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The focus of this paper is on the use of ground target kinematics

to estimate the underlying road network on which the vehicles

are assumed to be travelling. Assuming that the road network

can be represented as an amalgamation of straight line segments,

a Hough transform approach is used to identify portion of road

which correspond to straight line segments. Since multiple tracks

can be associated with one segment of the road and since the

track estimates are inherently uncertain, an iterative approach

is presented to identify a parametric representation of the line

segments of the roads using the total least squares cost function.

Cramér-Rao bounds are identified to characterize the bounds on

the uncertainty associated with the proposed approach. A complex

dataset which include multiple tracks is used to illustrate the ability

of the proposed algorithm to identify the underlying road network

and characterize the uncertainty associated with the parametric

estimate of the road.
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1 INTRODUCTION

Automatic cartographic feature extraction has been

the goal for road network identification given the

tremendous growth in automobiles with navigation sys-

tems, and the interest in driverless cars. In post hurri-

cane disaster scenarios when bridges and roads might

be washed out, there is a need to rapidly update road

network databases for logistics. In regions of conflict or

deserts, there is a need to develop road maps to iden-

tify safe travel routes. Precise road networks can also

be used to enhance the performance of ground vehicle

trackers by restricting the motion of the target to the

road network.

Synthetic Aperture Radar (SAR) and Ground Mov-

ing Target Indicator (GMTI) data is often processed and

analyzed to produce such networks. SAR produces im-

ages of varying intensity which can be processed to

separate buildings, roads, and terrain. However, SAR

is only able to detect prominent existing features [1].

For example, SAR will only detect a road if there is a

distinct outline of such a path. GMTI on the other hand

tracks moving targets and relays the latitude and longi-

tude coordinates as well as the kinematic information.

The disadvantage of GMTI, however, is the necessity of

a moving target. Should the target stop or be obstructed

in any way from the sensors, the tracker will lose the

target for the duration of the obstructions [2]. Many of

the currently available algorithms rely on information

from pre-existing road maps, however, in many scenar-

ios the availability of this a priori information is limited

and inaccurate. In some situations there are no exist-

ing road maps, such as in times of conflict in desert

regions. Therefore the need for an algorithm which can

accurately estimate road networks in a timely manner

is of great importance. Furthermore, there is a lack of

a real quantifiable measure of the accuracy of the ex-

tracted road estimates. Several available algorithms use

a “completeness” and “correctness” measure, which is

a comparison of the extracted road network and the ac-

tual network [3, 4, 5, 6]. However, as previously stated

in many situations there are no available true networks

(i.e., desert regions) so the metrics used to evaluate the

performance of algorithms are not relevant.

Hu, Razdan, Femiani, Cui, and Wonka use a spoke

and wheel method in order to determine the foot-

prints [5]. These footprints or polygons, are road seg-

ments which span in any direction and terminate when

the intensity of the spoke or line segment falls below

a threshold. Then a toe-finding algorithm is used to

determine the number of branches in the footprint. In

this portion of the algorithm, if the angle between two

branches is less than 45 degrees they are merged, in

some cases this will eliminate Y-shaped intersections

and parallel roads. Instead of using centerlines to ap-

proximate the road network they utilize inscribed lines

to define the road structure. Finally the road network
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is trimmed to eliminate noisy data which might con-

tribute to false roads, and also possible gaps between

roads due to obstructions. This algorithm relies heavily

on pre-existing information pertaining to roads such as

the possible shapes of intersections, road widths, and

angle of roads at these intersections.

Tupin, Maitre, Mangin, Nicolas, and Pechersky first

identify linear features in the data and then separate

the true segments by using a Markov random field

(MRF) [1]. Two different line detectors are used to

identify candidate road segments and then the results

of these two detectors are fused together. With the

identification of the candidates, the MRF-based model

fills in large gaps and removes the false detections. This

MRF-based model relies on a priori information of the

road network being developed. The assumption is made

that all roads lead to an initial starting point which can

limit the accuracy of the overall algorithm.

Shackelford and Davis use a pixel-based fuzzy clas-

sifier and an object based classification approach to

identify the road networks [6]. Skeletonization is an ap-

proach in which the image is thinned or eroded away un-

til only the essential lines remain. This method produces

a large amount of false positives in the road network.

The second approach utilized is an iterative approach

in which the longest roads are initially identified and

then shorter and shorter segments are added throughout

the algorithm. The second algorithm proves to be much

better than skeletonization, however, the “completeness”

measure of the road network has decreased in both the

urban and suburban scenarios for the second algorithm

when compared with the first.

Sklarz, Novoselsky, and Dorfan focus on the fusion

of linear segments and curves based on a unified entity

approach rather than a single pixel based approach [7].

The road network can either begin as a blank slate or

already contain roads. As new tracks become available

the curve is associated with an existing curve if one

exists otherwise a new segment of road is added to the

existing network. Should a track already exist, the new

track is cropped into segments to match with the rel-

ative endpoints of the pre-existing road segments. The

optimization of the curve fusion’s computational com-

plexity increases drastically as the curves are discretized

into more finite segments thus limiting the potential of

the algorithm.

Koch, Koller, and Ulmke utilize a Multiple Hypoth-

esis Tracking (MHT) algorithm, which consists of tar-

get track extraction, prediction, filtering, track mainte-

nance, and retrodiction [2]. It is assumed that the pos-

terior probability density function is Gaussian, thus the

Kalman filter is utilized since the algorithm breaks the

road up into linear segments. The pruning removes any

segments, which have a weight smaller than a threshold,

depending on the threshold this could cause some issues

with removing actual tracks. The merging depends on

segments having similar state vectors and covariances.

Fig. 1. Algorithm flow chart.

In this paper, a method for developing road networks

and characterizing the uncertainty in these estimates is

developed. It is assumed that road networks can be bro-

ken down into piecewise linear segments. Figure 1 il-

lustrates the sequence of processing of data to generate

a parameterization of the road network with the asso-

ciated uncertainties. The initial processing of the data

is done by creating a binary image of the track data

and extracting possible line segments using the Hough

transform. This is followed by the clustering of the data

associated with the identified straight lines. Since the

Hough transform does not provide a measure of un-

certainty, the Total Least Squares approach is imple-

mented and the Cramér Rao lower bounds is derived

from this maximum likelihood estimate. The Total Least

Squares solution allows for an iterative estimate, which

is updated in time as additional measurements become

available. The Least Squares solution will be used as

an initial estimate for the recursive Total Least Squares

algorithm. Once the data collection has been terminated

the individual line segments can be merged, extended

or trimmed, and blended to produce a more complete

road network.

Section 2 details the derivation of the Hough trans-

form for identifying straight line edges in an image.

The recursive Total Least Squares solution is presented

in Section 3 along with the corresponding uncertainty

analysis and derivations. In Section 4 the results of the

algorithms outlined are applied to a data set and we

conclude the paper with suggestions for future research

in Section 5.

2 HOUGH TRANSFORM

The Hough transform is a well studied feature ex-

traction technique that has been used extensively in

ROAD NETWORK IDENTIFICATION BY MEANS OF THE HOUGH TRANSFORM WITH UNCERTAINTY ANALYSIS 59



Fig. 2. Parameter identification.

image analysis [9]. This transform requires the image

to be binary in nature, where white pixels correspond to

ones and black pixels correspond to zeros. The deriva-

tion of the Hough transform requires basic trigonomet-

ric identities. Suppose we have a line oriented as shown

in Figure 2 then by defining the parameters ½ and μ
we can derive the Hough transform. The perpendicular

distance from the origin to a line is denoted by ½. The

angle that this distance vector makes with the x-axis is μ.
We note the definitions of the cosine and sine functions:

cosμ =
x

½
sinμ =

y

½
: (1)

Algebraic substitution of a single cosine and sine term

in the Pythagorean trigonometric identity leads to the

equation:
x

½
cosμ+

y

½
sinμ = 1: (2)

It is now a simple matter to rearrange Equation (2) to

obtain the conventional form of the Hough transform as

given by the equation:

½= xcosμ+ y sinμ: (3)

Now if Equation (3) is rearranged into a slope-

intercept form

y =¡cosμ
sinμ

x+
½

sinμ
(4)

we can infer that when μ approaches zero degrees,

corresponding to a vertical line, the slope tends to

Fig. 3. Collinear points.

infinity, resulting in an poor parameterization of the line.

However, using Equation (3), we avoid this problem.

The principle concept of the Hough transform in the

line identification algorithm can be stated as the follow-

ing: if two points are collinear then they share a pair
(½,μ) of commonality in the Hough space. However, in
order to determine this common pair, a Hough matrix

must be constructed, this is done by iterating over a μ
range of ¡90 to 90 degrees for each white pixel, which
corresponds to the (x,y) coordinates, in the image. Re-

call that μ is the angle the ½ vector makes with the x-axis.
We can imagine that an arbitrary number of lines (black

solid lines) pass through each coordinate shown by the

solid black lines in Figure 3, which are associated with

a (½,μ) given by the normal lines passing through the
origin shown by the dashed lines. The solid blue line

is the line of interest and Figure 3 illustrates two points

which lie on this line. Note that both these points illus-

trated by the solid circle have a coincident (½,μ) pair,
which parameterize the dashed blue line.

For each white pixel of the binary image with a

coordinate xi,yi determine the parameter

½(μ) = xi cos(μ) + yi sin(μ) (5)

which corresponds to a sinusoid in the (½,μ) space.
Determine the (½,μ) pair for every white pixel of the
binary images, round it to the closest discretized value

of (½,μ), and augment the appropriate indices of an
array called the accumulator. Since every point on a

line will share a unique (½,μ) pair which corresponds
to a line normal to the line of interest passing through

the origin, the accumulator bin with the highest count

will correspond to parameters of a straight line. Figure 4

illustrates the mapping of the Hough accumulator with

the white pixels indicating a higher count compared to

the black pixels. The point highlighted by the square

corresponds to the (½,μ) combination associated with a
straight line.

Matlab’s image processing toolbox is used to de-

termine the Hough transform, identify the peaks which

corresponds to the straight lines, identify the points on

the images corresponding to the identified line segments

which are subsequently used to characterize the uncer-

tainty of the identified lines.
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Fig. 4. Hough transform.

3 MAXIMUM LIKELIHOOD ESTIMATORS

In this section we will derive the solutions for the

Total Least Squares (TLS) to estimate the parameters

of a straight line. In this formulation, the measurement

noise covariance matrix is allowed to be populated, i.e.,

the dependent and independent variables are noisy and

can be correlated. The Hough transform presented in

Section 2 will be utilized to identify groups of nearly

collinear points in an image. A best fit line can be

obtained using the TLS solution since there is noise

in both the x and y directions. The TLS solution,

which will be derived, does not have a closed form

solution and therefore requires an initial estimate to

initiate the solver which minimizes the normal distance

of the measurements from the line. This initial estimate

can be given by a transformed version of the Hough

coefficients (i.e., transform from ½ and μ to slope, m
and intercept b), however if μ is zero degrees then
we would obtain an infinite slope, which forces the

TLS solution to diverge. Therefore, rather than use

the Hough transform coefficients transformed to the

appropriate slope and intercept we will simply utilize a

Least Squares estimate as the initial guess for the TLS

algorithm.

3.1 Total Least Squares

Consider the problem of a straight line fit where the

true model is given by the equation:

yi =mxi+ c (6)

where yi and xi are the true dependent and indepen-

dent coordinates. m and c correspond to the slope and

ordinate intercept of the line. Assuming that the mea-

surement of both yi and xi are noisy, the measurement

equations and the corresponding pdf of the noise are

given by the equations:

x̃i = xi+ ºx (7)

ỹi = yi+ ºy (8)

p(º1,º2) =N
Ã·
º1

º2

¸
:

·
0

0

¸
,

"
¾2xx ¾xy

¾xy ¾2yy

#!
(9)

permitting the measurement noise in xi and yi to be

correlated. Note that ¾2xx and ¾
2
yy denote the variance

of ºx and ºy respectively and ¾xy represent the cross-

covariance of ºx and ºy. The notation N (º : ¹,§) is a
Gaussian probability density function(pdf) for the ran-

dom vector º with mean ¹ and covariance §. Identifying

the parameters of a line when provided with n measure-

ments, the likelihood function for the measurements is

given by the equation:

p=

nY
i=1

pi (10)

pi = p

μ·
x̃i

ỹi

¸
jm,c,x1,x2, : : : ,xn

¶

=N
Ã·
x̃i¡ xi
ỹi¡ yi

¸
:

·
0

0

¸
,

"
¾2xx ¾xy

¾xy ¾2yy

#!
(11)

=N
Ã·

x̃i¡ xi
ỹi¡mxi¡ c

¸
:

·
0

0

¸
,

"
¾2xx ¾xy

¾xy ¾2yy

#!
(12)

=N
Ã·
x̃i

ỹi

¸
:

·
xi

mxi+ c

¸
,

"
¾2xx ¾xy

¾xy ¾2yy

#!
: (13)

The Log-Likelihood to be maximized with respect to

the free variables m, c and xi where i= 1,2, : : : ,n is

ln(p) =¡n ln
³
2¼
q
¾2xx¾

2
yy ¡¾2xy

´
¡ 1

2(¾2xx¾
2
yy ¡¾2xy)

nX
i=1

(¾2yy(x̃i¡ xi)2

¡ 2¾xy(x̃i¡ xi)(ỹi¡mxi¡ c)
+¾2xx(ỹi¡mxi¡ c)2): (14)

There are n+2 variables: m, c, and all the n abscissas

xi. Differentiate the log-likelihood with respect to the

variables and solve the n+2 equations:

@ ln(p)

@m
=¡ 1

2(¾2xx¾
2
yy ¡¾2xy)

£
nX
i=1

(2¾xy(x̃i¡ xi)xi¡ 2¾2xx(ỹi¡mxi ¡ c)xi) = 0

(15)

@ ln(p)

@c
=¡ 1

2(¾2xx¾
2
yy ¡¾2xy)

£
nX
i=1

(2¾xy(x̃i¡ xi)¡ 2¾2xx(ỹi¡mxi ¡ c)) = 0

(16)
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@ ln(p)

@xi
=¡ 1

2(¾2xx¾
2
yy ¡¾2xy)

£ (¡2¾2yy(x̃i ¡ xi) +2¾xy(ỹi¡mxi¡ c)
+2¾xy(x̃i¡ xi)m¡ 2¾2xx(ỹi ¡mxi¡ c)m) = 0:

(17)

Solving for the xi from equation (17) leads to the

equation:

xi =
c(¡m¾2xx+¾xy)¡m¾xyx̃i+¾2yyx̃i+m¾2xxỹi¡¾xyỹi

¾2yy +¾
2
xxm

2¡ 2¾xym
:

(18)

Substituting the expression for xi back into the log like-

lihood function ln(p) of equation (14) and on simplifi-

cation, the final cost function in terms of m and c is:

ln(p) =¡n ln
³
2¼
q
¾2xx¾

2
yy ¡¾2xy

´
¡ 1
2

nX
i=1

(ỹi¡mx̃i¡ c)2
¾2yy +¾

2
xxm

2¡ 2¾xym
(19)

or the problem can be stated as

min
m,c

nX
i=1

(ỹi¡mx̃i¡ c)2
¾2yy +¾

2
xxm

2¡2¾xym
: (20)

Additionally, the noise covariance parameters can be

specific to each measurement, i.e., ¾xx,¾yy, and ¾xy can

be ¾(i)xx ,¾
(i)
yy and ¾

(i)
xy respectively corresponding to the

measurement (x̃i, ỹi). It can be observed that, when the

noise in the variables is uncorrelated (¾xy = 0) and of

equal variance(¾xx = ¾yy = ¾), the standard Total least

square problem is recovered, which can be identified

as the perpendicular distance of (x̃i, ỹi) to the line y =

mx+ c, and

min
m,c

nX
i=1

(ỹi¡mx̃i¡ c)2
1+m2

is the resulting cost function to be minimized.

3.2 Alternate Equivalent Formulation

The algebraic manipulation involved in arriving at

the cost function of (20) can be avoided altogether.

Consider the truth model where we represent the truth

(xi,yi) in terms of the noisy measurement (x̃i, ỹi) as:

yi =mxi+ c (21)

xi = x̃i¡ ºx (22)

yi = ỹi¡ ºy: (23)

Substituting (22) and (23) into (21) results in the equa-

tion:
ỹi¡mx̃i¡ c= ºy ¡mºx: (24)

Define º 0 as:

º 0 =
ºy ¡mºxq

¾2yy +¾
2
xxm

2¡ 2m¾xy
(25)

whose mean and variance of random variable º 0 condi-
tioned on m are given by the equations:

E[º 0] = E

24 ºy ¡mºxq
¾2yy +¾

2
xxm

2¡ 2m¾xy

35
=

E[ºy]¡mE[ºx]q
¾2yy +¾

2
xxm

2¡ 2m¾xy
= 0 (26)

E[º 02] = E

"
(ºy ¡mºx)2

¾2yy +¾
2
xxm

2¡ 2m¾xy

#

=
E[º2y ] +m

2E[º2x ]¡ 2mE[ºxºy]
¾2yy +¾

2
xxm

2¡2m¾xy
= 1:

(27)

The random variable º 0 has a Gaussian distribution
given by the equation:

p(º 0 jm) =N (º 0 : 0,1): (28)

But from equations (24) and (25), one has

º 0 =
ỹi¡mx̃i¡ cq

¾2yy +¾
2
xxm

2¡2m¾xy
:

Hence, for a set of measurements (x̃i, ỹi), the Maximum

Likelihood Estimator (MLE) requires maximizing the

function given by Equation (10), which can be rewrit-

ten as:

pi =N
0@ ỹi¡mx̃i¡ cq

¾2yy +¾
2
xxm

2¡ 2m¾xy
: 0,1

1A : (29)

The negative of the Log-Likelihood to be minimized

with respect to the free variables m and c is

J =¡ ln(p) =
nX
i=1

(ỹi¡mx̃i¡ c)2
¾2yy +¾

2
xxm

2¡2m¾xy
: (30)

Notice that there are no xi variables in the cost func-

tion. Differentiating the cost function J only with the

variables m and c, we arrive at the gradient constraint

equations:

@J

@m
=

nX
i=1

Ã
2(ỹi¡mx̃i¡ c)(¡x̃i)
¾2yy +¾

2
xxm

2¡ 2m¾xy

¡ (ỹi¡mx̃i¡ c)
2(2¾2xxm¡ 2¾xy)

(¾2yy +¾
2
xxm

2¡ 2m¾xy)2
!
= 0

(31)

@J

@c
=

nX
i=1

(¡2(ỹi¡mx̃i¡ c)) = 0 (32)

which is nonlinear in m and c and can be solved nu-

merically. One can use the solution of the least squares

problem to initialize the nonlinear solver. One can also
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estimate the most likely value of the variable xi using

the equation:

xi =
c(¡m¾2xx+¾xy)¡m¾xyx̃i+¾2yyx̃i+m¾2xxỹi¡¾xyỹi

¾2yy +¾
2
xxm

2¡ 2¾xym
(33)

from the resulting solution for the slope m and inter-

cept c.

3.3 Geometric Interpretation

Consider the case of estimating the parameters of

a straight line where the x̃i and ỹi measurements are

contaminated by isotropic noise. Figure 5 illustrates the

true xi and yi and the corresponding contaminated x̃i
and ỹi data. Assuming the parameters ¾xx = ¾yy = 1 and

¾xy=0, the MLE cost function given by Equation (30)

reduces to:

J =

nX
i=1

(ỹi¡mx̃i¡ c)2
1+m2

(34)

which is referred to as geometric distance which is a

gradient weighted algebraic distance. This error referred

to as the Sampson error is the first order approximation

of the geometric distance of the point from the curve.

In Figure 5, one can easily illustrate the line connect-

ing the points (x̃i, ỹi) along the normal to the true line

has a length given by equation (ỹi¡mx̃i¡ c)2=(1+m2),
illustrating that the total least squares cost function cor-

responds to minimizing the geometric distance. Note

that the least squares problem minimizes the distance

(ỹi¡mx̃i¡ c)2 which is referred to as the algebraic dis-
tance and corresponds to the distance along an oblique

projection.

3.4 Least Squares

The least squares problem is a special case of the

total least squares where the independent variable xi is

not random, i.e., ¾xx = 0. This results in the cost function

given by Equation (30) reducing to:

J =¡ ln(p) =
nX
i=1

(ỹi¡mxi¡ c)2
¾2yy

(35)

which has a closed form solution for m and c:½
m

c

¾
=

½Pn
i=1 x

2
i

Pn
i=1 xiPn

i=1 xi n

¾¡1½Pn
i=1 xiỹiPn
i=1 ỹi

¾
: (36)

3.5 Uncertainty Analysis

In this section, we will present the derivation for the

Cramér Rao lower bounds which provides a measure

of uncertainty in the coefficients of the linear fit. The

derivation is based on a fully populated covariance

matrix and the bounds are estimated by the inverse

of the Fisher Information matrix. The derivations are

accompanied by a Monte Carlo simulation to verify the

convergence properties of the solutions. For the straight

Fig. 5. Total least squares minimization.

line we have a total of 2+n unknown parameters, the

slope m, the intercept c, and the true values of x : xt.

After solving for the optimal estimates for the slope

m̂ and y-intercept ĉ, the optimal estimate for x̂i is given

by Equation (33). Assuming the parameters ¾xx = ¾yy =

1 and ¾xy=0, Equation (33) reduces to:

x̂i =
¡ĉm̂+ x̃i+ m̂ỹi

1+ m̂2
(37)

) x̂i =
¡ĉm̂+ x̃i+ x̃im̂2¡ x̃im̂2 + m̂ỹi

1+ m̂2
(38)

) x̂i = x̃i+
m̂ei
1+ m̂2

(39)

where
ei = ỹi¡ m̂x̃i¡ ĉ (40)

is the error associated with the measurement ỹi and the

estimate ŷi at the measured x coordinate x̃i. Figure 6

illustrates the optimal estimates (x̂i, ŷi), which results in

the equation:

ŷi =ỹi¡ ei¡ m̂(x̃i¡ x̂i) (41)

ŷi =ỹi¡
ei

1+ m̂2
: (42)

It can be shown that the generalized solutions for

the estimated values for xti and yti are:

x̂2i = x̃i+
(m̂¾2xixi ¡¾xiyi)ei

m̂2¾2xixi ¡ 2m̂¾xiyi +¾2yiyi
(43)

ŷ2i = ỹi+
(m̂¾xiyi ¡¾2yiyi)ei

m̂2¾2xixi ¡ 2m̂¾xiyi +¾2yiyi
(44)

based on Equation (33).

Recall that ei is the error in the measurement with

the appropriate estimates ei =¡m̂x̃i¡ ĉ+ ỹi. Note that in
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Fig. 6. Optimal estimates of coordinates.

Equations (43) and (44), the estimate for the slope and

intercept must be known in order to calculate x̂2i and

ŷ2i . In our scenario these initial estimates are given by

the basic Least Squares solution rather than the solution

of the Hough transform. This is to preclude singular

estimates for the slope and intercept:

m̂=¡cosμ
sinμ

(45)

ĉ=
½

sinμ
(46)

if the Hough transform returns a line estimate with μ
exactly zero. Note that the Hough transform is used to

identify the measurements which are associated with the

line which is being estimated.

With the initial estimates for the slope and intercept,

one can update the estimate of the true value x̂i using

Equation (43). In addition to the estimated true value

of x, the line’s coefficients are updated using the Total

Least Squares solution. The next step is to determine the

uncertainty in these estimates. The probability density

function for (xi,yi), given the estimates [m̂, ĉ, x̂i] is:

p(x̃i, ỹi j m̂, ĉ, x̂i)

=
1

2¼
pjQij exp

"
¡1
2

μ·
ỹi

x̃i

¸
¡
·
m̂x̂i+ ĉ

x̂i

¸¶T
£Q¡1i

μ·
ỹi

x̃i

¸
¡
·
m̂x̂i+ ĉ

x̂i

¸¶¸
:

(47)

The inverse of the covariance matrix Qi is easily defined

for a 2£ 2 matrix:

Q¡1i =
1

¾2
x̃i x̃i
¾2
ỹi ỹi
¡¾2

x̃i ỹi

"
¾2
ỹi ỹi

¡¾x̃iỹi
¡¾x̃iỹi ¾2

x̃i x̃i

#
: (48)

We expand the exponential term in Equation (47) and

write it as a product of two variables ®i and Ki which

are defined in Equations (49) and (50), respectively:

®i =¡
1

2(¾2
x̃i x̃i
¾2
ỹi ỹi
¡¾2

x̃i ỹi
)

(49)

Ki = ¾
2
x̃i x̃i
(ỹi¡ m̂x̂i¡ ĉ)2¡ 2¾x̃iỹi (ỹi¡ m̂x̂i¡ ĉ)(x̃i¡ x̂i)

+¾2ỹi ỹi (x̃i¡ x̂i)2: (50)

With ®i and Ki defined for each measurement we can

then rewrite the likelihood function in a more contracted

form as:

p(x̃i, ỹi j m̂, ĉ, x̂i) =
1

2¼
pjQije®iKi : (51)

For each measurement, there is a corresponding (xi,yi),

independent of one another. Therefore if we assume

there are a total of M measurements, the probability

density function for the matrix of measurements, [x̃, ỹ],

given the parameter estimates, [m̂, ĉ, x̂], where x̂ is now

a vector of estimated x values, is given by the product

of each measurement’s probability density function:

p(x̃, ỹ j m̂, ĉ, x̂) =
MY
i=1

1

2¼
q
(¾2
x̃i x̃i
¾2
ỹi ỹi
¡¾2

x̃i ỹi
)
e®iKi (52)

The Fisher Information matrix is defined as the nega-

tive expected value of the Hessian of the log-likelihood

function with respect to the estimated parameters. We

define the log-likelihood function as, f = ln[p(x̃, ỹ j
m̂, ĉ, x̂)], therefore the Fisher Information matrix is de-

fined as:

F =¡E

266666664

@f

@m̂@m̂

@f

@m̂@ĉ

μ
@f

@m̂@x̂

¶T
@f

@ĉ@m̂

@f

@ĉ@ĉ

μ
@f

@ĉ@x̂

¶T
@f

@x̂@m̂

@f

@x̂@ĉ

@f

@x̂@x̂

377777775
(53)

where

@f

@m̂@x̂
=

@f

@x̂@m̂
=

·
@f

@m̂@x̂1
,
@f

@m̂@x̂2
, : : : ,

@f

@m̂@x̂M

¸T
and similarly @f=@ĉ@x̂= @f=@x̂@ĉ. The sub-block

@f=@x̂@x̂ of the Fisher Information matrix is a M £M
diagonal matrix with diagonal elements:

@f

@x̂@x̂
=Diag

μ·
@f

@x̂1@x̂1
,
@f

@x̂2@x̂2
, : : : ,

@f

@x̂M@x̂M

¸¶
:

First the partial derivatives of f are taken with re-

spect to the estimated parameters. Recall that the prob-

ability density function is a product of the individual

measurement’s and with the properties that the log of
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the product becomes a summation over the M measure-

ments. Thus the partial derivatives are:

@f

@m̂
=

MX
i=1

®i[¡2¾x̃iỹi (¡x̃ix̂i+ x̂2i )
+¾2x̃i x̃i (¡2ỹix̂+i 2m̂x̂2i +2x̂iĉ)] (54)

@f

@ĉ
=

MX
i=1

®i[¡2¾x̃iỹi (¡x̃i+ x̂i)
+¾2x̃i x̃i (¡2ỹi+2m̂x̂i+2ĉ)] (55)

@f

@x̂ti
= ®i[¾

2
ỹi ỹi
(¡2x̃i+2x̂i)

¡2¾x̃iỹi (¡ỹi¡ x̃im̂+2m̂x̂i+ ĉ)
+¾2x̃i x̃i (¡2ỹim̂+2m̂2x̂i+2m̂ĉ)]: (56)

Then the second derivatives, which compose the Fisher

Information matrix, can easily be determined using the

equations:

E

·
@2f

@m̂@m̂

¸
=

MX
i=1

®i(2¾
2
xixi
x̂2i ) (57)

E

·
@2f

@m̂@ĉ

¸
=

MX
i=1

®i(2¾
2
xixi
x̂i) (58)

E

·
@2f

@m̂@x̂ti

¸
= E

h
®i(¡2¾xiyi (¡xi+2x̂i)
+¾2xixi(¡2yi+4m̂x̂i+2ĉ))

i
= ®i(¡2¾xiyi x̂i+2¾2xixi m̂x̂i) (59)

E

·
@2f

@ĉ@ĉ

¸
=

MX
i=1

2®i¾xixi (60)

E

·
@2f

@x̂ti@ĉ

¸
= ®i(¡2¾xiyi +2¾2xixi m̂),

i= 1,2, : : : ,M (61)

E

·
@2f

@x̂ti@x̂ti

¸
= ®i(2¾

2
yiyi
¡ 4¾xiyi m̂+2¾2xixi m̂2),

i= 1,2, : : : ,M (62)

E

"
@2f

@x̂ti@x̂tj

#
= E

"
@2f

@x̂tj @x̂ti

#
= 0, i 6= j: (63)

These equations then give us an estimate of the uncer-

tainty in the estimated parameters. The next step is to

perform a Monte Carlo simulation to show the conver-

gence characteristics of this estimate. We begin the sim-

ulation by choosing a slope, intercept, and range of x

values. These will be the true simulation parameters and

are specified as:

m=¡0:4326 c=¡1:6656 x=¡3 : 0:1 : 3: (64)

Fig. 7. Truth, measurements, TLS line fit.

Furthermore the covariance matrix, Q for all measure-

ments is equal and given to be:

Q=

"
¾2yy ¾xy

¾yx ¾2xx

#
=

·
0:5 0:0

0:0 0:5

¸
: (65)

Since this simulation is to determine the convergence

characteristics and not the capabilities of the Hough

transform, we will use the Least Squares solution from

Equation (36) where the covariance matrix R is ¾2yyIM£M
and M is the number of measurements, which in this

simulation is 61. Since the x truth was already estab-

lished the y truth can be calculated using the given

values for the true slope and intercept. Gaussian white

noise is then added to the truth, which was specified in

Q and finally the estimated values of x and y can be

obtained via Equations (43) and (44) respectively.

A single simulation’s results are shown in Figure 7.

Here the truth is shown by the solid blue line, the

measurements (truth with added noise) are black dots,

and the Total Least Squares line fit is represented by

the dashed red line. The estimated values of the slope

and intercept from the Total Least Squares algorithm,

for this single simulation run are:

m̂=¡0:3775 ĉ=¡1:5871: (66)

We perform 10,000 simulations to determine the conver-

gence characteristics of the Fisher Information matrix.

The measure used for convergence is the determinant of

the difference of the Monte Carlo covariance and the in-

verse of the Fisher Information matrix. The Monte Carlo

covariance is calculated as a difference of the truth and

the averaged estimates. We will denote this covariance

as MCcov and is calculated as:

MCcov =
1

N

NX
i=1

μ·
m

c

¸
¡
·
m̂i

ĉi

¸¶μ·
m

c

¸
¡
·
m̂i

ĉi

¸¶T
(67)
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Fig. 8. Monte Carlo simulation.

Fig. 9. Sigma ellipses.

where N is the number of Monte Carlo runs and the esti-

mated values mi, ci, are used to estimate the covariance.

Then the convergence measure is given by the equation:

convergence= jMCcov ¡F¡1j: (68)

The Fisher Information matrix is also averaged over

each simulation. Figure 8 shows the value of this con-

vergence measure after each simulation.

Figure 8 shows only a portion of the total number of

simulations and in addition the value of the convergence

parameter has been normalized. The estimated bounds

on the parameters, the inverse of the negative of the

Fisher Information matrix after 10,000 simulations is

given to be:

F¡1 = 1e¡4
·
0:14577 0:00065

0:00065 0:59065

¸
:

Next we examine the estimates and their statistical

properties. Each of the estimated values of m and c are

plotted in Figure 9 along with the sigma ellipses.

Finally we select all combinations of m̂ and ĉ which

fall within one sigma of the average values of the

respective estimates and plot them, where the range is

Fig. 10. One sigma slopes/intercepts.

given as:

m̂=¡0:4326§ 0:00382 (69)

ĉ=¡1:6648§ 0:0077: (70)

The lines defined by all such coefficients are plotted,

in blue, along with the true fit of the line, in red,

in Figure 10 and we can see the uncertainty in the

estimates. As we diverge from the relative midpoint

of the data range the uncertainty grows. This is to be

expected since the variance in the y direction depends

on the variance of the slope, intercept, and estimated

x value. To prove that the variance in the y direction

is dependent on the variance of the slope, intercept,

and estimated x value we can transform the Fisher

Information matrix from the model parameters into a

variance in terms of x and y. This can be done using

the Jacobian transformation. In this transformation the

Fisher Information matrix is left and right multiplied by

the Jacobian of the measurement functions with respect

to the estimated parameters. The Jacobian takes the

form of:

A=

264
dy

dm̂

dy

dĉ

dy

dx̂2i

dx

dm̂

dx

dĉ

dx

dx̂

375= · x̂i 1 m̂

0 0 1

¸
: (71)

Therefore we perform the matrix multiplication to un-

derstand the growing variance in the y direction:"
¾2yyi ¾xyi

¾xyi ¾2xxi

#
= AiF

¡1ATi

=

·
x̂i 1 m̂

0 0 1

¸264¾
2
mm ¾mc ¾mxt

¾cm ¾2cc ¾cxt

¾xtm ¾xtc ¾2xtxt

375
264 x̂i 0

1 0

m̂ 0

375 :
(72)
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Fig. 11. Data set #2 original measurements and extracted road

network.

This results in the covariances taking the form of Equa-

tions (73) through (76)

¾2yyi = x̂
2
i ¾
2
mm+2x̂i¾mc+2m̂x̂i¾mx+¾

2
cc+2m̂¾xc

+ m̂2¾2xx (73)

¾xyi = x̂i¾mx+¾cx+ m̂¾
2
xx (74)

¾yxi = ¾xyi (75)

¾2xxi = ¾
2
xx: (76)

From the above equations we can see that the variance

in the y direction depends on the varying value of x̂i, so

therefore as we diverge from x̂i = 0 in either direction

the variance in y grows.

4 RESULTS

A Graphical User Interface (GUI) was developed,

which allows the user to easily manipulate the processed

data. The automated phase of this process consists of

the Hough transform and the extraction of the linear

features. Several additional operations are allowed by

manual interaction, which include merging, trimming,

extending, blending, removal, and ellipse identification.

The merging option allows the user to select two lines

which identify the same road segment. This is possible

due to the threshold placed on the distance from a

point to the line segment. The trimming and extending

features allow a user to smooth out the road network

and connect each and every segment with another. A

3rd order polynomial is used as the blending function

between two lines which are selected by the user. This

updates the road network with curves which are defined

by the last xx% of each of the two line segments

selected (percentage decided by the user). The final

feature, the ellipse identification, is left up to the user

due to the computational complexity correlated with

automatic identification of an ellipse in an image. The

ellipse identification only requires the user to define

the number of line segments that are associated with

the ellipse and then select each of these segments. This

allows for a fast and simple identification of an ellipse.

The data which has been supplied consists of simu-

lated GMTI tracks generated by the Air Force Research

Labs in Rome, NY. Each track varies in the number of

measurements it contains, however, the structure of each

track is consistent. The data structure is broken down as

follows:

² tracks–main field of the structure.
–tracks(#).loc–N£ 2 matrix of latitude and longi-
tude coordinates.

–tracks(#).cov–4£ 4£N covariance matrices cor-

responding to each measurement of the form.266664
¾2xixi ¾xiyi ¾xi _xi ¾xi _yi

¾yixi ¾2yiyi ¾yi _xi ¾yi _yi

¾ _xixi ¾ _xiyi ¾2_xi _xi ¾ _xi _yi

¾ _yixi ¾ _yiyi ¾ _yi _xi ¾2_yi _yi

377775
–tracks(#).vel–N£ 2 matrix of component veloci-
ties at the same time the measurement is taken.

–tracks(#).update–unix time representation of mea-

surement time (seconds since January 1, 1970).

The data set that was used to test the proposed

algorithm includes 1,675 tracks, where every track had

differing numbers of kinematic data.

The data set was completely processed without man-

ual intervention (i.e., merging or ellipse finding). This

data set contained several areas of interest which may

create issues which include sectors with no track data.

Primarily we expect there to be a significant increase in

the number of extracted segments.

The line extraction portion of the algorithm took ap-

proximately 25 minutes to complete. The extracted line

segment data structure was stored before any additional

functions were implemented. Prior to any removal or

merging of line segments, the data structure contains

150 individual line segments. The merging, blending,

and trimming/extending was complete in approximately

3 hours. This data set consisted of 1,675 tracks with a

total of 88,685 measurements.

The extracted network was converted back to the

latitude longitude coordinate system and the results of

the extracted network plotted on top of the original mea-

surements is shown in Figure 11. Although it appears

that there is a low association due to the lack of identi-

fied segments in certain regions, there are actually very

few data points in these areas, 99.8% of the data has

been associated with geometric features in the image

(88,508/88,685). The final data structure consists of 0

ellipses, 72 third order polynomials, and 131 line seg-

ments. We note that some areas are lacking extracted

features which is due to either the lack of data or the

user removed a feature due to inaccuracy.
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Fig. 12. Data set #2 line CRLB.

First we present the results for the estimated CRLB

matrix corresponding to the line estimate’s parameters.

Figure 12 shows the three sigma bounded region for

the lines, which again due to the number of measure-

ments associated with each of the lines, converges to

small values for most lines. For a few straight line seg-

ments which have very few associated measurements,

the bounds are very lax.

We supplement Figure 12 with an example of a

line’s CRLB estimate. Equation (77) refers to a line

which has 1,034 measurements associated with it:264¾
2
mm ¾mc ¾mx

¾cm ¾2cc ¾cx

¾xm ¾xc ¾2xx

375

=

264 2:2541e¡05 3:5129e¡ 09 ¡1:7855e¡ 09
3:5129e¡09 3:6176e¡ 10 ¡1:2573e¡ 10
¡1:7855e¡ 09 ¡1:2573e¡10 1:4242e¡10

375
(77)

which illustrates a high degree of confidence in the

estimated model parameters. We must then use the

Jacobian transformation to obtain the covariance in

terms of x and y. A single measurement’s covariance

matrix is given by the equation:"
¾2xx ¾xy

¾yx ¾2yy

#
= 1:0e¡ 06£

·
0:3850 ¡0:4209
¡0:4209 0:8059

¸
:

(78)

The Jacobian transformed CRLB is then added to

the measurement covariance defined in Equation (78)

to produce the final covariance in the measurement in-

Fig. 13. Data set #2 error ellipses one sigma.

Fig. 14. Data set #2 mean line uncertainty.

cluding the covariance in the estimate given by Equa-

tion (79):"
¾2xx ¾xy

¾yx ¾2yy

#
= 1:0e¡06£

·
0:3852 ¡0:4209
¡0:4209 0:8089

¸
:

(79)

Figure 13 shows a few measurement’s one sigma el-

lipses with the line estimate.

Using the error ellipses we once again compute the

mean covariance in x and y. This covariance is then

used to represent a mean error in the line using one

sigma we can see from Figure 14 that this encompasses

the majority of the data associated with each of the line

estimates.

There are no ellipses identified in this data set but

there are a significant number of polynomial blends. A

polynomial blend in this data set typical contains from

400 to 1,000 measurements. We present the results for a

polynomial, which contains 1,032 associated measure-

ments in Equation (80):

26664
¾2AA ¾AB ¾AC ¾AD

¾BA ¾2BB ¾BC ¾BD

¾CA ¾CB ¾2CC ¾CD

¾DA ¾DB ¾DC ¾2DD

37775=
26664
3:9162e¡ 12 2:9909e¡10 ¡2:0009e¡ 08 ¡1:5304e¡ 06
2:9909e¡ 10 2:2842e¡08 ¡1:5281e¡ 06 ¡0:0001
¡2:0009e¡08 ¡1:5281e¡ 06 0:0001 0:0078

¡1:5304e¡06 ¡0:0001 0:0078 0:5980

37775 : (80)
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5 CONCLUSION

This paper presents a systematic approach for the

estimation of the road network from ground moving

target data assuming the vehicles to be road based ve-

hicles. The position locations of the multiple ground

vehicles are used to generate a binary images, which

permits using the Hough transform to identify straight

line segments. Having identified the Hough parameters

associated with various straight line segments, the po-

sition data associated with each of these straight line

segments is identified and used by a least squares algo-

rithm to identify the parameters of a straight line, i.e.,

slope and intercept. Since the two dimensional position

data is contaminated with noise in both the dimensions,

the total least squares is deemed the appropriate ap-

proach for the estimation of the slope and intercept of

the straight line segments. A detailed exposition of the

total least squares approach for the estimation of the

model parameters is followed by the determination of

the Cramér-Rao bounds on the estimated parameters. A

multi road network with numerous intersections is used

as a test case to illustrate the potential of the proposed

approach to estimate the road network and character-

ize the associated uncertainty. Currently the proposed

approach is being extended to estimating curved sec-

tion of roads which are assumed to be representable by

arcs of ellipses. This will permit a parsimonious repre-

sentation of the road-network by eliminating numerous

straight line segments which are necessary to represent

curved sections of roads. A graphical user interface was

also developed to permit a seamless estimation of road-

network from ground vehicle kinematic data.
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