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We present verifiable sufficient conditions for determining opti-
mal policies for finite horizon, discrete time Markov decision prob-
lems (MDPs) with terminal reward. In particular, a control policy
is optimal for the MDP if (i) it is optimal at the terminal time,
(ii) immediate decisions can be deferred to future times, and (iii)
the probability transition functions are commutative with respect
to different decisions. The result applies to a class of finite horizon
restless multiarmed bandit problems that arise in sensor manage-

ment applications, which we illustrate with a pair of examples.
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1. INTRODUCTION

Consider the Markov decision problems (MDPs)
arising in the areas of intelligence, surveillance, and re-
connaissance in which one selects among different tar-
gets for observation so as to track their position and
classify them from noisy data [9], [10]; medicine in
which one selects among different regimens to treat a
patient [1]; and computer network security in which one
selects different computer processes for observation so
as to find ones exhibiting malicious behavior [6]. These
MDPs all have a special structure. Specifically, they are
discrete-time MDPs in which one controls the evolu-
tion of a set of Markov processes. There are two pos-
sible transition probability functions for the processes.
The control at a given time selects a subset of pro-
cesses, which then transition independently according
to the controlled transition probability; the remaining
processes transition independently according to the un-
controlled transition probability. Rewards are additive
across processes and accumulated over time. The con-
trol problem is one of determining a policy to select con-
trols so as to maximize expected rewards. MDPs with
this structure have been termed restless bandit prob-
lems [15]. Our particular interest in such problems is
in developing methods for deriving optimal solutions to
them. Such solutions may be important of themselves
as a control solution or may be useful for analyzing a
problem in the process of developing a good suboptimal
controller.

Restless bandits problems are a variation of a classi-
cal stochastic scheduling problem called a multiarmed
bandit problem. It differs from the restless bandits prob-
lems considered here in two key respects. The first is
that the states of the unselected process in the multi-
armed bandit problem do not change. Second, the re-
wards in a multiarmed bandit problem are accumulated
over an infinite horizon, discounting future rewards.
Note that this is a significant difference because the time
remaining in the horizon is essentially a component of
the state and does not change for a multiarmed bandit
problem but does change for the finite horizon restless
bandit problems considered here.

A number of techniques have been previously devel-
oped for computing solutions to restless bandits prob-
lems. For example, index rules have been shown to
optimally solve classical multiarmed bandit scheduling
problems [2], [4]. Generalizations of this result have
been conjectured, and some of them have been proven to
apply to other classes of restless bandit problems [14],
[15]. Proofs establishing the optimality of controls for
finite-horizon restless bandit problems with particular
reward structures have also been presented [1], [3], [5].
Each of these results describes a set of conditions for a
control to be optimal for a restless bandit problem.

This paper introduces a set of novel conditions that
are sufficient for a control policy to be optimal for a
finite-horizon MDP. The conditions are readily verified
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for a specified control policy and are convenient for ver-
ifying the optimality of controls such as priority index
rules [3], [4], [15]. We have been able to apply the con-
ditions to verify the optimality of controls for a number
of different restless bandit problems [12]. In particular,
our conditions can be used to verify special cases of
previous results on the optimality of controls for MDPs
in [1] and [3]. We have also been able to apply our
results to verify the optimality of controls for MDPs
arising in sensor management [9], [10] applications for
which no existing proofs of optimality existed. General
conditions have not been previously developed that can
verify optimality of strategies for such a range of ex-
amples. These sufficient conditions may prove useful
in helping to identify and verify optimal policies for
similar multiarmed bandit problems and for developing
good suboptimal solutions for more complex problems.
The latter is illustrated by the work in [3] and [13]. In
both cases, a priority index rule is proven to be opti-
mal for special cases of a more general restless bandit
problem. Although the policies are not optimal for the
general problems, empirical results reported in the pa-
pers demonstrate that the policies perform well even for
the more general case.

An example of the type of sensor management prob-
lem we are interested in is that of managing an airborne
sensor to collect data on ground targets. The goals could
be either to collect kinematic data so as to track the
kinematic state of the targets or to collect discrimina-
tive data so as to classify them. The control problem
is one of selecting a subset of the targets for observa-
tion, subject to sensor field of view constraints, given
current estimates of target and class. The objective is
to optimize the quality of the data collected within a
finite time horizon. Such sensor management problems
are naturally modeled as restless bandit problems [8§],
[7], [11]. The quality of the data for each target can be
modeled as a Markov process, which transitions differ-
ently depending on whether the target is selected for
observation or not.

The details of our results and applications of them
to sensor management problems are provided in the rest
of the paper. Section 2 presents our results on sufficient
conditions for a control to be optimal for a Markov
decision problem. Section 3 applies the result to a
general sensor management problem. Finally, examples
of managing a sensor to perform binary classification
and target tracking are presented in Section 4-A. For the
reader’s convenience, we have relegated the proofs for
the main theorem and all propositions to the Appendix.

2. SUFFICIENT CONDITION

We will denote a MDP with terminal reward by
the tuple (X,U,p,,R,T) where X denotes the discrete
(finite or countable) state space of the Markov chain, U
denotes the finite set of possible decisions, {p, : u € U}
is the collection of transition probabilities parameterized
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by the decision u, R is the terminal reward function
R : X — R, and the integer T is the terminal time.

If X(#), 0<t<T is the Markov process with deci-
sions U(t), 0 <t <T — 1, and terminal reward R(X(T)),
the MDP problem is to select U to maximize the
expected value E{R(X(T))} of the terminal reward.
We assume that the decision U(f) depends only on
X(0),...,X(¢r) and that

Pr{X(t+1)=¢|X(t) = x,U(t) = u} = p,(£ | x).
(D

The dynamic programming equations for the optimal
reward-to-go function V (x,¢) for the MDP (X, U, p,,R,T)
are given as follows. The terminal condition is

V(x,T) = R(x). 2)
The recursion is
V(x,1) = mﬁlx{Vu(x, n} 3)
for times 0 <t <T — 1, where we define
4

V(6,0 := Y Vit + Dp, €| x).
13

Also, any u that achieves the maximum in (3) is defined
to be an optimal decision at time ¢t when in state x.

DEFINITION 1 Suppose that the MDP (X,U,p,,R,T)
has the probability transition functions p,(¢|x) for
x,£ €X, uelU, and terminal reward R(x) for x € X. If
®(x,t) CUforeachx e Xand 0 <t <T — 1, we say that
® is a strategy set for the MDP.

DEFINITION 2 If ® is a strategy set for the MDP
(X,U,p,,R,T) and if for each x € X, the expected value
for selecting each u € ®(x,T — 1) achieves the maximum
value, i.e.,

Y ROP,(|x) =maxy RGP, [0, (5)
y y

we say that the strategy set @ is terminally optimal for
the MDP.

DEFINITION 3 More generally, for, 0 <7 <7 —1 and
x € X, define ®*(x,7) to be the set of optimal strategies

O (x,1) = {u LV (x,1) = mjlew(x,t)}. ©)

What follows is a pair of definitions for properties
of the strategy set and MDP as well as a theorem con-
cerning the optimality of the strategy set when these
conditions hold. Note that the properties in the defini-
tions are abstract at this point and are illustrated later in
this section with an example.

DEFINITION 4 If ¢ is a strategy set for the MDP
X,U,p,,R,T), and if for each ¢ such that 0 <t <T -2,
each x € X,

u € o(x,1), V. (x,t) >V, (x,1), and o
p,|x)>0 imply ue®(y,t+1),
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then we say that decisions are deferrable in the strategy
set ®.

REMARK 1 Definition 4 gives conditions under which
if u is in the decision set at the current time but a
different decision v is made, then u is still in the decision
set at the next time. This condition allows using an
interchange argument to prove the optimality of the
decision set (Theorem 1). Unfortunately, Definition 4
is too hard to check in practice. However, it is implied
by various stronger conditions that are easier to check.
For example, if for each ¢ such that 0 <7 <T —2, each
x €X, and for all u,v,y,

ued(x,t), v#£u, and

®)

P, [x)>0 imply ue d(y,t+1),

then decisions are deferrable in the strategy set .
This condition is stronger than the definition, since
V.(x,t) >V, (x,t) obviously implies that v # u. At the end
of this section we prove another stronger condition for
problems with symmetry.

DEFINITION 5 We say that the probability transition
functions p, (¢ | x) are commutative if for all u,v € U,

> p&lmp, 0= pEImMpn]x) (9
n 7

for all x,& € X.

THEOREM 1 Suppose that ® is a strategy set for an
MDP (X,U,p,,R,T) with commutative transition proba-
bility functions p,, such that ® is terminally optimal and
decisions in ® are deferrable. Then the strategy set ® is
optimal in the sense that any decision U(t) € ®(X(¢),t) for
0 <t <T -1, is an optimal decision for (X,U,p,,R,T).

REMARK 2 If ®*(x,t) is the optimal strategy set for
X,U,p,,R,T) as defined in (6), then ®* is necessar-
ily terminally optimal. It also necessarily satisfies the
condition for deferrable decisions, simply because the
hypothesis of the condition,

ue ®*(x,0), V,(x,t) >V, (x,1), (10)
is always false. As we indicated in Remark 1, this
condition is difficult to check in practice, but we can
replace it with stronger conditions which do not refer
to the optimal reward function. With these stronger
conditions, it is important to have the third condition,
commutativity of the transition probabilities, to prove
the optimality of a proposed strategy set.

To conclude this section we will prove another
stronger condition for deferrable decisions in ¢ based
on symmetric MDP problems. Note that for these prob-
lems, the state space of the Markov chain X is a product
space X", and the ith component of an element x € X is
denoted by x;.

WASHBURN & SCHNEIDER: OPTIMAL POLICIES

DEFINITION 6 The MDP (X,U,p,,R,T) is symmetric
if for some n > 1

X=X", (1)
U=A{l,...,n}, (12)
Py (my | ) = pi(y [ x) (13)
and
R(x) = R(mx) (14)
where 7™ permutes the components of x,y, namely
™ = (xw(l),---,xﬂ(n)), (15)

for any permutation 7 of {1,...,n} and all x € X".

REMARK 3 Note that the symmetry conditions in Defi-
nition 6 all hold for multiarmed bandit scheduling prob-
lems. However, the symmetric scheduling problem con-
sidered here still differs from the multiarmed bandit
problem in two key respects. First, the states for un-
observed processes may change, whereas, for multi-
armed bandit problems, the states of unobserved pro-
cesses remain the same. Second, the horizon here is
finite whereas the horizon for multiarmed bandit prob-
lems is infinite.

PROPOSITION 1 Suppose that the MDP (X,U,p,,.R,T)
is symmetric. Then if for 0 <t <T —2 and all x e X

ue @1, x, #x, and
(16)

p(y[x)>0 imply ue®(y,r+1),

decisions are deferrable in ®.

An example of a strategy for a symmetric MDP that
is terminally optimal, deferrable, and commutative is as
follows. Suppose X = N and

R(x) =) 8(x)

i=1

1 if x;=0
5(351') = { .
0 otherwise.

17)

where
(18)

Moreover, define the transition probabilities as follows.
Ifx;,>0

1/2 if y=x=%1
pi(y[x) = . (19)
0 otherwise
and if x; =0,
) {1 *oy=0 (20)
, X) =
Py 0 otherwise.

This is a MDP in which there are n independent Markov
processes x; evolving on the non-negative integers. A
process x; transitions only if it is selected by the control
and is equally likely to increase or decrease. The value
0 is a trapping state. The objective is to drive as many



processes as possible to the trapping state. Define the
strategy set to be the non-zero processes of minimal
value

®(x,1) = argmin{x; > 0}. 21)

l

This strategy set is terminally optimal because selecting
a process with value 1 is optimal at the last stage.
The strategy set is deferrable because the condition
of Proposition 1 holds. Specifically, if u € ®(x,#) and
v € U is such that x, # x,, then x, > x, and p,(y | x) >0
implies y, > x, so that

u € argmin{y;, >0} = &(y,r + 1). (22)

Finally, the probability transitions are commutative be-
cause

> pElmp, %)
7

={1/4
0

=> pEIMp,0 ).
n

if ¢, =x,£1,§ =x,£1

23
otherwise 23)

(24)

Thus, the strategy is optimal for this problem by Propo-
sition 1.

Applications of the results in this section to sensor
management problems follow.

3. APPLICATIONS TO SENSOR MANAGEMENT
PROBLEMS

The results are stated for a very general situation in
Section 2, where few assumptions are made concerning
the statistics of the Markov chain. However, the opti-
mality conditions are expected to be useful for analyz-
ing special cases of more general problems, in part to
develop good heuristics for the general case. The pur-
pose of this section is to specialize the optimality condi-
tions to problems where the Markov chain is a product
of independent, identically distributed chains, which is
a common situation arising in some important special
cases of sensor management problems.

Specifically, consider the sensor management prob-
lem where there are n targets and we can only observe
one target at a time. In the simplest case, the deci-
sion U(t) to make at each time ¢ is only which target
i=1,...,n to observe. There is a Markov chain X;(7)
corresponding to each target i, where X;(f) represents
the information state of target i at time ¢. Typically, we
assume that the chains X;(¢) are independent and iden-
tically distributed, and that the selected (i.e., observed)
chain transitions according to p(¢ | x) and the n — 1 un-
observed chains transition according to g(¢ | x). More-
over, the reward is typically additive over the n targets,

namely
n

RX,(T),.... X,(T) = Y r(X(T)).

i=1
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The resulting MDP (X, U, p,,R,T) has special structure
where

X = X" and X is the state space of

one Markov chain X; (26)
U={1,...,n} 27

pi€ | x) = p& |xi)Hq(§j | x;) for ieU, x,£eX"
J#i 28)

R(x) = ir(xi) for xeX". (29)

i=1

REMARK 4 If s = |X]| is the number of states for each
single Markov chain, then the computational complex-
ity of the dynamic programming solution is O(ns*'T).
Thus, for fixed s and 7', the complexity is exponential
in n. Furthermore, the memory requirements are expo-
nential, namely O(s"T). In some cases we can find an
optimal strategy of the form U(z) € ®((X,(?),...,X,(1)).1)
where

P(x,1) = {i : My(x;,1) = m]axMj(xj,t)}. (30)
This is what we call a priority index rule strategy. The
M;(x;,t) are indices that can be computed for each target
with complexity O(s’T) (i.e., equivalent to solving the
dynamic program for one target). Thus, the complexity
of the n target strategy is O(nsT) rather than O(ns*'T),
linear in n rather than exponential in 7.

For the class of transition probabilities p,(¢ | x) with
structure (28), commutativity is equivalent to the com-
mutativity of the transition functions p and ¢, as the
following simple result shows.

PROPOSITION 2 If the transition probability functions
pi(& | x) defined for ,x € X" and i € {1,...,n} satisfy

IXQREGIEN | FIGIED) (€29)
J#
and if for all §,,x, € X,
ZQ(€1 | nDp(y [ X)) = Zp(fl | n)q(ny | x)),
m m
(32)

then p;(§ | x) are commutative transition probability func-
tions for £,x € X".

REMARK 5 Note that commutativity always holds if p
or ¢ is the identity transition 6(; | x;) = 1 for & = x; and
0 otherwise. Note that ¢ = ¢ is assumed true in (non-
restless) multiarmed bandit problems. Also, classifica-
tion sensor management problems often satisfy g = ¢
(i.e., the classification information state remains un-
changed while the target is unobserved).

REMARK 6 Transition probabilities of the form

(25) REABENGIEN | LGIED (33)
J#
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and reward functions

n

R(x) = r(x)

i=1

(34)

are obviously symmetric.

For this class of MDPs corresponding to sensor
management problems, the general result (Theorem 1)
becomes the following.

COROLLARY 1 Suppose that the MDP (X,U,p,,R,T)
has special symmetric structure where

X = X" and X is the state space of one

one Markov chain X, (35)
U={1,...,n} (36)

pi |0 =p& )] Ja %)  for i€U, xéeX"
J#i 37

R(x) = ir(xi) for x € X". (38)

i=1

Then the strategy set ® is optimal if the following three
conditions are met. The first condition is that p and q are
commutative so that

> opEIman [0 =g |mpm 0. (39
7 n

Suppose that ®(x,t) is a strategy set for x = (x,,...,x,).
Then, the second condition is that i € ®(x,T — 1) implies

> rIpGi | x) =) =Y roppG; | x) = r(x))

Yi Yi
(40)
for all j #1i, and the third condition is that
ie<I>(x1,...,x[,...,xj,...,xn,t), X, #x;, and
(41)
py;x)>0
implies that
i€CI)(xl,...,xi,...,yj,...,xn,t+1). 42)

PROOF The condition on p,(¢|x) implies that it is
commutative. The second condition implies that ® is
terminally optimal for the terminal reward R(x), and the
third condition implies that decisions in ¢ are deferrable
(Proposition 1). The result follows from Theorem 1.

4. SENSOR MANAGEMENT EXAMPLES

What follows are two examples that illustrate the
application of the conditions presented in the paper.
The first is a binary classification example, which is a
type of finite horizon sensor management problem for
which the states of unobserved processes (other than
the time remaining until the end of the horizon) do not
change. The second is a tracking problem, for which the
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states of unobserved processes do change. The examples
illustrate how the novel conditions presented in this
paper apply to a large class of problems that includes
these two. The utility of such an analysis is that it sheds
insight into sensor management problems and suggests
heuristics that could be used for more general sensor
management problems.

A. Binary Classification Problem

This problem is to classify as many of n objects
as possible over a finite time horizon T given binary
measurements of the objects. This problem is similar
to the classical treasure hunting problem [2]. In that
problem, one selects among a finite number of areas to
search for treasure, but the treasure may be missed with
a fixed probability. This is a special type of a multiarmed
bandit problem in which a so-called deteriorating condi-
tion holds so that the optimal policy is a greedy policy.
The binary classification problem considered here dif-
fers from the treasure hunting problem in two respects.
The first is that the horizon here is finite whereas it is
infinite for the treasure hunting problem. The second is
that processes in the two problems represent different
quantities and so have different transition probabilities.
In the problem here, each process represents the proba-
bility that a target is of a particular type. In the treasure
hunting problem, each process represents the proba-
bility that the treasure is present at a particular loca-
tion. The details of the binary classification problem
follow.

First, note that this problem is a partially observed
Markov decision process (POMDP) that can be inter-
preted as an MDP with a countable state space. Suppose
there are n random variables Z; with values 0, 1 and that
Pr{Z;, =1} = pfor alli = 1,...,n. Suppose that the Y(r)
are 0,1 observations of Z;, and Y,(¢) are independent and
identically distributed conditioned on Z; with

Pr{iY(t) =y|Z =z} =(1—¢)- o, +e-(1=6,.),

(43)
where we use the notation 6, . = 1 if y = z and 0 other-

wise. We assume that € < % Note that ¢ is the probabil-
ity of classification error for one measurement.
Define the information state X;(#) as the conditional
probability
X,(t)=Pr{Z, =1|Y(1),....Y.(»}.

The objective of the problem is to maximize the ex-

pected reward
E {Zr(x,-ar»}

i=1

(44)

(45)

at the terminal time 7', where r(x;) is the individual
reward

r(x;) = ﬁ%xl{r(dn Dx; +r(d;,0)(1 —x,)} (46)



and r(d,z) are the rewards for the different types of
outcomes (i.e., deciding d; when the true state of i
is z;).

The processes X;() satisfy

XA0) = p @7)

and for t >0,

X@t+1)=
(1 —9)X,)
(1-2)X;(t) +¢
with probability (1 —2e)X;(t) +¢
eX;(®)
Qe-DX;0)+1—¢
with probability (2e — 1)X;(t) + 1 —e.
(48)

Note that although X;(r) take values in R, there are only
a countable number of possible values they can take.
Thus, X;(r) € X C R where X is a countable set. Thus,
we have an MDP (X,U, p,,R,T) where

X =X" (49)
U={1,2,...,n} (50)

P& 1 x) = p(& | xi)Hé(f,» |x) for i€lU, x,¢eX"
” 51

R(x) = ir(xi) for xeX" (52)

i=1
where p(¢; | x;) is defined by

(1 —e)x; ~
p(m |x,-> =(1-2)x,+c  (53)

EX;
i ) =@e—Dx+1-
p<(25—1)xi+1—5|x’> (2e=Dri+1-e

(54)
and r(x;) is defined by (46). We will consider the

special case for which r(1,1) = r(0,0) =1 and r(0,1) =
r(1,0) = 0 so that

(35)

and we will assume that the prior probability p = %
Note that if p = %, then

1

ﬁ:
1+<1_€>

X = m=0,£1,4£2,...

PROPOSITION 3 The strategy set ® defined by

() = {i: |y = 3| = min|x; - 5[} (57)
is optimal for the binary classification problem with
r(1,1) =r(0,0) =1, r(0,1) = #(1,0) = O, and prior prob-
ability p = %for each object i.

B. Tracking Problem

The following is an example in which one is manag-
ing a sensor to track targets. Specifically, one is tracking
targets over a finite horizon with a noisy sensor. At the
end of the time horizon, the tracks are to be handed
over to another sensor. The handover is successful if
the track mean square error is smaller than the required
level. The objective is to maximize the number of tracks
that are successfully handed over.

Note that this example differs from the binary clas-
sification one in that unobserved chains have nontrivial
dynamics. Specifically, the dynamics are those of the
track error covariances. The conditions are used to ver-
ify the optimality of a strategy for an approximate model
of the track error covariance where the increase in error
when a track is unobserved is given by that of a Kalman
filter, but the error reduction is approximated as being
constant, independent of the initial error. The details of
this example are as follows.

Consider the one-dimensional tracking problem in
which there are n targets each of which is moving as
a one-dimensional Brownian motion with process noise
variance A ,. Location measurements have additive noise
with variance A,,. The state of each track i at time ¢,
for the purposes of sensor management, is the error
variance X,(¢). All tracks are initialized with the same
error variance A, and all have the same desired error
variance A, at the end of the horizon T. The objective
of the problem is to maximize the expected reward

E {Zr(x,m)}

i=1

(38)

at the terminal time T, where r(x;) is the individual

reward
1 if x; <A,
r(x,') =

) (59)
0 otherwise.

Now suppose that the track error is approximated
so that the track error reduction for observed tracks is
constant, given by the error reduction from the desired
value A,. That is, if the error variance is initially A,
then after one measurement update and one prediction,
it is reduced by the amount A, —AZ/(A, +A,,). Then,
the dynamics of the processes X;(t) satisfy

X,(0) = A, (60)

and for unobserved processes for ¢ > 0,
(56) X+ =X,1+ Ap. 61)
JUNE 2008
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For the process observed at r > 0,
Aj
A+ A,

X+ =Xn+A,— (62)
We will assume that A, < A7 /(A + A,,) so that the error

for observed processes is always decreasing. This is an
MDP (X,U, p,,R,T) with

X=R" 63)
U={1,2,...,n} (64)
pi(f‘x):p(fﬂxi)HQ(fj|X,~) for ieU, x,(£eX

J#i
(65)
Rx)=> r(x) for xeX (66)

i=1
where p(¢&; | x;) is defined by
Aj

p(xi+A”_Ah+A,n |xi) =1 (67)

q(&; | x;) is defined by
q(xi + Ap |x[) =1, (68)

and r(x;) is defined by (46).

PROPOSITION 4  The strategy set ® defined by
D(x) = {i sx; =min{x; 1 x; > Ay — Ap}} (69)
J

is optimal for this tracking problem.

REMARK 7 Note that under this strategy, the approxi-
mate error variance X;(t) > 0 because X;(¢) will decrease
only if the process is chosen for observation, which will
only occur if X;(t) > A, — A, and

X.() + A AL S i
i PN+, T A +A,

>0. (70)

m

5. CONCLUSION

Thus, the sufficient conditions stated in Section 2 are
useful for establishing optimality of sensor management
strategies. Note that the optimal strategy for the binary
classification and tracking examples presented in Sec-
tion 4-A are priority index rule strategies, as defined
in Section 3. Priority index rules are optimal strategies
for other sensor management problems including those
in [1], [5], [3]. However, the conditions in this paper
do not imply optimality of these strategies except for
some special cases of the sensor management problem
being solved. Whether there exists a generalization of
the results in this paper that implies optimality of prior-
ity index rules for general sensor management problems
and other restless bandit problems is an open question.
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APPENDIX. PROOFS OF RESULTS

A. Proof of Theorem 1

For, 0 <t <T -1 and x € X, let ®*(x,7) be the set of
optimal strategies, as defined in Definition 3. We want
to prove that

O(x,1) C O (x,1). (71)
The terminal optimality condition is equivalent to
o(x,T—1)C *(x, T —1). (72)

Thus, assume that ®(x,t+ 1) C ®*(x,z + 1) is true for
t<T—1 and prove (71) from it. Suppose that u €
®(x,7) and u ¢ *(x,1). Clearly ®*(x,t) # @ and there
is v € ®*(x,t) such that V,(x,7) >V, (x,f). The condition
that decisions in ® are deferrable implies that u €
O(X(t+ 1),z + 1) where X (¢ + 1) results from using U(¢)
= v. The induction hypothesis implies that

X+ 1)+ D) C®XE+1e+1), (73)

so that U(¢ + 1) = u is an optimal decision.

We now can use the commutativity of the transitions
p,, to show that the sequence of decisions U(¢) = u,
U(t + 1) = v has the same expected value-to-go as the
sequence of decisions U(t) =v, U(t + 1) = u and must
be optimal too. Specifically, note that starting from
X(), if X(¢+2) is the state resulting from U(¢) = v,
U(t+1)=u and X(t+2) is the state resulting from
U@t)=u, U(@+1)=v, then commutativity implies
that X(r +2) and X (¢ + 2) have the same distribution.
By assumption (induction) the decisions U(f) = v,
U(t + 1) = u are optimal and have the value-to-go

V(X(0).1) = E{V(X(t +2),t +2) | X()}. (74)
Commutativity implies that
E{V(X(t+2),t +2) | X(0)}
=E{VX(t+2),1+2) | X(O)}, (75)

which implies that U(¢) = u, U(t + 1) = v must also be
optimal decisions. Thus, u is optimal, contrary to as-
sumption and we must have u € ®*(x,1).

B. Proof of Proposition 1

First, we show by induction that the symmetry as-
sumption implies that the optimal reward-to-go satisfies

V,(x,0) = V. (7,1) (76)

for all permutations 7. Let x denote a vector in X" = X.
By definition of symmetry

Vi (@x,T —=1) = 3 R@y)p(my |7 (77)
y

=Y ROp, ([0 (78)

= V:(x,T —1). (79)
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Now, assume that
Vot +1) =V (mx,t+1) (80)

for all x,7 and prove it for . Note that the induction
hypothesis implies that

V(x,t + 1) =max V,(x, + 1) 81)
= maXV(v)(wx t+1) (82)
=V(mx,t + 1). (83)
By symmetry assumptions,
V(0 =Y V.t + Dp,(y|x) (84)
y
= ZV(Wy,t + Dp Ty | ) (85)
>
= V@t + Dpy, o [ 7x) (86)
y
= W(u)(ﬂx,t) (87)

which completes the induction.
Now, to prove the statement of Proposition 1, sup-
pose that u € ®(x,t), V,(x,1) >V (x,t) and p,(y | x) > 0.

We have just shown that
V,(6,1) = Vi, (m5,0) (88)

for all permutations m. Let © be the permutation that
interchanges v and u. Then if x, = x,, V,(x,1) =V, (x,1).
Thus, V,(x,1) >V, (x,t) implies that x, # x,. By the prop-
osition’s assumption, it follows that u € ®(y,r + 1),
which proves the result.

C. Proof of Proposition 2

Note that for i # j,
> pi&mp;n | %)

n

(89)

= ZP(E [ [ Ta [ mop@; | x) T a0 | x0)

Thus,
> at€; Inppn; | x; )Zp(f | 1q(n; | ;)

j

x H Z‘I(fk | ma (e | ) (94)

k#i,j M

= p(& Ina; 15D a(& | n)py; | x)

nj i

< 1T D at I matn | x) 95)
k#L,j Mk
=D & lmpin |, (96)
n
proving that
7

> P& lmpim|x)=>_piE&mpn]|x).
n n

D. Proof of Proposition 3

The proof verifies that the three conditions of Corol-
lary 1 hold.

First, the transition probabilities p,(£ | x) are obvi-
ously commutable and symmetric, and the reward func-
tion R(x) is obviously symmetric.

Now, note that

Z[R(yi) - R(xi)]p(yi | xi)

Vi

(98)

|x; — l| (99)

1

1

2
+ 1+ -9y 1-2 +
<§ (1—25)x+6 D(( —29 +e)

N l+ Ex; 1
2 |Qe—=Dx;+1—¢ 2

x((2e =1Dx; +1—¢).

(100)

(101)

This simplifies to

k#i k#j
(90) ;[R()’i) = RGxp1p(y; | X))
=D _a; [n)pa; | x; >Zp<§ [ ma(n; | ;) S PRV TR 11 R
! (102)
X H Zq(fk | 1)q (e | ). (91)  which is equivalent to
k#i,j Mk
. > IR — Rx)Ip(y | x;)
By assumption 5
ZQ(§j|7lj)P(77j |xj):ZP(§j |77j)CI(77j |xj) 0 for 0<x;<e
nj nj X, —¢ for e<x; < %
2 = .
and ©2) I —x;—¢ for %Sxiglfs
0 f 1—e<x,<1
Zq@ [, [ %) =Y p&; g | x). (93) or iTEsNs
i (103)
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Note that because

X, = L (104)
1+ c
(i)
if m < 0, then
5 < L . (103)
1+ °
(=)
and if m > 0, then
1
xiz—zl—g (106)
1+ c
(i)
Thus,
0 for x; # %
Z[R(yl)iR(xl)]p(yl |'xi) = { 1 1°
o 5—€ for x;=5
107
In particular, 1o
max Z[R(yj) —R(x)Ip(y; | x;)
Vi
0 ifall x # 4
- { 1 tal S )
5—€ if some x; =5
and if
|xl.f%|:m‘in|xjf%|, (109)
J
then
Z[R(yi) - R(x,»)]p(y,- | xi)
Vi
= max Z[R(yj) —R(x)Ip(y; | X))
¥i
(110)

This shows that the second condition of Corollary 1
holds.

To show that the third condition of Corollary 1
holds, suppose that i € ®(x) so that

|xi—%|:rr}(in|xk—% (111)

and suppose x; # x;, p(y; | x;) > 0. Thus,

(1 —e)x;
= 112
Vi (1- 25)xj +e (112)
or
EX;

v (113)

Ty +l-c

1 1 ‘s 1
If [x; — 5[ > [x; — 3, then it is easy to see that |y; — 3| >
x; — 1| and therefore i € ®(x,,...,y.,...,x,). However, it
i 2 1 y/ n
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is possible that |x; — 3| = |y, — 3| and x; # x;. If x; # 3,
then the conclusion is not true, because one of the two
values of y; is closer to 3 than x;.

However, we can easily extend the proposition to
cover this case. Note that if |x; — 1l =|x;— 4|, then
x; = 1 —x;. The classification problem is invariant under
the transformation x; — 1 — x;, and in particular,

V(X)) =V —x,m).  (114)

Furthermore, if p(y; | x;) > 0, then p(1 —y; | 1 —x;) > 0.
It follows that

V(X ) = V(.. (115)

A—x,...,7).

As a consequence of this and the symmetry of V, we
find that |x; — 3| = |x; — 5| implies that

Vix,7) = V,(x,7). (116)

Thus, i,j € ®(x) implies that V(x,7) = Vj(x,r). This is
sufficient to extend the proposition because if V;(x,1) >
V(x,1), then both x; #x; and [x; — 3| # |x; — 5|. Thus,
we can apply the earlier argument to show that i€
@(xl,...,yj,...,xn). Consequently, the third and final
condition of Corollary 1 holds so that @ is optimal.

E. Proof of Proposition 4

The optimality of Proposition 4 will be established
by verifying that the three conditions of Corollary 1
hold.

First, note that the distributions p and ¢ are commu-
tative since

> & maly | x)

n

= q( [ mp | %)
0

1 if £€=x+2A A
= PoA+A,
0 otherwise.
(117)
Moreover,
> rpG | x) = r(x)
¥i
0 if <A, —A,
. AZ
_ 1 if Ah—Ap<xi§Ah—Ap+Ah+hAp
2
0 if A,—A,+ AhﬁhAp < x;.
(118)



Thus, if i € ®, then for all j # i, either x; < X; Or x; <
A, — A, so that

> rpGi | x) =) =Y oGy | x) = r(x),

Vi Vi
(119)

and the second condition of Corollary 1 holds. Finally,
if

iG@(xl,...,x[,...,xj,...,xn,t) (120)
x; #x; then p(y; | x;) > 0 implies one of the following.
Either x; <x; or x; <A, —A,. In the first case, there
exists m € {0,1,2,...} so thaty; —x; = mAZ/(A, + A) >
0. In the second case, Y < X; <A, - Ap. In either case,

i€CI)(x],...,xi,...,yj,...,xn,t+1). (121)

and the third and final condition of Corollary 1 holds,
and the strategy set is optimal.
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