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Probability generating functionals (PGFLs) for finite point pro-

cesses are used to derive the probability hypothesis density (PHD)

filter and intensity filter (iFilter) for multitarget tracking. Present-

ing them in a common PGFL framework makes manifest their sim-

ilarities and differences. A significant difference is their measure-

ment model–the PHD filter uses an exogenous clutter model and

the iFilter uses an endogenous scattering model.
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1. INTRODUCTION

Many radar and sonar sensor systems generate sev-

eral point measurements at every scan. Some measure-

ments are due to targets and others are due to clutter,

or scatterers, in the sensor field of view. The multi-

target tracking problem is to estimate the number of

targets and their states given the measurements. The

multi-hypothesis tracking (MHT) method for solving

this problem is based on two widely accepted assump-

tions: 1) targets are points; and 2) sensors generate at

most one measurement per target per scan. The sec-

ond is called the “at most one measurement per target”

rule. It is the cause of the intrinsically high computa-

tional complexity of optimal MHT algorithms and, con-

sequently, the reason so many diverse kinds of alterna-

tive suboptimal algorithms are widely studied.

This paper concerns the class of multitarget tracking

filters based on finite point process models for multiple

target states and sensor measurement sets. Two specific

kinds of filters are discussed–the PHD (probability hy-

pothesis density) filter and the iFilter (intensity filter).

Many of the differences between these filters are due to

the different models of the measurement set. Contrast-

ing these two filters in this way has the added benefit

of revealing the fundamental importance of the classical

methods of finite point processes for tracking applica-

tions.

Section 2 provides background on finite point pro-

cesses and reviews their application to multitarget track-

ing filters. The next two sections are largely didactic.

Section 3 defines the probability generating functional

(PGFL) of a single point process. Basic results related

to the PGFL are derived there. PGFLs play a central

role–they characterize the probability structures under-

pinning the filters. Section 4 defines the bivariate PGFL

of two finite point processes. The general Bayes poste-

rior point process is defined, and its PGFL is derived

from the bivariate PGFL.

Section 5 derives the PHD filter and iFilter as exam-

ples of the general Bayes posterior point process. The

PHD filter uses a traditional clutter model, while the

iFilter uses a scattering model. These modeling differ-

ences manifest themselves in the PGFLs of the filters,

thus exposing the similarities and differences between

them. Conclusions and concluding remarks are given in

Section 6.

2. BACKGROUND

PGFLs for finite point processes were introduced

in 1962 by Moyal [11]. In this seminal paper, Moyal

noted the connection between PGFLs and probability

generating functions (PGFs) of discrete random vari-

ables. He defined functional derivatives of the PGFL

and used them (see (15) below) to prove that the PGFL

characterizes the point process. He defined the factorial

moments using PGFLs. Moyal applied his functional

JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 8, NO. 2 DECEMBER 2013 119



calculus to stochastic population processes, establish-

ing the connection to the classical theory of branching

processes (see [1] for more background). Moyal inves-

tigated cluster processes and multiplicative processes,

which are processes whose PGFL factors as in (42) be-

low. He also studied time-dependent Markovian multi-

plicative population processes.

Branching processes and point process theory were

studied extensively by Harris in 1963 [6]. According to

the authoritative text by Daley and Vere-Jones [5, p. 1],

point process theory “reached a definitive form in the

now classic treatments by Moyal (1962) and Harris

(1963).”

Mahler applied PGFLs to multitarget tracking prob-

lems in a series of papers; see [9] and [10] and the ref-

erences therein. In this corpus he uses the FISST (finite

set statistics) calculus to derive the PHD filter. He in-

troduced random finite set (RFS) models for multitarget

state, as well as the idea of recursively approximating

the Bayes posterior process by a Poisson point process

(PPP). The term PHD was coined by Stein and Win-

ter [14], who viewed the process of evidence accrual

as additive, as opposed to multiplicative. The reformu-

lation of the PHD using random finite sets is due to

Mahler [8]. The PGFL of the Bayes posterior finite point

process takes an attractive form (see (28) below). The

same form was derived for the PHD tracking filter in

[10, Sec. 14.8.2]; however, that result is specific to the

tracking application.

An exact expression is given for the probability gen-

erating function (PGF) of the distribution of the number

of points in the Bayes posterior process before the PPP

approximation of the multitarget state. The result is a

straightforward consequence of the connection between

the PGF and the PGFL of the posterior process, but

nonetheless it may be new. These discrete distributions

provide insight into the nature of the exogenous and

endogenous measurement models, as well as the PPP

approximation to multitarget state.

The distinction drawn between exogenous and en-

dogenous measurement models is perhaps new, but the

use of the augmented state space, denoted below by S+,

in tracking applications dates to at least 1986 (see [7]).

(More general augmented state spaces are used by Chen,

et al. [3] for dynamic clutter modeling.) The iFilter was

derived by Streit and Stone [15] using a direct enumer-

ation of measurements to targets that avoids PGFLs.

Their Bayesian method is based on well-known prop-

erties of PPPs [16]. The PGFL derivation of the iFilter

presented in this paper is new. The iFilter was first re-

ferred to by that name in 2010.

The relationship between medical imaging algo-

rithms and the PHD and iFilter was first discussed

in [17]. The similarity between them and the famous

Shepp-Vardi algorithm (1982) for positron emission to-

mography (PET) is remarkable. The relationship arises

because PET uses PPP models for the image–the spa-

tial distribution of a radioisotope, i.e., the intensity func-

tion of radioisotope decays. The connection to the clas-

sic Richardson-Lucy (1972/1974) algorithm for image

restoration problems is also pointed out in [16].

3. PROBABILITY GENERATING FUNCTIONALS

The event space E(S) of the finite point process
¥ is the set of all ordered pairs of the form » =

(n,fs1, : : : ,sng), si 2 S. For n= 0, the event is (0,Ø). For
n¸ 1 the event corresponds to n! equally likely, ordered
events of the form (n,s¾(1), : : : ,s¾(n)), ¾ 2 Sym(n), where
Sym(n) denotes the set of all permutations of the first n

positive integers. The space S can be very general, but

is typically a specified subset of Rd, d ¸ 1. In physics,
n is called the canonical number, the collection En(S)
of all subsets of S with n points is the nth canonical

ensemble, and the space E(S) is the grand canonical
ensemble.

A functional is, in general, merely a name for an

operator whose input is a function and output is a (real

or complex) number. For example, definite integrals are

functionals. PGFLs for general finite point processes

were defined by Moyal [11, Sec. 4] as a generalization

of PGFs for multivariate discrete random variables. He

showed that PGFLs characterize the point process via

its functional derivatives. The results presented in this

section are due to Moyal. The presentation here is

didactic in style and intended to be widely accessible.

3.1. Definition of the PGFL

Let ¥ be a random variable with outcomes » 2 E(S).
Define ¥ = (N,X), where N is the canonical number

and X is the set of points in the random canonical

ensemble EN(S). The PGFL of ¥ is defined for real-

valued functions h on the state space S as

G¥ [h] =

1X
n=0

p¥N(n)

Z
Sn

Ã
nY
i=1

h(si)

!
p¥XjN(s1, : : : ,sn j n)ds1 ¢ ¢ ¢dsn

(1)

where p¥N(n) is the distribution (probability mass func-

tion or discrete pdf) of N, and p¥XjN(s1, : : : ,sn j n) is the
pdf of the points (s1, : : : ,sn) conditioned on N = n. For

n= 0, p¥XjN(¢ j n) = 1 and
Qn
i=1h(si) is defined to be one.

Simply put, the PGFL is the expectation of the ran-

dom product
QN
i=1 h(si). The PGFL is evaluated only

for functions h such that the integrals and the sum in

are absolutely convergent. It is sufficient [11] to require

that jh(s)j · 1 for s 2 S. No physical units are associated
with the values of h(s), so the integrals in (1) are unitless

and the sum is dimensionally consistent.

A finite point process ¥ is a PPP if the canon-

ical number N is Poisson distributed with mean ¹=
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R
S
f¥(s)ds <1, where f¥(s)¸ 0 is the intensity func-

tion, and points are independently and identically dis-

tributed in S with pdf f¥(s)=¹. Thus, p¥N(n) = e
¡¹¹n=n!

and p¥XjN(s1, : : : ,sn j n) = ¹¡n
Qn
i=1f

¥(si). Direct calcula-

tion shows that

G¥[h] = exp

·
¡
Z
S

f¥(s)ds+

Z
S

h(s)f¥(s)ds

¸
: (2)

The PGFL (2) is log-linear, that is, log(G¥[h]=G¥[0])

is linear in h. For further discussion of PPPs and their

applications, see [16].

3.2. Functional Derivatives of the PGFL

The finite set statistics (FISST) calculus concerns

functional differentiation of PGFLs, where functional

differentiation has exactly the same meaning as in the

Calculus of Variations. The functional derivative of

G¥[h] with respect to the variation w is defined by

@G¥

@w
[h] = lim

"!0+
d

d"
G¥[h+ "w]

= lim
"!0+

G¥[h+ "w]¡G¥[h]
"

: (3)

Here, w is a bounded real-valued function on S. (It will

be specified shortly.) From (1),

G¥[h+ "w] =

1X
n=0

p¥N(n)

Z
Sn

nY
i=1

[h(si) + "w(si)]

£p¥XjN(s1, : : : ,sn j n)ds1 ¢ ¢ ¢dsn: (4)

Moyal [11, Sec. 4] proves that (4) is an analytic func-

tion of " in some open region of the complex plane

containing the origin. Using (3) gives, since analyticity

in " justifies interchanging the sum and the derivative,

@G¥

@w
[h] =

1X
n=1

p¥N(n)

nX
k=1

Z
Sn
w(sk)

nY
i=1,i 6=k

h(si)

£p¥XjN(s1, : : : ,sn j n)ds1 ¢ ¢ ¢dsn: (5)

The outermost sum starts at n= 1 because the derivative

with respect to " of the n= 0 term is zero. The inner-

most sum over i 6= k arises from the product rule for or-
dinary differentiation. The Dirac delta function ±x(s)´
±(s¡ x) is called an “impulse (point mass) at s= x 2 S.”
Specifying the variation to be w(s) = ±x(s) gives the

functional derivative

@G¥

@x
[h]´ @G

¥

@±x
[h] =

@G¥

@w
[h]

¯̄̄̄
w(¢)=±x(¢)

=

1X
n=1

p¥N(n)

nX
k=1

Z
Sn
±x(sk)

nY
i=1,i 6=k

h(si)

£p¥XjN(s1, : : : ,sn j n)ds1 ¢ ¢ ¢dsn: (6)

(Alternatively, specifying the variation to be a function

in a test sequence for the delta function and taking the

limit gives the same result.) Using the sampling property

of the Dirac delta function, the argument symmetries of

p¥XjN(¢), and relabeling arguments appropriately gives

@G¥

@x
[h] =

1X
n=1

p¥N(n)n

Z
Sn¡1

nY
i=2

h(si)

£p¥XjN(x,s2, : : : ,sn j n)ds2 ¢ ¢ ¢dsn (7)

where the product in (7) is taken equal to one for

n= 1. The integrals are over Sn¡1, not Sn. Note that
the derivative is a functional.

It is important to keep in mind that taking the

variation w to be equal to the Dirac delta function ±x
makes the derivative @G¥[h]=@x depend on the point x

even though G¥[h] itself does not. For this reason, the

functional derivative (7) is referred to in this paper as

the derivative with respect to an impulse at x, not simply

as the derivative with respect to x.

Derivatives of the PGFL with respect to any finite

number of distinct impulses extract, or decode, the pdf

of ¥ from its PGFL. To find the functional derivative

with respect to x2 6= x1, start with (7) by replacing x with
x1 and h with h+ "w. This gives

@G¥

@x1
[h+ "w] =

1X
n=1

p¥N(n)n

Z
Sn¡1

nY
i=2

[h(si) + "w(si)]

£p¥XjN(x1,s2, : : : ,sn j n)ds2 ¢ ¢ ¢dsn:
(8)

Differentiating with respect to " and setting "= 0 gives

@

@w

μ
@G¥

@x1
[h]

¶
=

1X
n=2

p¥N(n)n

nX
k=2

Z
Sn¡1

w(sk)

nY
i=2,i 6=k

h(si)

£p¥XjN(x1,s2, : : : ,sn j n)ds2 ¢ ¢ ¢dsn:
(9)

Substituting the variation w(s) = ±x2 (s), where x2 6= x1,
and using symmetry properties of p¥XjN(¢) gives the
functional derivative,

@2G¥

@x2@x1
[h] =

1X
n=2

p¥N(n)n(n¡ 1)
Z
Sn¡2

nY
i=3

h(si)

£p¥XjN(x1,x2,s3, : : : ,sn j n)ds3 ¢ ¢ ¢dsn
(10)

where, for n= 2, the product is equal to one. The

integrals are now over Sn¡2.
Functional derivatives of the PGFL with respect

to the variations w1, : : : ,wn are defined recursively as
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above, or equivalently as

@nG¥

@w1 ¢ ¢ ¢@wn
[h] =

@nG¥

@"1 ¢ ¢ ¢@"n

24h+ nX
j=1

"jwj

35
"1=¢¢¢="n=0

:

(11)

The functional derivative with respect to impulses at

distinct points x1, : : : ,xn is

@nG¥

@x1 ¢ ¢ ¢@xn
[h]´ @nG¥

@w1 ¢ ¢ ¢@wn
[h]

¯̄̄̄
w1=±x1 ,:::,wn=±xn

=

1X
k=n

p¥N(k)k(k¡ 1) ¢ ¢ ¢ (k¡ n+1)

£
Z
Sk¡n

Ã
kY

i=n+1

h(si)

!
£p¥XjN(x1, : : : ,xn,sn+1, : : : ,sk j k)dsn+1 ¢ ¢ ¢dsk

(12)

where for k = n the product is equal to one. The or-

der of differentiation is immaterial. For convenience, the

derivative for n= 0 is defined to be G¥[h]. The deriva-

tive (12) is first order with respect to the distinct points

x1, : : : ,xn.

3.3. Event Likelihood

Evaluating (7) and (10) for h(¢)´ 0 gives, respec-
tively,

@G¥

@x
[0] = p¥N(1)p

¥
XjN(x jN = 1) (13)

and

@2G¥

@x1@x2
[0] =

@2G¥

@x2@x1
[0] = 2!p¥N(2)p

¥
XjN(x1,x2 jN = 2):

(14)

In words, the derivative evaluated at h´ 0 is the pdf
of the event » = (1,fxg), and the derivative with respect
to impulses at x1 and x2 is the pdf of the event » =

(2,fx1,x2g) or, equivalently, 2! times the pdf of the
ordered event (2,x1,x2). From (12), for n¸ 1 distinct
impulses,

@nG¥

@x1 ¢ ¢ ¢@xn
[0] = n!p¥N(n)p

¥
XjN(x1, : : : ,xn j n)

= n!p¥(n,x1, : : : ,xn)

= p¥(n,fx1, : : : ,xng) (15)

where p¥(n,fx1, : : : ,xng) is the pdf of ¥ for unordered

events and p¥(n,x1, : : : ,xn) is pdf for the corresponding

ordered event.

The derivatives (15) show that a finite point process

is characterized by its PGFL. This fact is important

because it means that a finite point process can be

defined by deriving its PGFL.

3.4. Factorial Moments

The first moment of ¥ is the special case of (7) with

h(s)´ 1:

m¥[1](x) =
@G¥

@x
[1]

=

1X
n=1

np¥N(n)

Z
Sn¡1

p¥XjN(x,s2, : : : ,sn j n)ds2 ¢ ¢ ¢dsn:

(16)

For PPPs it is straightforward to verify from the PGFL

(2) that the intensity function f¥(x) is identical to the

first moment, i.e., f¥(x) =m¥[1](x). For this reason the

first moment of a finite point process is often called the

intensity function.

Substituting h(s)´ 1 into (12) gives the nth factorial
moment,

m¥[n](x1, : : : ,xn)

´ @nG¥

@x1 ¢ ¢ ¢@xn
[1]

=

1X
k=n

p¥N(k)k(k¡ 1) ¢ ¢ ¢ (k¡ n+1)

£
Z
Sk¡n

p¥XjN(x1, : : : ,xn,sn+1, : : : ,sk j k)dsn+1 ¢ ¢ ¢dsk

(17)

where for k = n the conditional pdf is p¥XjN(x1, : : : ,xn j n).
Factorial moments can be interpreted as multi-point in-

tensity functions (when points are distinct with prob-

ability one). To see this, note that (17) can be written

intuitively as [4, eq. (5.4.12)]

m¥[n](x1, : : : ,xn)dx1 ¢ ¢ ¢dxn

= Pr

24 exactly one point of the process islocated in each infinitesimal subset

[xi,xi+ dxi), i= 1, : : : ,n

35 :
(18)

For n= 1 and n= 2, for distinct points x,y 2 S,
m¥[1](x)dx

= Pr[exactly one point in [x,x+dx)]

m¥[2](x,y)dxdy

= Pr[exactly one point in [x,x+dx)

and one point in [y,y+ dy)]:

(19)

For PPPs the second probability is the product of

m¥[1](x)dx and m¥[1](y)dy, a result that follows from
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well-known independence properties of PPPs. In gen-

eral, however, the second moment does not factor.

The application of factorial moments in tracking

applications is discussed in [2] but is outside the scope

of the present paper.

3.5. Probability Generating Function of Canonical
Number

The probability generating function (PGF) of N,

denoted by F¥(x), is determined by evaluating the PGFL

of ¥ for the constant function h(s)´ x. Substituting into
(1) gives

F¥(x)´G¥[h]jh(¢)´x ´G¥[x]

=

1X
n=0

p¥N(n)x
n: (20)

In the signal processing literature, F¥(z¡1) is called the
z-transform of the sequence of probabilities (p¥N(n) : n=

0,1, : : :). The probability p¥N(n) is

p¥N(n) =
1

n!

dnF¥

dxn
(0) (21)

where the nth derivative with respect to x is the ordinary

derivative evaluated at x= 0. The probability p¥N(n) is n!

times the integral of the ordered pdf p¥(n,x1,x2, : : : ,xn)

over all x1,x2, : : : ,xn. The first derivative of the PGF

evaluated at x= 1 is

dF¥

dx
(1) =

1X
n=0

p¥N(n)nx
n¡1
¯̄̄̄
¯
x=1

´ E¥[N] (22)

where E¥[N] is the expected number of points in a

realization of ¥.

4. BAYES POSTERIOR POINT PROCESS

In this section the conditional, or posterior, point

process § j¨ is defined using Bayes method in terms

of the bivariate process (¨ ,¥). The random variables

are finite point processes, but this does not alter the

Bayesian methodology. The PGFL of the Bayes poste-

rior process ¥ j¨ and two summary statistics, namely,

the intensity function and the distribution of the canoni-

cal number, are derived. Finally, Bayesian estimates are

defined using the posterior point process and a specified

loss function.

For tracking applications, ¨ is the observation space

and ¥ the multitarget state space. The points of a

realization ¨ = À are the measurements in a sensor scan.

The joint pdf of the measurement and target processes

is denoted by p¨¥(À,»), where ¥ = » is a realization

of the target process. The conditional pdf p¨ j¥(À j »)
is derived from physical models of the targets and the

sensor likelihood function p(y j s).

4.1. Bivariate PGFL

Let ¨ be a finite point process with events À =

(m,fy1, : : : ,ymg) 2 E(Y), where the space Y is in general
unrelated to the space S. Extending the definition of

the PGFL for ¥ to the joint process (¨ ,¥) with events

in the Cartesian product space E(Y)£E(S) gives the
bivariate PGFL as the expectation of the product of

random products
QM
i=1g(yi)

QN
j=1 h(sj), that is,

G¨¥[g,h] =

1X
m=0

1X
n=0

p¨¥MN(m,n)

£
Z
Ym

Z
Sn

Ã
mY
i=1

g(yi)

!0@ nY
j=1

h(sj)

1A
£p¨¥YXjMN(y1, : : : ,ym,s1, : : : ,sn jm,n)

£ dy1 ¢ ¢ ¢dymds1 ¢ ¢ ¢dsn (23)

where p¨¥MN(¢) and p¨¥YXjMN(¢) are the discrete and con-
tinuous pdfs associated with the joint process (¨ ,¥). If

m= 0 or n= 0 in (23), the corresponding product is de-

fined to be one. It is important to keep in mind that g(¢)
and h(¢) are functions defined on Y and S, respectively.
Marginalizing the bivariate point process over one

process yields the PGFL of other process. More for-

mally,

G¨¥[1,h] =G¥[h] and G¨¥[g,1] =G¨ [g]:

(24)

To obtain the first expression, substitute g(¢) = 1 in (23),
integrate over y1, : : : ,ym, and sum over m. The other

expression is obtained similarly.

4.2. PGFL of the Bayes Posterior Point Process

To write the PGFL of the Bayes posterior point

process, note that the derivative of (23) with respect to

impulses at the distinct points fy1, : : : ,ymg ½ Y evaluated
for g(¢) = 0 is

@mG¨¥

@y1 ¢ ¢ ¢@ym
[0,h]

=m!

1X
n=0

p¨¥MN(m,n)

Z
Sn

0@ nY
j=1

h(sj)

1A
£p¨¥YXjMN(y1, : : : ,ym,s1, : : : ,sn jm,n)ds1 ¢ ¢ ¢dsn:

(25)

Evaluating the derivative of G¨¥[g,1] =G¨ [g] with

respect to impulses at y1, : : : ,ym for g(¢) = 0 gives
@mG¨¥

@y1 ¢ ¢ ¢@ym
[0,1] =

@mG¨

@y1 ¢ ¢ ¢@ym
[0] =m!p¨MY(m,y1, : : : ,ym):

(26)
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Dividing (25) by (26) yields

@mG¨¥

@y1 ¢ ¢ ¢@ym
[0,h]

@mG¨¥

@y1 ¢ ¢ ¢@ym
[0,1]

=

1X
n=0

Z
Sn

0@ nY
j=1

h(sj)

1A
£ p

¨¥
MYNX(m,y1, : : : ,ym,n,s1, : : : ,sn)

p¨MY(m,y1, : : : ,ym)
ds1 ¢ ¢ ¢dsn

=

1X
n=0

Z
Sn

0@ nY
j=1

h(sj)

1A
£p¥j¨

NXjMY(n,s1, : : : ,sn jm,y1, : : : ,ym)ds1 ¢ ¢ ¢dsn:
(27)

Substituting the Bayes factorization

p
¥j¨
NXjMY(n,s1, : : : ,sn jm,y1, : : : ,ym)

= p
¥j¨
NjMY(n jm,y1, : : : ,ym)p¥j¨XjNMY(s1, : : : ,sn jm,y1, : : : ,ym)

into (27) and comparing the result with definition (1)

shows that the ratio is the PGFL of the Bayes posterior

process, that is,

G¥j¨ [h j y1, : : : ,ym] =
@mG¨¥

@y1 ¢ ¢ ¢@ym
[0,h]

@mG¨¥

@y1 ¢ ¢ ¢@ym
[0,1]

: (28)

The PGFL (28) is valid for general finite point pro-

cesses. The denominator of (28) is a constant that scales

the PGFL of the numerator.

The probability structure of the Bayes posterior pro-

cess is characterized by the functional derivatives of

(28) with respect to impulses at the distinct points

fx1, : : : ,xng ½ S. A specialized version of (28) for mul-

titarget tracking applications is derived in [10, p. 757],

where it is described as the PGFL “form of the multi-

target corrector.”

4.3. Summary Statistics of the Bayes Posterior Process

Since the event space E(S) is very large, it is useful
to provide summary statistics of the posterior process

¥ j¨ . Two statistics are of interest here. The first is the
intensity function f¥j¨ (x) of ¥ j¨ . It is found by the
evaluating at h(s) = 1 the functional derivative of (28)

with respect to an impulse at x 2 S:

f¥j¨ (x) =

@m+1G¨¥

@y1 ¢ ¢ ¢@ym@x
[0,1]

@mG¨¥

@y1 ¢ ¢ ¢@ym
[0,1]

, x 2 S: (29)

The expression (29) holds for general finite point pro-

cesses.

The other summary statistic is the distribution of

N¥j¨ , the canonical number of points in the Bayes
posterior process. The PGF of N¥j¨ is the PGFL (28)

evaluated for the constant function h(s) = x; that is,

F¥j¨ (x) =

@mG¨¥

@y1 ¢ ¢ ¢@ym
[0,h]

¯̄̄̄
h(¢)´x

@mG¨¥

@y1 ¢ ¢ ¢@ym
[0,1]

: (30)

The posterior pdf of the canonical number is, using (21),

p
¥j¨
N (n) =

1

n!

dn

dxn
F¥j¨ (0)

=

1

n!

dn

dxn

Ã
@mG¨¥

@y1 ¢ ¢ ¢@ym
[0,h]

¯̄̄̄
h(¢)´x

!
x=0

@mG¨¥

@y1 ¢ ¢ ¢@ym
[0,1]

:(31)

From (22), the expected number of targets is E[N¥j¨ ] =
(d=dx)F¥j¨ (1).

4.4. Bayesian and Pseudo-MAP Estimators

A Bayesian estimate of ¥ is determined using a

specified loss function L(³ j »). This function gives the
loss associated with choosing the estimate ³ 2 E(S) for
¥ when the true realization is » 2 E(S). The Bayes
loss of ³ is the expected loss, R(³)´ E[L(³ j »)], where
the expectation (see (1)) is with respect to the density

p¥j¨ (» j À) of the Bayes posterior process ¥ j¨ . The
Bayes estimate »̂Bayes 2 E(S) for ¥ minimizes the Bayes
loss:

»̂Bayes = argmin
³2E(S)

R(³): (32)

The Bayes estimate depends on the choice of the loss

function L(³ j »).
In many problems, L(³ j ») can be specified so that

the Bayes estimate reduces to the maximum a pos-

teriori (MAP) estimate, argmax» p
¥j¨ (» j À). However,

the MAP estimate is undefined for the posterior pdf

p¥j¨ (» j À). To see this, it is only necessary to observe
that p¥j¨ (»1 j À) and p¥j¨ (»2 j À) have different units
when the realizations »1 and »2 have different numbers

of points.

Pseudo-MAP estimates can be defined using the

posterior distribution of the canonical number and in-

tensity functions, or other summary statistics. The con-

sistency of such estimates must be verified on a case

by case basis. These topics are outside the scope of the

paper.

4.5. Branching Process Form of the Bivariate PGFL

The fundamental Bayesian paradigm of traditional

single target tracking is: The observation process is Y,

the object/target process is X, the conditional process

Y j X is the connection between them, and Bayes Theo-
rem is used to inference the Bayesian process X j Y. The
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same approach is adopted here, but with X replaced by

¥ and Y by ¨ . This changes the mathematical details,

but not the Bayesian paradigm.

Note that the Bayes posterior point process–its

pdf, intensity, and canonical distribution–were ob-

tained above without reference to the conditional mea-

surement point process ¨ j ¥. The conditional process
is fundamental to the traditional understanding of how

measurement processes are exploited to make inferences

about target processes. This section follows the tradi-

tional Bayesian paradigm, but uses point process mod-

els. The approach to Bayesian tracking problems using

point processes was first discussed in [9].

The bivariate PGFL is written in a branching pro-

cess form, that is, as the composition of two functionals.

This form lies at the root of many diverse applications,

including the tracking applications discussed in the suc-

ceeding sections of the paper. Population and branching

processes are an established part of the classic literature

of probability [1] and [6].

From Bayes theorem,

p¨¥MYNX(¢)´ p¥NX(¢)p¨ j¥MYjNX(¢) = p¥N(¢)p¥XjN(¢)p¨ j¥MYjNX(¢):
(33)

Substituting this into (23) and interchanging the order of

sums and integrals (justified by absolute convergence)

gives

G¨¥[g,h] =

1X
n=0

p¥N(n)

Z
Sn

Ã
nY
i=1

h(si)

!
G¨ j¥[g j s1, : : : ,sn]

£p¥XjN(s1, : : : ,sn j n)ds1 ¢ ¢ ¢dsn (34)

where

G¨ j¥[g j s1, : : : ,sn]

=

1X
m=0

Z
Ym

0@ mY
j=1

g(yi)

1A
£p¨ j¥

MYjNX(m,y1, : : : ,ym j n,s1, : : : ,sn)dy1 ¢ ¢ ¢dym
(35)

is the PGFL of the conditional process ¨ j ¥, as is seen
by using the Bayes factorization p

¨ j¥
MYjNX(¢) = p¨ j¥MjNX(¢)

p
¨ j¥
YjMNX(¢).
The pdf of the conditional process ¨ j ¥ is found by

functional differentiation (cf. (15)):

p¨ j¥(À j n,s1, : : : ,sn) =
@m

@y1 ¢ ¢ ¢@ym
G¨ j¥[0 j s1, : : : ,sn]

(36)

where À = (m,fy1, : : : ,ymg). Evaluating the functional
derivatives (36) reveals the detailed structure of the

likelihood function, including any enumerations that

are inherent in the conditional process ¨ j ¥. A target

tracking example is given in the Appendix.

The expression (34) simplifies greatly if the condi-

tional PGFL factors, that is, if it corresponds to the su-

perposition of conditionally independent measurement

processes. If it does, then

G¨ j¥[g j s1, : : : ,sn] =
nY
i=1

T[g j si] (37)

where T[g j s], s 2 S, is a specified functional. Substi-
tuting (37) into (34) gives the branching process form

of the bivariate PGFL:

G¨¥[g,h] =G¥[hT[g j ¢]] (38)

where G¥[h] denotes the PGFL of ¥. This is the branch-

ing process form of the PGFL. It is central to multitarget

tracking applications.

5. SINGLE SENSOR MULTITARGET TRACKING

As noted above, the PGFL characterizes the finite

point process. Therefore, in applications, the formula-

tion of the PGFL is of first importance. The filters in

this section and the next are derived directly from the

relevant PGFL.

The PGFL approach is applied to two measurement

models for multitarget tracking. Both models are consis-

tent with the “at most one measurement per target” rule.

The PHD filter uses an exogenous clutter model, that is,

clutter arises spontaneously in the sensor measurement

space and is superposed with the target measurement

processes. This is a natural model if the outputs of the

sensor signal processor are thresholded to produce point

measurements that are fed to a post-processor. It is a

standard model that is widely accepted in the tracking

literature. The exogenous clutter process is assumed to

be a PPP on S with intensity ¸(x), x 2 S.
In contrast, the iFilter uses an endogenous model in

which all measurements are attributed to scatterers in the

augmented target state space S+ ´ S [Á defined below
in Section 5.2. A target is a scatterer whose state is in

S, and a clutter measurement corresponds to a scatterer

whose state in S is unknown, i.e., it is '. This is a natural

model for sensor signal processors when distinctions

between scatterers are not drawn. It is relatively unused

in the tracking community. The different models lead to

remarkably similar filters.

The endogenous and exogenous models are mathe-

matically compatible; that is, they can be used together

in the same problem. What is mathematically possible,

however, must also be justified in the application. This

possibility is not explored further in this paper.

The PGFL of the superposition of mutually indepen-

dent finite point processes is the product of their PGFLs

(see [5, Prop. 9.4.1.IX]). This property makes the PGFL

useful in many problems involving enumeration, since

crucial questions often revolve around learning which

process gave rise to which point in a superposition of

points–this is the measurement to target assignment

problem.
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The target process ¥ is interpreted throughout the

paper as the point process that is predicted to the current

time from the previous time step. Prediction involves

independent thinning (see [16, Sec. 2.8]) and Markovian

target motion, neither of which alters the character of the

target process model–if the target process is a PPP at

the previous time step, the predicted process is a PPP.

The essential differences between the PHD filter and

the iFilter are due the different measurement models,

not the predicted target process.

For concreteness, denote the target process at the

previous time step by ¥¡. It is defined on S for exoge-
nous models and on S+ for endogenous models. For the

filters considered here, ¥¡ is assumed to be a PPP to
close the Bayesian recursion. Denote its intensity func-

tion by f¥
¡
(¢). Target motion from the previous time

step to the current one is assumed to be Markovian. For

exogenous models, denote the transition (motion) model

by F(x j x¡), x¡, x 2 S. Thus, R
S
F(x j x¡)dx= 1 for all

x¡ 2 S. Let d(x) denote the probability that a target at x
does not survive to the next time step, and let B(x) de-

note the intensity of a new target PPP at x in the current

time step. The predicted process ¥ is the process ¥¡

after it is thinned by d(x) and transformed by F(x j x¡),
and with new targets superimposed. The process ¥ is a

PPP on S, and its intensity is

f¥(x) = B(x)+

Z
S

F(x j x¡)(1¡ d(x¡))f¥¡(x¡)dx¡:

(39)

The result can be derived in several ways (see, e.g.,

[16]), but none are given here.

The motion model for endogenous models is de-

noted by ª (x j x¡), x¡,x 2 S+. Integrals over the aug-
mented space are defined as in (56) below. Thus,

1 =

Z
S+
ª(x j x¡)dx´ª(Á j x¡) +

Z
S

ª (x j x¡)dx

for all x¡ 2 S+. The survival probability d(x) is defined
for all x 2 S+. For convenience, d(x) is assumed to be
the same as for the exogenous model for x 2 S, but the
probability d(Á) is new and must be specified. After

thinning and transformation by ª(x j x¡), the predicted
process ¥ is a PPP on S+, and its intensity is

f¥(x) =

Z
S+

ª (x j x¡)(1¡ d(x¡))f¥¡ (x¡)dx¡

´ª(x j Á)(1¡ d(Á))f¥¡ (Á)

+

Z
S

ª(x j x¡)(1¡ d(x¡))f¥¡ (x¡)dx¡, x 2 S+:

(40)

This result can be derived in the same manner as (39).

The transition model ª (x j x¡) and intensity f¥¡(Á)
can be chosen to match (39) on the subspace S of

S+. To do this, let d(Á) = 0 and set f¥
¡
(Á) = ¹+¸,

where ¹=
R
S
B(x)dx and ¸=

R
Y
¸(y)dy, respectively, are

the expected numbers of new targets and clutter (see

Assumption 2 in Section 5.1 below) in the exogenous
model. The transition function ª on S+ is defined in
terms of the parameters of the exogenous model via the

partitioned matrix·
ª (x j x¡) ª (Á j x¡)
ª (x j Á) ª(Á j Á)

¸
=

·
F(x j x¡) 0

B(x)=(¹+¸) ¸=(¹+¸)

¸
for x,x¡ 2 S:

(41)

For these choices, and complementary ones for the

measurement likelihood function (see the paragraph
following (63) below), (40) reduces to (39) on S.

5.1. Exogenous Clutter–the PHD Filter

The set of target states and the set of sensor mea-

surements are modeled as finite point processes ¥ and
¨ with outcomes » 2 E(S) and À 2 E(Y), respectively,
where the target state space is S and sensor measure-
ment space is Y. The PGFL of ¨ j ¥ is obtained under
three assumptions:

1. The target process ¥ is a PPP on S with intensity
function f¥(s).
2. Conditioned on the event ¥ = » = (n,fs1, : : : ,sng),

the measurement process is the superposition of n mu-
tually independent, identical, target-originated measure-

ment processes and a PPP clutter process on Y with
intensity function ¸(y) that is independent of targets.
3. No target generates more than one measurement

in the space Y.

The exogenous clutter model is part of the second as-
sumption. The target-originated measurement processes

in the second assumption are finite point processes on
Y. It leads to the factorization (42) below. The third as-

sumption says that the target-originated processes have
at most one point.

Bivariate PGFL for the PHD Filter

Assumptions 1—3 lead directly to the factored form

(44) of the PGFL of the conditional process. The mea-
surement process ¨ is the superposition of a clut-
ter process ¨clutter and an unknown number of iden-

tical target-originated measurement processes ¨target.
Conditioned on ¥ = » = (n,fs1, : : : ,sng), there are N = n
target-originated measurement processes. These n pro-
cesses and the clutter process are conditionally indepen-
dent, so the PGFL of the conditional process¨ j ¥ is the
product of their individual PGFLs. Thus, for real-valued
functions g defined on Y,

G¨ j¥[g j s1, : : : ,sn] =G¨clutter [g]
nY
i=1

G¨target [g j si]

(42)

where the product is taken equal to one if n= 0.
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The form of G¨target [g j s] is derived from the assump-
tion that a target at s 2 S generates at most one mea-
surement. It is also assumed that a target at s is detected

with probability PD(s) and not detected with probability

1¡PD(s). Then, using (1) directly, the PGFL of target-
originated measurement is a two term sum,

G¨target [g j s] = 1¡PD(s) +PD(s)
Z
Y

g(y)p(y j s)dy
(43)

where p(y j s) is the (assumed known) sensor pdf of the
point measurement y 2 Y given a target at s 2 S. The
clutter PGFL is a PPP on Y with intensity function ¸(y),

so its PGFL is the same form as (2). The measurement

set is the superposition of independent processes, by

Assumption 2. Substituting (43) and the clutter PGFL

into (42) gives

G¨ j¥[g j s1, : : : ,sn]

= exp

·
¡
Z
Y

¸(y)dy+

Z
Y

g(y)¸(y)dy

¸

£
nY
i=1

μ
1¡PD(si)+PD(si)

Z
Y

g(y)p(y j si)dy
¶
:

(44)

In words, (44) says that the measurement set is the out-

come of an insertion/deletion process, or “indel” process

for short, because PPP clutter is randomly inserted and

target-originated measurements are randomly deleted.

Explicit expressions for the pdf of the conditional

process ¨ j ¥ are not needed. These expressions are,

however, very insightful because to write them down

is to enumerate the measurement to target assignments.

Examples are given in the Appendix.

Substituting (42) into (34) gives

G¨¥[g,h] =G¨clutter [g]

1X
n=0

p¥N(n)

Z
Sn

nY
i=1

¡
h(si)G

¨target [g j si]
¢

£p¥XjN(s1, : : : ,sn j n)ds1 ¢ ¢ ¢dsn: (45)

The sum-integral in (45) is equal to the PGFL of the tar-

get process ¥ evaluated at the function h(s)G¨target [g j s].
By assumption, the PGFL of ¥ is a PPP with in-

tensity f¥ and its PGFL is given by (2). Substitut-

ing h(s)G¨target [g j s] into (2), and then substituting the

PGFLs for target (43) and for PPP clutter, yields the

PGFL of the joint process:

G¨¥[g,h] = exp

·
¡
Z
Y

¸(y)dy+

Z
Y

g(y)¸(y)dy

¡
Z
S

f¥(s)ds+

Z
S

h(s)f¥(s)ds

¡
Z
S

h(s)PD(s)f¥(s)ds

+

Z
S

Z
Y

g(y)h(s)p(y j s)PD(s)f¥(s)dyds
¸
:

(46)

Except for clutter, this PGFL is a special case of the

general result (38).

First Summary Statistic–the Target Intensity Function

The intensity function of the Bayes posterior pro-

cess ¥ j¨ = À = (m,y1, : : : ,ym) is obtained by substitut-

ing the functional derivatives of (46) with respect to

impulses at the measurement points y1, : : : ,ym into (29).

The derivative of G¨¥[g,h] with respect to an impulse

at y1 2 Y is
@G¨¥

@y1
[g,h]

=G¨¥[g,h]

½
¸(y1) +

Z
S

h(s)p(y1 j s)PD(s)f¥ (s)ds
¾
:

(47)

The term in braces in (47) does not depend on g(y), so

its functional derivative with respect to an impulse at

y 6= y1 is zero. Thus, for distinct impulses at y1, : : : ,ym
in Y,

@mG¨¥

@y1 ¢ ¢ ¢@ym
[g,h] =

G¨¥[g,h]

mY
i=1

μ
¸(yi)+

Z
S

h(s)p(yi j s)PD(s)f¥(s)ds
¶
:

(48)

The functional derivative of (48) with respect to an

impulse at x 2 S is

@m+1G¨¥

@x@y1 ¢ ¢ ¢@ym
[g,h] =G¨¥[g,h]f¥(x)

μ
1¡PD(x) +PD(x)

Z
Y

g(y)p(y j x)dy
¶

£
mY
i=1

μ
¸(yi)+

Z
S

h(s)p(yi j s)PD(s)f¥(s)ds
¶

+G¨¥[g,h]PD(x)f¥(x)

mX
i=1

p(yi j x)
mY

k=1,k 6=i

μ
¸(yk)+

Z
S

h(s)p(yk j s)PD(s)f¥(s)ds
¶
: (49)
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Substituting g(y) = 0 and h(x) = 1 gives the uncondi-

tional pdf

p¨ (À) =
@mG¨¥

@y1 ¢ ¢ ¢@ym
[0,1]

=G¨¥[0,1]

mY
i=1

μ
¸(yi) +

Z
S

p(yi j s)PD(s)f¥ (s)ds
¶
(50)

and

@m+1G¨¥

@x@y1 ¢ ¢ ¢@ym
[0,1] =G¨¥ [0,1]f¥(x)

(
(1¡PD(x))

mY
i=1

μ
¸(yi) +

Z
S

p(yi j s)PD(s)f¥ (s)ds
¶

+PD(x)

mX
i=1

p(yi j x)
mY

k=1,k 6=i

μ
¸(yk) +

Z
S

p(yk j s)PD(s)f¥(s)ds
¶)

: (51)

Substituting (51) and (50) into (29) gives the intensity

function, that is, the PHD:

f
¥j¨
PHD(x) = f

¥(x)

"
1¡PD(x) +PD(x)

mX
i=1

p(yi j x)
¸(yi) +

R
S
p(yi j s)PD(s)f¥(s)ds

#
: (52)

The expected number of targets in S is

N̂PHD(S) =

Z
S

f
¥j¨
PHD(x)dx: (53)

The number N̂PHD(S) is an expectation over the grand

canonical ensemble and is typically not an integer.

Second Summary Statistic–Distribution of Target
Canonical Number

The Bayes posterior target process ¥ j (¨ = À) is a

PPP only for m= 0. This follows from the form of the

PGF of N¥j¨ ,

F
¥j¨
PHD(x) = exp

·
(x¡ 1)

Z
S

(1¡PD(s))f¥(s)ds
¸

£
mY
i=1

¸(yi)+ x
R
S
p(yi j s)PD(s)f¥(s)ds

¸(yi) +
R
S
p(yi j s)PD(s)f¥(s)ds

(54)

where the product is equal to one for m= 0. This

expression is obtained by substituting (48) into the

general result (30). The PGF (54) is the product of

two PGFs. One is the PGF of the number of clut-

ter points, which is Poisson distributed with meanR
S
(1¡PD(s))f¥(s)ds. The other is the PGF of the num-

ber of heads, i.e., targets detected, in a coin tossing ex-

periment. The experiment uses m non-identical coins,

each tossed only once, where the probability of a target

detection for the ith coin is

Pr[target detection j coin i]

=

R
S
p(yi j s)PD(s)f¥(s)ds

¸(yi) +
R
S
p(yi j s)PD(s)f¥(s)ds

: (55)

The distribution p
¥j¨
N (n) of canonical number is ob-

tained by differentiating F¥j¨ (x) with respect to x. The
mean number of targets is the sum of the means of the

factors in (54), and this is clearly identical to (53).

The PGF (54) of the Bayes canonical number distri-

bution is an immediate consequence of the connection

between PGFs and PGFLs. Nonetheless, it appears to

be new to the PHD literature.

The PHD filter approximates the Bayes posterior

process by a PPP with intensity (52). The PGF of

the Bayes posterior distribution of canonical number is

approximated by the Poisson distribution whose mean

is (53). The mean canonical numbers of the Bayes

posterior process and the PPP approximation are equal,

but the distributions are mismatched.

Post-processing decision procedures estimate the ac-

tual number of targets, decide which measurements cor-

respond to targets and which to clutter, and compute

point estimates and areas of uncertainty (AOUs) for

detected targets. The point estimates are interpreted as

pseudo-MAP estimates of target states, as discussed in

Section 3, and the AOUs are surrogates for error co-

variance matrices. These important topics are outside

the scope of the present paper.

5.2. Endogenous Scattering–the iFilter

An endogenous measurement model is a model of

the spatial distribution of scatterers. It makes no distinc-

tion between scatterers that are targets and those that

are clutter; such distinctions are relegated to a post-

processing classification decision procedure. The pre-

dicted target process ¥ is defined on S+, and its intensity

is given by (40).

To compare the endogenous measurement model to

the standard exogenous model, interpret a scatterer with

state s 2 S as a target in the same state. Scatterers whose
state is Á are clutter-generators in the exogenous model.

Because ¥ is a PPP on S+, more than one point in the

realization » = (n,fs1, : : : ,sng) can be equal to Á. Thus,
the model accommodates a variable number of clutter
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points by varying the number of scatterers with state Á.

Assumptions 1—3 above are modified as follows:

10. The scattering process ¥ is a PPP on S+ = S [Á
with intensity function f¥(s), s 2 S+, where the state Á
is assigned to scatterers whose state s 2 S is unknown.
20. Conditioned on the scattering event ¥ = » =

(n,fs1, : : : ,sng), the measurement process is the super-
position of n mutually independent identical scatterer-

originated measurement processes.

30. No scatterer generates more than one measure-
ment in the space Y.

The third assumption says that a scatterer-originated

process generates at most one measurement regardless

of the scatterer state. It leads to the two term expres-

sion (57) below. The scatterer-originated measurement

processes in the second assumption are finite point pro-

cesses on Y. It leads to the factorization (58) below.

Bivariate PGFL for the iFilter

The Markovian transition model that determines the

predicted intensity on S+ is an essential ingredient of the

ability of the iFilter to distinguish between scatterers in

state s 2 S and those in state Á. Transition models on
S+ incorporate within themselves models for initiation

and termination of tracks; however, the details are not

discussed in this paper to focus attention on the PGFL

aspects of the point process theory. It is also necessary

that the temporal stability of measurements from scatter-

ers in state s 2 S (i.e., the targets) be greater than that of
measurements from scatterers in state Á (i.e., the clutter).

This depends on the character of the data. For further

discussion of iFilters and an application to real data, see

[12] and [13].

The sensor likelihood function p(y j s), detection
probability PD(s), and intensity function f¥(s) are ex-

tended from S to S+. The density p(y j Á) is interpreted
as the pdf of y given that it arises from a scatterer with

state Á; the probability of detection PD(Á) is the proba-

bility that a scatterer with state Á generates a measure-

ment; and the intensity f¥(Á) is the expected number

of scatterers with state Á. The number f¥(Á) is dimen-

sionless. Integrals over S+ are defined for real-valued

functions h(s), s 2 S+, byZ
S+
h(s)ds´ h(Á) +

Z
S

h(s)ds: (56)

This definition is used in the PGFL. Functional deriva-

tives extend to the space S+ by defining the Dirac

delta function so that ±Á(Á) = 1 and ±x(Á) = ±Á(s) = 0 for

s,x 2 S. Repeated functional derivatives with respect to
impulses at Á are used to show that the PGFL charac-

terizes the point process; however, as will be seen, the

iFilter requires only one such derivative. Further details

are straightforward and are omitted.

Detected scatterers contribute measurements to the

measurement set, but undetected scatterers do not. The

PGFL of a scatterer is

G¨scatter [g j s] = 1¡PD(s)+PD(s)
Z
Y

g(y)p(y j s)dy,

s 2 S+ (57)

an expression identical to (43) except that it holds on

S+. The PGFL of the measurement set is, from the

conditional independence assumptions,

G¨ j¥[g j s1, : : : ,sn]

=

nY
i=1

μ
1¡PD(si) +PD(si)

Z
Y

g(y)p(y j si)dy
¶
:

(58)

A separate clutter model is not used because such points

are modeled as scatterers whose state is Á 2 S+. The
joint PGFL is obtained using the conditional process

(58) in the same manner as before (see (45)). The

result is

G¨¥[g,h] = exp

·
¡
Z
S+

f¥(s)ds+

Z
S+

h(s)f¥ (s)ds

¡
Z
S+

h(s)PD(s)f¥(s)ds

+

Z
S+

Z
Y

g(y)h(s)p(y j s)PD(s)f¥(s)dyds
¸
:

(59)

The PGFLs (59) and (46) fully characterize the similar-

ities and differences between the scattering and clutter

models, respectively.

First Summary Statistic–the Scatterer Intensity Function

The derivatives are

@mG¨¥

@y1 ¢ ¢ ¢@ym
[0,h]

=G¨¥[0,h]

mY
i=1

Z
S+
h(s)p(yi j s)PD(s)f¥(s)ds

(60)
and

@m+1G¨¥

@x@y1 ¢ ¢ ¢@ym
[0,h]

=G¨¥[0,h]f¥(x)(1¡PD(x))

£
mY
i=1

Z
S+
h(s)p(yi j s)PD(s)f¥(s)ds

+G¨¥[0,h]PD(x)f¥(x)

mX
i=1

p(yi j x)

£
mY

k=1,k 6=i

Z
S+
h(s)p(yk j s)PD(s)f¥(s)ds:

(61)
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The intensity function of the iFilter is the ratio of (61)

to (60) evaluated at h(s) = 1:

f
¥j¨
iFilter(x) = f

¥(x)

"
1¡PD(x)+PD(x)

mX
i=1

p(yi j x)R
S+
p(yi j s)PD(s)f¥(s)ds

#

= f¥(x)

"
1¡PD(x)+PD(x)

mX
i=1

p(yi j x)
ˆ̧ (yi)+

R
S
p(yi j s)PD(s)f¥(s)ds

#
(62)

where, for any y 2 Y,
ˆ̧ (y) = p(y j Á)PD(Á)f¥(Á) (63)

is the estimated measurement intensity at y 2 Y due to
scatterers with state Á. Since (62) holds for x 2 S+, the
updated intensity f

¥j¨
iFilter(Á) is (62) evaluated for x= Á.

The likelihood function can be chosen so that the

posterior intensity ˆ̧ (y) matches the specified exoge-

nous clutter intensity ¸(y). In addition to the parame-

ter choices made in (41), let the detection probability

be PD(Á) = 1 and define p(y j Á) = ¸(y)=¸. From (41),

the predicted intensity is f¥(Á) =ª (Á j Á)f¥¡(Á) = ¸,
so that ˆ̧ (y) = ¸(y).

Second Summary Statistic–the Scatterer Canonical
Distribution

The canonical number is the number of scatterers

in all of S+. Note that the count necessarily includes

scatterers with state Á. The PGF of the canonical number

is, using (60) and (30),

F
¥j¨
iFilter(x) = x

m exp

·
(x¡ 1)

Z
S+
(1¡PD(s))f¥(s)ds

¸
= xm exp

£
(x¡ 1)(1¡PD(Á))f¥(Á)¤

£ exp
·
(x¡ 1)

Z
S

(1¡PD(s))f¥(s)ds
¸
:

(64)

This PGF is the product of the PGFs of three mutu-

ally independent scattering processes. One is due to

the endogenous measurement model and generates ex-

actly m scatterers. The others are Poisson distributed

and correspond to scatterers in state Á and to scat-

terers with states in S, with expected canonical num-

bers (1¡PD(Á))f¥(Á) and R
S
(1¡PD(s))f¥(s)ds, re-

spectively. The latter PGF is the first factor in (54).

The expected number of scatterers in the Bayes

posterior process is

N̂iFilter(S
+) =

Z
S+
f
¥j¨
iFilter(x)dx= f

¥j¨
iFilter(Á)+ N̂iFilter(S)

(65)

where

N̂iFilter(S) =

Z
S

f
¥j¨
iFilter(x)dx (66)

is the expected number of scatterers with states in S. The

iFilter estimate (66) is similar to the PHD estimate (53).

The distribution of the number of scatterers in S (i.e.,

targets) is conditioned on the number of scatterers with

state Á. This topic is the subject of on-going work [2]

and is outside the scope of the present paper. Practical

experience to date [12, 13] shows that the iFilter has

excellent performance.

An alternative derivation of the iFilter can be based

on the PGFLs of the detected and undetected scatterer

processes. These processes are thinned versions of the

parent process ¥, where the thinning function is the

probability of detection PD(s). Under the PPP assump-

tion for ¥, they are also mutually independent, not con-

ditionally independent. The derivation is similar to the

one just given and is omitted.

6. CONCLUDING REMARKS

Finite point process models are excellent models for

sensor measurement sets in many traditional applica-

tions involving point targets whose measurements are

superimposed with clutter. In contrast, they are only

approximate models for multitarget state. Accepting the

point process model for the multitarget state as a given,

the PHD filter and iFilter are good applications of the

PGFL approach.

The PGFL approach is seen to provide a common

language to clarify the similarities and differences be-

tween the clutter and target models used in the PHD

filter and the iFilter. Approximations and other issues

seem to preclude using PGFLs directly as a basis for

comparing tracking performance. In any event, such

comparisons are outside the scope of the present paper.

Both the exogenous clutter model and the endoge-

nous scattering model lead to enumerations of measure-

ments to targets. Although the technical details differ

somewhat between the PHD filter and iFilter, manip-

ulating the required enumerations is facilitated by the

PGFL approach.

By-passing explicit enumerations in the Bayes pos-

terior process can sometimes obscure salient features

of the problem, features that can make direct meth-

ods worthwhile. For example, the iFilter is derived

in [15] for the scattering model by a direct Bayesian

method without resorting to the PGFL. This alternative
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derivation–not given here–illuminates several aspects

of the PGFL method and how it works.

Enumerations of measurement to target assignments

are encoded in the PGFL of the measurement-target

process. An excellent example is the way in which the

PGFL of the general Bayes posterior process is written

as a ratio of functional derivatives of the joint PGFL.

The functional derivatives of the PGFL of the Bayes

posterior process decode the probability structure. When

the functional derivatives are of high computational

complexity, the utility of the PGFL approach is severely

limited. Examples of this limitation–not discussed in

this paper–are extended targets and the target-centric

multisensor PHD filter and iFilter.

Finally, the PGFL approach may suggest alternative

problems of independent interest. One example is a

traffic process [18] that counts sensor target detections,

not the targets themselves. Its computational complexity

is linear in the number of sensors.

APPENDIX. ASSIGNMENT ENUMERATION IN THE
PHD FILTER

For n= 0, no targets are present and (44) reduces

to the PGFL of clutter. When the sensor reports no

measurements, À = (0,Ø) and

p¨ j¥(À = (0,Ø) j » = (n,fs1, : : : ,sng))

=G¨ j¥[0 j »] = e¡
R
Y
¸(y)dy

nY
i=1

(1¡PD(si)):

(67)

This is the probability that the realizations of the clutter

process and the n target processes contain no points.

Explicit expressions of p¨ j¥(À j ») for events À =
(m,fy1, : : : ,ymg), m¸ 1, are found by functional differ-
entiation of (44) with respect to impulses at the (dis-

tinct) points y1, : : : ,ym. Functional differentiation masks

enumerations of measurement to target. For m= 1,

p¨ j¥(À = (1,fy1g) j » = (n,fs1, : : : ,sng))

=
@G¨ j¥

@y1
[0 j »]

= e
¡
R
Y
¸(y)dy

¸(y1)

nY
i=1

(1¡PD(si))

+ e
¡
R
Y
¸(y)dy

nX
i=1

PD(si)p(y1 j si)
nY

k=1,k 6=i
(1¡PD(si)):

(68)

In words, (68) is the probability that y1 is produced

either by 1) the clutter process and all n target processes

are undetected or by 2) exactly one of the n target

processes and there is no clutter.

The functional derivatives of the PGFL for m¸ 2
are expressions that sum over all assignments of m

measurements to n targets that are consistent with the

constraint of “at most one measurement per target per

scan.” Details are omitted.
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