
Real-time Allocation of Firing

Units To Hostile Targets

FREDRIK JOHANSSON

GÖRAN FALKMAN

The protection of defended assets such as military bases and

population centers against hostile targets (e.g., aircrafts, missiles,

and rockets) is a highly relevant problem in the military conflicts

of today and tomorrow. In order to neutralize threats of this kind,

they have to be detected and engaged before causing any damage to

the defended assets. We review algorithms for solving the resource

allocation problem in real-time, and empirically investigate their

performance using the open source testbed SWARD. The results

show that many of the tested algorithms produce high quality

solutions for small-scale problems. A novel variant of particle swarm

optimization seeded with an enhanced greedy algorithm is described

and is shown to perform best for large instances of the real-time

allocation problem.

Manuscript received October 14, 2010; revised February 21, July 12,

and September 9, 2011; released for publication September 29, 2011.

Refereeing of this contribution was handled by Huimin Chen.

Authors’ addresses: F. Johansson, Division of Information Systems,

Swedish Defence Research Agency, SE-164 90, Stockholm, Swe-

den, E-mail: (fredrik.johansson@foi.se); G. Falkman, Informatics Re-

search Centre, University of Skövde, PO Box 408, SE-541 28 Skövde,

Sweden, E-mail: (goran.falkman@his.se).

1557-6418/11/$17.00 c° 2011 JAIF

1. INTRODUCTION

A severe threat encountered in many international

peacekeeping and peace forcing operations is that of

rockets, artillery, and mortars (RAM) fired by insur-

gents towards military bases, troops, and other assets.

Attacks like these have cost many human lives in places

like Iraq and Afghanistan during recent years. Similar

attacks are faced by civilians in some parts of Israel on

a regular basis, where so called Katyusha and Qassam

rockets are fired against Israeli population centers such

as Sderot and Ashkelon. Asymmetrical threats like these

have caused an increased interest in systems for detect-

ing and tracking incoming RAM before they hit their

intended targets. The detection and tracking of RAM

makes it possible to estimate the point of impact, so

that any troops or civilians in the impact area can be

alerted. However, such a warning is not always enough,

due to very quick course of events, and that buildings

and infrastructure will be destroyed no matter how early

warnings come, given that active countermeasures are

not taken. Hence, one would like to destroy incoming

RAM before they hit their intended targets (and before

they risk causing collateral damage upon destruction).

Systems for detecting, tracking, and engaging RAM are

often referred to as Counter Rocket, Artillery, and Mor-

tar (C-RAM) systems. An example of such a system

is the recently deployed Israeli Iron Dome system. An-

other kind of air defense situation is that in which we

would like to protect defended assets against maneuver-

ing targets such as fighter aircrafts, attack helicopters,

and non-ballistic missiles. For such kind of threats, we

can in general not easily predict which defended asset

(if any) is the intended target of an attack, making it

necessary to estimate the level of threat posed by de-

tected targets to the defended assets in a so-called threat

evaluation process.

When faced with many simultaneous threats, it is

unlikely that the defenders can take action against all

incoming threats, since there often are fewer firing units

available than there are threats. Even when this is not

the case, a problem is to know which firing unit to use

against which threat in order to maximize the surviv-

ability of the defended assets or minimize the total ex-

pected target value of surviving hostile targets. This can

be described as a resource allocation problem, known

as the weapon allocation problem [7] within the field

of operations research. Unfortunately, the allocation of

defensive firing units to targets has been shown to be

NP-complete [23].

The time available for weapon allocation depends on

many factors such as the type of RAM used, the range

from which it is fired, type of detection radar and type

of defensive weapons (rapid-fire guns, lasers, radar-

guided missiles, etc.). However, taking into account that

the incoming threats often have high speed and are

fired from a range of only a few kilometers, very short

time is available for detection, weapon allocation, and

JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 6, NO. 2 DECEMBER 2011 187

interception. Hence, empirical results for how weapon

allocation algorithms perform on problem instances of

various size are needed.

We have reviewed the available literature in order

to identify suitable weapon allocation algorithms, and

we have implemented and systematically evaluated the

real-time performance of a selection of the identified al-

gorithms on static asset-based weapon allocation prob-

lems. The results show that especially particle swarm

optimization algorithms produce high quality solutions

for small-scale problems. In this article, we describe

a novel variant of particle swarm optimization seeded

with an enhanced greedy algorithm and show that the

seeded version performs very well relative to previously

tested algorithms also for large-scale instances of the

real-time allocation problem.

The rest of this article is structured as follows. In

Section 2, we present the static asset-based weapon allo-

cation problem, which is a suitable optimization model

when the impact area of a threat can be assumed to

be known. We also present its target-based counterpart

which is more suitable for air defense situations involv-

ing maneuvering targets. In Section 3, we present a liter-

ature survey of algorithms that have been suggested for

static weapon allocation (both target-based and static-

based). Based on this survey, we have implemented al-

gorithms for static asset-based weapon allocation which

are presented in Section 4. Experiments in which we

compare the real-time performance of the implemented

algorithms are presented in Section 5, and we conclude

the article in Section 6.

2. WEAPON ALLOCATION

Informally, weapon allocation (often also referred

to as weapon assignment or weapon-target allocation)

can be defined as the reactive assignment of defensive

weapon resources (firing units) to engage or counter

identified threats (e.g., aircrafts, air-to-surface missiles,

and rockets) [29]. More formally, the weapon alloca-

tion problem can be stated as a non-linear optimiza-

tion problem in which we aim to allocate firing units so

as to minimize the expected total value of the targets,

or, alternatively, to maximize the expected survivability

of the defended assets. These alternative views are re-

ferred to as target-based (weighted subtractive) defense

and asset-based (preferential) defense, respectively. The

asset-based formulation demands knowledge of which

targets that are headed for which defended assets and

thereby assumes a high level of situation awareness

[24]. Therefore, the static asset-based weapon allocation

problem formulation is suitable for problems involving

defense against ballistic weapons, while the target-based

formulation is more appropriate when the intended aims

of the targets are not known [28]. In Section 2.1 we de-

scribe the static asset-based weapon allocation problem,

and in Section 2.2 we give a similar description of the

static target-based weapon allocation problem.

2.1. The Static Asset-Based Weapon Allocation
Problem

When presenting the static asset-based weapon

allocation problem, the following notation will be

used:

² jAj ¢= number of defended assets.
² jWj ¢= number of firing units.
² jTj ¢= number of targets.
² !j

¢
= protection value of defended asset Aj .

² Pik
¢
= probability that firing unit Wk destroys target Ti

if assigned to it.

² ¼i
¢
= probability that target Ti destroys the asset it is

aimed for.

² Gj
¢
= the set of targets aimed for defended asset Aj .

² xik =
½
1 if firing unit Wk is assigned to target Ti,

0 otherwise:

In the static asset-based weapon allocation problem,

each offensive target is assumed to be aimed at a de-

fended asset, where each defended asset is associated

with a protection value !j . Each target has an associated

lethality probability ¼i, indicating the probability that Ti
destroys the defended asset it is aimed for, given that

it is not successfully engaged. This probability depends

on the accuracy of the targets as well as the nature of the

defended assets [8]. As can be seen, we are assuming

that such probabilities are target dependent only, i.e.,

we do not take the type of the defended asset into con-

sideration. The defenders are equipped with firing units,

where each pair of firing unit and target is assigned a kill

probability Pik. Now, the objective of the defense is to

allocate the available firing units so as to maximize the

total expected protection value of surviving defended

assets [7]:

maxJ =

jAjX
j=1

!j

Y
i2Gj

0@1¡¼i jWjY
k=1

(1¡Pik)xik
1A (1)

subject to:

jTjX
i=1

xik = 1, 8k

xik 2 f0,1g, 8i8k:
(2)

In (1), the inner product
QjWj
k=1(1¡Pik)xik should be in-

terpreted as the probability that target Ti survives the

countermeasures taken against it. Hence, the productQ
i2Gj (1¡¼i

QjWj
k=1(1¡Pik)xik) is the probability that the

defended asset Aj survives the attack of all targets aimed

for it.

188 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 6, NO. 2 DECEMBER 2011

A solution to a static weapon allocation problem can

be represented as a matrix of decision variables

x=

2666664
x11 x12 : : : x1jWj
x21 x22 : : : x2jWj
...

... xik
...

xjTj1 xjTj2 : : : xjTj jWj

3777775 : (3)

Such a solution is feasible if it fulfills the constraints

given in (2), i.e., that the entries of each column in

(3) sum to one. For a problem instance consisting of

jTj targets and jWj firing units, there are jTjjWj feasible
solutions.

From the solution of the static asset-based weapon

allocation problem, we can discover which of the de-

fended assets that should be protected, and in which

way each of the defended assets should be protected

(preferential defense).

2.2. The Static Target-Based Weapon Allocation
Problem

Using the same notation as in Section 2.1, but with

the additional definition:

² Vi
¢
= target value of target Ti,

we can define the static target-based weapon allocation

problem as:

minF =

jTjX
i=1

Vi

jWjY
k=1

(1¡Pik)xik (4)

subject to the constraints given in (2). Since the product

as before is the probability that target Ti survives the

countermeasures taken against it, the objective function

should be interpreted as the minimization of the total

expected target value of surviving targets.

The estimation of target values is far from trivial, and

can be seen as a very important high-level information

fusion problem. A survey of how threat values Vijs can

be estimated (representing the threat posed by target Ti
to defended asset Aj) is presented in [11, 12]. Once

such threat values have been calculated, these can be

aggregated into target values using weighted averages

such as:

Vi =

PjAj
j=1Vij!jPjAj
j=1!j

: (5)

Nevertheless, this is only one choice of how to aggre-

gate threat values into target values. Furthermore, the

original target values rely on coarse models of what is

threatening behavior or not (typically parameters such

as distance between the target and the defended asset,

the speed and heading of the target, target type, etc).

To complicate matters, expert air defense operators fre-

quently disagree about the threat of individual aircraft

[31]. Consequently, it should be remembered that target

values will always be associated with uncertainty, and

that they to a large degree are subjective.

2.3. Properties of Weapon Allocation Problems

A few assumptions are made in the static weapon

allocation formulations. Firstly, all firing units have to

be assigned to targets, as indicated in the constraint

given in (2). Moreover, all the firing units have to

be assigned simultaneously, i.e., we can not observe

the outcome of some of the engagements before a

remaining subset of firing units are allocated. This is

what is meant by static weapon allocation, as opposed

to dynamic weapon allocation. The static formulation

makes sense for the problem domain studied here, since

the high speed of short-range RAM does not allow

for several engagement cycles. We also assume that

an engagement will not affect other engagements (e.g.,

that a firing unit can destroy another target than it is

allocated to, or that targets can destroy other assets than

they are aimed for). Without the last assumption, the

geometry of the problem must be taken into account,

creating an extremely complex problem. We also ignore

the risk of collateral damage to the protected area when

intercepting the targets.

Despite the assumptions, there is a combination of

factors that make the static weapon allocation problems

hard to solve. Firstly, the objective functions given in

(1) and (4) are non-linear, so that well-known linear

programming techniques such as the simplex algorithm

can not be used to solve the problems. Secondly, the

problems are discrete, since they only allow for integer

valued feasible solutions due to the second constraint

in (2) (i.e., fractional allocations are not possible). In

general, this kind of integer programming problems are

hard to solve. Thirdly, the problems are stochastic, due

to kill probabilities (and lethality probabilities) not equal

to zero or one. This non-determinism further compli-

cates the problems. Fourthly, it is not unusual with large-

scale problem instances, i.e., problems consisting of a

large number of firing units, defended assets, and/or tar-

gets. The asset-based formulation can be shown to be

a generalization of the static target-based weapon al-

location formulation [7] presented in Section 2.2. The

NP-completeness of the static target-based weapon al-

location problem was established in [23], and hence, we

can conclude that the static asset-based weapon alloca-

tion problem is NP-complete as well [7]. These proper-

ties taken together show that finding good solutions in

real-time to static weapon allocation problems is indeed

a very hard problem, and according to [7], rule out any

hope of obtaining efficient optimal algorithms.

3. A SURVEY OF ALGORITHMS FOR WEAPON
ALLOCATION

Initial research on the static target-based weapon al-

location problem dates back as far as the end of the

1950s (cf. [5, 25]). Much of the initial research on the

REAL-TIME ALLOCATION OF FIRING UNITS TO HOSTILE TARGETS 189

problem seems to have been motivated by the threat

from intercontinental ballistic missiles during the Cold

War era [24]. Despite the end of the Cold War, research

on defensive weapon allocation still remains a very ac-

tive area [24]. The static target-based weapon allocation

problem has been quite well studied, especially within

the field of operations research. Despite the extensive

research, static weapon allocation is an example of a

classical operations research problem that still remains

unsolved [1], in the sense that effective methods for real-

time allocation are lacking. Moreover, the asset-based

version of the problem is much less studied than its

target-based counterpart.

Much of the original work on weapon allocation fo-

cused on the allocation of missiles to defended assets,

rather than the other way around. Hence, the problems

were often modeled from an attacker’s side, instead of

from the defending side. A brief summary and review of

unclassified literature from the first years of research on

the problem is given in [26]. Some years later, a mono-

graph describing many of the developed mathematical

models for weapon allocation problems was published

in [6]. Unlike Matlin’s review, the monograph by Eck-

ler and Burr takes on the weapon allocation problem

from a defender’s view. The authors present a num-

ber of useful techniques for weapon allocation, such

as relaxing the integer constraint and then make use

of linear programming to solve the resulting contin-

uous problem. This is a technique that is still in use

(cf. [17]). It should be noted however, that fractional

assignments of firing units to targets does not make

sense, and rounding off the optimal solution to the re-

laxation of an nonlinear integer programming problem

can yield solutions that are infeasible or far from the

optimal solution to the original nonlinear problem [36].

Other kinds of tools such as the use of Lagrange multi-

pliers and dynamic programming are also described in

[6]. As the authors make clear, their focus is on analyti-

cal approaches, since it is argued that what they refer to

as computer-oriented solutions give less insight into the

weapon allocation problem than analytical approaches.

A somewhat more recent survey of work within weapon

allocation is presented in [3]. As in the earlier men-

tioned surveys, its focus is on analytical approaches to

weapon allocation. However, it is mentioned that a shift

towards various techniques such as implicit enumeration

algorithms and nonlinear programming algorithms had

been started at that time, since mathematical formula-

tions of the weapon allocation problem are not generally

amenable to solution in closed form [3, p. 66]. In later

years, advanced computer-based techniques have been

developed which are better suited for real-time weapon

allocation [9]. In the following, we will focus on modern

heuristic/approximate approaches, but will first present

enumerative techniques, since such approaches can be

very useful for special cases of static weapon allocation

problems.

3.1. Exact Approaches

For small values of jTj and jWj, the optimal solu-
tion to a static weapon allocation problem can easily be

found by exhaustive search (also referred to as explicit

enumeration), i.e., a brute-force enumeration where all

feasible solutions are tested one after the other. How-

ever, as a static weapon allocation problem consists of

jTjjWj feasible solutions, this is not a viable approach
for air defense scenarios involving a large number of

targets and firing units.

Exact polynomial time algorithms have been iden-

tified for the special case of the static target-based

weapon allocation problem in which the kill probabili-

ties of all firing units are assumed to be identical, i.e.,

Pik = Pi. For this special case, the well known maxi-

mum marginal return (MMR) algorithm suggested in

[5], and the local search algorithm suggested in [7] can

be proven to be optimal. Some other special cases of

the static target-based weapon allocation problem can

be formulated as network flow optimization problems.

If we assume the constraint that all firing units have

kill probabilities Pik 2 f0,Pig, i.e., that firing units ei-
ther can or cannot reach a target, and in the former

case, the kill probability only depend upon the target,

the problem can be transformed into a minimum cost

network flow problem with linear arc costs, for which

several efficient algorithms exist [7]. A similar trans-

formation can be done for the special case of the static

target-based weapon allocation problem where we as-

sume that jTj · jWj, and that at most one firing unit is
to be allocated to each target. In this case, we can con-

vert the problem into a so called transportation problem,

for which efficient algorithms exist [7]. However, the

general static target-based weapon allocation problem

has been proved to be NP-complete [23], as have been

discussed earlier. This also holds true for the asset-based

version of the static weapon allocation problem, since

this can be seen as a generalization of the static target-

based version.

Another exact approach is to use branch-and-bound

algorithms for finding the optimal solution. Branch-and-

bound algorithms use tree representations of the solu-

tion space and are often able to prune away large sub-

sets of feasible solutions through calculation of lower

and upper bounds on different branches of the tree. In a

recent article by [1], three branch-and-bound algorithms

(using different lower-bound schemes) are investigated

and are shown to give short computation times on aver-

age. The results are impressive, however, in theory the

risk exists that the algorithm will require branching the

full tree for some problem instances. This means that in

worst-case, the performance of the branch-and-bound

algorithm can be at least as bad as the performance of

more naïve exhaustive search algorithms. Although it in

practice is unlikely that this worst-case scenario will ap-

pear, it is unfortunately not possible to in advance com-

pute an upper bound on the computational time it will

190 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 6, NO. 2 DECEMBER 2011

take to find the optimal solution to a problem instance

when using a branch-and-bound algorithm. Hence, as

can be seen in the results reported in [1], some problem

instances of large size can be solved very quickly, while

considerably smaller problem sizes can demand consid-

erably more time for the optimal solution to be found.

In other words, we have to rely on heuristic algorithms

for large-scale problems when real-time guarantees are

needed [1, 7].

3.2. Heuristic Approaches

A well-known heuristic approach for static target-

based weapon allocation is the greedy maximum mar-

ginal return algorithm, originally suggested in [5]. A

similar greedy algorithm is presented in [18]. Basically,

the maximum marginal return algorithm works sequen-

tially by greedily allocating firing units to the target

maximizing the reduction of the expected value. It starts

with allocating the first firing unit to the target for which

the reduction in value is maximal, whereupon the value

of the target is reduced to the new expected value. Once

the first firing unit is allocated, the same procedure is

repeated for the second firing unit, and so on, until all

firing units have been allocated to targets. Pseudo code

for the maximum marginal return algorithm is shown

in Section 4.1. Obviously, the maximum marginal re-

turn algorithm is very simple and fast. This is a gen-

eral advantage of greedy algorithms, but due to their

greedy nature they are also very likely to end up with

suboptimal solutions. Since the algorithm uses target

values for choosing which target to be allocated next,

it cannot be used as is for static asset-based weapon

allocation. However, in [27] a number of greedy algo-

rithms for asset-based weapon allocation are described.

These algorithms basically work by approximating the

asset-based problem with its target-based counterpart,

by using the protection value of the defended asset to

which the target is aimed for as the target value. When

the problem has been approximated by a target-based

problem, it is suggested that the maximum marginal re-

turn algorithm returns a solution that can be used as

an approximative solution to the asset-based problem.

Another suggested approach in [27] is to use the so-

lution returned from the maximum marginal return al-

gorithm and to apply local search on the solution so

that the target allocated by one weapon can be swapped

to the target allocated by another weapon, and vice

versa.

Another kind of heuristic approach to a constrained

version of the target-based weapon allocation problem

has been suggested in [35], in which artificial neural net-

works are used. It is stated that solutions close to global

optima are found by the algorithm, but results are only

presented for a few small-scale problem instances, from

which it in the authors’ view is not possible to gener-

alize. It is in [9] also argued that artificial neural net-

work algorithms for weapon allocation sometimes are

unsteady and non-convergent, leading to that obtained

solutions may be both suboptimal and infeasible.

As an alternative, the use of genetic algorithms

seems to be popular. Such an algorithm for static target-

based weapon allocation is described in [16], while a

genetic algorithm combined with local search is pre-

sented in [22] and [21]. The quality of the solutions

returned by the greedy maximum marginal return al-

gorithm presented in [18] is in [16] compared to the

solutions returned by genetic algorithms. However, the

algorithms are only evaluated on target-based weapon

allocation problems. The standard genetic algorithm is

outperformed on large-scale problem sizes, but only one

problem instance is tested for each problem size, so the

possibility to generalize the results can be questioned.

Even though, the results seem to indicate that greedy

search works better than standard genetic algorithms on

large target-based problem instances. It is in [16] sug-

gested that genetic algorithms can be seeded with the

solution returned from a greedy algorithm, which seems

to be a suitable approach to improve the quality of ge-

netic algorithms on large problem sizes. In [2], a genetic

algorithm combined with local search is suggested for

a dynamic version of the asset-based weapon alloca-

tion problem. It is shown that local search improves

the results, but that the computational time needed is

increased. The effects of real-time requirements on the

algorithms are not tested.

The use of ant colony optimization for target-based

weapon allocation is suggested in [19, 20]. Reported

results in [19] and [20] indicate that ant colony opti-

mization algorithms perform better than standard ge-

netic algorithms on large-scale problems, and that the

algorithms can be improved upon by using local search.

However, the algorithms were allowed to run for two

hours, so it is unclear how this generalizes to settings

with real-time requirements.

A simulated annealing algorithm for static asset-

based weapon allocation is presented in [4]. Basically,

simulated annealing is based on an analogy of thermo-

dynamics with the way metals cool and anneal, in which

a liquid that is cooled slowly is likely to form a pure

crystal corresponding to a state of minimum energy for

the metal, while a quick cooling phase is likely to result

in states of higher energy levels [32]. By controlling an

artificial “temperature” when making the optimization

(corresponding to the minimization of energy levels), it

becomes possible to escape from local minima in the

hunt for the optimal solution (the purest crystal in the

thermodynamics analogy). However, no evaluation of

the quality of the solutions obtained by the algorithm

is presented in [4], so it is unknown how good their

implemented algorithm performs. Another implemen-

tation of a simulated annealing algorithm provides so-

lutions of lower quality than ant colony optimization

and genetic algorithms in a static target-based weapon

allocation experiment described in [19]. The algorithms

were, as describe above, allowed to run for two hours,

REAL-TIME ALLOCATION OF FIRING UNITS TO HOSTILE TARGETS 191

TABLE I

Algorithmic Approaches to Weapon Allocation

Algorithmic Approach References

Branch-and-bound [1]

Genetic algorithms [16, 21]

Ant colony optimization [19, 20]

Greedy algorithms [5, 18]

VLSN [1]

Neural networks [35]

Particle swarm optimization [33, 37]

so it is not known how the algorithms perform under

more realistic time constraints.

In [1], good performance results for an approach us-

ing a minimum cost flow formulation heuristic for gen-

erating a good starting feasible solution are presented.

This feasible solution is then improved by a very large-

scale neighborhood (VLSN) search algorithm that treats

the problem as a partitioning problem, in which each

partition contains the set of firing units assigned to target

Ti. The very-large scale neighborhood search improves

the original feasible solution by a sequence of cyclic

multi-exchanges and multi-exchange paths among the

partitions. As the name suggests, the size of the used

neighborhoods are very large. To search such large

neighborhoods typically takes considerably amounts of

computations and demands implicit enumeration meth-

ods [10]. By using the concept of an improvement

graph, it becomes possible to evaluate neighbors faster

than other existing methods [1, 10].

Recently, the use of particle swarm optimization

for static target-based weapon allocation has been sug-

gested. In [33], a particle swarm optimization algorithm

is implemented and compared to a genetic algorithm.

The results indicate that the particle swarm optimiza-

tion algorithm generates better solutions than the ge-

netic algorithm, but the algorithms are only tested on

a single problem instance consisting of five targets and

ten firing units. For this reason, it is not possible to

generalize the obtained results. Experiments presented

in [37] also indicate that particle swarm optimization al-

gorithms create better solutions than genetic algorithms

for static target-based weapon allocation.

As evident from the literature survey presented

above, a lot of different algorithmic approaches have

been suggested for the static weapon allocation prob-

lem. A summary of some of the approaches presented

above is presented in Table I.

4. THE IMPLEMENTED ALGORITHMS

Based on the results from the literature survey pre-

sented in Section 3, a number of heuristic algorithms

have been implemented. Since the target-based weapon

allocation seems more well-researched than the asset-

based problem, the focus of the rest of this article will

be on the latter.

The algorithms for static asset-based weapon allo-

cation evaluated in this article share the same kind of

representation, in which a solution is represented as a

vector of length jWj. Each element k in the vector points
out the target Ti to which the weapon is allocated. As

an example of this, the vector [2,3,2,1] represents a

solution in which W1 and W3 are allocated to T2, W2 is

allocated to T3, and W4 is allocated to T1.

4.1. A Maximum Marginal Return Algorithm for Static
Weapon Allocation

A greedy algorithm for static target-based weapon

allocation, known as the maximum marginal return

(MMR) algorithm, was initially suggested in [5]. This

algorithm (described with pseudo code in Algorithm 1)

is very simple since it as already explained works greed-

ily by assigning weapons sequentially to the target that

maximizes the reduction of the expected target value.

When the first weapon has been allocated to the tar-

get for which the reduction in value is maximal, the

target value is reduced to the new expected value. Af-

ter that, the same procedure is repeated for the second

weapon, and so on, until all weapons have been allo-

cated to targets, yielding a computational complexity of

O(jWj £ jTj).
ALGORITHM 1 Maximum marginal return algorithm

for all k such that 1· k · jWj do
highestValueÃ¡1
allocatedTargetÃ 0

for all i such that 1· i· jTj do
valueÃ Vi£Pik
if value> highestValue then
highestValueÃ value

allocatedTargetÃ i

assign Wk to target TallocatedTarget
VallocatedTargetÃ VallocatedTarget¡ highestValue

return allocation

It is not obvious how to use the MMR algorithm

for the static asset-based weapon allocation problem,

since it in this version of the problem does not exist

any target values. Instead, there are protection values

associated with the defended assets, and lethality values

associated with the targets. In [27], it is suggested that

a defended asset’s weight (protection value) is equally

distributed over the targets aimed for it, so that a target’s

value is computed as Vi = !j=jGj j (where j is the index
for the set Gj of which target Ti is a member), and that
the asset-based problem is approximated with its target-

based counterpart. Similar reasoning is presented in [7]

where it is suggested that the value of a target is set to

the expected destroyed protection value of the defended

asset to which it is aimed, given that the target is not

engaged and that all other targets aimed for the defended

asset are destroyed.

We have here chosen to calculate the target value Vi
for a target Ti as:

Vi = !j £¼i (6)

192 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 6, NO. 2 DECEMBER 2011

where j is the index of the defended asset to which

target Ti is aimed. Hence, the target value has been

calculated as the product of the lethality probability ¼i
of the target and the protection value !j of the defended

asset it is aimed at. In this way, we follow the approach

suggested in [7] to use the protection value of the

defended asset to impact on the target value, but we

complement this with taking the lethality of the target

into account, since this extra information otherwise is

lost.

We have also included a variant of greedy search

where we have taken the solution generated by the

MMR algorithm and improved it with a simple local

search (LS) that creates neighbor solutions by swap-

ping two positions selected at random in the solution

vector (this variant of the MMR algorithm, described

with pseudo code in Algorithm 2, will in the follow-

ing be referred to as MMR-LS). This algorithm is an

implementation of the idea briefly discussed in [27].

ALGORITHM 2 The MMR-LS algorithm

bestSolutionÃMMR()

JbestÃ CalculateFitness(bestSolution)

while termination criteria not met do

neighborSolutionÃ neighbor(bestSolution)

JnewÃ CalculateFitness(neighborSolution)

if Jnew > Jbest then

bestSolutionÃ neighborSolution

JbestÃ Jnew
return bestSolution

Obviously, the quality of the solutions generated by

the MMR-LS algorithm will always be at least as good

as the quality of the solutions returned by the MMR

algorithm.

4.2. An Enhanced Maximum Marginal Return
Algorithm for Static Weapon Allocation

What here will be referred to as the enhanced maxi-

mum marginal return algorithm (the authors’ terminol-

ogy) is quite similar to the standard maximum marginal

return algorithm. The difference is that in the enhanced

maximum marginal return (EMMR) algorithm it is not

predetermined which firing unit to allocate next. In-

stead, the choice of which firing unit to allocate next is

based on which weapon-target pair that maximizes the

marginal return. We have implemented this algorithm

based on the description in [16], and the pseudo code

for the algorithm is given in Algorithm 3. In the first

iteration it= 1, jWj £ jTj combinations are tested. The
weapon-target pair with highest marginal return is se-

lected, so that the firing unit is selected to the target, and

the target value of the corresponding target is updated

accordingly. After this, jWj ¡ 1 firing units are unallo-
cated. In next iteration, the remaining (jWj ¡ 1)£ jTj
weapon-target pairs are tested, and so on, until there

does not remain any unallocated firing units. Hence, the

time complexity of EMMR becomes O(jWj2jTj).

ALGORITHM 3 Enhanced maximum marginal return al-

gorithm (adapted from [16])

for all it such that 1· it· jWj do
highestValueÃ¡1
allocatedTargetÃ 0

allocatedWeaponÃ 0

for all k such that 1· k · jWj do
for all i such that 1· i· jTj do
valueÃ Vi£Pik
if value> highestValue then

highestValueÃ value

allocatedWeaponÃ k

allocatedTargetÃ i

assign WallocatedWeapon to TallocatedTarget
VallocatedTargetÃ VallocatedTarget¡ highestValue

return allocation

As the standard MMR algorithm, EMMR is rely-

ing on target values. Hence, we calculate target values

according to (6), solve the approximated target-based

problem using EMMR, and return the solution as the

solution to the asset-based problem.

4.3. A Genetic Algorithm for Static Weapon Allocation

In [13], we presented a genetic algorithm (GA) de-

signed for real-time allocation of defensive weapon re-

sources to targets. The original version of the algorithm

was intended for the static target-based problem, but we

have now with some modifications adapted it to also suit

the static asset-based formulation of the problem.

The algorithm is described in pseudo code in Al-

gorithm 4. First, an initial population consisting of

nrOfIndividuals is created, through generation of a vec-

tor of length jWj. In this vector each element Wk is as-
signed a random integer value in the interval f1, : : : , jTjg.
In each generation we evaluate all individuals in the

population and determine their objective function val-

ues in accordance with (1). Hence, each individual is

assigned a fitness value that is used in the follow-

ing phases of selection and recombination. After the

evaluation phase, deterministic tournament selection is

used as selection mechanism to determine which indi-

viduals in population Pop that should be used as par-

ents for Pop0, i.e., we pick two individuals at random
from Pop and select the one with best fitness value.

When two parents have been selected from Pop, we

apply one-point crossover at a randomly selected po-

sition k 2 f1, : : : , jWjg, generating two individuals that
become members of Pop0. This is repeated until there
are nrOfIndividuals in Pop0. Thereafter, we apply mu-
tation on a randomly selected position k 2 f1, : : : , jWjg
in the first individual of Pop0, where the old value is
changed into i 2 f1, : : : , jTjg. Hence, there is a probabil-
ity of 1=jTj that the individual is unaffected of the muta-
tion. The mutation operator is repeated on all individuals

in Pop0 and the resulting individuals become members
of the new population Pop. This loop is repeated until

the termination criterion is fulfilled (the upper limit on

REAL-TIME ALLOCATION OF FIRING UNITS TO HOSTILE TARGETS 193

the computational time bound is reached). At this point,

the individual with the best fitness found during all gen-

erations is returned as the allocation recommended by

the algorithm.

ALGORITHM 4 Pseudo code for our genetic algorithm

fitnessbestÃ¡1
PopÃGenerateInitialPopulation()
while termination criteria not met do
for lÃ 1 to nrOfIndividuals do
JlÃ CalculateFitness(Pop(l))
if Jl > fitnessbest then
~gÃ Pop(l)
fitnessbestÃ Jl

Pop0 Ã Crossover(Pop)

PopÃMutate(Pop0)
return ~g

Furthermore, we have implemented a variant of the
genetic algorithm that is seeded with well-performing
individuals. Instead of creating all individuals in the
initial population at random, · individuals are created
based on the solution returned by the EMMR algorithm
(a random swap between the targets of two of the firing
units is first made for each of the seeded individuals
in order to create some diversity among them). The re-
maining individuals are created randomly just as before.
This seeded version of the genetic algorithm will in the
following be referred to as GA-S.

4.4. A Particle Swarm Optimization Algorithm for
Static Weapon Allocation

In [14], we developed a particle swarm optimization
(PSO) algorithm for the static target-based weapon allo-
cation problem. We have modified this algorithm to also
suit the static asset-based weapon allocation problem.
A particle swarm consists of nrOfParticles particles,

in which each particle is associated with a position ~x tl , a

velocity ~v tl , and a memory
~b tl storing the particle’s per-

sonal best position. Moreover, we also store the swarm’s
global best position in a vector ~g t. Each particle corre-
sponds to a solution, given by the particle’s position.

ALGORITHM 5 Pseudo code for our particle swarm

optimization algorithm

Initialization()
while termination criteria not met do
for lÃ 1 to nrOfParticles do
JlÃ CalculateFitness(~xl)

if Jl = CalculateFitness(~g) then
plÃ Reinitialize()

else
if Jl > CalculateFitness(

~bl) then
~blÃ~xl
if Jl > CalculateFitness(~g) then
~gÃ~xl

for lÃ 1 to nrOfParticles do
~vlÃUpdateVelocity(~pl)
~xlÃUpdatePosition(~pl)

return ~g

The algorithm is described in pseudo code in Algo-

rithm 5. In an initialization phase, each particle is as-

signed an initial position ~x0l (where the elements in the

initial position vectors are integers randomly distributed

between 1 and jTj), and an initial velocity ~v0l (a vector
of real numbers randomly distributed from the uniform

distribution U[¡0:5jTj,0:5jTj]). A fitness value is cal-

culated for each particle, given by the objective function

value J (see (1)) that is obtained for the solution cor-

responding to the particle’s position. The new fitness

is compared to the personal best and the global best to

see whether these should be updated accordingly. Af-

ter this, the velocity and position is updated for each

particle, according to (7) and (8).

~v t+1l = !~v tl + c1~r
t
1 ± (~b tl ¡~x tl) + c2~r t2 ± (~g t¡~x tl) (7)

~x t+1l =~x tl +~v
t+1
l : (8)

In (7), ! is a parameter referred to as inertia or mo-

mentum weight, specifying the importance of the previ-

ous velocity vector, while c1 and c2 are positive con-

stants specifying how much a particle should be af-

fected by the personal best and global best positions

(referred to as the cognitive and social components, re-

spectively). ~r t1 and ~r
t
2 are vectors with random numbers

drawn uniformly from the interval [0,1]. Moreover, the

±-operator denotes the Hadamard product, i.e., element-
by-element multiplication of the vectors. In order to

avoid that particles gain too much momentum, a Vmax
parameter that constrains the velocities to stay in the

interval [¡Vmax,Vmax] has been introduced.
After the position update specified in (8), we round

off the particles’ positions to their closest integer coun-

terpart. In next iteration we calculate the particles’ new

fitness values, whereupon the velocities and positions

are updated, and so on. This is repeated until a termi-

nation criterion is met, i.e., that no more time remains.

When this happens, the best solution obtained so far is

returned as output from the algorithm.

A problem that must be handled is particles moving

outside the bounds of the search space. When this hap-

pens, we reinitialize the position and velocity values of

the coordinate for which the problem occurred. More-

over, in order to avoid premature convergence to local

optima (stagnation), we reinitialize the velocity vector

for particles rediscovering the current best solution. For

a more thorough explanation of the problem of stagna-

tion in particle swarm optimization, see [34].

In addition to the described particle swarm optimiza-

tion algorithm, we have also included a variant in which

we seed the starting position for · particles in the initial

population in the same way as with the GA-S algorithm

(while their initial velocities are randomized in the same

manner as for the remaining particles). This seeded par-

ticle swarm optimization algorithm will in the following

be referred to as PSO-S. To the best of our knowledge,

the use of seeded particles is novel for the weapon al-

location problem.

194 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 6, NO. 2 DECEMBER 2011

5. EXPERIMENTS

In the experiments reported here, we have used

the open source testbed SWARD1 (System for Weapon

Allocation Research and Development) which we have

developed in order to allow for systematic comparison

of various weapon allocation algorithms [11, 15]. The

testbed is implemented in Java, and we have been

running the experiments on a computer with a 2.67 GHz

Intel Core i7 CPU and 8 GB RAM. By using SWARD,

we make sure that the experiments presented here are

easily reproducible, so that researchers can test other

algorithms on the same problem instances.

In order to recreate the problem instances used in

the experiment presented in Section 5.1.1, the following

settings should be used in SWARD:

² Tstart = 5, Wstart = 5,
² Tend = 9, Wend = 9,
² Tstep = 1, Wstep = 1,
² iterations= 10, DAs= 5,
² seed= 0, timeLimit= 1000 ms.
Similarly, for recreating the problem instances used in

the experiment presented in Section 5.1.2, the following

settings should be used:

² Tstart = 10, Wstart = 10,
² Tend = 30, Wend = 30,
² Tstep = 10, Wstep = 10,
² iterations= 100, DAs= 5,
² seed= 0, timeLimit= 1000 ms.
The time limits make sure that no algorithms are al-

lowed to run for more than a total time of one sec-

ond (including seeding). For the genetic algorithms

we have used the parameter setting: nrOfIndividuals=

max(jTj, jWj). Additionally, we have for the seeded
version used ·= 0:5£ nrOfIndividuals. For the part-
icle swarm optimization algorithm we have used

nrOfParticles= 50, c1 = 2:0, c2 = 2:0, ! = 0:8, and

Vmax = 0:5£ jTj. The same settings have been used for
the seeded version, with the additional parameter setting

·= 25.

5.1. Heuristic Algorithm Performance

For scenarios that demand solving the static asset-

based weapon allocation problem faster than is possi-

ble with optimal algorithms, we have to rely on heuris-

tic algorithms. In Section 5.1.1, we present experimen-

tal results obtained with the suggested heuristic algo-

rithms on small-scale problem instances, while we in

Section 5.1.2 present results on large-scale problem in-

stances.

5.1.1. A comparison against the optimal solution for
small-scale problems

We have in order to investigate the quality of the

solutions generated by the suggested algorithms com-

1The open source testbed SWARD can be downloaded from http://

sourceforge.net/projects/sward/.

TABLE II

Deviation from Optimal Solution (in %)

Averaged Over Ten Problem Instances

5£ 5 6£ 6 7£ 7 8£ 8 9£ 9
GA 0 0 0 0.1 0.7

GA-S 0 0 0 0.2 0.5

PSO 0 0 0 0 0.2

PSO-S 0 0.1 0.1 0.2 0.2

MMR 2.9 3.7 4.8 6.4 6.6

EMMR 0.3 0.8 0.8 0.8 0.9

MMR-LS 0.6 1.1 0.8 1.3 1.7

pared their obtained objective function values to the

optimal objective function values obtained by exhaus-

tive search for relatively small-scale scenarios between

(jTj= 5, jWj= 5) and (jTj= 9, jWj= 9).
The average percentage deviation from the opti-

mal solution is a common metric to use for evaluating

heuristic algorithms on small-scale optimization prob-

lems where the optimal solution can be calculated, and

therefore it also has been used here. The percentage

deviation ¢alg for a specific algorithm on a specific

problem instance has been calculated as:

¢alg =
jJalg¡ Joptj

Jopt
£ 100 (9)

where Jalg is the objective function value for the tested

algorithm and Jopt is the optimal objective function

value. In the tables, we use bold to show which obtained

objective function value that is the best for each tested

problem size.

Looking at Table II, the algorithms’ percentage de-

viations from the optimal solution show that most of the

algorithms are able to find optimal or very near-optimal

solutions for the smallest tested problem sizes. The

MMR algorithm is by far the worst of the algorithms on

the tested small-scale scenarios, but when allowed to im-

prove its initial solution by local search (i.e., the MMR-

LS algorithm), the quality is improved. The EMMR al-

gorithm produces solutions that are better than both the

MMR and MMR-LS algorithms. However, as can be

seen, all these greedy heuristics are outperformed by the

nature-inspired metaheuristics. Of the nature-inspired

metaheuristics, the PSO algorithm performs somewhat

better than the others. In fact, it produces optimal solu-

tions to all problem instances of size (jTj= 5, jWj= 5)—
(jTj= 8, jWj= 8), and for (jTj= 9, jWj= 9) it is in one
second able to generate almost optimal solutions to

problems consisting of 99 = 387,420,489 feasible solu-

tions.

It should be noted that the results obtained on small-

scale problems do not necessarily extends to large-

scale problems. For small instances of any combina-

torial problem, it is likely that algorithms such as PSO

algorithms and GAs are able to search a large fraction

of the solution space in a short period of time, making

it more probable to find a high quality solution, while

REAL-TIME ALLOCATION OF FIRING UNITS TO HOSTILE TARGETS 195

TABLE III

Average Objective Function Value for jTj= 10
Averaged Over 100 Static Asset-Based Problem Instances

(higher objective function values are better)

10£ 10 10£ 20 10£ 30
GA 266.7 (42.0) 301.9 (49.1) 302.4 (46.5)

GA-S 268.7 (42.3) 304.1 (49.5) 303.1 (46.6)

PSO 269.2 (42.1) 303.2 (49.4) 302.3 (46.5)

PSO-S 270.0 (42.2) 304.3 (49.5) 303.2 (46.6)

MMR 251.5 (40.3) 296.8 (48.6) 301.2 (46.3)

EMMR 268.1 (42.2) 304.1 (49.5) 303.1 (46.6)

MMR-LS 267.5 (42.7) 303.6 (49.4) 302.9 (46.6)

TABLE IV

Average Objective Function Value for jTj= 20
Averaged Over 100 Static Asset-Based Problem Instances

(higher objective function values are better)

20£ 10 20£ 20 20£ 30
GA 153.7 (30.6) 219.3 (36.4) 263.5 (34.7)

GA-S 154.7 (30.9) 237.3 (37.1) 279.8 (36.0)

PSO 158.1 (30.6) 212.6 (37.2) 245.1 (34.1)

PSO-S 160.0 (31.1) 238.4 (37.5) 280.0 (36.0)

MMR 117.6 (28.6) 210.2 (36.4) 261.2 (34.0)

EMMR 127.6 (29.8) 237.0 (37.0) 279.8 (36.0)

MMR-LS 128.9 (30.2) 234.9 (37.6) 277.2 (35.4)

one wrong decision by a constructive, one-pass heuris-

tic may result in a solution differing dramatically from

the optimum of a small case [30]. Therefore, the results

should not without further tests be generalized to larger

problem sizes. With this said, it is still very relevant to

test the performance on small-scale problem instances,

not at least since it in many real-world air defense sce-

narios is likely that the number of targets and available

firing units will be close to the settings tested here.

5.1.2. A comparison between algorithms on
larger-scale problems

In a second experiment with the heuristic algorithms,

we have tested them on larger-scale problems ranging in

between (jTj= 10, jWj= 10) and (jTj= 30, jWj= 30).
The algorithms have also in this experiment been al-

lowed to run for one second on each problem instance.

The optimal solutions are hard to obtain for large-scale

problem instances, so instead of calculating the devi-

ation from the optimal solution, we have here simply

plotted the objective function values obtained (averaged

over 100 problem instances) in Tables III—V. We also

show the associated standard deviations within paren-

theses. As before, bold is used to indicate the best ob-

tained objective function value on each problem size.

A note to make is that the standard deviations shown

in many cases are larger than the differences in mean

values among the algorithms. However, this should not

be interpreted as that there are no significant differences

among the algorithms. Rather, the largest part of these

standard deviations are due to the differences between

various problem instances. In some problem instances

TABLE V

Average Objective Function Value for jTj= 30
Averaged Over 100 Static Asset-Based Problem Instances

(higher objective function values are better)

30£ 10 30£ 20 30£ 30
GA 96.8 (20.4) 147.9 (30.4) 186.2 (33.7)

GA-S 97.2 (20.3) 151.8 (29.1) 208.7 (36.9)

PSO 99.8 (21.4) 128.6 (29.2) 150.7 (29.2)

PSO-S 103.0 (19.9) 155.5 (31.3) 208.6 (36.8)

MMR 53.6 (20.4) 117.0 (27.0) 174.8 (32.2)

EMMR 59.7 (24.2) 135.7 (30.6) 208.1 (36.5)

MMR-LS 59.8 (23.9) 137.6 (31.1) 205.7 (37.0)

the optimal objective function values are lower, while

they in others are higher (as a natural result of the ran-

dom fashion in which the problem instances are gener-

ated). As a consequence of this, also optimal algorithms

would obtain large standard deviations.

When analyzing the obtained results, it can be seen

that the use of local search significantly improves the

quality of the solutions found using MMR also on

large problem sizes. A comparison of the solutions

generated by MMR-LS with the ones returned by the

EMMR algorithm shows that the performance of these

are approximately equally good (although EMMR is

significantly faster than MMR-LS). This indicates that

it in the future may be worth studying if it would be

beneficial to apply simple local search also to EMMR.

It can be seen that the seeded particle swarm op-

timization algorithm (i.e., PSO-S) is performing best

relative to the other algorithms on all tested problem

sizes except the largest, on which the seeded genetic

algorithm (GA-S) performs slightly better. We have in

earlier work [14] shown that PSO runs into some trouble

when applied to large target-based problem instances

under tight real-time constraints, and this trend can be

seen also for the large asset-based problem instances

tested here. However, when combined with the seed-

ing mechanism, particle swarm optimization seems to

work very well. It can be seen that the obtained objec-

tive function values for the greedy algorithms MMR-LS

and EMMR are reasonably close to the best algorithms’

objective function values for many of the tested problem

sizes, while they for problem instances where jTj> jWj
are much worse. These results are in line with the ana-

lytical arguments in [7], predicting that it will work well

to approximate the static asset-based weapon allocation

problem with its target-based counterpart on problem

instances involving a strong defense (a large number of

firing units compared to the number of targets), while

the approximation will work bad in cases of a weak

defense (i.e., problem instances where there are more

targets than firing units). Although the differences be-

tween e.g., EMMR and PSO-S or GA-S and PSO-S are

not very large for problem instances involving a strong

defense, the differences should not be ignored, since

such small but significant differences can have severe

196 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 6, NO. 2 DECEMBER 2011

impact on the end result if such algorithms are applied

in a real-world C-RAM system.

6. CONCLUSIONS AND FUTURE WORK

We have in this article presented the static asset-

based weapon allocation problem, which is an optimiza-

tion problem that needs to be solved in a short amount

of time in air defense situations involving RAM threats

such as rockets and mortars. We have also presented

the static target-based weapon allocation problem, but

the focus has been on the asset-based case. We have

implemented two versions of a genetic algorithm, two

versions of a particle swarm optimization algorithm, and

various versions of the greedy maximum marginal re-

turn algorithm. Such algorithms have earlier been used

for the static target-based weapon allocation problem,

but as far as we know, it is previously unknown how

they perform on the asset-based version of the prob-

lem. Our experiments have shown that optimal or very

near-optimal solutions are obtained in real-time by the

genetic algorithms and the particle swarm optimization

algorithms on small-scale problems. The standard max-

imum marginal return algorithm yields worse solutions,

but these can easily be improved upon by local search,

or by using an enhanced version of the algorithm. How-

ever, the quality does not become as good as that of the

genetic algorithms or the particle swarm optimization

algorithms.

For larger problem instances the optimal solutions

are not known, and can therefore not be used for com-

parison. Instead, the objective function values produced

by the algorithms have been compared to each other. It

has been shown that the greedy algorithms create solu-

tions of good quality (compared to the other algorithms)

for scenarios with a strong defense, but that they per-

form bad on scenarios involving a weak defense, i.e.,

where there is a larger number of targets than there are

firing units.

The algorithm that has been performing the best on

large-scale problem instances is a novel improvement on

the particle swarm optimization algorithm where the ini-

tial population is seeded with individuals based on small

variations of the solution returned by the enhanced max-

imum marginal return algorithm. For the problem in-

stances where there is a strong defense, the algorithm is

not able to improve very much on the solution returned

by the enhanced maximum marginal return algorithm,

but for the problem instances involving a weak defense,

the difference is dramatic. For problems of quite small

scale, the difference in solution quality is very small be-

tween the particle swarm optimization algorithm and its

seeded version. However, as the problem size increases,

the difference in solution quality becomes very evident.

6.1. Future Work

The obtained results can be used as benchmarks for

other heuristic algorithms. Hence, it is our hope that

the used data sets (problem instances) will be used by

other researchers as well, so that a better understanding

of which algorithms that work well for static asset-based

weapon allocation is obtained. Moreover, in the current

research on static asset-based weapon allocation, it is

assumed that kill probabilities, lethality probabilities,

and target aims are known with certainty. Obviously,

these estimates will in real-world systems be associated

with uncertainty, and it would therefore be interesting

and useful to know how sensitive the solutions produced

by the algorithms are to such uncertainties.

In the experiments presented in this article, we have

been generating problem instances in which there are

no dependences among the values of the parameters.

As an example, there is no correlation between any

of the kill probabilities involving a specific target (or

rather, there might be such correlation, but if so, this is

by pure chance). This is consistent with how weapon

allocation algorithms have been evaluated earlier in

reported literature, but it can be discussed whether this

lack of structure really would be seen in estimated

kill probabilities from real-world air defense scenarios.

Thinking of such a scenario, two targets, T1 and T2,

of the same type, approaching a firing unit W1 from

the same direction and on the same altitude, would

most likely result in kill probabilities P11 and P12 being

quite similar. Likewise, two firing units W2 and W3
would obtain kill probabilities of approximately same

magnitude, given that the firing units were positioned

close together and being of the same type. Hence, the

random fashion in which problem instances have been

generated here (and in previous reported experiments

with weapon allocation algorithms) may not necessarily

create the same kinds of search spaces that would be

experienced in real-world air defense situations. An idea

that could be of interest for the future is therefore to

create problem instances with an inbound structure that

better reflect reality.

ACKNOWLEDGMENT

We would like to express gratitude to the reviewers

for their constructive comments and suggestions that

have helped to improve the article. This work was

supported by the Information Fusion Research Program

(University of Skövde, Sweden) in partnership with

Saab AB and the Swedish Knowledge Foundation under

grant 2003/0104.

REFERENCES

[1] R. Ahuja, A. Kumar, K. Jha, and J. Orlin

Exact and heuristic methods for the weapon target assign-

ment problem.

Operations Research, 55, 6 (2007), 1136—1146.

[2] J. Chen, B. Xin, Z. Peng, L. Dou, and J. Zhang

Evolutionary decision-makings for the dynamic weapon-

target assignment problem.

Science in China Series F: Information Sciences, 52, 11

(2009), 2006—2018.

REAL-TIME ALLOCATION OF FIRING UNITS TO HOSTILE TARGETS 197

[3] C. K. Cheong

Survey of investigations into the missile allocation problem.

Master’s thesis, Naval Postgraduate School, Monterey, CA.

1985.

[4] C. Ciobanu and G. Marin

On heuristic optimization.

An. Stiint. Univ. Ovidius Constanta, 9, 2 (2001), 17—30.

[5] G. G. den Broeder, R. E. Ellison, and L. Emerling

On optimum target assignments.

Operations Research, 7, 3 (1959), 322—326.

[6] A. R. Eckler and S. A. Burr

Mathematical Models of Target Coverage and Missile Al-

location.

Technical Report DTIC: AD-A953517, Military Operations

Research Society, Alexandria, VA, 1972.

[7] P. A. Hosein

A Class of Dynamic Nonlinear Resource Allocation Prob-

lems.

Ph.D. thesis, Massachusetts Institute of Technology, Dept.

of Electrical Engineering and Computer Science, 1990.

[8] P. A. Hosein and M. Athans

Preferential defense strategies: Part 1–the static case.

Technical report, Massachusetts Institute of Technology,

1990.

[9] C. Huaiping, L. Jingxu, C. Yingwu, and W. Hao

Survey of the research on dynamic weapon-target assign-

ment problem.

Journal of Systems Engineering and Electronics, 17, 3

(2006), 559—565.

[10] K. C. Jha

Very large-scale neighborhood search heuristics for combi-

natorial optimization problems.

Ph.D. thesis, University of Florida, 2004.

[11] F. Johansson

Evaluating the performance of TEWA systems.

Ph.D. thesis, Örebro University, 2010.

[12] F. Johansson and G. Falkman

A comparison between two approaches to threat evaluation

in an air defense scenario.

In Proceedings of the 5th International Conference on Mod-

eling Decisions for Artificial Intelligence, 2008, 110—121.

[13] F. Johansson and G. Falkman

An empirical investigation of the static weapon-target allo-

cation problem.

In Proceedings of the 3rd Skövde Workshop on Information

Fusion Topics, 2009.

[14] F. Johansson and G. Falkman

A suite of metaheuristic algorithms for static weapon-target

allocation.

In Proceedings of the 2010 International Conference on

Genetic and Evolutionary Methods, 2010.

[15] F. Johansson and G. Falkman

SWARD: System for weapon allocation research & devel-

opment.

In Proceedings of the 13th International Conference on In-

formation Fusion, 2010.

[16] B. A. Julstrom

String- and permutation-coded genetic algorithms for the

static weapon-target assignment problem.

In Proceedings of the Genetic and Evolutionary Computation

Conference, 2009.

[17] O. Karasakal

Air defense missile-target allocation models for a naval task

group.

Computers and Operations Research, 35, 6 (2008), 1759—

1770.

[18] S. E. Kolitz

Analysis of a maximum marginal return assignment algo-

rithm.

In Proceedings of the 27th Conference on Decision and

Control, 1988.

[19] Z-J. Lee and C-Y. Lee

A hybrid search algorithm with heuristics for resource

allocation problem.

Information Sciences, 173, 1—3 (2005), 155—167.

[20] Z-J. Lee, C-Y. Lee, and S-F. Su

Parallel ant colonies with heuristics applied to weapon-

target assignment problems.

In Proceedings of the 7th Conference on Artificial Intelli-

gence and Applications, 2002.

[21] Z. J. Lee and W. L. Lee

A hybrid search algorithm of ant colony optimization

and genetic algorithm applied to weapon-target assignment

problems.

In Proceedings of the 4th International Conference on In-

telligent Data Engineering and Automated Learning, 2003,

278—285.

[22] Z. J. Lee, S. F. Su, and C. Y. Lee

A genetic algorithm with domain knowledge for weapon-

target assignment problems.

Journal of the Chinese Institute of Engineers, 25, 3 (2002),

287—295.

[23] S. P. Lloyd and H. S. Witsenhausen

Weapon allocation is NP-complete.

In Proceedings of the 1986 Summer Conference on Simula-

tion, 1986.

[24] W. P. Malcolm

On the character and complexity of certain defensive re-

source allocation problems.

Technical Report DSTO-TR-1570, DSTO, 2004.

[25] A. S. Manne

A target-assignment problem.

Operations Research, 6, 3 (May—June 1958), 346—351.

[26] S. Matlin

A review of the literature on the missile-allocation problem.

Operations Research, 18, 2 (1970), 334—373.

[27] W. A. Metler and F. L. Preston

A suite of weapon assignment algorithms for a SDI mid-

course battle manager.

Technical report, Naval Research Laboratory, 1990.

[28] R. A. Murphey

Target-based weapon target assigment problems.

In P. M. Pardalos and L. S. Pitsoulis (Eds.), Nonlinear

assignment problems: algorithms and applications, 2000,

39—53.

[29] S. Paradis, A. R. Benaskeur, M. Oxenham, and P. Cutler

Threat evaluation and weapons allocation in network-

centric warfare.

In Proceedings of the 8th International Conference on Infor-

mation Fusion, 2005.

[30] R. L. Rardin and R. Uzsoy

Experimental evaluation of heuristic optimization algo-

rithms: A tutorial.

Journal of Heuristics, 7 (2001), 261—304.

[31] M. St. John, D. I. Manes, H. S. Smallman, B. Feher, and J. G.

Morrison

An intelligent threat assessment tool for decluttering naval

air defense displays.

Technical report, SSC San Diego, CA, 2004.

[32] B. Suman and P. Kumar

A survey of simulated annealing as a tool for single and

multiobjective optimization.

Journal of the Operational Research Society, 57 (2006),

1143—1160.

198 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 6, NO. 2 DECEMBER 2011

[33] P. Teng, H. Lv, J. Huang, and L. Sun

Improved particle swarm optimization algorithm and its ap-

plication in coordinated air combat missile-target assign-

ment.

In Proceedings of the 7th World Congress on Intelligent

Control and Automation, 2008.

[34] F. van den Bergh and A. P. Engelbrecht

A new locally convergent particle swarm optimiser.

In Proceedings of the IEEE International Conference on

Systems, Man and Cybernetics, 2002.

[35] E. Wacholder

A neural network-based optimization algorithm for the

static weapon-target assignment problem.

ORSA Journal on Computing, 1, 4 (1989), 232—246.

Fredrik Johansson obtained his M.Sc. in computer science from University of

Skövde, Sweden, in 2005 and his Ph.D. in computer science from Örebro University,

Sweden, in 2010.

During his Ph.D. studies he was a member of the Skövde Artificial Intelligence

Lab (SAIL) and the Information Fusion Research Program at the Informatics

Research Centre (IRC) in Skövde. Currently, he works as a scientist at the Swedish

Defence Research Agency (FOI) in Kista.

His research interests are applied artificial intelligence and high-level informa-

tion fusion, and the application of probabilistic techniques such as Bayesian net-

works for decision support. He is also interested in the use of techniques such

as social network analysis, natural language processing, and web harvesting for

supporting the work of intelligence analysts.

Göran Falkman obtained his Ph.D. in computing science from Chalmers University
of Technology, Sweden, in 2003.

He holds a position as an Associate Professor of Computer Science, with a

specialty in Interactive Knowledge Systems, at University of Skövde, Sweden,

where he works as a researcher and senior lecturer within the Skövde Artificial

Intelligence Lab (SAIL) at the Informatics Research Centre (IRC). He has been

a project leader for three applied research projects within the area of information

fusion, focusing on algorithms for threat evaluation and weapon allocation, visual

analytics and maritime domain awareness, and anomaly detection for surveillance

applications, respectively. He has also been the leader for the Situation Awareness

scenario within the Infofusion research program at University of Skövde. Currently,

he is one of the principal investigators of the Uncertainty Management in High-Level

Information Fusion (UMIF) research project. Since 2009, he is an elected member

of the Executive Board of the Swedish Artificial Intelligence Society (SAIS).

The research interests lie in the intersection of applied artificial intelligence,

knowledge systems, interaction design, and information fusion. This includes work

on the design, implementation and use of formal knowledge representation and

knowledge-based systems (especially, case-based reasoning, ontology engineering,

and the Semantic Web), as well as the use of interactive visualization for supporting

knowledge-based reasoning processes (especially, situation analysis and decision-

making).

[36] W. L. Winston

Operations Research: Applications and Algorithms.

Wadsworth Publishing Company. 1997.

[37] X. Zeng, Y. Zhu, L. Nan, K. Hu, B. Niu, and X. He

Solving weapon-target assignment problem using discrete

particle swarm optimization.

In Proceedings of the 6th World Congress on Intelligent

Control and Automation, 2006.

REAL-TIME ALLOCATION OF FIRING UNITS TO HOSTILE TARGETS 199

