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In passive sensor target tracking, there are applications that re-

quire converting the angle-only measurements into Cartesian space.

Multisensor methods can be used to convert the raw measurements

into Cartesian measurements by finding the intersection of lines of

sight. This method contains significant nonlinearity in its conversion;

therefore, it is subject to corresponding errors such as a conversion

bias and an improper covariance. The proposedmethod uses a second-

order Taylor series expansion to accurately account for the conver-

sion nonlinearities. This results in an explicit (noniterative) expression

of the Cartesian position based on two line-of-sight measurements in

three dimensions.This paper investigates the severity of the conversion

biases from nonlinearity and the efficiency of the unbiased conversion

with regard to compensating for them.

I. INTRODUCTION

Passive sensors are especially challenging compared
to those that are active. Although some passive sen-
sors also deliver amplitude information—and, indeed,
in some situations, can incorporate processing such as
via wavefront curvature or based on target image expec-
tations to infer range—they are commonly assumed to
present only angular measurements (see [3], [4]). Pas-
sive sensor measurements require a data fusion step if
a three-dimensional plot is desired, as it often is by a
downstream tracker. However, as we shall see, a typi-
cal processing chain aimed at such plots produces an
unwanted but modelable bias.1 This paper addresses
such modeling, but we note that while there are so-
phisticated ways to mitigate bias (e.g., nonlinear least-
squares in [2] and maximum-likelihood (ML) estima-
tion in [13]), the goal here is for a simple delivery of
Cartesian measurements to a simple Cartesian tracker
such as a Kalman filter; a nonlinear dynamic estima-
tion approach such as a particle filter does not require
such pre-processing, but is often much more computa-
tionally demanding. However, in any case, even therein
improvements can be made in terms of initialization
(using the angle measurements to obtain Cartesian po-
sitions and velocities), and sensor registration through
bias estimation is a widely researched topic that com-
monly uses converted measurements from spherical co-
ordinates and range/direction-sines coordinates [16].

Triangulation is often used to convert two angle-only
measurements into Cartesian position. In [14], triangu-
lation is used to initialize an ML approach to convert-
ing angle-only measurements into Cartesian. However,
the MLmethod uses a search to obtain an (iterative) es-
timate of the Cartesian position. In the case of an ML
search, it is practically impossible to produce a Jacobian
matrix of the converted Cartesian coordinates with re-
spect to the original angle-only measurements as the
“location” of the ML estimate’s convergence point is
not analytically related to the angle-only measurements.
This Jacobian is useful for applications in other target
tracking applications such as bias estimation. The novel
[10] was the first to attempt the second-order Taylor
series expansion for angle-only measurements in pas-
sive sensors and use them for estimation of sensor bias,
which is separate from conversion bias. The work re-
lied on triangulation to form bias pseudo-measurements.
Conversion via triangulation is flawed particularly as the
conversion is overly reliant on azimuth rather than the
total angle. The transformation fails when the lines of
sight of the two sensors are equal in azimuth as the
denominator of the conversion equation becomes zero.
This would result in “blind spots” of the transformation
where the error and covariance consistency would dete-

1Other effects such as refraction also produce offsets that might be
called biases, but these can be treated in other ways and we do not
discuss them here.

JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 17, NO. 1 JUNE 2022 29



riorate greatly, as seen in [9]. The law of sines is used in
[5] to generate ranges in order to convert the angle mea-
surements into Cartesian similarly to triangulation. In
[15], the closest point of approach between the two line-
of-sight (LOS) rays is used to create compositeCartesian
coordinates. This paper investigates the closest point of
approachmethod to produce a (noniterative) expression
of the Cartesian position based on two LOS measure-
ments in three dimensions. However, the conversion of
angle measurements into Cartesian is a nonlinear trans-
formation that requires an unbiased conversion [3]. As
such, this paper investigates the bias of the explicit con-
version expression and provides a solution to overcome
it.

An approach to deriving an unbiased conversion for
a nonlinear transformation is used in [17] to convert
sine space coordinates into Cartesian by using a second-
order Taylor series expansion. In this paper, the ap-
proach is replicated for the conversion of passive sensor
measurements to Cartesian.Themethod is also similarly
evaluated to ensure that the second-order conversion is
necessary.

In particular, it is necessary to account for the non-
linear measurement conversion by accounting for the
bias and also by converting the measurement noise
covariance. The conversion bias is well documented in
the literature [3], [12] for spherical to Cartesian conver-
sion where the noise pattern resembles a curved lens
in Cartesian space rather than a sphere. It is necessary
to adjust the converted noise covariance to more accu-
rately represent the converted measurements. Similarly,
the same process must be made for the conversion of
angle-only measurements into Cartesian. Previously,
in [9], the conversion bias and covariance consistency
errors were improved by using the second-order Taylor
series expansion. A simulation was constructed that
produced a conversion bias, and the unbiased conver-
sion reduced it to less than one-tenth of its original
value. This conversion was then used in [10] to form
bias pseudo-measurements, which could then be used
to estimate sensor biases without needing to estimate
the target state. In [11], debiased polar measurements
were used in a Kalman Filter and are shown to improve
tracking performance relative to a mixed coordinate
Extended Kalman Filter (EKF). The RMS values were
reduced as a result of the reduction of errors due to
nonlinearity. This is because an EKF is subject to the
same nonlinearities when converting its state to sensor
coordinates when using a mixed measurement model,
albeit in the opposite “direction”.

A cubature integration method can also be used to
approximate the moments of the nonlinear conversion.
In [6], several filters involving cubature methods were
examined with respect to areas of severe nonlinearity.
The cubature Kalman filters and a Kalman filter using
converted measurements were found to be commensu-
rate in performance when wrapping was used.

This paper is outlined as follows: Section II contains
the definitions for passive sensing used by this method.
The proposed method of closest point of approach is
presented in Section III. The methods of analyzing the
conversion are in Section IV. The parameters for the
simulation are included in Section IV-A. The methods
include analysis of the bias discussed in Section IV-B and
analysis of the covariance discussed in Section IV-C.Sec-
tion V concludes the paper.

Notation used in this work includes vectors as bold
symbols such as x. Gradients are defined using the
∇ symbol. The superscript t and subscript s specify
the target and sensor indices, respectively. The super-
scripts c, db, and m specify that a variable is con-
verted, debiased, and measured, respectively. The no-
tation ′ means the vector or matrix is transposed. The
subscripts x, y, and z are used to specify that a variable
refers to the respective Cartesian coordinate. The no-
tation (k) specifies the time index. N specifies a Gaus-
sian random variable with the mean and covariance in
parentheses.

II. PROBLEM FORMULATION

Passive three-dimensional angle-only sensors are
used for this paper. Passive sensors only give angle mea-
surements pointing in the direction of the target. In three
dimensions, this is made up of two angles, azimuth, and
elevation. The sensors are assumed to be synchronous
and the network consists of Ns sensors. At a timestep k,
the position of sensor s in Cartesian space, assumed to
be known, is

xs(k) = [xs(k), ys(k), zs(k)]′. (1)

For simplicity, there is only a single target t, and its Carte-
sian position is similarly

xt (k) = [xt (k), yt (k), zt (k)]′. (2)

The sensors generate measurements of the target from
their own reference frame:

xts(k) = xt (k) − xs(k). (3)

Using the positions derived in (3), the sensors gener-
ate elevation and azimuthmeasurements.Azimuth is de-
noted as α and elevation is denoted as ε. The measure-
ments use atan2,which (MATLAB notation) is the four-
quadrant inverse tangent.

ξs(k) =
[

αs(k)

εs(k)

]
=

⎡
⎢⎢⎣

atan2
(
yts(k)
xts(k)

)

atan2
(

zts(k)√
xts(k)2+yts(k)2

)
⎤
⎥⎥⎦ . (4)

The measurements are combined with noises wα
s (k)

and wε
s (k) to produce the final measurement model,

where superscript m signifies that the angles are the
measurements generated by the sensors. The noise for
each sensor is assumed uncorrelated independent white

30 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 17, NO. 1 JUNE 2022



Gaussian with variances (σα
s )

2 and (σ ε
s )

2 and zero
mean.2 The noisy measurements are

ξms (k) =
[

αms (k)

εms (k)

]
=

[
αs(k)

εs(k)

]
+

[
wα
s (k)

wε
s (k)

]
, (5)

wα
s (k) ∼ N (0, (σα

s )
2) wε

s (k) ∼ N (0, (σ ε
s )

2). (6)

The noise variances are assumed to be known by the
system. These measurements are assumed to be syn-
chronous, but this model can be modified for the asyn-
chronous case.The true target state is treated as a param-
eter because we consider a single point in time, and the
method proposed here seeks to be agnostic with regard
to target dynamics. A filter (which operates across time)
normally introduces process noise models for tracking,
but our method converts the individual measurements
to be used in a tracking filter with the converted noise
errors being zero-mean, with consistent covariance, and
independent across time. As such, this method can be
used with any target motion or process noise model.

In this paper, we assume sensors deliver synchro-
nized measurements. In practice, a high frame rate miti-
gates asynchronicity. But, it is admitted that significantly
asynchronousmeasurements will cause additional errors
as theywould need to be propagated to the same time for
conversion, and this would require integration of bias es-
timation into the dynamic estimation procedure. That is
beyond the scope of this paper, but is an intriguing topic
for future work.

III. CONVERSION USING CLOSEST POINT OF
APPROACH

A. The Conversion

The method for conversion investigated in this work
is using the closest point of approach to generate a sin-
gle Cartesian measurement using angle measurements
from two sensors. This method finds the points on the
two LOS rays that are closest to each other and then la-
bels the midpoint between the two points as the com-
posite Cartesian position.When converting lines of sight
into Cartesian, it is important to take into account ob-
servability. Previously, in [9], the triangulation conver-
sion was examined, but this was found to have observ-
ability problems when solely the azimuth components
were similar, regardless of whether the lines of sight were
parallel or not. This reduces the practicality of the ap-
proach because the reference frame would have to be

2In passive sensor angle measurements, the noise is commonly approx-
imated with a Gaussian, but it is not the most accurate model for real
sensors. Research in passive sensors has used alternatives such as the
Kent distribution in [8] or a wrapped distribution as in [6]. For the pur-
poses of this work, the noise is approximated as Gaussian.A Gaussian
assumption yields a simple algorithm, so we use it; but, if a higher fi-
delity/complexity solution is required, the approaches in [10] and [4]
should be consulted.

Fig. 1. Using CPA (closest point of approach) to convert azimuth
measurements into three-dimensional Cartesian measurements.

rotated to avoid having the azimuth components be the
same. The conversion proposed in this work is an im-
provement because it avoids this severe reliance on one
of the two angle measurements, improving observability
and avoiding the need for rotation.This process is shown
in Fig. 1. The superscript c is used to signify that it is a
conversion:

xt,c1 (k) =

⎡
⎢⎢⎣
xt,c1 (k)

yt,c1 (k)

zt,c1 (k)

⎤
⎥⎥⎦

= x1(k)+L1(k)(L1(k)′B1,2(k))−(L1(k)′L2(k))(L2(k)′B1,2(k))
1−(L1(k)′L2(k))2

, (7)

xt,c2 (k) =

⎡
⎢⎢⎣
xt,c2 (k)

yt,c2 (k)

zt,c2 (k)

⎤
⎥⎥⎦

= x2(k)+L2(k)(L1(k)′L2(k))(L1(k)′B1,2(k))−(L2(k)′B1,2(k))
1−(L1(k)′L2(k))2

, (8)

xt,c1,2(k) = 1
2

(
xt,c1 (k) + xt,c2 (k)

)
. (9)

The conversion relies on the Cartesian vectors of the
lines of sight defined as L and the line between the sen-
sors defined as B. These are calculated as

L1(k) =

⎡
⎢⎢⎣
cos(α1(k)) cos(ε1(k))

sin(α1(k)) cos(ε1(k))

sin(ε1(k))

⎤
⎥⎥⎦ , (10)

L2(k) =

⎡
⎢⎢⎣
cos(α2(k)) cos(ε2(k))

sin(α2(k)) cos(ε2(k))

sin(ε2(k))

⎤
⎥⎥⎦ , (11)
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B1,2(k) = x2(k) − x1(k) =

⎡
⎢⎣
x2(k) − x1(k)

y2(k) − y1(k)

z2(k) − z1(k)

⎤
⎥⎦ . (12)

The derivation for these equations is included in the
Appendix. In ML applications [10], the two Cartesian
coordinate measurements can be used separately rather
than merged for the parameter estimate.

In the presence of noise, this method is imperfect
as the two lines of sight will not intersect exactly in
three-dimensional space. As such, estimation methods
are commonly used to estimate the true target state,
which will be discussed later in the paper. However,
in circumstances when estimation methods are undesir-
able, it is possible to use thismethod,and the effect of the
noise can be approximated with a conversion. Further-
more, the noise can cause a bias in the converted mea-
surement, but this bias can be calculated and removed.

It is important to note that this is an explicit expres-
sion of the conversion. Unlike iterative methods such
as ML, it is possible to calculate a Jacobian of the con-
verted Cartesian positions with respect to the original
LOS measurements. As such, the derivatives can be cal-
culated and, in turn, used to calculate the bias and co-
variance. The explicit expression and these derivatives
are useful in other applications such as the generation
of pseudo-measurements for bias estimation [10].

B. The Bias of the Conversion and Its Compensation

To approximate the noise covariance and debias the
converted measurements, a Taylor series expansion is
used. A second-order expansion is used here; however,
further orders can be used for a more accurate conver-
sion. For simplicity, the y and z expansions as well as the
individual derivatives are moved to the Appendix. The
superscriptm denotes that the convertedCartesianmea-
surements are made with the noisy LOS measurements:

xt,c,m1,2 (k) ≈ xt (k) + ∂xt,c1,2
∂α1

wα
1 (k) + ∂xt,c1,2

∂α2
wα

2 (k)

+ ∂xt,c1,2
∂ε1

wε
1(k) + ∂xt,c1,2

∂ε2
wε

2(k)

+ 0.5
∂2xt,c1,2
∂α2

1

wα
1 (k)

2 + 0.5
∂2xt,c1,2
∂α2

2

wα
2 (k)

2

+ 0.5
∂2xt,c1,2
∂ε21

wε
1(k)

2 + 0.5
∂2xt,c1,2
∂ε22

wε
2(k)

2

+ ∂2xt,c1,2
∂α1∂α2

wα
1 (k)w

α
2 (k) + ∂2xt,c1,2

∂α1∂ε1
wα

1 (k)w
ε
1(k)

+ ∂2xt,c1,2
∂α1∂ε2

wα
1 (k)w

ε
2(k) + ∂2xt,c1,2

∂α2∂ε1
wα

2 (k)w
ε
1(k)

+ ∂2xt,c1,2
∂α2∂ε2

wα
2 (k)w

ε
2(k) + ∂2xt,c1,2

∂ε1∂ε2
wε

1(k)w
ε
2(k).

(13)

The expected value of the expanded term contains the
conversion bias.

E[xt,c,m1,2 (k)] ≈ xt (k) + 0.5
∂2xt,c1,2
∂α2

1

(σα
1 )

2

+ 0.5
∂2xt,c1,2
∂α2

2

(σα
2 )

2 + 0.5
∂2xt,c1,2
∂ε21

(σ ε
1 )

2

+ 0.5
∂2xt,c1,2
∂ε22

(σ ε
2 )

2, (14)

cx,1,2 = 0.5
∂2xt,c1,2
∂α2

1

(σα
1 )

2 + 0.5
∂2xt,c1,2
∂α2

2

(σα
2 )

2

+ 0.5
∂2xt,c1,2
∂ε21

(σ ε
1 )

2 + 0.5
∂2xt,c1,2
∂ε22

(σ ε
2 )

2, (15)

E[xt,c,m1,2 (k)] ≈ xt (k) + cx,1,2. (16)

By calculating and subtracting the bias, it is possible to
avoid this error, producing the debiased measurements
denoted by the superscript db.

xt,c,m,db
1,2 (k) = xt,c,m1,2 (k) − cx,1,2, (17)

E[xt,c,m,db
1,2 (k)] ≈ xt (k). (18)

The converted state is rewritten into a simple form that
contains the truth and converted zero-mean Gaussian
noise. This results in the following measurement equa-
tion for the converted measurements:

xt,c,m,db
1,2 (k) =

⎡
⎢⎢⎢⎣
xt,c,m,db
1,2 (k)

yt,c,m,db
1,2 (k)

zt,c,m,db
1,2 (k)

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎣
xt (k)

yt (k)

zt (k)

⎤
⎥⎥⎦ +

⎡
⎢⎢⎢⎣

wx,t,c,db
1,2 (k)

w
y,t,c,db
1,2 (k)

wz,t,c,db
1,2 (k)

⎤
⎥⎥⎥⎦ . (19)

The noise after conversion is now zero-mean white
Gaussian, as is desirable for tracking and applications,

w1,2(k) =

⎡
⎢⎢⎢⎣

wx,t,c,db
1,2 (k)

w
y,t,c,db
1,2 (k)

wz,t,c,db
1,2 (k)

⎤
⎥⎥⎥⎦ ∼ N

⎛
⎜⎜⎝

⎡
⎢⎢⎣
0

0

0

⎤
⎥⎥⎦ ,Rt,c,db

1,2

⎞
⎟⎟⎠. (20)

C. The Covariance of the Converted Errors

The covariance matrix for the converted measure-
ments can be calculated with the same Taylor series
expansion. The full derivation of the following equa-
tions and the appropriate derivatives are found in the
Appendix. The covariance matrix (with the superscripts
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and subscripts removed for simplicity) is

Rt,c,db
1,2 =⎡
⎢⎢⎣

V (x(k)) CV (x(k), y(k)) CV (x(k), z(k))

CV (x(k), y(k)) V (y(k)) CV (y(k), z(k))

CV (x(k), z(k)) CV (y(k), z(k)) V (z(k))

⎤
⎥⎥⎦,

(21)

whereV is the variance of the variable defined by

V (xt,c,m,db
1,2 (k)) = E[xt,c,m,db

1,2 (k)2] − E[xt,c,m,db
1,2 (k)]2.

(22)

By using the terms in the Taylor series expansion, the
equation is changed into a usable form expressed as

V (xt,c,m,db
1,2 (k)) =(

∂xt,c1,2
∂α1

)2

(σα
1 )

2 +
(

∂xt,c1,2
∂α2

)2

(σα
2 )

2

+
(

∂xt,c1,2
∂ε1

)2

(σ ε
1 )

2 +
(

∂xt,c1,2
∂ε2

)2

(σ ε
2 )

2

+
(

∂2xt,c1,2
∂α1∂α2

)2

(σα
1 )

2(σα
2 )

2 +
(

∂2xt,c1,2
∂α1∂ε1

)2

(σα
1 )

2(σ ε
1 )

2

+
(

∂2xt,c1,2
∂α1∂ε2

)2

(σα
1 )

2(σ ε
2 )

2 +
(

∂2xt,c1,2
∂α2∂ε1

)2

(σα
2 )

2(σ ε
1 )

2

+
(

∂2xt,c1,2
∂α2∂ε2

)2

(σα
2 )

2(σ ε
2 )

2 +
(

∂2xt,c1,2
∂ε1∂ε2

)2

(σ ε
1 )

2(σ ε
2 )

2,

(23)

and the covarianceCV is defined by

CV (xt,c,m,db
1,2 (k), yt,c,m,db

1,2 (k))

= E[(xt,c,m,db
1,2 (k) − E[xt,c,m,db

1,2 (k)])

×(yt,c,m,db
1,2 (k) − E[yt,c,m,db

1,2 (k)])], (24)

where, similarly, the Taylor series expansion transforms
the equation into

Cov(xt,c,m,db
1,2 (k), yt,c,m,db

1,2 (k))

=
(

∂xt,c1,2
∂α1

) (
∂yt,c1,2
∂α1

)
(σα

1 )
2 +

(
∂xt,c1,2
∂α2

)(
∂yt,c1,2
∂α2

)
(σα

2 )
2

+
(

∂xt,c1,2
∂ε1

) (
∂yt,c1,2
∂ε1

)
(σ ε

1 )
2 +

(
∂xt,c1,2
∂ε2

)(
∂yt,c1,2
∂ε2

)
(σ ε

2 )
2

+
(

∂2xt,c1,2
∂α1∂α2

)(
∂2yt,c1,2
∂α1∂α2

)
(σα

1 )
2(σα

2 )
2

+
(

∂2xt,c1,2
∂α1∂ε1

) (
∂2yt,c1,2
∂α1∂ε1

)
(σα

1 )
2(σ ε

1 )
2

+
(

∂2xt,c1,2
∂α1∂ε2

) (
∂2yt,c1,2
∂α1∂ε2

)
(σα

1 )
2(σ ε

2 )
2

+
(

∂2xt,c1,2
∂α2∂ε1

) (
∂2yt,c1,2
∂α2∂ε1

)
(σα

2 )
2(σ ε

1 )
2

+
(

∂2xt,c1,2
∂α2∂ε2

) (
∂2yt,c1,2
∂α2∂ε2

)
(σα

2 )
2(σ ε

2 )
2

+
(

∂2xt,c1,2
∂ε1∂ε2

) (
∂2yt,c1,2
∂ε1∂ε2

)
(σ ε

1 )
2(σ ε

2 )
2.

(25)

At this point, the previous unbiased conversion and co-
variance evaluation can be defined as the second-order
conversion. In the simulations, this will be compared to
a first-order conversion, in which the same conversion
via the closest point of approach is made, but debiasing
is not performed and the second-order components are
ignored in the covariance calculation.

IV. SIMULATIONS AND RESULTS

A. Simulation Parameters

To analyze the conversion, we study a long-range or-
bital scenario in which an orbiting target passes through
the field of viewof two sea-level sensors.The target starts
at 7000 km from the center of the earth, or at an altitude
of 622 km above sea level on the equator directly on the
x axis in ECI (Earth-centered inertial) coordinates. The
target begins with a velocity necessary for maintaining
an orbit, 7.546 km/s, with the vector pointing at an angle
of 2.678 radians (clockwise from the Y axis) in the Y–Z
plane of ECI. Both sensors are stationary at sea level.
Sensor 1 is at −1◦ in latitude and −3◦ in longitude, and
sensor 2 is at 1◦ in latitude and 3◦ in longitude. The sen-
sors move via the rotation of the earth with respect to
ECI coordinates.The sensors are oriented facing directly
up, meaning that the local vertical is the boresight and 0
azimuth position. This scenario is designed to have a tar-
get that passes the sensors, causing angle measurements
that begin relatively perpendicular and become paral-
lel over time. A less observable system is present when
the measurements are parallel. Less observable systems
benefit more from improved nonlinear conversion. The
simulation setup is shown in Fig. 2.

The measurement noise values and simulation pa-
rameters are given in Table I and are kept the same for
both sensors for simplicity. The performance of the con-
version is analyzed over 100 000 Monte Carlo runs.
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Fig. 2. Sensor and target setup in ECI.

B. Cartesian Position Bias Evaluation

The value of this conversion is first investigated by
evaluating the significance of the bias. The conventional
conversion is the first-order conversion, which is based
on the first-order Taylor series expansion.The bias in the
conversion is defined as

μx = xt (k) − E[xt,c,m1,2 (k)], (26)

μy = yt (k) − E[yt,c,m1,2 (k)], (27)

μz = zt (k) − E[zt,c,m1,2 (k)]. (28)

The significance of the bias is defined as the norm of the
bias divided by the standard deviation of the noise in
Cartesian coordinates. This metric is based on the met-
ric proposed in [11] and used in [7]. The noise is roughly
converted by multiplying the range from the closest sen-
sor by the sine of the standard deviation of the azimuth,

β =
√

μ2
x + μ2

y + μ2
z

sin(σα
s )

√
(xts(k))2 + (yts(k))2 + (zts(k))2

. (29)

The biases and their significance over the simulation
time steps are seen in Fig. 3. The bias increases signifi-
cantly as the measurements become more parallel. The
significance of the bias is quite low, but for long-distance
applications, it is advantageous to include debiasing. If
the bias significance is less than 0.3 in most applications,
it is considered to be negligible as it is less than a 10% in-

Table I
Simulation Parameters,Ns = 2,Nt = 1,K = 1000 s, and

NMC = 100 000 runs

Sensor measurement noise
Azimuth noise

standard deviation
Elevation noise

standard deviation

Sensor 1 1 mrad 1 mrad
Sensor 2 1 mrad 1 mrad
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Fig. 3. Conversion bias and its significance over time.
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Fig. 4. Results of debiasing using the second-order conversion.

crease in the mean square error. The results of debiasing
are seen in Fig. 4.

After debiasing, the mean of the results is appropri-
ately centered on zero, meaning a significant improve-
ment in measurement consistency is made.Higher order
Taylor expansions may lead to more accurate debiasing.

C. Covariance Analysis

The accuracy of the covariance matrix from equation
(21) is also analyzed for the second-order conversion.A
Monte Carlo simulation is made to achieve this.For each
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Fig. 5. NES First and Second Order Comparison of covariance NES.

Monte Carlo run, denoted by superscript n out of NMC,
a converted measurement is obtained and compared to
the truth. The metric for analyzing the covariance is the
Normalized Error Squared (NES). This is defined as

x̃t1,2(k) = xt,c,m,db,n
1,2 (k) − xt (k), (30)

NES(k) = 1
NMC

∑NMC
n=1 x̃

t
1,2(k)

′Rt,c,db,n
1,2 (k)−1x̃t1,2(k).

(31)

Comparisons of the NESs, both for the first- and for
the second-order conversions to each other and to the
99% confidence region, are shown in Fig. 5. The NES
for the first-order conversion is significantly higher than
the confidence interval,meaning that the covariance cal-
culated is not accurately containing the measurement
points. In this case, the covariance is too small. The
second-order conversion very accurately remedies this
problem and results in a consistent NES. This calculated
covariance matrix can be safely used to represent the
converted Cartesian measurements.

D. Comparison With ML Conversion

In the previous sections, the proposed method is
shown to remove nearly all bias and calculates an ac-
curate, albeit pessimistic, covariance matrix. However,
it is important to consider comparing the method with
the already present method of generating composite
measurements using ML. This method is presented
in [14] and involves implementation of the ML using
Iterated Least-Squares (ILS). Intuitively, one can de-
duce that theMLmethod should producemore accurate
results for Cartesian coordinates from fusing two angle-
only measurements because it is efficient compared to
the Cramér–Rao Lower Bound (CRLB). However, the
proposed method has an advantage in that it is an ex-
plicit (noniterative) expression of the Cartesian posi-
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Table II
Comparison of Computation Times

Proposed
explicit

conversion
method

ML
one-iteration
conversion
method

ML
ten-iterations
conversion
method

K = 100 s 0.0084 s 0.0165 s 0.0966 s
K = 1000 s 0.0755 s 0.1401 s 0.9228 s

tion based on two line-of-sight measurements in three
dimensions as opposed to a search to obtain the (itera-
tive)MLE of the Cartesian position.This also means the
Jacobian of the converted Cartesian coordinates with re-
spect to the original angle-only measurements can be
calculated. In the case of ML, it is practically impossible
to produce the Jacobian matrix as the “location” of the
ML estimate’s convergence point is not analytically re-
lated to the angle-only measurements. Furthermore, the
proposed method is significantly faster than the ML es-
timate as no matrix multiplication is required, and the
conversion is done in one step rather than requiringmul-
tiple iterations. In this section, the performance of the
proposed method is compared to theMLmethod to ver-
ify the improvement in computation speed and examine
the difference in standard deviation. Two experiments
aremade for comparison:onewith the proposedmethod
compared to one iteration of ILS in theMLmethod, and
the other where the proposed method is compared to
ten iterations of ILS in the MLmethod. The single itera-
tion is the fastest the ML method can perform, but may
lose some accuracy compared to using ten iterations to
converge. Additionally, the methods are compared with
more or fewer measurements. The same parameters are
used from the previous simulations. Computation time
is evaluated using MATLAB and is averaged over 100
Monte Carlo runs. The results are displayed in Table II
and in Figs. 6 and 7. These figures present the time his-
tory of converted measurement errors along the trajec-
tory (no filtering is carried out here).

The table shows that the computation time is signifi-
cantly reduced by using the proposed method. The ex-
plicit conversion takes half the time compared to the
MLmethod for one iteration, and hence naturally nearly
20 times less time for ten iterations. Additionally, the
explicit conversion is nearly identical in performance
to the ML method in terms of standard deviation and
residual bias. The ML method is slightly better for sit-
uations with poor azimuth observability and situations
with very good observability. The graph for the single-
iterationMLmethod is neglected as it is nearly identical
in performance to the ten-iteration ML method. The re-
sults show that the ML method can be favored in situa-
tions where computation speed is not a factor and an ex-
plicit expression of the conversion is not needed, but the
explicit conversion is a very small reduction in perfor-
mance if needed.Bothmethods have negligible bias, and
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Fig. 6. Comparison of the biases in the proposed method and the
ML method.

the residual bias is nearly the same. The results also im-
ply that trackingmethods, such as the EKF, can use these
converted measurements without significant degrada-
tion compared to a mixed measurement filter tracking
in Cartesian with angle-only measurments. Previous re-
search in [11] has shown that in cases of high conversion
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Fig. 7. Ratio of Cartesian coordinate standard deviations from the
proposed method over the ML method using ten iterations.

bias significance (if done in the conventional way), the
filter with measurements using the unbiased conversion
performs better than the mixed measurement filter, as
errors from nonlinearity can be present in the Jacobians.

V. CONCLUSION

When the observability of a target drops for pas-
sive sensors, it is necessary to account for higher or-
der dynamics present in the conversion from angle-only
measurements into Cartesian measurements. The bias
present in the conversion can interfere with passive sens-
ing applications such as target tracking and bias estima-
tion. By using a second-order Taylor series expansion, it
is possible to effectively remove the bias from converted
measurements. Additionally, a more accurate model of
the covariance of the converted noise is achieved. This
method is useful as it is nearly equal in accuracy to ML
methods, but also it is significantly faster and includes an
explicit (noniterative) expression of the Cartesian posi-
tion that can be used for applications. The bias present
is relatively minimal and can be easily removed as well,
meaning it is a robust conversion.

Future work with converted angle-only measure-
ments would be to test this approach in situations in-
corporating additional real-world considerations. These
would include asynchronous measurements and data as-
sociation. Data association, in particular, is important
as the method presented relies on correct associations
for the formation of converted measurements. Asyn-
chronousmeasurementsmust be propagated at the same
time; thus, an additional source of error will be intro-
duced. Therefore, the next step would be to integrate
this approach to a target association method and deter-
mine how much error is likely from association errors,
and howmuch error is obtained from the propagation of
asynchronous measurements. Future work will also in-
clude analysis of the converted measurements with re-

spect to an EKF, as this approach focuses on the con-
version of individual measurements. Although the con-
verted measurements have been shown to be effective
relative to the ML solution, the inclusion of all of the
nuances of tracking in an EKF such as process noise and
target evolution models must be analyzed with respect
to the coordinate conversion.

APPENDIX

A. Introduction of the Conversion

In order to calculate the unbiased conversion, it is
necessary to derive the expressions for the converted
measurements and then the derivatives of the converted
measurements with respect to the angle measurements.
First, the basics of the measurements are presented

xts(k) = xt (k) − xs(k), (32)

yts(k) = yt (k) − ys(k), (33)

zts(k) = zt (k) − zs(k), (34)

αs(k) = atan2
(
yts(k)
xts(k)

)
, (35)

εs(k) = atan2

(
zts(k)√

yt2s (k) + xt2s (k)

)
. (36)

The closest point of approach method involves convert-
ing the LOS measurements into a Cartesian ray. The ray
for a sensor s is defined as

Ls =

⎡
⎢⎢⎣
cos(αs) cos(εs)

sin(αs) cos(εs)

sin(εs)

⎤
⎥⎥⎦ . (37)

The sensor positions are assumed to be known, and the
line between them is used to determine the closest point
of approach

B1,2 = x2 − x1 =

⎡
⎢⎢⎣
x2 − x1

y2 − y1

z2 − z1

⎤
⎥⎥⎦ . (38)

The closest point of approach for each sensor using the
derivation in [1] and multiplied by the LOS ray to find
the Cartesian positions on each LOS that are closest to
each other. These are shifted by the sensor positions to
place them within the same reference frame.

xt,c1 (k) =

⎡
⎢⎢⎣
xt,c1 (k)

yt,c1 (k)

zt,c1 (k)

⎤
⎥⎥⎦

= x1(k) + L1(k)(L1(k)′B1,2(k))−(L1(k)′L2(k))(L2(k)′B1,2(k))
1−(L1(k)′L2(k))2

,

(39)
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xt,c2 (k) =

⎡
⎢⎢⎣
xt,c2 (k)

yt,c2 (k)

zt,c2 (k)

⎤
⎥⎥⎦

= x2(k) + L2(k)(L1(k)′L2(k))(L1(k)′B1,2(k))−(L2(k)′B1,2(k))
1−(L1(k)′L2(k))2

, (40)

xt,c1,2(k) = 1
2

(
xt,c1 (k) + xt,c2 (k)

)
. (41)

The conversion relies on the Cartesian vectors of the
lines of sight defined as L and the line between the sen-
sors defined as B. These are calculated as

L1(k) =

⎡
⎢⎢⎣
cos(α1(k)) cos(ε1(k))

sin(α1(k)) cos(ε1(k))

sin(ε1(k))

⎤
⎥⎥⎦ , (42)

L2(k) =

⎡
⎢⎢⎣
cos(α2(k)) cos(ε2(k))

sin(α2(k)) cos(ε2(k))

sin(ε2(k))

⎤
⎥⎥⎦ , (43)

B1,2(k) = x2(k) − x1(k) =

⎡
⎢⎢⎣
x2(k) − x1(k)

y2(k) − y1(k)

z2(k) − z1(k)

⎤
⎥⎥⎦ . (44)

For simplicity in the appendix the following substitu-
tions are made:

N1 = L′
1B1,2 − (L′

1L2)(L′
2B1,2), (45)

N2 = (L′
1L2)(L′

1B1,2) − L′
2B1,2, (46)

Nx,1 = Lx,1N1, (47)

Ny,1 = Ly,1N1, (48)

Nz,1 = Lz,1N1, (49)

Nx,2 = Lx,2N2, (50)

Ny,2 = Ly,2N2, (51)

Nz,2 = Lz,2N2, (52)

D = 1 − (L′
1L2)2, (53)

which results in the equations

xt,c1 = x1 + Nx,1

D
, (54)

xt,c2 = x2 + Nx,2

D
, (55)

yt,c1 = y1 + Ny,1

D
, (56)

yt,c2 = y2 + Ny,2

D
, (57)

zt,c1 = z1 + Nz,1

D
, (58)

zt,c2 = z2 + Nz,2

D
, (59)

xt,c1,2 = (xt,c1 + xt,c2 )
2

, (60)

yt,c1,2 = (yt,c1 + yt,c2 )
2

, (61)

zt,c1,2 = (zt,c1 + zt,c2 )
2

. (62)

By making these substitutions, it is possible to use calcu-
lus rules to more efficiently represent the derivatives of
the composite measurements.

B. Debiasing Calculation

It is necessary to calculate the bias for each Cartesian
coordinate by using a Taylor series expansion to include
the noise variables. For terseness, the symbol ζ is used to
represent any of the Cartesian coordinates.

ζ = x, y, z, (63)

ζ t,c,m1,2 (k) ≈ ζ t (k) + ∂ζ t,c1,2

∂α1
wα

1 (k) + ∂ζ t,c1,2

∂α2
wα

2 (k)

+ ∂ζ t,c1,2

∂ε1
wε

1(k) + ∂ζ t,c1,2

∂ε2
wε

2(k)

+ 0.5
∂2ζ t,c1,2

∂α2
1

wα
1 (k)

2 + 0.5
∂2ζ t,c1,2

∂α2
2

wα
2 (k)

2

+ 0.5
∂2ζ t,c1,2

∂ε21
wε

1(k)
2 + 0.5

∂2ζ t,c1,2

∂ε22
wε

2(k)
2

+ ∂2ζ t,c1,2

∂α1∂α2
wα

1 (k)w
α
2 (k) + ∂2ζ t,c1,2

∂α1∂ε1
wα

1 (k)w
ε
1(k)

+ ∂2ζ t,c1,2

∂α1∂ε2
wα

1 (k)w
ε
2(k) + ∂2ζ t,c1,2

∂α2∂ε1
wα

2 (k)w
ε
1(k)

+ ∂2ζ t,c1,2

∂α2∂ε2
wα

2 (k)w
ε
2(k) + ∂2ζ t,c1,2

∂ε1∂ε2
wε

1(k)w
ε
2(k).

(64)

The bias is defined as the difference between the truth
and the expected value of the converted measurement.
The first-order terms are eliminated from the bias, but
the second-order terms contribute to the mean:

E[ζ t,c,m1,2 (k)] ≈ ζ t (k) + 0.5
∂2ζ t,c1,2

∂α2
1

(σα
1 )

2

+0.5
∂2ζ t,c1,2

∂α2
2

(σα
2 )

2 + 0.5
∂2ζ t,c1,2

∂ε21
(σ ε

1 )
2

+0.5
∂2ζ t,c1,2

∂ε22
(σ ε

2 )
2, (65)

38 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 17, NO. 1 JUNE 2022



cζ ,1,2 = 0.5
∂2ζ t,c1,2

∂α2
1

(σα
1 )

2 + 0.5
∂2ζ t,c1,2

∂α2
2

(σα
2 )

2

+0.5
∂2ζ t,c1,2

∂ε21
(σ ε

1 )
2 + 0.5

∂2ζ t,c1,2

∂ε22
(σ ε

2 )
2, (66)

E[ζ t,c,m1,2 (k)] ≈ ζ t (k) + cζ ,1,2, (67)

ζ t,c,m,db
1,2 (k) = ζ t,c,m1,2 (k) − cζ ,1,2, (68)

E[ζ t,c,m,db
1,2 (k)] ≈ ζ t (k). (69)

C. Variance Calculation

The variance is defined as the expected value of the
measurement squared minus the mean squared:

Var(ζ t,c,m,db
1,2 (k)) = E[ζ t,c,m,db

1,2 (k)2] − E[ζ t,c,m,db
1,2 (k)]2.

(70)

The debiasing is included in order to find the variance of
the debiased measurements

Var(ζ t,c,m,db
1,2 (k))

= E

[(
ζ t (k) + ∂ζ t,c1,2

∂α1
wα

1 (k) + ∂ζ t,c1,2

∂α2
wα

2 (k)

+ ∂ζ t,c1,2

∂ε1
wε

1(k) + ∂ζ t,c1,2

∂ε2
wε

2(k) + 0.5
∂2ζ t,c1,2

∂α2
1

wα
1 (k)

2

+ 0.5
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∂α2
2

wα
2 (k)

2 + 0.5
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∂ε21
wε

1(k)
2

+ 0.5
∂2ζ t,c1,2

∂ε22
wε
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2 + ∂2ζ t,c1,2

∂α1∂α2
wα

1 (k)w
α
2 (k)
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∂α1∂ε1
wα

1 (k)w
ε
1(k) + ∂2ζ t,c1,2

∂α1∂ε2
wα

1 (k)w
ε
2(k)

+ ∂2ζ t,c1,2

∂α2∂ε1
wα

2 (k)w
ε
1(k) + ∂2ζ t,c1,2

∂α2∂ε2
wα

2 (k)w
ε
2(k)

+ ∂2ζ t,c1,2

∂ε1∂ε2
wε

1(k)w
ε
2(k) − cζ ,1,2

)2
⎤
⎦ − ζ t (k)2.

(71)

The debiasing will remove some of the terms, so they are
separated from the equation:

V (ζ t,c,m,db
1,2 (k)) =(

ζ t (k) + 0.5
∂2ζ t,c1,2

∂α2
1

(σα
1 )

2 + 0.5
∂2ζ t,c1,2

∂α2
2

(σα
2 )

2
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(σ ε

1 )
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∂ε22
(σ ε
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(
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(σα
1 )
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(72)

The final variance equation is as follows:

V (ζ t,c,m,db
1,2 (k)) =

(
∂ζ t,c1,2

∂α1

)2

(σα
1 )

2 +
(

∂ζ t,c1,2

∂α2

)2

(σα
2 )

2

+
(

∂ζ t,c1,2

∂ε1

)2

(σ ε
1 )

2 +
(

∂ζ t,c1,2

∂ε2

)2

(σ ε
2 )

2

+
(

∂2ζ t,c1,2

∂α1∂α2

)2

(σα
1 )

2(σα
2 )

2 +
(

∂2ζ t,c1,2

∂α1∂ε1

)2

(σα
1 )

2(σ ε
1 )

2

+
(

∂2ζ t,c1,2

∂α1∂ε2

)2

(σα
1 )

2(σ ε
2 )

2 +
(

∂2ζ t,c1,2

∂α2∂ε1

)2

(σα
2 )

2(σ ε
1 )

2

+
(

∂2ζ t,c1,2

∂α2∂ε2

)2

(σα
2 )

2(σ ε
2 )

2 +
(

∂2ζ t,c1,2

∂ε1∂ε2

)2

(σ ε
1 )

2(σ ε
2 )

2.

(73)

D. Covariance Calculation

Similarly, the covariance is calculated for each com-
bination of two Cartesian coordinates. As before, ζ is
used to represent any particular Cartesian coordinate. γ
is used to represent a different Cartesian coordinate.The
calculation begins with the definition

ζ = x, y, z, (74)

γ = x, y, z, (75)

γ �= ζ , (76)

CV (ζ t,c,m,db
1,2 (k), γ t,c,m,db

1,2 (k))

= E[(ζ t,c,m,db
1,2 (k) − E[ζ t,c,m,db

1,2 (k)])

×(γ t,c,m,db
1,2 (k) − E[γ t,c,m,db

1,2 (k)])]

= E[ζ t,c,m,db
1,2 (k)γ t,c,m,db

1,2 (k)]

−E[ζ t,c,m,db
1,2 (k)]E[γ t,c,m,db

1,2 (k)]. (77)
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This is expanded with the second-order conversion

Cov(ζ t,c,m,db
1,2 (k), γ t,c,m,db

1,2 (k))

= E

[(
ζ t (k) + ∂ζ t,c1,2

∂α1
wα

1 (k) + ∂ζ t,c1,2

∂α2
wα

2 (k) + ∂ζ t,c1,2

∂ε1
wε

1(k)

+ ∂ζ t,c1,2

∂ε2
wε

2(k) + 0.5
∂2ζ t,c1,2

∂α2
1

wα
1 (k)

2 + 0.5
∂2ζ t,c1,2

∂α2
2

wα
2 (k)

2

+ 0.5
∂2ζ t,c1,2

∂ε21
wε

1(k)
2 + 0.5

∂2ζ t,c1,2

∂ε22
wε

2(k)
2

+ ∂2ζ t,c1,2

∂α1∂α2
wα

1 (k)w
α
2 (k) + ∂2ζ t,c1,2

∂α1∂ε1
wα

1 (k)w
ε
1(k)

+ ∂2ζ t,c1,2

∂α1∂ε2
wα

1 (k)w
ε
2(k) + ∂2ζ t,c1,2

∂α2∂ε1
wα

2 (k)w
ε
1(k)

+ ∂2ζ t,c1,2

∂α2∂ε2
wα

2 (k)w
ε
2(k) + ∂2ζ t,c1,2

∂ε1∂ε2
wε

1(k)w
ε
2(k) − cζ ,1,2

)

×
(

γ t (k) + ∂γ t,c
1,2

∂α1
wα

1 (k) + ∂γ t,c
1,2

∂α2
wα

2 (k) + ∂γ t,c
1,2

∂ε1
wε

1(k)

+ ∂γ t,c
1,2

∂ε2
wε

2(k) + 0.5
∂2γ t,c

1,2

∂α2
1

wα
1 (k)

2 + 0.5
∂2γ t,c

1,2

∂α2
2

wα
2 (k)

2

+ 0.5
∂2γ t,c

1,2

∂ε21
wε

1(k)
2 + 0.5

∂2γ t,c
1,2

∂ε22
wε

2(k)
2

+ ∂2γ t,c
1,2

∂α1∂α2
wα

1 (k)w
α
2 (k) + ∂2γ t,c

1,2

∂α1∂ε1
wα

1 (k)w
ε
1(k)

+ ∂2γ t,c
1,2

∂α1∂ε2
wα

1 (k)w
ε
2(k) + ∂2γ t,c

1,2

∂α2∂ε1
wα

2 (k)w
ε
1(k)

+ ∂2γ t,c
1,2

∂α2∂ε2
wα

2 (k)w
ε
2(k) + ∂2γ t,c

1,2

∂ε1∂ε2
wε

1(k)w
ε
2(k) − cγ ,1,2

)]

− ζ t (k)γ t (k). 78)

The debiasing will remove some of the terms, so they are
separated from the equation:

Cov(ζ t,c,m,db
1,2 (k), γ t,c,m,db

1,2 (k))

=
(

ζ t (k) + 0.5
∂2ζ t,c1,2

∂α2
1

(σα
1 )

2 + 0.5
∂2ζ t,c1,2

∂α2
2

(σα
2 )

2

+ 0.5
∂2ζ t,c1,2

∂ε21
(σ ε

1 )
2 + 0.5

∂2ζ t,c1,2

∂ε22
(σ ε

2 )
2 − cζ ,1,2

)

×
(

γ t (k) + 0.5
∂2γ t,c

1,2

∂α2
1

(σα
1 )

2 + 0.5
∂2γ t,c

1,2

∂α2
2

(σα
2 )

2

+ 0.5
∂2γ t,c

1,2

∂ε21
(σ ε

1 )
2 + 0.5

∂2γ t,c
1,2

∂ε22
(σ ε

2 )
2 − cγ ,1,2

)

+
(

∂ζ t,c1,2

∂α1

)(
∂γ t,c

1,2

∂α1

)
(σα

1 )
2 +

(
∂ζ t,c1,2

∂α2

)(
∂γ t,c

1,2

∂α2

)
(σα

2 )
2

+
(

∂ζ t,c1,2

∂ε1

)(
∂γ t,c

1,2

∂ε1

)
(σ ε

1 )
2 +

(
∂ζ t,c1,2

∂ε2

)(
∂γ t,c

1,2

∂ε2

)
(σ ε

2 )
2

+
(

∂2ζ t,c1,2

∂α1∂α2

) (
∂2γ t,c

1,2

∂α1∂α2

)
(σα

1 )
2(σα

2 )
2

+
(

∂2ζ t,c1,2

∂α1∂ε1

)(
∂2γ t,c

1,2

∂α1∂ε1

)
(σα

1 )
2(σ ε

1 )
2

+
(

∂2ζ t,c1,2

∂α1∂ε2

)(
∂2γ t,c

1,2

∂α1∂ε2

)
(σα

1 )
2(σ ε

2 )
2

+
(

∂2ζ t,c1,2

∂α2∂ε1

)(
∂2γ t,c

1,2

∂α2∂ε1

)
(σα

2 )
2(σ ε

1 )
2

+
(

∂2ζ t,c1,2

∂α2∂ε2

)(
∂2γ t,c

1,2

∂α2∂ε2

)
(σα

2 )
2(σ ε

2 )
2

+
(

∂2ζ t,c1,2

∂ε1∂ε2

) (
∂2γ t,c

1,2

∂ε1∂ε2

)
(σ ε

1 )
2(σ ε

2 )
2. (79)

The final covariance equation is as follows:

Cov(ζ t,c,m,db
1,2 (k), γ t,c,m,db

1,2 (k))

=
(

∂ζ t,c1,2

∂α1

)(
∂γ t,c

1,2

∂α1

)
(σα

1 )
2 +

(
∂ζ t,c1,2

∂α2

) (
∂γ t,c

1,2

∂α2

)
(σα

2 )
2

+
(

∂ζ t,c1,2

∂ε1

)(
∂γ t,c

1,2

∂ε1

)
(σ ε

1 )
2 +

(
∂ζ t,c1,2

∂ε2

)(
∂γ t,c

1,2

∂ε2

)
(σ ε

2 )
2

+
(

∂2ζ t,c1,2

∂α1∂α2

) (
∂2γ t,c

1,2

∂α1∂α2

)
(σα

1 )
2(σα

2 )
2

+
(

∂2ζ t,c1,2

∂α1∂ε1

) (
∂2γ t,c

1,2

∂α1∂ε1

)
(σα

1 )
2(σ ε

1 )
2

+
(

∂2ζ t,c1,2

∂α1∂ε2

) (
∂2γ t,c

1,2

∂α1∂ε2

)
(σα

1 )
2(σ ε

2 )
2

+
(

∂2ζ t,c1,2

∂α2∂ε1

) (
∂2γ t,c

1,2

∂α2∂ε1

)
(σα

2 )
2(σ ε

1 )
2

+
(

∂2ζ t,c1,2

∂α2∂ε2

) (
∂2γ t,c

1,2

∂α2∂ε2

)
(σα

2 )
2(σ ε

2 )
2

+
(

∂2ζ t,c1,2

∂ε1∂ε2

)(
∂2γ t,c

1,2

∂ε1∂ε2

)
(σ ε

1 )
2(σ ε

2 )
2. (80)

E. Derivatives of Converted Measurements

It is necessary to calculate the derivatives of the
converted measurement with respect to the original
measurements. This process begins with the first-order
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derivatives. The derivatives are defined in terms of the
substitutions made earlier. Furthermore, terms φ is in-
cluded for terseness to represent any of the individual
LOS measurements.

N1 = L′
1B1,2 − (L′

1L2)(L′
2B1,2), (81)

N2 = (L′
1L2)(L′

1B1,2) − L′
2B1,2, (82)

N1 = N1L1, (83)

N2 = N2L2, (84)

D = 1 − (L′
1L2)2, (85)

which results in the equations

∇N1 = L′
1∇N1 +N1∇L1, (86)

∇N2 = L′
2∇N2 +N2∇L2, (87)

xt,c1 = x1 + N1

D
, (88)

xt,c2 = x2 + N2

D
, (89)

xt,c1,2 = (xt,c1 + xt,c2 )
2

, (90)

∇xt,c1,2 = 1
2
(∇xt,c1 + ∇xt,c2 ), (91)

∇xt,c1 = D∇N1 − N′
1∇D

D2
, (92)

∇xt,c2 = D∇N2 − N′
2∇D

D2
. (93)

Gradients are used to simplify the equations, with an ex-
ample being

∇xt,c1,2 =

⎡
⎢⎢⎢⎢⎣

∂xt,c1,2
∂α1

∂xt,c1,2
∂ε1

∂xt,c1,2
∂α2

∂xt,c1,2
∂ε2

∂yt,c1,2
∂α1

∂yt,c1,2
∂ε1

∂yt,c1,2
∂α2

∂yt,c1,2
∂ε2

∂zt,c1,2
∂α1

∂zt,c1,2
∂ε1

∂zt,c1,2
∂α2

∂zt,c1,2
∂ε2

⎤
⎥⎥⎥⎥⎦ , (94)

∇N1 = B′
1,2∇L1 − (L′

1L2)(B′
1,2∇L2)

−(L′
2B1,2)(L′

1∇L2 + L′
2∇L1), (95)

∇N2 = −B′
1,2∇L2 + (L′

1L2)(B′
1,2∇L1)

+(L′
1B1,2)(L′

1∇L2 + L′
2∇L1), (96)

∇D = −2(L′
1L2)(L′

1∇L2 + L′
2∇L1), (97)

∇L1 =

⎡
⎢⎢⎢⎣

∂Lx,1

∂α1

∂Lx,1

∂ε1
0 0

∂Ly,1

∂α1

∂Ly,1

∂ε1
0 0

∂Lz,1

∂α1

∂Lz,1

∂ε1
0 0

⎤
⎥⎥⎥⎦ , (98)

∇L2 =

⎡
⎢⎢⎢⎣
0 0 ∂Lx,2

∂α2

∂Lx,2

∂ε2

0 0 ∂Ly,2

∂α2

∂Ly,2

∂ε2

0 0 ∂Lz,2

∂α2

∂Lz,2

∂ε2

⎤
⎥⎥⎥⎦ , (99)

∂Lx,1

∂α1
= − cos(ε1) sin(α1), (100)

∂Lx,1

∂ε1
= − sin(ε1) cos(α1), (101)

∂Ly,1

∂α1
= cos(ε1) cos(α1), (102)

∂Ly,1

∂ε1
= − sin(ε1) sin(α1), (103)

∂Lz,1

∂α1
= 0, (104)

∂Lz,1

∂ε1
= cos(ε1), (105)

∂Lx,2

∂α2
= − cos(ε2) sin(α2), (106)

∂Lx,2

∂ε2
= − sin(ε2) cos(α2), (107)

∂Ly,2

∂α2
= cos(ε2) cos(α2), (108)

∂Ly,2

∂ε2
= − sin(ε2) sin(α2), (109)

∂Lz,2

∂α2
= 0, (110)

∂Lz,2

∂ε2
= cos(ε2), (111)

The second-order derivatives are calculated to be

φ = α1, α2, ε1, ε2, (112)

∂∇xt,c1,2
∂φ

= 1
2
(
∂∇xt,c1

∂φ
+ ∂∇xt,c2

∂φ
), (113)

∂∇xt,c1
∂φ

=
⎛
⎝D2

(
∂D
∂φ

∇N1 +D ∂∇N1
∂φ

− N′
1

∂∇D
∂φ

− ∂N1
∂φ

′∇D
)

D4

⎞
⎠

+
(−2D ∂D

∂φ
(D∇N1 − N′

1∇D)

D4

)
, (114)

∂∇xt,c2
∂φ

=
⎛
⎝D2

(
∂D
∂φ

∇N2 +D ∂∇N2
∂φ

− N′
2

∂∇D
∂φ

− ∂N2
∂φ

′∇D
)

D4

⎞
⎠

+
(−2D ∂D

∂φ
(D∇N2 − N′

2∇D)

D4

)
, (115)
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∂∇N1

∂φ
= B′

1,2
∂∇L1

∂φ
−

(
∂L1

∂φ

′
L2 + L′

1
∂L2

∂φ

)
(B′

1,2∇L2)

−(L′
1L2)

(
B′

1,2
∂∇L2

∂φ

)

−
(

∂L2

∂φ

′
B1,2

)
(L′

1∇L2 + L′
2∇L1)

−(L′
2B1,2)

(
∂L1

∂φ

′
∇L2 + ∂L2

∂φ

′
∇L1

+L′
1
∂∇L2

∂φ
+ L′

2
∂∇L1

∂φ

)
, (116)

∂∇N2

∂φ
= −B′

1,2
∂∇L2

∂φ
+

(
∂L1

∂φ

′
L2 + L′

1
∂L2

∂φ

)
(B′

1,2∇L1)

+(L′
1L2)

(
B′

1,2
∂∇L1

∂φ

)

+
(

∂L1

∂φ

′
B1,2

)
(L′

1∇L2 + L′
2∇L1)

+(L′
1B1,2)

(
∂L1

∂φ

′
∇L2 + ∂L2

∂φ

′
∇L1

+L′
1
∂∇L2

∂φ
+ L′

2
∂∇L1

∂φ

)
, (117)

∂∇D
∂φ

= −2
(

∂L1

∂φ

′
L2 + L′

1
∂L2

∂φ

)
(L′

1∇L2 + L′
2∇L1)

−2(L′
1L2)

(
∂L1

∂φ

′
∇L2 + ∂L2

∂φ

′
∇L1

+L′
1
∂∇L2

∂φ
+ L′

2
∂∇L1

∂φ

)
, (118)

∂∇L1

∂φ
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2Lx,1

∂α1∂φ

∂2Lx,1

∂ε1∂φ
0 0

∂2Ly,1

∂α1∂φ

∂2Ly,1

∂ε1∂φ
0 0

∂2Lz,1

∂α1∂φ

∂2Lz,1

∂ε1∂φ
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (119)

∂∇L2

∂φ
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
∂2Lx,2

∂α2∂φ

∂2Lx,2

∂ε2∂φ

0 0
∂2Ly,2

∂α2∂φ

∂2Ly,2

∂ε2∂φ

0 0
∂2Lz,2

∂α2∂φ

∂2Lz,2

∂ε2∂φ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (120)

∂2Lx,1

∂2α1
= − cos(ε1) cos(α1), (121)

∂2Lx,1

∂2ε1
= − cos(ε1) cos(α1), (122)

∂2Ly,1

∂2α1
= − cos(ε1) sin(α1), (123)

∂2Ly,1

∂2ε1
= − cos(ε1) sin(α1), (124)

∂2Lz,1

∂2α1
= 0, (125)

∂2Lz,1

∂2ε1
= − sin(ε1), (126)

∂2Lx,1

∂α1∂ε1
= sin(ε1) sin(α1), (127)

∂2Ly,1

∂α1∂ε1
= − sin(ε1) cos(α1), (128)

∂2Lz,1

∂α1∂ε1
= 0, (129)

∂2Lx,1

∂α1∂α2
= 0, (130)

∂2Lx,1

∂α1∂ε2
= 0, (131)

∂2Ly,1

∂α1∂α2
= 0, (132)

∂2Ly,1

∂α1∂ε2
= 0, (133)

∂2Lz,1

∂α1∂α2
= 0, (134)

∂2Lz,1

∂α1∂ε2
= 0, (135)

∂2Lx,1

∂ε1∂α2
= 0, (136)

∂2Lx,1

∂ε1∂ε2
= 0, (137)

∂2Ly,1

∂ε1∂α2
= 0, (138)

∂2Ly,1

∂ε1∂ε2
= 0, (139)

∂2Lz,1

∂ε1∂α2
= 0, (140)

∂2Lz,1

∂ε1∂ε2
= 0, (141)

∂2Lx,2

∂2α2
= − cos(ε2) cos(α2), (142)

∂2Lx,2

∂2ε2
= − cos(ε2) cos(α2), (143)

∂2Ly,2

∂2α2
= − cos(ε2) sin(α2), (144)

∂2Ly,2

∂2ε2
= − cos(ε2) sin(α2), (145)

∂2Lz,2

∂2α2
= 0, (146)
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∂2Lz,2

∂2ε2
= − sin(ε2), (147)

∂2Lx,2

∂α2∂ε2
= sin(ε2) sin(α2), (148)

∂2Ly,2

∂α2∂ε2
= − sin(ε2) cos(α2), (149)

∂2Lz,2

∂α2∂ε2
= 0, (150)

∂2Lx,2

∂α1∂α2
= 0, (151)

∂2Lx,2

∂α1∂ε2
= 0, (152)

∂2Ly,2

∂α1∂α2
= 0, (153)

∂2Ly,2

∂α1∂ε2
= 0, (154)

∂2Lz,2

∂α1∂α2
= 0, (155)

∂2Lz,2

∂α1∂ε2
= 0, (156)

∂2Lx,2

∂ε1∂α2
= 0, (157)

∂2Lx,2

∂ε1∂ε2
= 0, (158)

∂2Ly,2

∂ε1∂α2
= 0, (159)

∂2Ly,2

∂ε1∂ε2
= 0, (160)

∂2Lz,2

∂ε1∂α2
= 0, (161)

∂2Lz,2

∂ε1∂ε2
= 0. (162)
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