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This paper considers the problem of algorithm selection for

community detection. The aim of community detection is to identify

sets of nodes in a network which are more interconnected relative

to their connectivity to the rest of the network. A large number

of algorithms have been developed to tackle this problem, but as

with any machine learning task there is no “one-size-fits-all” and

each algorithm excels in a specific part of the problem space.

This paper examines the performance of algorithms developed

for weighted networks against those using unweighted networks

for different parts of the problem space (parameterised by the

intra/inter community links). It is then demonstrated how the choice

of algorithm (weighted/unweighted) can be made based only on the

observed network.
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1. INTRODUCTION

The study of large scale networks has revealed a

number of properties about the behaviour and topology

of naturally occurring networks. One such property is

the presence of community structures; sets of nodes in a

network which are more interconnected relative to their

connections to the rest of the network. The aim of com-

munity detection is to identify these structures. Com-

munity detection is a problem which has attracted much

interest in recent years [7], [12], [19], [23], [27] and has

consequently produced a wide range of approaches to

the problem; an in-depth review of most contemporary

methods is given in [8].

One of the reasons why the ability to detect commu-

nities is so attractive lies in the phenomenon known as

assortative mixing, where entities in a network are ob-

served to associate preferentially with similar entities.

This suggests that detecting communities may be used

for identifying entities which share common attributes

or purposes. An example of community structures cor-

responding to entity similarity is given in [20] where

community structures in a friendship network corre-

spond to similarities in race and age. The wide range of

complex systems that can naturally be expressed as net-

works (human interaction patterns, metabolic networks,

WWW, and the brain) implies that community detection

has applications spanning domains as diverse as biology

[11], [14], [29], sociology [2], [11], [28], computer sci-

ence [26], [30] and intelligence [1], [10], [16].

The implications of community detection in the in-

telligence domain are that it could be used to identify

groups of people who share common goals or purposes.

To this effect, community detection could potentially be

used to constrain the inference problem when investi-

gating or detecting malicious activities, e.g. rather than

monitoring all people, use community detection as a

pre-processing step to select a subset of people to mon-

itor. In this setting, the network nodes would represent

people and the links would represent interactions or re-

lationships between them; such a network can be con-

structed from a database of phone records, email logs

or other transactional data.

With a large selection of algorithms available to

undertake the task of community detection, choosing

an appropriate algorithm becomes problematic. This is

largely due to the lack of formal or commonly accepted

evaluation procedures. The networks used to evaluate

community detection tend to be a small selection of real

networks and/or networks generated from simple mod-

els, where these networks vary widely between authors.

Recent work to address this has focused on developing

benchmark networks [17] on which comparative anal-

ysis [18] can be drawn to determine the reliability of

different algorithms. However, it is commonly accepted

across the machine learning community that there is

no one-size-fits-all solution and so this work considers

the idea that for different situations, different classes
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of algorithms may outperform other classes of algo-

rithms. The range of community detection algorithms in

itself poses the intelligence analyst with the challenge

of choosing an appropriate solution or combinations of

solution techniques for the specific problem at hand. It is

therefore desirable to be able to provide the intelligence

analyst, who will likely not have expert knowledge of

these algorithms, with appropriate guidance. This paper

considers the problem of automatically selecting com-

munity detection algorithms based on observations of

the community structure.

The algorithm selection problem can be solved in

part by design. For example, consider the class of al-

gorithms involving modularity [22] optimisation. Simu-

lated annealing [15] produces good results, but for large

networks it may be preferable to substitute performance

for speed by using a greedy algorithm such as in [5]. In

this situation the trade off is straight forward, a choice

of speed vs. quality. However, some algorithms address

other limitations for which the trade off is not so clear

cut. For example the modularity function suffers from

a resolution limit [9] meaning that in some networks

several communities become merged into one (e.g. com-

munities consisting of two cliques connected by a single

link). Some algorithms [3], [4] address this issue but it is

not clear what weaknesses (if any) this might introduce.

In cases such as these further investigation is required

to determine the appropriate algorithm. In this work the

class of algorithms which incorporate link weight infor-

mation is examined to determine when these are most

appropriate.

It has been previously observed how structural prop-

erties of communities affect the performance of commu-

nity detection algorithms [18]. These properties cannot

be measured from the network data alone as they require

knowledge of the underlying community assignment.

The main contribution of this work is to demonstrate

how these structural properties can be estimated from

features of the observed network. Therefore a predic-

tion about which algorithm will perform best can be

made. This is achieved by considering algorithms for

weighted networks and algorithms for unweighted net-

works as two separate classes and demonstrating how

the performance of these two classes differs across the

problem space (defined in Section 2). Finally, a Support

Vector Machine (SVM) [6] is used to classify the net-

works according to the algorithm which will perform

best.

The rest of the paper is organised as follows: Sec-

tion 2 defines the problem space by defining the net-

work and community structure types and the target algo-

rithm classes. The performance of the algorithm classes

with respect to the structural parameters is evaluated in

Section 3. Section 4 describes the observable network

parameters and how a mapping can be made from these

to the underlying structural parameters. The results of

using the observable parameters to choose an appropri-

ate class of algorithms are given in Section 5. Conclu-

sions are given in Section 6.

2. PROBLEM SPACE

A network is a structure made up of nodes, rep-

resenting entities, and links or edges, representing re-

lationships or interactions between entities. The total

number of links connected to a node is known as its

degree. The network links may also have weights asso-

ciated with them which may represent the relative im-

portance of the link. For example, in an interaction net-

work representing a phone record database, the nodes

would represent people and the links phone calls. The

link weights could then represent the frequency of calls.

Network links may also be directed, but this will not be

considered in this work.

The premise of community detection is that there

is some underlying assignment of nodes to commu-

nities which has to be discovered. But despite the

large amount of literature on the subject there is still

a lack of agreement on what defines a community be-

yond the intuitive concept that community structures

have more intra-community links than inter-community

links. Without a common definition it is difficult to draw

a comparison between algorithms. However, it may not

be necessary (or even desirable) to define a specific

common definition of community, as definitions may be

dependent on the application. Instead, perhaps all that is

required is a suitably comprehensive parameter set for

describing the space of community types and structures

of interest.

A reasonable starting point is the parameter set

used to generate networks and communities using the

Lancichinetti-Fortunato-Radicchi (LFR) benchmark

generator [17] as not only do these describe a number

of network properties, but by using the generator it is

possible to obtain networks and community assignments

with those properties. This parameter set is described in

Section 2.1.

2.1. Network-Community Parameterisation

The parameter set used to describe the problem

space are the parameters used by the LFR benchmark

which is fully described in [17]. The LFR benchmark

was designed to generate datasets to test community de-

tection algorithms and mimic the observed properties of

large-scale real complex networks [21], such as power-

law degree and community distribution.

The parameters are best described in the context of

the graph generation procedure:

1. N nodes are assigned to communities such that

the community size distribution conforms to a power-

law with minus exponent ¿2.
2. Each node is assigned a degree such that the

degree distribution conforms to a power law with minus

exponent ¿1 and mean degree k.
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3. Links are initially assigned randomly according

to the degree distribution. A topological mixing parame-

ter, ¹t, is set to define the proportion of each node’s links
which link outside its community. Topological consis-

tency with this parameter is achieved through an itera-

tive re-wiring procedure.

4. Each node is then assigned a strength according

to a power-law distribution with minus exponent ¯. The
strength of a node is the weighted analogy of degree and

as such represents the sum of the weights of the links

for a given node.

5. To assign the link weights a similar process to

step 3 is carried out according to the weight mixing

parameter, ¹w.

Networks and their communities can be generated

for a specified set of parameter values using the above

procedure. In addition other constraining parameters

can be specified including the maximum degree (maxk),
and the minimum and maximum sizes of communities

(cmin and cmax respectively). Using these parameters
to describe the problem space has the advantage that

by using the generative procedure outlined above it is

possible to obtain a network for a given set of parameter

values. It is accepted that these may not be a full set

of parameters to comprehensively describe the space

of all possible network-community structures. Even so,

the space is one of high dimensionality and so full

exploration of all the parameters is beyond the scope

of this paper and remains for future work. To constrain

the problem, the values of all parameters were fixed

with the exception of ¹t and ¹w, which from initial tests
were found to have the greatest impact on use of link

weights.

2.2. Algorithm Overview

The algorithm selection problem has been con-

strained to choosing between the class of algorithms

which use link weight information and the class that

does not. In light of this, it was decided to use algo-

rithms suitable for unweighted or weighted networks.

This way a controlled comparison can be drawn be-

tween the performances of the unweighted and weighted

algorithms without being concerned about differences in

algorithms. Two such algorithms are examined:

² Infomap [27]: This algorithm approaches the com-

munity detection problem by identifying a duality

between community detection and information com-

pression. By using random walks to analyse the in-

formation flow through a network it identifies com-

munities as modules through which information flows

quickly and easily. Coding theory is used to compress

the data stream describing the random walks by as-

signing frequently visited nodes a shorter codeword.

This is further optimised by assigning unique code-

words to network modules and reusing short code-

words for network nodes such that node names are

unique given the context of the module. This two

level description of the path allows a more efficient

compression by capitalising on the fact that a random

walker spends more time within a community than

moving between communities.

² COPRA [13]: This is an extension of the label prop-

agation based RAK algorithm [25]. The algorithm

works as follows; to start, all nodes are initialised

with a unique label. These labels are then updated

iteratively, where a node’s new label is assigned ac-

cording to the label used most by its neighbours.

If there is more than one most frequently occur-

ring label amongst the neighbours, then the label is

chosen randomly. At termination of the algorithm,

nodes with the same label are assigned to the same

community. The Community Overlap PRopagation

Algorithm (COPRA) extends the RAK algorithm to

deal with the possibility of overlapping communities

(although this aspect of community detection is not

explored within this work). This is done by augment-

ing the label with a belonging factor such that for

a given node these sum to 1. To prevent all nodes

becoming a member of all communities, a threshold

is set below which the labels are discarded. Due to

the stochastic nature of the algorithm, the algorithm

is run a number of times and the “best” community

assignment is decided according to the one which has

the highest modularity [22]. In the weighted instance

of the algorithm, the weights of the network are in-

corporated by weighting the frequency of the labels

according to the link weight connecting the respective

node.

3. ALGORITHM PERFORMANCE

A number of different metrics are used in the lit-

erature to measure the performance of community de-

tection algorithms, however the Normalised Mutual In-

formation [19] metric is one which has become fairly

standard recently and so will be used here. This metric

provides a measure of similarity between the algorithm

output assignment and the true community assignment,

where a value of 1 denotes a perfect match. Using the

networks described in Section 2.1, experiments were

run to examine the effect of varying the two mixing

parameters ¹t and ¹w, the results of which can be seen
in Fig. 1.

Fig. 1 shows the mutual information scores for the

weighted algorithms (COPRAw, INFOMAPw) and un-

weighted algorithms (COPRAuw, INFOMAPuw) as ¹w
is changed. The plots (a)—(d) show the performance for

different values of ¹t. Each point on the graphs rep-
resents the average mutual information over 100 gen-

erated networks (using the LFR benchmark generator

described in Section 2.1) with the indicated parameter

values. It can be seen that the unweighted algorithms

perform well when ¹t is low and are unaffected by ¹w
for all values ¹t. This is because these algorithms only
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Fig. 1. Mutual information scores (y-axis) as ¹w (x-axis) changes. Each subplot shows a different fixed value for ¹t. The values of the

other parameters were fixed: N = 100, k = 25, maxk = 50 ¿1 = 2, ¿2 = 1, ¯ = 1:5, cmin = 15, cmax = 50. (a) ¹t = 0:2. (b) ¹t = 0:4.

(c) ¹t = 0:6. (d) ¹t = 0:8.

rely on the topological information. The weighted al-

gorithms on the other hand are affected by both pa-

rameters, but are seen to consistently perform well for

low ¹w. The effect of ¹t is probably best observed in
Fig. 2. Here it can be seen that the weighted algorithms

perform well when ¹t is at least as high as ¹w (in this
case ¹w = 0:3). A similar observation was made in [18]
where it was seen that weighted algorithms performed

better overall at ¹t values of 0.5, in comparison to lower
values. It was explained that the reason for this is that a

low ¹t relative to ¹w means that there is a lower propor-
tion of inter-community links relative to the proportion

of inter-community weights. The effect of this is that

a small number of inter-community links receive high

link weights relative to the intra-community weights,

see Fig. 4.

The effect of this is that there are regions of the prob-

lem space, parameterised by community mixing propor-

tions, in which a weighted algorithm will outperform

an unweighted one and vice versa. This can be seen in

Fig. 2 where the two regions are labelled w (weighted)

and uw (unweighted). This result indicates that a choice

can be made, based on the community structure, as to

the class of community detection algorithms.

In order to take advantage of this information and

select the best class of algorithms for a given network,

some knowledge of the underlying community structure

is required. It may be possible to make some assump-

tion about the communities that are sought after based

on some knowledge of the specific domain. In most

community detection problems however, this informa-

tion about the community structure is unknown.

4. PARAMETER ESTIMATION

In order to use the information from the previous

section, it is required to know the values of the mixing

parameters of the communities. Without knowledge of

the communities (i.e. prior to community detection) it is

not possible to evaluate these parameters. In this section

it will be shown how parameters of the observable
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Fig. 2. Mutual information scores for the weighted (w) and

unweighted (uw) algorithms as ¹t is varied. The value of ¹w is fixed

at 0.3. It is noticeable that the two classes of algorithm perform for

complimentary settings of ¹t.

network can be mapped to these community parameters

and how these values can be used to build a classifier

to determine the class of community detection most

suitable for the given network.

4.1. Observable Parameters

There are a range of metrics associated with de-

scribing network topology: degree distribution, average

diameter, and centrality measures are a few of them.

The problem here is that a parameter is required which

describes the way that the community structures inter-

act, without explicitly knowing the community struc-

tures.

To approach this, the node measure called clustering

coefficient [31] is considered. This is defined as:

C(v)unweighted =

P
i,j2Nv eij

kv(kv ¡ 1)=2
(1)

where the local clustering coefficient, C(v)unweighted, repre-
sents the proportion of the neighbours, Nv, of node v
which are connected (i.e. edge eij = 1 if there is a link
between neighbouring nodes i and j) out of the possi-
ble connections between its neighbours, kv(kv ¡ 1)=2.1
It was found that the mean value of the local cluster-

ing coefficient, taken over all the nodes in the network,

showed a strong correlation with the topological mixing

parameter, ¹t (Fig. 3(a)). This is similar to an obser-
vation in [24] where high clustering coefficients were

observed in Girvan-Newman networks [11] with low ra-

tios of inter- to intra-modular connectivity (a parameter

1If the degree of a node is less than or equal to 1 then the clustering

coefficient is defined as 0.

Fig. 3. Scatter plots of the unweighted (x-axis) and weighted

(y-axis) mean local clustering coefficient for the networks in Fig. 1,

(a) shows the value of the topology mixing parameter, ¹t. Similarly

(b) shows the weight mixing parameter, ¹w.

Fig. 4. An example node with links and weights from a network

with ¹t = 0:2 and ¹w = 0:3. As a result the single inter-community

link (orange) receives a higher weight relative to the

intra-community links.

which bears resemblance to the topological mixing pa-

rameter, ¹t, in the more realistic LFR networks used

here).
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Fig. 5. Clustering coefficients scatter plots (the same networks used in Fig. 1) with colours showing the mutual information score for

(a) unweighted infomap, (b) weighted infomap, (c) unweighted COPRA and (d) weighted COPRA.

This observation suggests that the mean clustering

coefficient could be used to estimate the mixing param-

eter ¹t. If the mean clustering coefficient could be used
to estimate the topological mixing then it follows that a

weighted extension to this may yield information about

the weighted mixing parameter (Equation 2).

C(v)weighted =

P
i,j2Nv (wvi+wvj)eijP
i2Nv wvi(kv ¡1)

(2)

where wvi is the weight associated with the link between
nodes v and i. The mean of this value over the network
was found to correlate with ¹w (Fig. 3(b)). The results
in Fig. 3 suggest that the mixing parameters can be es-

timated from observed network characteristics without

knowledge of the community structure.

The reason for this can be explained by considering

the general principle of a community; that nodes within

a community are more likely to be connected compared

to overall probability of connection due to the sparse

nature of the network. Hence, if two neighbours are

within the same community, it is reasonable to expect

them to be connected. However, if neighbours are not in

the same community it is more likely that they are not

connected. Based on this reasoning, the local clustering

coefficient is an estimate of the individual node’s mix-

ing parameter, which averaged over the network yields

a global estimate.

4.2. Algorithm Classification using SVM

The results of the previous section suggest that it

is possible to estimate the mixing parameters of the

communities. Now returning to the reason why it may

be useful to estimate these parameters, i.e. to determine

the class of algorithm, it is suggested that rather than

estimate the mixing parameters and in turn predict

the algorithm class, it may be more useful to use the

clustering coefficients to directly predict the algorithm

class. Fig. 5 shows similar plots as Fig. 4, but with

the colour indicating the performance for the different
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Fig. 6. Algorithm selection pipeline for classification of real

networks. The shaded box indicates a step which requires further

work to define.

algorithms. It can be seen that the weighted algorithms

have a distinctly different performance pattern from the

unweighted ones.

In order to confirm that these observable parameters

can effectively predict the algorithm class, a simple clas-

sifier was built using support vector machines (SVM)

[6] with a Gaussian kernel. To do this, each of the

networks was assigned a class weighted, unweighted,

none based on the class of algorithm which performed

best in terms of its mutual information score. A class

of “none” was assigned to any network where the mu-

tual information score for the best performing algorithm

was below some threshold. The reasoning for this is that

for low performance values the output is not meaning-

ful and therefore the choice of algorithm is irrelevant.

As SVMs are restricted to two classes, three classifiers

were trained (weighted vs. unweighted, weighted vs.

none, unweighted vs. none) and the predicted class ob-

tained by using a voting scheme over the three outputs,

i.e. the predicted class is the most frequent output of

the three classifiers. The results are discussed in Sec-

tion 5.

4.3. Applicability to Other Networks

So far all the networks examined have had the same

network properties except for the mixing parameters. To

investigate if this relationship still holds for networks

with different parameter settings, the experiments were

repeated for: larger networks (N = f1000,5000g), small
and large community sizes (cmin = f15,25g, cmax =
f50,100g), and different average degree (k = f25,35g).

TABLE I

Classifier Confusion Matrix (100 nodes)

Predicted Class

Weighted Unweighted None

True Weighted 160 6 146

Class Unweighted 8 369 18

None 29 51 1213

Fig. 7 shows the clustering coefficient scatter plots

indicating the mixing parameter values of the different

graphs at each of the parameter settings. It can be seen

that as long as the other parameter values are fixed there

is still a correlation between the unweighted clustering

coefficient and topological mixing parameter ¹t and
between the weighted clustering coefficient and weight

mixing parameter ¹w. It can also be seen from the

scatter plots that these relationships are more or less

the same for most of the different parameter settings.

The main differences occur when the community size

changes relative to the number of nodes in the network,

i.e. as the ratio of community size to network size

increases the points on the scatter plots become more

compressed.

In order to apply the algorithm classification method

presented in this paper to real networks, a classifier

could be trained on a set of artificial networks which

resemble the real network. This process is outlined in

Fig. 6. There are a number of limitations with this

method. First, the step which estimates the community

size range (indicated by the shaded box) is currently un-

defined and requires further investigation to identify a

method for estimating this range prior to detecting com-

munities. Second, the process relies on the assumption

that the artificial networks used for training are repre-

sentative of the real network.

5. RESULTS

A SVM with a Gaussian kernel was trained on 8000

100 node networks (described in Section 3) taking the

unweighted and weighted mean clustering coefficients

as inputs. The “none” class was defined as networks

for which the maximum mutual information score was

below 0.6. The output classes for the test set (2000

networks) are displayed in Fig. 9. This can be compared

to the true class labels in Fig. 8. The overall performance

on the test set was 87.1%. A confusion matrix of the test

set performance is shown in Table I.

To confirm these results, Fig. 10 shows the mean

performance, according to mutual information, when

selecting the algorithm class using this classifier. This is

compared against the performance of the best weighted

algorithm and the best unweighted algorithm.

Table II shows the confusion matrix for the same

experiment run on all the networks described in Sec-

tion 4.3 where the number of nodes in the network

equals 1000 (11966 training networks, 17955 test net-
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Fig. 7. Scatter plots of the unweighted (x-axis) and weighted (y-axis) mean local clustering coefficient for networks with different

parameter settings, the left column shows the value of the topology mixing parameter, ¹t. Similarly the right column shows the weight

mixing parameter, ¹w. (a) N = 1000, k = 25, cmin = 15, cmax = 50 (topology mixing parameter, ¹t). (b) N = 1000, k = 25, cmin = 15,

cmax = 50 (weight mixing parameter, ¹w). (c) N = 5000, k = 25, cmin = 15, cmax = 50 (topology mixing parameter, ¹t). (d) N = 5000,

k = 25, cmin = 15, cmax = 50 (weight mixing parameter, ¹w). (e) N = 1000, k = 25, cmin = 25, cmax = 100 (topology mixing

parameter, ¹t). (f) N = 1000, k = 25, cmin = 25, cmax = 100 (weight mixing parameter, ¹w). (g) N = 1000, k = 35, cmin = 15, cmax = 50

(topology mixing parameter, ¹t). (h) N = 1000, k = 35, cmin = 15, cmax = 50 (weight mixing parameter, ¹w). (i) All networks where

N = 1000 (topology mixing parameter, ¹t). (j) All networks where N = 1000 (weight mixing parameter, ¹w).

126 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 6, NO. 2 DECEMBER 2011



Fig. 8. The true classification of the 100 node networks in the

test set.

Fig. 10. Mutual information scores on 100 node networks for when algorithm class is selected by the classifier compared to the individual

algorithm classes. Each graph shows the performance (y-axis) as ¹t (x-axis) is varied for different ¹w values. (a) ¹w = 0:1. (b) ¹w = 0:3.

(c) ¹w = 0:5. (d) ¹w = 0:7.

Fig. 9. The predicted classification of the 100 node networks in the

test set using a SVM classifier.
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Fig. 11. Mutual information scores on all networks of 1000 nodes for when algorithm class is selected by the classifier compared to the

individual algorithm classes. Each graph shows the performance (y-axis) as ¹t (x-axis) is varied for different ¹w values. (a) ¹w = 0:1.

(b) ¹w = 0:3. (c) ¹w = 0:5. (d) ¹w = 0:7.

TABLE II

Classifier Confusion Matrix (1000 nodes)

Predicted Class

Weighted Unweighted None

True Weighted 7650 477 467

Class Unweighted 85 5237 0

None 320 17 3702

works). Similarly, Fig. 11 shows the mean performance

when selecting the algorithm class using this classifier.

From these graphs it can be seen that the classifier is

able to select an appropriate class of algorithm such that

it can achieve near optimum performance, constrained

by the algorithms considered.

From these results it can be seen that even with a

simple classifier it is possible to obtain accurate predic-

tions for the best class of community detection algo-

rithm based on properties of the network alone.

6. CONCLUSION

To the best of the author’s knowledge, no previ-

ous work has explored the problem of choosing an

appropriate community detection algorithm based on

the underlying structural properties. This work has pre-

sented community detection algorithms as examples of

two classes of algorithm: weighted or unweighted. It

is demonstrated that for different types of network and

community structure, the class of algorithm has an ef-

fect on the performance. It has been shown that for some

weighted networks, unweighted algorithms can produce

better results than their weighted counterparts. Further-

more it has been shown that it is possible to choose

the algorithm class based only on the observed network

parameters without prior knowledge of the community

structure or assignment.

The algorithm selection demonstrated in this work

relies on the training networks (and their communities)

to share similar properties as the test network(s). In par-

ticular the community size in relation to the size of the

128 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 6, NO. 2 DECEMBER 2011



network is shown to have an effect on the relationship

between the observable clustering coefficients and the

underlying mixing parameters. It is left to future work

to identify a means to determine this ratio of community

to network sizes.

In addition, the algorithm selection in this work

is constrained in terms of the classes of algorithms

considered. Future work will reduce these constraints

by considering a more comprehensive set of algorithms

and classes.
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