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In order to carry out data fusion, registration error correction

is crucial in multisensor systems. This requires estimation of the

sensor measurement biases. It is important to correct for these bias

errors so that the multiple sensor measurements and/or tracks can

be referenced as accurately as possible to a common tracking co-

ordinate system. This paper provides a solution for bias estimation

of multiple passive sensors using common targets of opportunity.

The measurements provided by these sensors are assumed time-

coincident (synchronous) and perfectly associated. The Line of Sight

(LOS) measurements from the sensors can be fused into “compos-

ite” measurements, which are Cartesian target positions, i.e., lin-

ear in the target state. We evaluate the Cramér-Rao Lower Bound

(CRLB) on the covariance of the bias estimates, which serves as a

quantification of the available information about the biases. Statisti-

cal tests on the results of simulations show that this method is statis-

tically efficient, even for small sample sizes (as few as three sensors

and three points on the trajectory of a single target of opportunity).

We also show that the Root Mean Squared (RMS) position error

is significantly improved with bias estimation compared with the

target position estimation using the original biased measurements.

Bias observability issues, which arise in the case of two sensors, are

also discussed.
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I. INTRODUCTION

Multisensor systems use fusion of data from multi-
ple sensors to form accurate estimates of a target track.
To fuse multiple sensor data the individual sensor data
must be expressed in a common reference frame. A
problem encountered in multisensor systems is the pres-
ence of errors due to sensor bias. Some sources of bias
errors include: measurement biases due to the deteri-
oration of initial sensor calibration over time; attitude
errors caused by biases in the gyros of the inertial mea-
surement units of (airborne, seaborne, or spaceborne)
sensors; and timing errors due to the biases in the on-
board clock of each sensor platform [11].
The effect of biases introduced in the process of con-

verting sensor measurements from polar (or spherical)
coordinates to Cartesian coordinates has been discussed
extensively in [2] together with the limit of validity
of the standard transformation. If the conversion pro-
cess is unbiased, the performance of a converted mea-
surement Kalman filter is superior to a mixed coordi-
nate Extended Kalman Filter EKF (i.e., target motion in
Cartesian coordinates and measurements in polar coor-
dinates) [2]. The approaches for conversion include the
conventional conversion, the Unbiased Converted Mea-
surement (UCM), the Modified Unbiased Converted
Measurement (MUCM), and the Unscented Transform
(UT). Recently, a decorrelated version of the UCM tech-
nique (DUCM) has been developed to address both con-
version and estimation bias [8], [9]. Another example
of biased measurement conversion is the estimation of
range-rate from a moving platform. To measure range
rate using the Doppler effect, it is necessary to nullify
the impact of platform motion. The conventional nul-
lification approach suffers from a similar bias problem
as the position measurement conversion [3]. A novel
scheme was proposed in [6] and [7] by applying the
DUCM technique to own-Doppler nullification to elim-
inate this bias.
Time varying bias estimation based on a nonlin-

ear least squares formulation and the singular value
decomposition using truth data was presented in [11].
However, this work did not discuss the CRLB for bias
estimation. An approach using Maximum a Posteriori
(MAP) data association for concurrent bias estimation
and data association based on sensor-level track state
estimates was proposed in [12] and extended in [13]. Es-
timation of location biases only for passive sensors was
discussed in [10]. The estimation of range, azimuth, and
location biases for active sensors was presented in [14].
For angle-only sensors, imperfect registration leads

to LOS angle measurement biases in azimuth and eleva-
tion. If uncorrected, registration error can lead to large
tracking errors and potentially to the formation of mul-
tiple tracks (ghosts) on the same target.
In the present paper, bias estimation is investigated

when only targets of opportunity are available. We
assume the sensors are synchronized, their locations are
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Fig. 1. Optical sensor coordinate system with the origin in the
center of the focal plane.

fixed and known, the data association is correct, and
we estimate their orientation biases. We investigate the
use of the minimum possible number of optical sensors
(which can not be less than two sensors). Two cases
are considered. In the first case we use three optical
sensors to observe three points on the trajectory of a
single target of opportunity [4], in the second case we
estimate the position of six points on the trajectory
of a single target of opportunity simultaneously with
the biases of two optical sensors [3]. First, we discuss
the observability issues related to the bias estimation.
Namely, it is shown that for two fixed sensors there
is an inherent ambiguity due to a certain rotation that
does not affect the measurements, i.e., one can not
have complete observability of the sensor biases with
targets of opportunity. For three fixed sensors, the biases
are completely observable. We evaluate the Cramér-
Rao Lower Bound (CRLB) on the covariance of the
bias estimates (for the observable biases), which is the
quantification of the available information on the sensor
biases and show via statistical tests that the estimation
is statistically efficient–it meets the CRLB. Section
II presents the problem formulation and solution in
detail. Section III describes the simulations performed
and gives the results. Finally, Section IV gives the
conclusions.

II. PROBLEM FORMULATION

The fundamental frame of reference used in this
paper is a 3D Cartesian Common Coordinate System
(CCS) defined by the orthogonal set of unit vectors
fex,ey,ezg. In a multisensor scenario, sensor platform s
will typically have a sensor reference frame associated
with it (measurement frame of the sensor) defined by the
orthogonal set of unit vectors fe»s ,e´s ,e³sg. The origin of
the measurement frame of the sensor is a translation of
the CCS origin, and its axes are rotated with respect to
the CCS axes. The rotation between these frames can
be described by a set of Euler angles. We will refer to

these angles Ás+Á
n
s , ½s+ ½

n
s , and Ãs+Ã

n
s of sensor s, as

roll, pitch, and yaw respectively [11], where Áns is the
nominal roll angle, Ás is the roll bias, etc.
Each angle defines a rotation about a prescribed axis,

in order to align the sensor frame axes with the CCS
axes. The xyz rotation sequence is chosen, which is
accomplished by first rotating about the x axis by Áns ,
then rotating about the y axis by ½ns , and finally rotating
about the z axis by Ãns . The rotations sequence can be
expressed by the matrices

Ts(Ã
n
s ,½

n
s ,Á

n
s ) = Tz(Ã

n
s ) ¢Ty(½ns ) ¢Tx(Áns )

=

264 cosÃ
n
s sinÃns 0

¡sinÃns cosÃns 0

0 0 1

375

¢

264cos½
n
s 0 ¡sin½ns

0 1 0

sin½ns 0 cos½ns

375

¢

2641 0 0

0 cosÁns sinÁns
0 ¡sinÁns cosÁns

375 (1)

Assume there are NS synchronized passive sensors
with known fixed position in the CCS, »s = [»s,´s,³s]

0,
s= 1,2, : : : ,NS , and Nt targets, located at xi = [xi,yi,zi]

0,
i= 1,2, : : : ,Nt, in the same CCS. With the previous con-
vention, the operations needed to transform the position
of a given target i expressed in the CCS coordinate into
the sensor s coordinate system is

xnis = T(!s)(xi¡ »s), i= 1,2, : : : ,Nt, s= 1,2, : : : ,NS
(2)

where !s = [Á
n
s ,½

n
s ,Ã

n
s ]
0 is the nominal orientation of

sensor s and T(!s) is the appropriate rotation matrix
and the translation is the difference between the vector
position of the target i and the vector position of the
sensor s, both expressed in the CCS. The superscript n
in (2) indicates that the rotation matrix is based on the
nominal sensor orientation.
As shown in Figure 1, the azimuth angle ®is is the

angle in the sensor xz plane between the sensor z axis
and the line of sight to the target, while the elevation
angle ²is is the angle between the line of sight to the
target and its projection onto the xz plane, that is

·
®is

²is

¸
=

266664
tan¡1

xis
zis

¶

tan¡1

0@ yisq
x2is+ z

2
is

1A
377775 (3)

The model for the biased noise-free LOS measurements
is then·

®bis

²bis

¸
=
·
g1(xi,»s,!s,bs)

g2(xi,»s,!s,bs)

¸
= g(xi,»s,!s,bs) (4)
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where g1 and g2 denote the sensor Cartesian coordinates-
to-azimuth/elevation angle mapping that can be found
by inserting equations (2) and (3) into (4). The bias
vector of sensor s is

bs = [Ás,½s,Ãs]
0 (5)

For a given target, each sensor provides the noisy
LOS measurements

zis = g(xi,»s,!s,bs) +wis (6)

where
wis = [w

®
is,w

²
is]
0 (7)

The measurement noises wis are zero-mean, white Gaus-
sian with

Rs =
·
(¾®s )

2 0

0 (¾²s)
2

¸
(8)

and are assumed mutually independent.
The problem is to estimate the bias vectors for all

sensors and the positions of the targets of opportunity.
We shall obtain the Maximum Likelihood (ML) estimate
of the augmented parameter vector

= [x01, : : : ,x
0
Nt
,b01, : : : ,b

0
NS
]0 (9)

consisting of the (unknown) position of target i and the
biases of sensor s, i= 1, : : : ,Nt,s= 1, : : : ,NS , by maxi-
mizing the likelihood function

¤( ) =
NtY
i=1

NSY
s=1

p(zis j ) (10)

where

p(zis j ) = j2¼Rsj¡1=2

¢ exp(¡ 1
2 [zis¡his( )]0R¡1s [zis¡his( )])

(11)

and
his( )

¢
=g(xi,»s,!s,bs) (12)

The ML Estimate (MLE) is then

ˆML = argmax¤( ) (13)

In order to find the MLE, one has to solve a nonlinear
least squares problem for the exponent in (11). This will
be done using a numerical search via the Iterated Least
Squares (ILS) technique [1].

A. Requirements for Bias Estimability

First requirement for bias estimability. For a given
target we have a two-dimensional measurement from
each sensor (the two LOS angles to the target). We
assume that each sensor sees all the targets at a common
time.1 Stacking together each measurement of Nt targets
seen by NS sensors results in an overall measurement

1This can also be the same target at different times, as long as the
sensors are synchronized.

vector of dimension 2NtNS. Given that the position and
bias vectors of each target are three-dimensional, and
knowing that the number of equations (size of the
stacked measurement vector) has to be at least equal
to the number of parameters to be estimated (target
positions and biases), we must have

2NtNS ¸ 3(Nt+NS) (14)

This is a necessary condition but not sufficient because
(13) has to have a unique solution, i.e., the parameter
vector has to be estimable. This is guaranteed by the
second requirement.
Second requirement of bias estimability. This is the

invertibility of the Fisher Information Matrix (FIM)
[1], to be discussed later. For example, to estimate
the biases of 3 sensors (9 bias components) we need
3 targets (9 position components), i.e., the search is
in an 18-dimensional space. In order to estimate the
biases of 2 sensors (6 bias components) we need at
least 6 targets (18 position components) to meet the
necessary requirement (14). The rank of the FIM has
to be equal to the number of parameters to be estimated
(6+18 = 24). The full rank of the FIM is a necessary
and sufficient condition for estimability, however, for
the two fixed sensors situation this is not satisfied. This
issue will be discussed further in the section III.B, where
an explanation will be provided.

B. Iterated Least Squares

Given the estimate ˆ j after j iterations, the ILS
estimate after the (j+1)th iteration will be

ˆ j+1 = ˆ j +[(Hj)0R¡1Hj]¡1(Hj)0R¡1[z¡h( ˆ j)] (15)

where

z= [z011, : : : ,z
0
is, : : : ,z

0
NtNS
]0 (16)

h( ˆ j) = [h11(
ˆ j)0, : : : ,his(

ˆ j)0, : : : ,hNtNS (
ˆ j)0] (17)

R is a block diagonal matrix consisting of Nt blocks of
NS blocks of Rs

Hj =
@h( j)
@

¯̄̄̄
=ˆ j

(18)

is the Jacobian matrix of the vector consisting of the
stacked measurement functions (17) w.r.t. (9) evaluated
at the ILS estimate from the previous iteration j. In this
case, the Jacobian matrix is, with the iteration index
omitted for conciseness,

H = [H11 H21 ¢ ¢ ¢HNt1 H12 ¢ ¢ ¢HNtNS ]0 (19)
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where

H 0is =
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The appropriate partial derivatives are given in the Ap-
pendix.

C. Initialialization

In order to perform the numerical search via ILS, an
initial estimate ˆ 0 is required. Assuming that the biases
are null, the LOS measurements from the first and the
second sensor ®i1, ®i2 and ²i1 can be used to solve for
each initial Cartesian target position, in the CCS, as

x0i =
»2¡ »1 + ³1 tan®i1¡ ³2 tan®i2

tan®i1¡ tan®i2
(21)

y0i =
tan®i1(»2 + tan®i2(³1¡ ³2))¡ »1 tan®i2

tan®i1¡ tan®i2
(22)

z0i = ´1 + tan²i1

¯̄̄̄
(»1¡ »2)cos®i2 + (³2¡ ³1)sin®i2

sin(®i1¡®i2)
¯̄̄̄
(23)

D. Cramér-Rao Lower Bound

In order to evaluate the efficiency of the estimator,
the CRLB must be calculated. The CRLB provides a
lower bound on the covariance matrix of an unbiased

estimator as [1]

Ef( ¡ ˆ )( ¡ ˆ )0g ¸ J¡1 (24)

where J is the Fisher Information Matrix (FIM), is
the true parameter vector to be estimated, and ˆ is the
estimate. The FIM is

J = Ef[r ln¤( )][r ln¤( )]0gj = true
(25)

where the gradient of the log-likelihood function is

¸( )
¢
=ln¤( ) (26)

r ¸( ) =
NtX
i=1

NSX
s=1

H 0isR
¡1
is (zis¡his( )) (27)

which, when plugged into (25), gives

J =
NtX
i=1

NSX
s=1

H 0is(R
¡1
s )Hisj = true

=H 0(R¡1)Hj = true
(28)

III. SIMULATIONS

A. Three-Sensor Case

We simulated three optical sensors at various fixed
and known locations observing a target at three points
in time at unknown locations (which is equivalent to
viewing three different targets at unknown locations).
Five scenarios of three sensors are examined for a set
of target locations. They are shown in Figures 2—6.
Each scenario is such that each target position can be
observed by all sensors. As discussed in the previous
section, the three sensor biases were roll, pitch, and
yaw angle offsets. The biases for each sensor were set
to 1± = 17:45 mrad. We made 100 Monte Carlo runs
for each scenario. In order to establish a baseline for
evaluating the performance of our algorithm, we also
ran the simulations without biases and with biases, but
without bias estimation. The horizontal and vertical
Fields of View (FOV) of each sensor are assumed to
be 60±. The measurement noise standard deviation ¾s
(identical across sensors for both azimuth and elevation
measurements) was assumed to be 0.34 mrad (based on
an assumed pixel subtended angle of 0:02± (a modest
9 megapixel FPA with FOV 60± ¢ 60±; 60±=

p
9 ¢ 106 =

0:02±).

1) Description of the Scenarios. The sensors are as-
sumed to provide LOS angle measurements. We de-
note by »1,»2,»3 the 3D Cartesian sensor positions, and
x1,x2,x3 the 3D Cartesian target positions (all in CCS).
The three target positions are the same for all the scenar-
ios, and they were chosen from a trajectory of a ballistic
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Fig. 2. Scenario 1.

Fig. 3. Scenario 2.

target as follows (in m)

x1 = [¡2860,0,6820]0 (29)

x2 = [¡235:9,0,8152]0 (30)

x3 = [2413,0,6451]
0 (31)

Table I summarizes the sensor positions (in m) for the
five scenarios considered.

2) Statistical Efficiency of the Estimates. In order to
test for the statistical efficiency of the estimate (of the
18 dimensional vector (9)), the Normalized Estimation
Error Squared (NEES) [1] is used, with the CRLB as
the covariance matrix. The sample average NEES over
100 Monte Carlo runs is shown in Figure 7 for all sce-
narios. The NEES is calculated using the FIM evaluated
at both the true bias values and target positions, as well
as at the estimated biases and target positions. Accord-
ing to the CRLB, the FIM has to be evaluated at the
true parameter. Since this is not available in practice,
however, it is useful to evaluate the FIM also at the es-
timated parameter, the only one available in real world

Fig. 4. Scenario 3.

Fig. 5. Scenario 4.

Fig. 6. Scenario 5.

implementations [15], [16]. The results are practically
identical regardless of which values are chosen for eval-
uation of the FIM. The 95% probability region for the
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Fig. 7. Sample average NEES over 100 Monte Carlo runs for all five scenarios (three-sensor case).

TABLE I
Sensor positions (in m) for the scenarios considered.

First Sensor Second Sensor Third Sensor

Scenario » ´ ³ » ´ ³ » ´ ³

1 ¡5500 15 950 ¡230 45 2720 5900 20 50
2 ¡4900 145 505 1230 ¡220 2765 5900 200 110
3 ¡4900 25 1050 1330 25 1585 4900 45 150
4 ¡5600 5 200 1230 10 1220 4900 20 50
5 ¡3500 1500 25 1230 ¡520 1265 4900 1350 20

TABLE II
Sample average position RMSE (in m) for the three targets, over

100 Monte Carlo runs, for the three estimation schemes
(three-sensor case).

First Target Second Target Third Target

Scheme RMSE RMSE RMSE

1 3.33 3.51 2.82
2 146.61 167.43 134.80
3 38.93 43.82 37.68

100 sample average NEES of the 18 dimensional pa-
rameter vector is [16:84,19:19]. For all five scenarios,
the NEES is found to be within this interval and the
MLE is therefore statistically efficient. Figure 8 shows
the individual bias component NEES for all scenarios,
The 95% probability region for the 100 sample aver-
age single component NEES is [0:74,1:29]. For all five
scenarios these NEES are found to be within this inter-
val.

The RMS position errors for the three targets are
summarized in Table II. In this table, the first estimation
scheme was established as a baseline using bias-free
LOS measurements to estimate the target positions.2

For the second scheme, we used biased LOS measure-
ments but we only estimated target positions. In the
last scheme, we used biased LOS measurements and
we simultaneously estimated the target positions and
sensor biases. Bias estimation yields significantly im-
proved target RMS position errors in the presence of
biases.
Each component of should also be individually

consistent with its corresponding ¾CRLB (the square root
of the corresponding diagonal element of the inverse
of FIM). In this case, the sample average bias RMSE
over 100 Monte Carlo runs should be within 15%
of its corresponding bias standard deviation from the

2As shown in [15], [16] the unbiased LOS measurements yield com-
posite measurements (full position MLEs) whose errors are zero-mean
and their covariance is equal to the corresponding CRLB.
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Fig. 8. Sample average bias NEES (CRLB evaluated at the estimate), for each of the 9 biases, over 100 Monte Carlo runs for all five
scenarios (three-sensor case).

TABLE III
Sample average bias RMSE over 100 Monte Carlo runs and the corresponding bias standard deviation from the CRLB (¾CRLB), for all

configurations (in mrad) (three-sensor case).

First Sensor Second Sensor Third Sensor

Scenario Ã ½ Á Ã ½ Á Ã ½ Á

1 RMSE 3.168 1.173 2.558 7.358 1.121 3.321 3.210 1.419 2.261
¾CRLB 2.872 1.183 2.679 6.721 1.129 3.639 2.954 1.341 2.459

2 RMSE 1.935 1.133 2.642 7.573 1.069 3.352 4.224 1.335 1.881
¾CRLB 2.028 1.190 2.485 7.855 1.129 3.138 4.355 1.362 1.835

3 RMSE 2.473 1.089 5.923 6.475 1.084 6.675 4.504 1.266 5.272
¾CRLB 2.600 1.124 5.780 7.054 1.140 6.455 4.969 1.239 5.105

4 RMSE 2.512 1.257 5.950 6.472 1.161 6.522 4.579 1.351 5.218
¾CRLB 2.801 1.243 6.198 7.094 1.201 6.976 5.024 1.388 5.634

5 RMSE 3.102 1.697 4.418 5.979 2.124 5.609 4.238 2.195 3.979
¾CRLB 3.334 1.646 4.034 7.078 2.295 5.253 5.011 2.150 3.869

CRLB with 95% probability. Table III demonstrates
the consistency of the individual bias estimates. This
complements the NEES evaluations from Figure 8.
To confirm that the bias estimates are unbiased, the

average bias error
¯̃
b, from Table IV, over 100 Monte

Carlo runs confirms that j ¯̃bj is less then 2¾CRLB=
p
N

(which it should be with 95% probability), i.e., these
bias estimates are unbiased.
In order to examine the statistical efficiency for a

variety of target-sensor geometries, the sensors’ loca-
tions were varied from one scenario to another in order
to vary the Geometric Dilution of Precision (GDOP),
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Fig. 9. GDOPs for the five scenarios considered (three-sensor case).

TABLE IV

Sample average bias error
¯̃
b over N = 100 Monte Carlo runs for all configurations (in mrad) (to confirm that the bias estimates are unbiased)

(three-sensor case).

First Sensor Second Sensor Third Sensor

Scenario Ã ½ Á Ã ½ Á Ã ½ Á

1
¯̃
b 0.336 ¡0:076 0.034 0.693 ¡0:127 0.128 0.240 ¡0:111 0.146

¾CRLBp
N

0.287 0.118 0.268 0.672 0.113 0.364 0.295 0.134 0.246

2
¯̃
b ¡0:099 0.012 0.045 ¡0:356 0.002 0.017 ¡0:195 0.088 ¡0:038

¾CRLBp
N

0.203 0.119 0.248 0.785 0.113 0.314 0.436 0.136 0.184

3
¯̃
b ¡0:191 0.125 0.039 ¡0:565 0.134 ¡0:076 ¡0:348 0.198 ¡0:162

¾CRLBp
N

0.260 0.112 0.578 0.705 0.114 0.645 0.497 0.124 0.510

4
¯̃
b 0.020 ¡0:153 ¡0:481 0.412 ¡0:094 ¡0:374 0.345 ¡0:180 ¡0:209

¾CRLBp
N

0.280 0.124 0.620 0.709 0.120 0.698 0.502 0.139 0.563

5
¯̃
b 0.522 ¡0:002 ¡0:058 0.823 0.038 0.034 0.576 ¡0:009 0.025

¾CRLBp
N

0.333 0.165 0.403 0.708 0.230 0.525 0.501 0.215 0.387

defined as

GDOP
¢
=

RMSE

r
p
¾2®+¾2²

(32)

where “RMSE” is the RMS position error for a target
location (in the absence of biases), r is the range to the
target, and ¾® and ¾² are the azimuth and elevation mea-
surement error standard deviations, respectively. Figure
9 shows the various GDOP levels in the 9 target-sensor
combinations for each of the five scenarios for which
statistical efficiency was confirmed.

B. Two-Sensor Case

We simulated two optical sensors at various fixed
locations observing a target at six (unknown) locations
(which is equivalent to viewing six different targets
at unknown locations). In this case a 24-dimensional
parameter vector is to be estimated.
It was observed that the rank of the FIM was 23

which implies incomplete observability. Even with more
target points there was always a deficiency of 1 in the
rank of the FIM. As shown in Figure 10, this can be
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Fig. 10. Rotation around axis S1S2 of the sensors and all targets by
the same angle leaves all the LOS angles from the sensors to the

targets unchanged.

explained as follows: a rotation of the sensors and all
the targets around the axis defined by the line S1S2 con-
necting the optical centers of the two sensors is not ob-
servable because this will yield the same measurements
regardless of the magnitude of this rotation. Note that
this rotation does not change the locations of the sen-
sors, which are assumed known. Thus, with two sen-
sors, one cannot estimate all 6 biases–we are limited
to estimating 5 and this will be borne out by the FIM
in the simulations. A similar observation was made in
[5] for sensors that are facing each other. However the
above discussion points out that the sensors do not have
to face each other–there is an inherent lack of observ-
ability of any rotation around the above defined axis.
This problem does not exist if there are three or more
sensors3 because there is no axis of rotation that does
not change the location of at least one sensor.
Four scenarios of two sensors are examined for a set

of target locations. They are shown in Figures 11—14.
Each scenario is such that each target position can be
observed by all sensors. As discussed in the previous
section, the three sensor biases were roll, pitch, and yaw
angle offsets. The second sensor roll bias is assumed
to be known and null, this is in view of the above
discussion about the inherent rank 1 deficiency of the
FIM in the two sensors case which makes it impossible
to estimate all the 6 sensor biases. Reducing the number
of biases from 6 to 5 allows a full rank FIM. All the
other biases for each sensor were set to 1± = 17:45 mrad.
We made 100 Monte Carlo runs for each scenario.

In order to establish a baseline for evaluating the per-

3Provided that the three sensors (or any number of) are not located
in a straight line.

Fig. 11. Scenario 1 for the two-sensor case.

Fig. 12. Scenario 2 for the two-sensor case.

formance of our algorithm, we also ran the simulations
without bias, and with bias but without bias estimation.
The measurement noise standard deviation ¾s (identical
across sensors for both azimuth and elevation measure-
ments) was assumed to be 0.34 mrad. As a fifth scenario
we simulated two optical sensors observing two targets
(two trajectories) at three points in time for each target,
as shown in Figure 15.

1) Description of the Scenarios. The sensors are as-
sumed to provide LOS angle measurements. We de-
note by »1,»2 the 3D Cartesian sensor positions, and
x1,x2,x3,x4,x5,x6 the 3D Cartesian target positions (all
in CCS). The six target positions are the same for the
first four scenarios, and they were chosen from a tra-
jectory of a ballistic target as follows (in m)

x1 = [¡4931,0,3649]0 (33)

x2 = [¡3731,0,5714]0 (34)

x3 = [¡2400,0,7100]0 (35)
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Fig. 13. Scenario 3 for the two-sensor case.

Fig. 14. Scenario 4 for the two-sensor case.

x4 = [2341,0,6538]
0 (36)

x5 = [3448,0,4956]
0 (37)

x6 = [4351,0,3475]
0 (38)

For the fifth scenario, the six target positions were
chosen from two trajectories of two ballistic targets as
follows (in m)

x1 = [¡4931,0,3649]0 (39)

x2 = [2994,0,5670]
0 (40)

x3 = [¡2400,0,7100]0 (41)

x4 = [¡1400,0,7932]0 (42)

x5 = [2376,0,6497]
0 (43)

x6 = [4075,0,3823]
0 (44)

Table V summarizes the sensor positions (in m) for the
five scenarios considered.

Fig. 15. Scenario 5 for the two-sensor case.

TABLE V
Sensor positions (in m) for the scenarios considered.

First Sensor Second Sensor

Scenario » ´ ³ » ´ ³

1 ¡4550 5420 ¡945 6170 4250 ¡2700
2 ¡4550 5420 950 6170 4250 ¡2700
3 ¡4550 5420 950 6170 3250 ¡2700
4 ¡4550 5420 950 5170 4250 ¡2700
5 ¡1550 6120 ¡1445 6170 5250 ¡1400

2) Statistical Efficiency of the Estimates. In order to
test for the statistical efficiency of the estimate (of the 23
dimensional vector), the NEES is used, with the CRLB
as the covariance matrix. The sample average NEES
over 100 Monte Carlo runs is shown in Figure 16 for all
scenarios. The NEES is calculated using the FIM evalu-
ated at both the true bias values and target positions, as
well as at the estimated biases and target positions. The
results are practically identical regardless of which val-
ues are chosen for evaluation of the FIM. The 95% prob-
ability region for the 100 sample average NEES of the
23 dimensional parameter vector is [21:68,24:34]. For
all five scenarios these NEES are found to be within this
interval and the MLE is therefore statistically efficient.
Figure 17 shows the individual bias component NEES
for all scenarios, The 95% probability region for the 100
sample average single component NEES is [0:74,1:29].
For all five scenarios these NEES are found to be within
this interval.
The RMS position errors for the six targets are sum-

marized in Table VI. In this table, the first estima-
tion scheme was established as a baseline using bias-
free LOS measurements to estimate the target positions.
For the second scheme, we used biased LOS measure-
ments but we only estimated target positions. In the last
scheme, we used biased LOS measurements and we si-
multaneously estimated the target positions and sensor
biases. For the second scheme, the estimation algorithm
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Fig. 16. Sample average NEES over 100 Monte Carlo runs for all five scenarios (two-sensor case).

Fig. 17. Sample average bias NEES (CRLB evaluated at the
estimate), for each of the five biases, over 100 Monte Carlo runs for

all five scenarios (two-sensor case).

does not converge, while the third scheme shows sat-
isfactory target RMS position errors in the presence of
biases. The target position RMSE when the biases are
also estimated, are close to the RMSE with no biases.
Each component of should also be individually

consistent with its corresponding ¾CRLB (the square root
of the corresponding diagonal element of the inverse
of FIM). In this case, the sample average bias RMSE
over 100 Monte Carlo runs should be within 15% of its
corresponding bias standard deviation from the CRLB
(¾CRLB) with 95% probability. Table VII demonstrates
the efficiency of the individual bias estimates.

TABLE VI
Sample average position RMSE (in m) for the six targets, over 100
Monte Carlo runs, for the three estimation schemes (two-sensor

case).

First
Target

Second
Target

Third
Target

Fourth
Target

Fifth
Target

Sixth
Target

Scheme RMSE RMSE RMSE RMSE RMSE RMSE

1 3.68 4.84 3.42 4.06 4.64 3.63
3 7.08 7.65 6.49 7.91 7.70 7.76

TABLE VII
Sample average bias RMSE over 100 Monte Carlo runs and the
corresponding bias standard deviation from the CRLB, for all

configurations (in mrad) (two-sensor case).

First Sensor Second Sensor

Scenario Ã ½ Á Ã ½

1 RMSE 0.195 0.271 0.254 0.186 0.314
¾CRLB 0.252 0.307 0.331 0.238 0.430

2 RMSE 0.437 0.442 0.500 0.428 0.348
¾CRLB 0.394 0.494 0.441 0.410 0.410

3 RMSE 1.675 1.668 1.634 1.646 0.4615
¾CRLB 1.279 1.572 1.305 1.207 0.536

4 RMSE 0.475 0.392 0.440 0.465 0.287
¾CRLB 0.467 0.440 0.510 0.483 0.384

5 RMSE 0.258 0.251 0.237 0.245 0.195
¾CRLB 0.345 0.246 0.357 0.347 0.168
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Fig. 18. GDOPs for the five scenarios considered (two-sensor case).

TABLE VIII

Sample average bias error
¯̃
b over N = 100 Monte Carlo runs for all

configurations (in mrad) (to confirm that the bias estimates are
unbiased) (two-sensor case).

First Sensor Second Sensor

Scenario Ã ½ Á Ã ½

1
¯̃
b 0.000 0.007 0.000 0.003 ¡0:045

¾CRLBp
N

0.025 0.030 0.033 0.023 0.043

2
¯̃
b ¡0:055 ¡0:058 ¡0:007 ¡0:016 ¡0:001

¾CRLBp
N

0.039 0.049 0.044 0.041 0.041

3
¯̃
b ¡0:351 ¡0:098 ¡0:254 0.275 0.056

¾CRLBp
N

0.128 0.157 0.130 0.120 0.053

4
¯̃
b ¡0:001 ¡0:069 0.042 ¡0:026 ¡0:013

¾CRLBp
N

0.046 0.044 0.051 0.048 0.038

5
¯̃
b 0.037 0.028 0.006 0.040 ¡0:005

¾CRLBp
N

0.034 0.024 0.0358 0.034 0.016

To confirm that the bias estimates are unbiased, the

average bias error
¯̃
b, from Table VIII, over 100 Monte

Carlo runs confirms that j ¯̃bj is less then 2¾CRLB=
p
N

(which it should be with 95% probability), i.e., these
estimates are unbiased.
Figure 18 shows the various GDOP levels in the 12

target-sensor combinations for each of the five scenarios
for which statistical efficiency was confirmed, in the
case of the two sensors.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an algorithm that uses
targets of opportunity for estimation of measurement

biases. The first step was formulating a general bias
model for synchronized optical sensors at fixed known
locations. The association of measurements is assumed
to be perfect. Based on this, we used a ML approach that
led to a nonlinear least-squares estimation problem for
simultaneous estimation of the 3D Cartesian positions
of the targets of opportunity and the angle measurement
biases of the sensors. The bias estimates, obtained via
ILS, were shown to be unbiased and statistically effi-
cient. In the three-sensor case it was shown that one
has complete observability of the sensor biases. In the
two-sensor case a rank deficiency of 1 in the FIM was
observed, i.e., this allows estimation of only 5 out of 6
biases. A suitable geometric explanation was provided
for this. For moving sensors this problem is expected to
go away if the sensors move sufficiently.
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