Multiple object tracking using k-shortest paths optimiza-

tion,”

IEEE transactions on pattern analysis and machine intelli-
gence, vol. 33, no. 9, pp. 1806—1819, 2011.

64 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 13, NO. 1 JUNE 2018

[33] R. L. Popp, K. R. Pattipati, and Y. Bar-Shalom

“m-best S-D assignment algorithm with application to mul-

titarget tracking,”

IEEE Transactions on Aerospace and Electronic Systems,
vol. 37, no. 1, pp. 22—39, 2001.

[34] E. L. Lawler

“A procedure for computing the k best solutions to discrete

optimization problems and its application to the shortest

path problem,”

Management science, vol. 18, no. 7, pp. 401—405, 1972.
[35] M. Pascoal, M. E. Captivo, and J. Clímaco

“A note on a new variant of murty’s ranking assignments

algorithm,”

Quarterly Journal of the Belgian, French and Italian Opera-
tions Research Societies, vol. 1, no. 3, pp. 243—255, 2003.

[36] M. L. Miller, H. S. Stone, and I. J. Cox

“Optimizing Murty’s ranked assignment method,”

IEEE Transactions on Aerospace and Electronic Systems,
vol. 33, no. 3, pp. 851—862, 1997.

[37] H. W. Hamacher and M. Queyranne

“K best solutions to combinatorial optimization problems,”

Annals of Operations Research, vol. 4, no. 1, pp. 123—143,
1985.

[38] P. Carraresi and C. Sodini

“A binary enumeration tree to find k shortest paths,”

in Proc. 7th Symp. operations research, 1983, pp. 177—188.
[39] C. R. Chegireddy and H. W. Hamacher

“Algorithms for finding k-best perfect matchings,”

Discrete applied mathematics, vol. 18, no. 2, pp. 155—165,
1987.

[40] Y. Lin and K. Mouratidis

“Shortlisting top-k assignments,”

in Proceedings of the 25th International Conference on Sci-
entific and Statistical Database Management. ACM, 2013,
p. 21.

Lingyi Zhang received the B.S. degree in Electrical and Computer Engineering
from the University of Connecticut, Storrs in 2014. She is currently pursuing the

Ph.D. degree from the Department of Electrical and Computer Engineering at the

same university.

Her current research interests include modeling dynamic and uncertain envi-

ronments for asset allocation and path planning, context-aware decision support

systems, and optimization-based techniques for mission planning and coordination.

[41] J. B. Mazzola and A. W. Neebe

“Resource-constrained assignment scheduling,”

Operations Research, vol. 34, no. 4, pp. 560—572, 1986.
[42] L. Zhang, D. Sidoti, K. R. Pattipati, and D. Castaỳỳn

“Approaches for solving m-best 3-dimensional dynamic

scheduling problems for large m,”

in Information Fusion (FUSION), 2016 19th International
Conference on. ISIF, 2016, pp. 53—58.

[43] D. P. Bertsekas and D. A. Castanon

“the Auction Algorithm for the Transportation Problem,”

Annals of Operations Research, vol. 20, pp. 67—96, 1989.
[44] J. B. Orlin, S. A. Plotkin, and É. Tardos

“Polynomial dual network simplex algorithms,”

Mathematical programming, vol. 60, no. 1, pp. 255—276,
1993.

[45] H. A. Taha

Operations research: an introduction.
Macmillan,, 1992.

[46] D. P. Bertsekas, P. Tseng et al.

RELAX-IV: A faster version of the RELAX code for solving
minimum cost flow problems.
Massachusetts Institute of Technology, Laboratory for In-

formation and Decision Systems Cambridge, MA, 1994.

[47] A. Frangioni and A. Manca

“A computational study of cost reoptimization for min-cost

flow problems,”

INFORMS Journal on Computing, vol. 18, no. 1, pp. 61—70,
2006.

[48] X. Han, H. Bui, S. Mandal, K. R. Pattipati, and D. L. Kleinman

“Optimization-based decision support software for a team-

in-the-loop experiment: Asset package selection and plan-

ning,”

IEEE Transactions on Systems, Man, and Cybernetics: Sys-
tems, vol. 43, no. 2, pp. 237—251, 2013.

APPROACHES TO OBTAIN A LARGE NUMBER OF RANKED SOLUTIONS TO 3-DIMENSIONAL ASSIGNMENT PROBLEMS 65

David Sidoti received the B.S. and M.S. degrees in Electrical and Computer

Engineering from the University of Connecticut, Storrs in 2011 and 2016. He is

currently a Ph.D. candidate in the Electrical and Computer Engineering Department

working under the advisement of Dr. Krishna R. Pattipati at the same university.

His work in dynamic resource management has resulted in numerous transitions

to the real world (Naval Research Laboratory—Monterey, Joint Interagency Task

Force—South, etc.). He has more than 30 research articles in peer-reviewed journals

and international conference proceedings. He was an invited speaker at NATO’s

Decision Support and Risk Assessment for Asset Planning 2015 Workshop. His current
interests include multi-objective algorithms for dynamic scheduling and resource

management in weather-impacted environments.

Spandana Vallabhaneni received her B.S. degree in Computer Science and Engi-

neering from GITAM University, Visakhapatnam, Andhra Pradesh, India in 2015,

and the M.S. degree in Computer Science and Engineering from the University of

Connecticut, Storrs, CT, USA, in 2017. She is currently a Software Developer with

Cigna, Windsor, CT, USA.

Her current research interests include multi-objective path planning, optimiza-

tion-based techniques, multiprocessing, and efficient algorithm development and

implementation of dynamic resource management applications.

Krishna R. Pattipati (S’77—M’80—SM’91—F’95) received the B.Tech. degree in
Electrical Engineering (with highest honors) from the Indian Institute of Technol-

ogy, Kharagpur, India, in 1975 and the M.S. and Ph.D. degrees in Systems Engi-

neering from the University of Connecticut, Storrs, in 1977 and 1980, respectively.

From 1980 to 1986, he was with ALPHATECH, Inc., Burlington, MA. Since

1986, he has been with the University of Connecticut, where he is currently the

Board of Trustees Distinguished Professor and the UTC Professor in Systems

Engineering in the department of Electrical and Computer Engineering, and was

the founding director of the UTC Institute for Advanced Systems Engineering there

during 2013—2015. His research interests are in the application of systems theory

and optimization techniques to large-scale systems.

Dr. Pattipati was selected by the IEEE Systems, Man, and Cybernetics Society

as the Outstanding Young Engineer of 1984. He was also a recipient of the

Centennial Key to the Future award. He has served as the Editor-in-Chief of

the IEEE Transactions on Systems, Man, and Cybernetics: Part B—Cybernetics in

1998—2001, Vice-President for Technical Activities of the IEEE SMC Society in

1998—1999, and Vice-President for Conferences and Meetings of the IEEE SMC

Society in 2000—2001. He was the co-recipient of the Andrew P. Sage Award

for the Best SMC Transactions Paper for 1999, the Barry Carlton award for the

Best AES Transactions Paper for 2000, the 2002 and 2008 NASA Space Act

Awards for “A Comprehensive Toolset for Model-based Health Monitoring and

Diagnosis,” the 2003 AAUP Research Excellence Award, and the 2005 School of

Engineering Teaching Excellence Award at the University of Connecticut. He was

also the recipient of the Best Technical Paper Awards at the 1985, 1990, 1994,

2002, 2004, 2005, and 2011 IEEE AUTOTEST Conferences, and at the 1997 and

2004 Command and Control Conferences. He is recognized for his contributions to

discrete-optimization algorithms for large-scale systems and team decision making.

66 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 13, NO. 1 JUNE 2018

David A. Castañón received his B.S. degree in Electrical Engineering from Tulane

University in 1971, and his Ph.D. degree in Applied Mathematics from the Mas-

sachusetts Institute of Technology in 1976. He was chief scientist at ALPHATECH,

Inc. in Burlington, MA until 1990, when he joined Boston University’s Department

of Electrical and Computer Engineering. He is a member of the IEEE Control

Systems Society and the IEEE Signal Processing Society. He has served as general

chair of the IEEE Conference on Decision and Control, and in numerous positions

on the IEEE Control Systems Society, including Vicepresident for Finance, and

President. Within IEEE, he served as Chair of the Society Review Committee, and

the Conference Publications Committee. He also served on the Air Force Scien-

tific Advisory Board, and received the Society’s Distinguished Member Award. At

Boston University, he served twice as interim Department Chair, and subsequently

as Department Chair of the Department of Electrical and Computer Engineering. He

also served as co-director of the Center for Information and Systems Engineering.

He served Deputy Director of the NSF Engineering Research Center for Subsur-

face Sensing and Imaging, and is currently Associate Director of the Department

of Homeland Securty’s ALERT Center of Excellence on Explosives Detection and

Mitigation. His research interests include stochastic control, estimation, game the-

ory, optimization, and distributed computing, with applications to inverse problems,

multitarget tracking, object recognition, sensor management, and security.

APPROACHES TO OBTAIN A LARGE NUMBER OF RANKED SOLUTIONS TO 3-DIMENSIONAL ASSIGNMENT PROBLEMS 67

