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The problem of fault diagnosis with communication constraints

is considered. Most approaches to fault diagnosis have been focused

on detecting and isolating a fault under cost constraints such as eco-

nomic factors and computational time. But in some systems, such

as remote monitoring (e.g., satellite, sensor field) systems, there is

a communication constraint between the system being monitored

and the monitoring facility. In such circumstances it is desirable

to isolate the faulty component with as few interactions as possible.

The key consideration is that multiple tests are chosen at each stage

in such a way that the tests within the chosen group complement

each other. To this end we propose two algorithms for fault diag-

nosis under communications constraints. Their performances are

analyzed in terms of the average number of testing stages as well

as in terms of the required computational complexity.
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1. INTRODUCTION

Fault diagnosis is the process of detecting and iso-

lating component failure in a system via reports from a

suite of sensors, each of which monitors a subset of the

components. Since the life-cycle maintenance cost of

large integrated systems such as an aircraft or the space

shuttle can, due to the large number of failure states

and the need to rectify these failures quickly [4], [12],

exceed the purchase cost, it has been recognized that

testability must be built into the manufacturing process.

Owing to the advent of intelligent sensors, onboard tests

are available to the diagnostic/fusion center or operators,

but the computational burden of processing test results

in large-scale systems is still a factor.

Various techniques for computationally efficient test

sequencing to identify component failure have been de-

veloped: test sequencing for single fault diagnosis [14]—

[16], [21], dynamic single fault diagnosis [5], [24], mul-

tiple fault diagnosis [10], [18], [19], dynamic multi-

ple fault diagnosis [17], [20] and test sequencing for

complex systems [2], [3], to name a few. As another

approach, some fault detection schemes for networked

control systems use residual generation and evaluation

without utilizing built-in smart sensors to detect com-

ponent failures [11], [22], [23], [25], [26].

To date, the purpose of test sequencing (see [2],

[3], [14]—[16], [19], [21]) has usually been to find an

optimal or suboptimal solution minimizing a “testing

cost” that include economic factors, testing time, etc.

In general, a sequential testing algorithm repeats the

procedure (called a stage) consisting of deciding to

test, ordering to perform tests, and updating the state

of the system using the received test results, until the

failed component is identified. Moreover, at each state,

communication between the system and the diagnostic

(fusion) center is required for the sensors to transmit the

test results and for the center to request the performance

of tests.

There are, sometimes, systems placed in distributed

or remote configurations, causing unusually long delays

or restriction in communication of instructions from or

results to a monitoring facility. One application might

be remotely to determine and diagnose the health of

a hard-to-reach system, for example a space vehicle

or a craft in a deep sea (please see an illustration in

Fig. 1). In this situation the monitoring facility should

be able to diagnose the remote system using limited

communication with the remote or distributed system.

Under these circumstances the number of instances of

communication becomes a primary constraint and the

testing cost, while still an issue, becomes secondary. Our

goal in this paper is hence to minimize the number of

communication stages between the monitoring facility
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Fig. 1. Examples of a systems with limited communication

between the system to be monitored and the monitoring facility.

(a) A system with significant remote-ness, in which latency and

communication costs are a concern. (b) A distributed surveillance

system in which covertness is key.

and the remote system while keeping the testing cost

within a specified level.

The optimal solution of fault diagnosis can be posed

via generating a binary decision tree with DP (dynamic

programing) and AND/OR graphs. Finding the optimal

solution, however, is known to be an NP-complete

problem for single fault diagnosis [7]—[9], [13] even

when using just a single sensor at each stage, and

(worse) an NP-hard problem for multiple fault diagnosis

[1], meaning that it cannot be solved by an algorithm of

polynomial complexity. Thus, a heuristic approach for

test sequencing using multiple sensors at each stage is

suggested. This involves:

1) selecting the sensors that will maximize the informa-

tion gain (IG);

2) performing the test using those selected sensors;

3) updating conditional likelihood probability of all

components’ failure states, depending on the test

outcomes;

4) pruning from consideration components that are un-

likely to be faulty; and

5) repeating this procedure until the fault is isolated up

to a certain specified probability of assurance.

We will discuss the IG heuristic later. Note that there

are test inaccuracies due to unreliable sensors, electro-

magnetic interference, environmental conditions, and so

on. Imperfect tests, for our purposes here, introduce two

uncertainties to the diagnosis process: missed detections

and false alarms. Under the former, of course, a compo-

nent may fail yet the test that covers it can show “pass”;

and vice versa for a false alarm. Consequently, even af-

ter collection of an arbitrarily amount of test signature

evidence, one is never certain, just sure enough up to a

given probability level.1

An important issue is that as we seek to reduce the

number of iterations by selecting multiple sensors at a

time, the computation–selecting the set of sensors that

will maximize the information gain–increases rapidly

both with number of tests and number of faults, and

in many practical systems both are very large. We pro-

pose two algorithms for selecting multiple sensors at a

time that maximize the information gain at an afford-

able computational complexity. The first algorithm in-

troduces several thresholds in order to eliminate sensors

that are less informative, so that fewer sensors form the

candidate set for the maximization of information gain.

The second approach populates the candidate set one-

by-one, based on the correlation between the informa-

tion state and the elements of the reachability matrix in

addition to information gain. For simplicity, we assume

that there is a single component failure during fault iso-

lation, although the methods presented in this paper can

be extended to multi-fault case by applying one of the

multi-fault diagnosis techniques [10], [17]—[20] in order

to mitigate (but not really avoid) the significant increase

in resulting computational complexity.

The paper is organized as follows. In Section 2 we

formulate the problem. In Section 3 two heuristic test se-

quencing algorithms are introduced. Section 4 presents

the simulation results of the proposed algorithms and

Section 5 concludes the paper.

2. PROBLEM FORMULATION

We consider the problem of single fault diagnosis:

there are a set of components that might fail and a set of

sensors each monitoring a subset of those components.

The system is described in detail as given below.

1) A (finite) set of m possibly-faulty components F =

ff0,f1, : : : ,fmg (loosely: “faults”) is given, where f0
denotes the no-fault condition and fi denotes the ith

faulty component. The state of faulty component fi
is expressed by xi, where xi = 1 if fault fi occurs,

otherwise xi = 0.

2) A (finite) set of n binary sensors S = fs1,s2, : : : ,sng
is given, where sensor sj monitors a known subset

of faulty components and costs an amount cj(> 0)

to apply.

1And indeed, depending on the test coverage (the R matrix to be

defined shortly), it might never be possible even with perfect tests to

isolate a fault more tightly than to a “ambiguity set.”
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3) The reachability matrix2 R = [rij] represents the re-

lationship between the faulty components and the

sensors: rij = 1 if sensor sj monitors faulty compo-

nent i, and, otherwise, rij = 0. In addition, r0j = 0 for

all j.

4) Test (sensor) sj has associated with it a probability

of false alarm

Pfj = Prob(sj = 1 jno component monitored by
sj has failed), (1)

and probability of detection

Pdj = Prob(sj = 1 jat least one component monitored
by sj has failed): (2)

Since only one fault is being considered, the proba-

bilities of detection and false alarm can be combined

with the reachability matrix R to as the likelihood

matrix D = [di,j], in which

di,j = Prob(sj = 1 j xi = 1) = ri,jPdj +(1¡ ri,j)Pfj :
(3)

The element di,j is the likelihood that the sensor j

registers a “fail” despite the relation with a failure of

component i, considering two cases: The first is that

component i is failed and sensor sj detects that there

is a failure, when sj is monitoring component i. The

second is that sensor sj is not monitoring component

i, but sj shows the result that there is a component

failure as false alarm.

Let us address the single fault diagnosis problem

under the following assumptions:

² The false-alarm and missed-detection probabilities of
sensors are known and do not change with repeated

testing.

² There is at most one component failure, which does
not change over the course of (repeated) testing.

² It is possible that the system be fault-free.

² Each sensor’s missed-detection/false-alarm process is
independent of those of other sensors.

² Outcomes of sensors are binary, meaning that there
are two outcomes: pass (0) and fail (1).

Let us denote the complete set of (possibly multiple)

tests applied at the kth stage as Sc(k) = fsjq 2 S j jq 2
J(k)g where J(k) = fjqg is the set of indices of the
applied sensors. The outcome of the tests at the kth

stage is denoted as O(k) = foq(k)g where oq(k) is the
result of sensor sjq . Thus, the past information available

for sensor selection at the (k+1)th stage is

Ik = f(Sc(l),O(l))gkl=1: (4)

With the past information Ik, the conditional failure

probabilities ¼i(k+1) = p(xi = 1 j Ik) also known as the
information state is updated from its previous state ¼i(k)

2This is sometimes call the D-matrix, invoking variously test depend-

ency or diagnosis. Here we use “D” for the test reliabilities.

based on Bayes’ rule as

¼i(k+1) = p(xi = 1 j Ik)

=
p((Sc(k),O(k)) j xi = 1,Ik¡1)p(xi = 1 j Ik¡1)

p((Sc(k),O(k)) j Ik¡1)

=
1

c

Y
jq2J(k)

p((sjq (k),oq(k)) j xi = 1)¼i(k)

=
1

c

Y
jq2J(k)

[oq(k)di,jq +(1¡ oq(k))(1¡ di,jq )]¼i(k)

(5)

where the normalization factor is

c=

mX
i=0

Y
jq2J(k)

[oj(k)dlj +(1¡oj(k))(1¡ dlj)]¼i(k):

In addition, the prior failure probability ¼i(1) of com-

ponent i is assumed to be known, and the probability of

a healthy system ¼0(1) satisfies the following:

¼0(1) =

mY
i=1

Prob(xi = 0) =

mY
i=1

(1¡¼i(1)): (6)

The test sequencing algorithm with imperfect tests

can never, except in trivial cases, identify the faulty

component deterministically, but is assumed content

with a (pre-specified) level of certainty ®. We have:

Stopping rule: The algorithm stops when any in-

formation state reaches a level of

certainty ®, i.e.,

¼i(k)> ®: (7)

Pruning criterion: If ¼i(k) satisfies

¼i(k)· ¯¼i(0), (8)

where threshold ¯ is given, then it

will be decided that the component i

is not a faulty one and set ¼i(k) = 0.

The stopping rule and pruning criterion in the algo-

rithms will be described in later sections.

3. TEST SEQUENCING USING INFORMATION GAIN

Given the current information state f¼i(k)g at the kth
stage, the information gain achieved by testing with a

set of sensors Sc(k), i.e. the mutual information between

the sensors and the information state, is written as

IG(f¼i(k)g,Sc(k)) =H(f¼i(k)g)¡H(f¼i(k)g j Sc(k))
(9)

where

H(f¼i(k)g) =¡
mX
i=0

¼i(k) log¼i(k)

is the uncertainty (entropy) associated with the infor-

mation state f¼i(k)gmi=1.
After performing some algebraic manipulations the

information gain in (9) is written as follows (please see
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Appendix for details):

IG(f¼i(k)g,Sc(k)) =

¡
X
i

¼i(k) log¼i(k)

+
X
õt2Õ

mX
i=0

¼i(k)
Y
j2J
A(t, i,j) ¢ log

(
¼i(k)

Y
q2J
A(t, i,q)

)

¡
X
õt2Õ

log

(
mX
p=0

¼p(k)
Y
q2J
A(t,p,q)

)
¢
mX
i=0

¼i(k)
Y
j2J
A(t, i,j)

(10)

where

A(t, i,j) := (õt(j)di,j +(1¡ õt(j))(1¡ di,j)): (11)

Here, õt denotes a vector whose element is a possible

outcome (0 or 1) of a sensor in set Sc(k), the set Õ = fõtg
consists of all possible vectors that can be generated by

the sensors in set Sc(k), and J is the set of indices of

sensors in the set Sc(k).

If the objective is only to minimize testing cost by

using information heuristics, the sensor can be selected

simply by maximizing the information gain per unit

cost. That is, sensors Sc(k), at the kth stage, can be

selected based on the Selection rule minimizing testing

cost:

Sc(k) = arg max
S̃c(k)½S

IG(f¼i(k)g, S̃c(k))P
j2J(k) cj

(12)

Our goal in this paper is to minimize the number

of stages required to locate a fault, while limiting the

cost spent at each stage to CT. Hence, instead of per-

forming one test at each stage, we propose to perform

(possibly) several tests, where one should select the set

of sensors Sc(k) having the most information about the

faulty component at each stage considering all possible

combinations of sensors. This can be achieved via the

following Selection rule minimizing the number of stages:

Sc(k) = arg max
S̃c(k)½S

IG(f¼i(k)g, S̃c(k)) (13)

subject to X
j2J(k)

cj · CT

where CT is the cost threshold per stage.

If we countenance the use of an exhaustive search

to select a set Sc(k) according to the selection rule mini-

mizing the number of stages, a test sequencing heuristic

algorithm using the information gain will follow Algo-

rithm 1.

ALGORITHM 1 Exhaustive Search–ExS(N)

1) After obtaining all possible combinations of sensors

in the set S satisfying the cost constraint CT, select

Sc(k) based on (13).

2) Obtain test outcomes of Sc(k) and update information

states using (5).

3) Apply the pruning criterion in (8): after pruning,

normalize information states.

4) Repeat steps 1)—3) until the stopping rule in (7) is

satisfied.

Algorithm 1 is computationally exhaustive due to its

first step. For testing at most nc sensors at a time, the

number of all possible combinations of tests is

ncX
n=1

μ
n

m

¶
: (14)

To give some perspective, if there are m= 100 sensors,

considering pairs of tests jointly results in 4950 combi-

nations and testing 3 tests at a time results in 161700

combinations. Thus, in what follows, we focus on find-

ing suboptimal ways to find Sc(k) that have good heuris-

tics.

Before discussing suboptimal algorithms, we point

out a useful property of the information gain in (10). It

is observed that when the information states f¼(k)g are
uniform, except for ¼0(k)–because ¼0(k) corresponds

to the fault-free state–the information gain in (10)

reduces to

IG(f¼i(k)g, S̃c(k))
=¡n¼(k) log¼(k)¡¼0(k) log¼0(k)

+¼(k)
Y
j2J
A(t, i,j)

X
õt2Õ

mX
i=1

0@log
8<:Y
q2J
A(t, i,q)

9=; log
8<:

mX
p=1

Y
q2J
A(t,p,q)

9=;¡ log
8<:¼0(k)Y

q2J
A(t,0,q)

9=;
1A (15)

and (13) reduces to

Sc(k) = argmax
S̃c(k)

fIG(f¼i(k)g, S̃c(k))g

= argmax
S̃c(k)

8<:Y
j2J
A(t, i,j)

X
õt2Õ

mX
i=1

0@log
8<:Y
q2J
A(t, i,q)

9=;¡ log
8<:

mX
p=1

Y
q2J
A(t,p,q)

9=;¡ log
8<:¼0(k)Y

q2J
A(t,0,q)

9=;
1A9=; :
(16)
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Fig. 2. The relationship between information state and set T0 or T1.

(a) Set T0. (b) Set T1: L= 2.

If the information state is uniform except for ¼0, one

can select the set of sensors maximizing information

gain simply by appeal to the limit of cost–even before

beginning to monitor the system according to (16)–

which means that the set Sc(k) can be chosen off-line.

For example, in the case that the prior probability of

fault elements be uniform, one can start to monitor the

system with Sc(1) selected by off-line.

Now, we propose two suboptimal algorithms to

choose sensors. The first, described in Section 3.1, pro-

poses to decrease the size of set from which the sensors

are chosen based on the current information state. The

second, described in Section 3.2, proposes to select sen-

sors sequentially based on information gain and current

information states, after the first sensor is chosen via

correlation between information states and sensors.

3.1. Suboptimal algorithm based on Exhaustive Search
(ES)

It should be noted that the application of the pruning

rule in (8) at each stage reduces the number of possible

faulty components up to an uncertainty, and similarly

the size of set T0(k) where

T0(k) = fsiq 2 S j R(j, iq) = 1, for any j s.t. ¼j(k)> 0g:
(17)

As a result there is no need to test those sensors that

are monitoring only those excluded components, as a

result of pruning. Thus, at every stage k, as pruning

is performed to eliminate some of components having

little possibility of a fault the new set of sensors T0(k)

satisfies T0(k)½ T0(k¡1)½ S.

If the size of T0(k) is too large–possible in the

early stages of testing–one can consider a new set

T1(k)½ T0(k) whose elements are those sensors moni-
toring components having high probabilities of failure,

as follows. Given a threshold L

T1(k) = fsiq j R(jp, iq) = 1, for any p= 1,2, : : : ,Lg (18)

where ¼j1 (k)¸ ¼j2 (k)¸ ¢¢ ¢ ¸ ¼jl̃(k) > 0 and L¸ l̃. If l̃ is
less than L, T0(k) = T1(k). By considering all possible

combinations of sensors in T1(k) within the cost limit,

one selects Sc(k).

It may be that the number of sensors used at the

current stage becomes unacceptable due to a large al-

lowable cost limit: the number of combinations of sen-

sors become too high. A similar situation is that there

are many sensors monitoring each component, which is

tantamount to each row of the R matrix having many

ones–that is, the tests, taken individually, are not spe-

cific. In such cases jT1(k)j will not be significantly de-
creased even by using a smaller value for L. Both of

these cases require another threshold (denoted N) lim-

iting the number of sensors chosen to perform testing

at each stage, i.e. jScj is limited to N. Hence, if the
size of T1(k) is larger than the given threshold M, the

number of sensors used at each stage will be limited by

N, where M is decided based on cost. In summary, the

upper bound in jSc(k)j is

jSc(k)j ·
½ jT1(k)j if jT1(k)j ·M

N if jT1(k)j>M
: (19)

REMARK 1: If there are too many information states

having the same probability, especially in the early

stages, it becomes problematic to decide T1(k) just by

using threshold L, since ordering becomes arbitrary. In

this case we change the threshold: L is increased until

all elements having the same probability are included in

set T1(k) whereas threshold N is decreased depending on

the size of T1(k).

A summary of the proposed fault diagnosis based

on exhaustive search is summarized in Algorithm 2. An

example of the sets T0 and T1 is illustrated in Fig. 2.

ALGORITHM 2 Exhaustive Search–ES(L,M,N)

1) If the prior probability is uniform, select the combi-

nation of sensors chosen off-line as Sc(1). Otherwise,

go to the next step.

2) Get T1(k) by using information states f¼i(k)g. If there
are many information states having the same value,

L is increased until all sensors monitoring those

elements are included in T1(k).

3) If the number of elements in T1(k) is higher than M,

obtain all possible combinations of at mostN sensors

satisfying the cost limit CT. Otherwise, obtain all

possible combination of sensors satisfying the limit.

4) Select Sc(k) from the obtained combinations of sen-

sors based on (18) and obtain test outcomes of Sc(k).
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Fig. 3. An example of selecting Sc(k) according to the CS

approach.

5) Update information states using (5) and obtain in-

formation states f¼(k+1)g by applying the pruning
criterion in (8).

6) Repeat steps 2)—5) until the stopping rule in (7) is

satisfied.

3.2. Algorithm based on Correlative Search (CS)

While in the previous algorithm the sensors used at a

single stage are selected jointly, this algorithm chooses

these sensors one-by-one, which means that each sensor

is added to the set of sensors chosen before as shown in

Fig. 3. Before discussing how to choose sensors, let us

define the correlation between matrix R and information

state as follows. For each sensor j,

Cor(j) =
X
i

rij¼irij

The first sensor sj1 is chosen based on correlation as

follows:
sj1 = argmax

sj2T̃1
Cor(j) (20)

where
T̃1 = fsq 2 T0 j cq · CTg:

The second sensor is the one having the highest infor-

mation gain calculated with the first sensor together:

sj2 = argmax
sq2T̃2

IG(f¼ig j fsj1 ,sqg) (21)

where

T̃2 = fsq 2 T0 j cq · (CT¡ cj1 )g¡fsj1g:

Assuming set T̃p is nonempty, the next sensor is

selected in the same way as the second sensor:

sjp = argmax
sq2T̃p

IG(f¼ig j fsj1 ,sj2 , : : : ,sjp¡1 ,sqg), (22)

where

T̃p = fsq 2 T0 j cq · (CT¡
p¡1X
a=1

cja)g¡fsj1 ,sj2 , : : : ,sjp¡1g:

Similar to the previous algorithm a threshold N is used

to limit the maximum number of sensors in Sc(k), i.e.,
such that jSc(k)j<N.
REMARK 2: If IG(f¼ig j fsj1 ,sj2 : : : ,sjp¡1g) = IG(f¼ig j
fsj1 ,sj2 : : : ,sjpg), which means that the information gain
does not increase by adding more sensors, no more sen-

sors will be added.

REMARK 3: It should be noted that the set T0 can be

replaced by set T1 before correlative selection.

A summary of the proposed fault diagnosis based
on correlative search is in Algorithm 3. An example of

selecting the set Sc(k) is shown in Fig. 3.

ALGORITHM 3 Correlative Search–CS(N)

1) If the prior probability is uniform, select the combi-
nation of sensors chosen off-line as Sc(1). Otherwise,

go to the next step.

2) After getting T0(k) by using information states

f¼i(k)g, select the first sensor sj1 using (20).
3) Repeat: select pth sensor sjp using (22) until one of

the following is satisfied:

² p reaches N
² there are no more sensors to add.
² the information gain between information states
and sensors is not increased by adding another

(any other) sensor.

4) Set S = T̃p and select Sc(k) based on (13).

5) Obtain the sensor outcomes of Sc(k) and update
information states using (5) and obtain information

states f¼(k+1)g by applying the pruning rule in (8).
6) Repeat steps 2)—5) until the stopping rule (7) is

satisfied.

4. SIMULATION RESULTS

In this section the performance of the proposed

methods are analyzed through simulations. The follow-

ing three algorithms are considered in the simulations.
² ExS(N) for N = 1 and 2.
² ES(L,M,N) for (L,M,N) = (20,10,4) and (50,30,2).
² CS(N) for N = 2, 3 and 4.
4.1. Randomly generated R matrix

We have generated two different R matrices each
with 100 rows and 70 columns, i.e., there are 100 pos-

sible faults and 70 sensors monitoring those faults in

the simulated system. Each element of the first R ma-
trix, denoted R2, is generated as Bernoulli with success

probability 0.2. In a similar fashion each element of the

second R matrix, denoted as R8, used success probabil-
ity 0.8. The cost of the test by each sensor is assigned

randomly following a uniform distribution between 0.5

and 1. The maximum cost allowed to be spent at each

stage is 3. The stopping rule is defined using a level of
uncertainty ®= 0:99 and the pruning criterion is defined

with threshold ¯ = 0:005.
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Now, we define some performance metrics in order

to compare various algorithms. The average number of

stages k̄ of a certain algorithm is obtained by repeating

the algorithm over several Monte-Carlo runs and aver-

aging the number of stages it took each time to locate

the fault, i.e.,

k̄ =
1

Nm

NmX
r=1

kr (23)

where kr is the number of stages it took to locate the

fault at the rth run and Nm is the number of Monte-Carlo

runs. In all the simulations Nm = 1000 Monte-Carlo runs

are used.

Figure 4 shows the average number of stages k̄ of

all the algorithms as the probability of detection Pd
increases from 0.8 to 1. In particular, Fig. 4(a) shows

the comparison of k̄ vs. Pd of ExS and ES on different

R matrices. The same is shown in Fig. 4(b) for ExS and

CS. The summary of Fig. 4–comparison of all three

algorithms–is shown in Fig. 4(c) which shows that the

exhaustive search (ES) algorithm performs as well as

the exhaustive search ExS(2), whereas the correlative

search CS(N) outperforms the exhaustive search ExS(2)

with increasing N.

Figure 5 repeats the simulation analysis shown in

Fig. 4 for various false alarm rates while fixing Pd
at 0.99. Similar conclusion is arrived from Fig. 5 as

well, where it can be noticed in the summary Fig. 5(c)

that the ES algorithms outperform ExS(1), and perform

essentially as well as ExS(2). On the other hand, CS(N)

outperforms the others with increasing N.

4.2. Real System

Our algorithms are applied to a real system, the so-

called “Documatch,” which is an R-matrix representa-

tion of the Pitney Bowes Integrated Mail System that

takes an original document from a Microsoft Windows

based personal computer and turns it into a finished and

properly-addressed mail item in a sealed envelope (see,

for example, [6]). The R matrix of this system, denoted

hereafter as Rd, has 258 components and 179 sensors.

First, let us compare the simulated R matrices used

in earlier simulations and the Rd of the Documatch

system. Out of the simulated R matrices used in this

section, we select R2 for comparison with Rd. For each

of these matrices we counted the number of components

monitored by each sensor and the number of sensors

monitoring each component. The result is summarized

in Fig. 6.

The performance comparison of all three algorithms

in terms of k̄ vs. Pd is shown in Fig. 7. Due to the size

of the Rd matrix, the exhaustive search is performed

only for N = 1, i.e., we do not have ExS(2) in the

simulations because of the time required to complete the

simulation. The figure confirms the earlier conclusions

arrived through the simulated R matrices.

Fig. 4. Comparison of algorithms, in terms of the average number

of stages k̄ vs. probability of detection Pd . The false alarm rate is

fixed at Pf = 0:01 in all the figures. (a) Comparison of ExS and ES

on matrices R2 and R8. (b) Comparison of ExS and CS on matrices

R2 and R8. (c) Comparison of all algorithms, ExS, ES and CS, on

matrix R2.
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4.3. Computational complexity analysis

The computational cost arises mainly based on how

many combinations of sensors there are, i.e., the size

of the candidate set for calculation of information

gain. For example, if the system has 100 sensors, with

the exhaustive search in ExS(2), we need to calcu-

late information gain for
P2
p=1 100!=((100¡p)!p!) =

5050 combinations of sensors at each stage, as 2 sen-

sors are allowed to be tested at each stage and all

possible combinations of two sensors can be used to

test in the respect of the limit of cost. It means that

S̃c(k) 2 fall possible combinations of two sensorsg and
jfS̃c(k)gj= 5050. If it takes 2 stages to isolate the faulty
element, i.e. kr = 2 for a particular run r, the total num-

ber of combinations (i.e. nt :=
Pkr
k=1 jfS̃c(k)gj) is 10100.

Let us consider another example: Assume that only

one sensor is allowed to test at each stage and it takes

110 stages to isolate the faulty component; in this case

nt = 11000. It should be noted that, in a real situa-

tion, due to pruning the number of these combinations

jfS̃c(k)gj varies for each stage. In summary, nt is the ac-
cumulated size of candidate set of Sc(k) over all stages

until the faulty component is isolated for a particular

run. The average of nrt is defined as Nt, where

Nt =
1

Nm

NtX
r=1

nrt , (24)

in which

nrt =

krX
k=1

jfS̃rc(k)gj: (25)

The comparison of all the algorithms in terms of Nt
vs. Pd is shown in Fig. 8. It shows that CS(N) requires

much reduced computation compared to ExS(2) for

N = 2,3, and 4. Further it must be emphasized that Nt
reduces with increasing N for CS whereas Nt increases

with increasing N for ExS(N). At this point it must be

re-emphasized that the CS(N) algorithm also reduces

the average number of iterations required to isolate the

faulty element with increasing number of N (see Figs. 4

and 5) so that Nt (or computations) is reduced even with

increasing N. Fig. 9 shows the comparison of all the

algorithms in terms of Nt vs. Pf for fixed Pd: It shows

that CS(N) requires a similar amount of–and at times

lower–computation compared to ExS(1).

The comparison of Nt for the Documatch system is

shown in Fig. 10. Due to the size of the system the com-

putational complexity of ExS(2) was not computed. The

figure confirms the results of the experiments performed

on the R2 and R8 matrices. It confirms that CS(N) re-

quires slightly less computation with increasing N than

ExS(1), especially with higher probability of detection

Pd and lower false alarm rate Pf .

5. CONCLUSIONS

Two algorithms for single fault diagnosis under

communication constraints are presented. Both of the al-

Fig. 5. Comparison of algorithms, in terms of the average number

of stages k̄ vs. probability of false-alarm Pf . The probability of

detection is fixed at Pd = 0:99 in all the figures. (a) Comparison of

ExS and ES on matrices R2 and R8. (b) Comparison of ExS and CS

on matrices R2 and R8. (c) Comparison of all algorithms, ExS, ES

and CS, on matrix R2.
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Fig. 6. Summary of comparisons: Simulated R2 matrix vs. practical Documatch Rd matrix. (a) Simulated R2 matrix. (b) Simulated R2
matrix. (c) Documatch Rd matrix. (d) Documatch Rd matrix.

gorithms are concerned with the selection of (possibly)

several sensors at a time in order to reduce the number

of iterations/communication. The algorithms differ in

their approach in selecting multiple sensors that maxi-

mize the information gain. The first algorithm, termed

the exhaustive search (ES) method, introduces several

thresholds in order to eliminate sensors that are less in-

formative, so that fewer sensors form the candidate set

for the maximization of information gain. The second

approach, referred to as correlative search (CS), selects

the candidate set one-by-one based on the correlation

between the information state and the elements of the

reachability matrix. Both of the proposed approaches

demonstrate their ability to reduce the number of itera-

tions in fault diagnosis.

APPENDIX

Given a subset Sc of S, õt denotes a vector of

outcomes of the sensors in a set Sc, and the set Õ = fõtg

Fig. 7. Comparison of all algorithms in terms of k̄ vs. Pd on

Documatch system for Pf = 0:01.

TESTING UNDER COMMUNICATION CONSTRAINTS 151



Fig. 8. Comparison of all algorithms on R2 for varying Pd with

Pf = 0:01. (a) Comparison of Nt for various algorithms. (b) Closer

view of the bottom portion of Fig. 8(a) above.

consists of all possible vector which can be generated

by the sensors. And J is the set of the indices of sensors

in the set Sc. The information gain is defined with

information state as

IG(f¼i(k)g,S(k)) =H(f¼i(k)g)¡H(f¼i(k)g j Sc(k))
(26)

where

H(f¼i(k)g) =¡
X
i

¼i(k) log¼i(k): (27)

The following is obtained:

IG(f¼i(k)g,Sc(k))

=¡
X
i

¼i(k) log¼i(k)

+
X
õt2Õ

mX
i=0

¼i(k)
Y
j2J
(õt(j)di,j +(1¡ õt(j))(1¡ di,j))

Fig. 9. Comparison of all algorithms on R2 for varying Pf with

Pd = 0:99. (a) Comparison of Nt for various algorithms. (b) Closer

view of the bottom portion of Fig. 9(a) above.

£ log
(
¼i(k)

Y
q2J
(õt(q)di,q+(1¡ õt(q))(1¡ di,q))

)

¡
X
õt2Õ

mX
i=0

¼i(k)
Y
j2J
(õt(j)di,j +(1¡ õt(j))(1¡ di,j))

£ log
(

mX
p=0

Y
q2J
¼i(k)(õt(q)dp,q+(1¡ õt(q))(1¡ dp,q))

)
:

(28)

PROOF The conditional entropy of information state is

described by

H(f¼i(k)g j Sc) =H(f¼i(k)g j Sc,Ik¡1) (29)

=
X
õt2Õ

Prob(õt j Ik¡1)H(f¼i(k)g j õt,Ik¡1):

(30)
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The entropy H(f¼i(k)g j õt,Ik¡1) is given as
H(f¼i(k)g j õt,Ik¡1)

=¡
mX
i=0

Prob(¼i(k) j õt,Ik¡1) log(Prob(¼i(k) j õt,Ik¡1))

=¡
mX
i=0

¼i(k)

Prob(õt j Ik)
Y
j2J
(õt(j)di,j +(1¡ õt(j))(1¡ di,j))

£ log
(

¼i(k)

Prob(õt j Ik)
Y
j2J
(õt(j)dij +(1¡ õt(j))(1¡ dij))

)
(31)

where

Prob(¼i(k) j õt,Ik¡1)

= Prob(õt j ¼i(k),Ik¡1)
Prob(¼i(k) j Ik¡1)
Prob(õt j Ik¡1)

=
¼i(k)

Prob(õt j Ik¡1)
Y
j2J
(õt(j)dij +(1¡ õt(j))(1¡ dij))

(32)
and

Prob(õt j Ik¡1)

=

mX
i=0

Y
j2J
Prob(õt(j) j xi = 1,Ik¡1)Prob(xi = 1 j Ik¡1)

=

mX
i=0

Y
j2J
¼i(k)(õt(j)dij +(1¡ õt(j))(1¡ dij)): (33)

Thus,

H(f¼i(k)g j Sc)

=
X
õt2Õ

Prob(õt j Ik¡1)H(f¼i(k)g j õt,Ik¡1)

=¡
X
õt2Õ

mX
i=0

¼i(k)
Y
j2J
(õt(j)di,j +(1¡ õt(j))(1¡ di,j))

£ log
(
¼i(k)

Y
j2J
(õt(j)di,j +(1¡ õt(j))(1¡ di,j))

)

+
X
õt2Õ

mX
i=0

¼i(k)
Y
j2J
(õt(j)di,j +(1¡ õt(j))(1¡ di,j))

£ log
(

mX
p=0

Y
q2J
¼i(k)(õt(q)dp,q+(1¡ õt(q))(1¡ dp,q))

)
(34)

and hence the information gain is as in (28).
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