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On Indistinguishability and
Antisymmetry Properties in
Multiple Target Tracking

WOLFGANG KOCH

The notion of indistinguishable targets is well established in ad-

vanced target tracking. If no specific target attributes are sensed, in-

distinguishability is often unavoidable and sometimes even desirable,

for example, to enable “privacy by design” in public surveillance. Con-

ceptually, this notion is rooted in quantum physics where functions

of joint quantum particle states are considered that are either sym-

metric or antisymmetric under permutation of the particle labels. This

symmetry dichotomy explains why quite fundamentally two disjunct

classes of particles exist in nature: bosons and fermions. Besides sym-

metry, also antisymmetry has a place in multiple target tracking as

we will show, leading to well-defined probability density functions de-

scribing the joint target states. Inbuilt antisymmetry implies a target

tracking version of Pauli’s exclusion principle: Real-world targets are

“fermions” in the sense that cannot exist at the same time in the same

state.This is of interest in dense tracking scenarios with resolution con-

flicts and split-off and may mitigate track coalescence phenomena, for

example. We discuss the framework that is illustrated by an example.

I. INTRODUCTION

In grateful memory of Günther van Keuk (1940–2003),
a pioneer in multiple target tracking.

Since Donald B. Reid’s seminal paper, multiple tar-
get tracking has been a topic of intensive research
[1]–[5]. It provides backbone algorithms for multisensor
fusion engines [6] that transform data streams from a va-
riety of sensors along with context knowledge into situ-
ation pictures, the basis for decision making in an ever-
increasing range of applications.Examples are manned–
unmanned teaming and autonomous platform manage-
ment, use cases in manufacturing, process control, or
supply chain management, in health or elderly care, as
well as in public security and defense. Situational aware-
ness is basic not only to reaching goals efficiently, but
also to reaching them in an ethically acceptable and re-
sponsible way [7].

Tracks represent the available knowledge on time-
varying quantities of interest that characterize the state
of the targets to be tracked. Quantitative performance
measures describing the quality of this knowledge are
part of the tracks. The information obtained by tracking
algorithms also includes the history of the targets. Ide-
ally, a one-to-one association between all the targets in
the sensors’ field of view and the produced tracks is to be
established and to be preserved as long as possible. The
achievable track quality depends not only on the perfor-
mance of the sensors used, but also on the target prop-
erties, their kinematic behavior, and the environmental
conditions within the scenario observed.

A. Indistinguishable Targets

In themacrophysical world of target tracking,objects
of interest, such as airplanes, vehicles, persons, ships, and
so on, are mutually distinguishable physical objects in
themselves. The information on them that is collected
by sensors, however, covers a limited set of their prop-
erties only and is in many cases restricted to positional
and kinematic properties. Let us call targets identical if
two assumptions hold: (1) their intrinsic properties can-
not be distinguished from each other by the measure-
ments considered; and (2) they move according to the
same dynamical model. Spatiotemporal target proper-
ties are extrinsic by definition.

Froma systems engineering perspective, target track-
ing algorithms often have to obey certain nontechnical
rules “by design” in order tomake their use acceptable at
all. Besides aspects formulated by rules of engagement
in defense applications, surveillance systems for preserv-
ing public security are examples, where rule-constraint
tracking systems are of growing interest. In particular,
the “indistinguishability of the uninvolved” is a desired
property in this context wheremultiple sensor assistance
systems are to be designed that facilitate the assessment
of the value of the additional security against the pri-
vacy lost by public surveillance.The proper and balanced
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Fig. 1. Ellipses indicating imperfect knowledge on two mutually
distinguishable (left) and indistinguishable (right) identical targets

labeled by i and j.

relation between the emerging surveillance technology
for public security and the notion of an individual human
subject entitled to “inalienable fundamental rights,” for
example, privacy, is of crucial importance.1

Within a conceptual framework that is inspired by
classical mechanics, even identical objects in the previ-
ous sense can be distinguished from each other by their
spatiotemporal behavior, since they move along well-
defined trajectories. Let us consider, for example, a bil-
liard game where all balls have the same color, their ini-
tial identity being known. Just by carefully watching, an
observer could keep track of the balls as if they were
individually colored. This changes even in classical me-
chanics in the case of “chaotic” dynamical systems ac-
cording to sensitivity to initial conditions that are never
known precisely. Even more so, this is valid in multiple
target tracking problems where the temporal evolution
has to be modeled stochastically and the measurements
are inaccurate and ambiguous with respect to which ob-
ject has produced which measurement, making a proba-
bilistic description inevitable.

Fig. 1, left-hand side, illustrates the probabilistic
representation of positional information on two well-
separated identical targets.Even in case of imprecise po-
sitional information, each one of them occupies a clearly
distinct spatial region, arbitrarily labeled by i and j, thus
allowing us to distinguish between these identical tar-
gets just as previously discussed. The right-hand side
of the figure shows two identical targets in a situation
where the probability density functions representing im-
precise positional information are overlapping. It is no
longer unambiguous in which region each target is to
be expected. They have become indistinguishable [8],
[9, Ch. 3].

1“to which a person is inherently entitled simply because
she or he is a human being.” Human Rights. In: Wikipedia,
http://en.wikipedia.org/wiki/Human_rights, last accessed August 26,
2019.

More precisely speaking, our knowledge of indistin-
guishable targets remains unchanged if their labels are
changed. In other words, the labels of indistinguishable
targets have no longer a physical meaning. The joint
probability density functions describing the kinematic
states of indistinguishable targets must therefore obey
symmetry restrictions: if any permutation is applied to
the target labels, the density function has to remain in-
variant. In an early paper with Günter van Keuk [10,
Sec. IV-B], the concept of symmetry has been used in
Bayesian multiple hypothesis tracking.

B. Bosons and Fermions in Quantum Physics

In quantum physics where the notion of individual
particle trajectories is abandoned altogether,we are con-
fronted with a similar situation. Here, a complex-valued
function, the multiple particle wave function ψ(x1:n, t),
completely describes a quantum system composed of n
indistinguishable particles that at each instant of time t
are characterized by their joint state x1:n = (x1, . . . , xn).
Knowledge of the wave function, together with the rules
for the system’s temporal evolution, exhausts all that can
be known on the quantum system. By taking the abso-
lute square of the complex wave function,

p(x1:n, t) = |ψ(x1:n, t)|2, (1)

a probability density function is obtained for calculating
the probable outcome of each possible measurement on
the system. It has to be invariant under any permutation
taken from the set Sn of all n! permutations of the n par-
ticle labels:

∀σ ∈ Sn : p(x1:n, t) = p(xσ (1:n), t). (2)

Since only the absolute square of wave functions has
a physically interpretable meaning, multiple particle
quantum systems are characterized by a symmetry
dichotomy: the wave function for a collection of indis-
tinguishable particles must be either symmetric or anti-
symmetric when two particle labels are exchanged, that
is, when the wave functions involved remain invariant
under any permutation of the particle labels up to a
factor of ±1. If a wave function is initially symmetric
(or antisymmetric), it will remain symmetric (or an-
tisymmetric) as the quantum system evolves in time.
The symmetry dichotomy also claims that asymmetric
multiple identical particle wave functions are forbid-
den. Quantum particles are either bosons2 or fermions3

characterized by symmetric or antisymmetric wave func-
tions, respectively. For further details, see any standard

2Named after the Indian physicist and polymath Satyendra Nath Bose
(1894–1974) who provided the foundation for Bose–Einstein statistics
and the theory of the Bose–Einstein condensate.
3Named after the Italian physicist Enrico Fermi (1901–1954), who first
applied Pauli’s exclusion principle to an ideal gas, employing a statis-
tical formulation now known as Fermi–Dirac statistics.
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textbook on quantum physics, such as [11, Ch. IX]. For
historic aspects, see [12].

In the micro- and macrophysical world, the notions
of identity, individuality, distinguishability, and their op-
posites are conceptually related, but to be distinguished
carefully from each other in any philosophical reflec-
tions [8, Ch. 5], [13].

C. Exclusion Principle in Target Tracking

Amultiple target tracker extracts information on the
kinematic properties of several moving targets from a
time series of sensor data produced by a single sensor or
multiple sensors; that is, target tracking provides infor-
mation on the targets’ position, velocity, and often also
acceleration and related quantities.

As an example, let us consider a tracking prob-
lem with two targets, where probability density func-
tions p(x1, x2) represent the information available on
the kinematic target states x1 and x2. In the case of indis-
tinguishable targets, p(x1, x2) is symmetric under permu-
tation of the target labels: p(x1, x2) = p(x2, x1). In many
cases, p(x1, x2) can be represented by a mixture with
symmetric components: p(x1, x2) = ∑

ν pν pν (x1, x2)
and weighting factors pν . No objection can be made if
we are representing the component densities pν (x1, x2)
by the square of real-valued functions:

pν (x1, x2) = (
ψν (x1, x2)

)2
. (3)

One can easily see that the functions ψν must be either

symmetric ψ+
ν (x1, x2) = ψ+

ν (x2, x1) or (4)

antisymmetric ψ−
ν (x1, x2) = −ψ−

ν (x2, x1) (5)

under permutation of the target labels in order to guar-
antee that p(x1, x2) represents two indistinguishable tar-
gets. Since considering functions ψ+

ν does not add some-
thing substantially new to understanding the properties
of symmetric densities p+, we will be dealing with them
as usual in the tracking literature. This is different, how-
ever, for densities p− that are given by the square of
antisymmetric components ψ−

ν .
As shown later, Bayesian multiple target tracking is

equivalent to iteratively calculating the probability den-
sities p± of indistinguishable multiple targets.Of course,
the “temporal propagation” of multiple target densi-
ties, driven by subsequent prediction and update steps,
is mathematically quite different from the propagation
of multiple particle wave functions in quantum physics.
While the symmetric multiple target densities p± remain
symmetric if the same dynamics model is assumed for
both targets in the prediction step and under wide and
realistic assumptions on the sensormodels to be used for
the filtering update, the antisymmetric ψ− components
remain antisymmetric.Also in target tracking theory,we
can therefore distinguish between bosonic and fermionic
targets according to the symmetry properties of the func-
tions ψ±

ν describing them. As in quantum physics, this

distinction is fundamental.Obviously, themacrophysical
notion of bosonic and fermionic targets considered here
is by no means related to the purely quantum physical
concept of even or odd particle spin.

Real-world targets are fermions in the following
sense:Due to the “fermionic” antisymmetry property of
ψ−

ν , they cannot be characterized by the same state at
the same instant of time:

p−(x, x) =
∑

ν

(
ψ−

ν (x, x)
)2 = 0. (6)

This is a target tracking version of the famous exclusion
principle.4

D. Contribution and Structure

In the tracking literature, indistinguishable targets
have implicitly been considered as bosons; that is, no at-
tention was given to antisymmetry.Attempts to broaden
the methodological basis of point processes applied to
target tracking, for example, do not use the concept of
antisymmetry (see, e.g., the early and insightful paper by
Sosho Mori and Chee-Yee Chong [14] or [15]). This is
valid also for new trends in multitarget tracking such as
labeled Random Finite Sets and message passing tech-
niques to be mentioned [16]–[18]. Only a most recent
paper, not yet published [19], points into the direction
of “fermionic” multiple target tracking.

Since symmetric probability density functions are
crucial building blocks for advanced trackers, see, for
example, [3, pp. 239–244], also the notion of fermionic
targets can quite naturally be introduced. In particular,
the target tracking version of Pauli’s exclusion princi-
ple leads us to multiple target trackers that are better
adapted to real-world phenomena since targets simply
cannot exist at the same place at the same time. It is an
open question what type of phenomena to be tracked
might best be modeled by bosonic targets. Two collec-
tively moving groups that may merge and split off again
are candidates of two bosons, while extended target
tracking is fermionic in nature. In this sense, fermionic
point targets might be called somewhat provocatively
“extended” point targets.

After more precisely stating the notions of symme-
try and antisymmetry as well as reviewing some basics of
multiple target tracking in Section II, we rigorously dis-
cuss the problem of tracking two indistinguishable tar-
gets using a realistic sensor model with possibly missing,
false, and unresolved measurements (Section III). Via
a simulated example based on a tracking vignette with
road moving targets, Section IV illustrates some char-
acteristics of “fermionic” target tracking and compares

4It was formulated in 1925 by Wolfgang Pauli (1900–1958) at the Uni-
versity of Hamburg, Germany. Nominated by Albert Einstein (1879–
1955), Pauli received the 1945 Nobel Prize in Physics for his “decisive
contribution through his discovery of a new law of Nature, the exclu-
sion principle or Pauli principle” [20].
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them with “bosonic” target tracking and more standard
approaches. Since our focus here is on the methodolog-
ical approach, a more comprehensive qualitative discus-
sion of the advantages of the proposed approach in com-
parison to alternative tracking methodologies, although
desirable, goes beyond the scope of this publication and
will be provided by subsequent work. An evident and
practically relevant benefit of “fermionic” trackers to be
stated right now is the mitigation of track coalescence
phenomena in dense target situations. In Section V, we
discuss the relevance of indistinguishable target track-
ing in surveillance systems for public security. “Indistin-
guishability of the uninvolved” seems to be a fundamen-
tal principle for security systems design to be recognized
as a certifiable means for preserving informational self-
determination. Conclusions and some physics-inspired
remarks for generalizing the formalism conclude the
paper.

At the 21st International Conference on Informa-
tion Fusion, the general idea underlying this paper and
its potential relevance to tracking closely spaced targets
were sketched [21].We here provide amore comprehen-
sive view and coherently consider the quantum physi-
cal background, which has guided our approach. In its
present form, this contribution reflects also a series of
discussions that were stimulated by the preliminary pub-
lication. The author in particular wishes to thank three
anonymous reviewers for their insightful and inspiring
comments.

As Wolfgang Pauli made clear himself, the funda-
mental symmetry dichotomy, tightly connected with the
notion of indistinguishability, that is visible and relevant
also in multiple target tracking as shown in this paper,
still calls for a deeper understanding.5

II. BAYESIAN MULTIPLE IDENTICAL TARGET
TRACKING

Tracking systems extract kinematic target informa-
tion from a time series of data Zk:1 = {Zk,Zk−1:1} pro-
duced by a single sensor or multiple sensors at certain
instants of time tl , l = 1, . . . ,k,measuring positional and
kinematic properties of the targets starting at an initial
time t1. The number of measurements mk in each data
set Zk = {z j}mk

j=1 produced at time tk can be equal to,
less than, or larger than the number n of targets to be
tracked due to false, missing, and unresolved measure-
ments. The targets’ position, velocity, and possibly also
acceleration are described by kinematic state vectors xik,
i = 1, . . . ,n, at instants of time tk, the joint state being de-
noted by x1:nk = (x1k, . . . , x

n
k). Identical targets obey the

same dynamical model.

5“Already in my original paper I stressed the circumstance that I was
unable to give a logical reason for the exclusion principle or to deduce
it from more general assumptions. I had always the feeling, and I still
have it today, that this is a deficiency.” [22].

The implications of antisymmetry in the formalismof
multiple identical target tracking and its practical bene-
fits are more clearly visible within the standard Bayesian
framework where we assume independent targets along
with a fixed and known number of targets than in more
advanced tracking methodologies, such as Probalility
Hypothesis Density and intensity filtering, where anti-
symmetry can be embedded as well.

In Bayesian context, the problem of tracking well-
separated targets or well-separated groups consisting
of not too many targets or that of tracking some well-
separated targets or groups joining and separating after
a while can be solved more or less rigorously, that is, by
explicitly enumerating data interpretation hypotheses.
Since it seems unreasonable to deal with large groups
by keeping track of each individual group member, we
should rather track the centroid and the boundary of the
group in this case until it splits off into smaller compo-
nents to be tracked individually; see [6, Sec. 8.2] and [23],
for example.

Our general line of argumentation is valid for nonlin-
ear, non-Gaussian sensor and evolution models where
the resulting probability densities and ψ functions can
be calculated by numerical methods based on tensor de-
composition methods, for example, those presented in
[24]. For being able to discuss the impact of antisymme-
try more analytically and in greater detail, however, we
are assuming linear Gaussianity whenever to be justified
and mathematically convenient.

A. Antisymmetry in Mixture Densities

In the case of ambiguous sensor data, the time series
Zk:1 is to be interpreted by data interpretation histories,
series of possible interpretation hypotheses of the sen-
sor data sets at different instants of time.The conditional
probability density function p(x1:nk |Zk:1) of the joint state
x1:nk that contains all information on the state vectors
available at time tk can thus be written as weighted sum
of component densities pν related to these interpreta-
tion histories:

p(x1:nk |Zk:1) =
∑

ν

pν
k pν (x1:nk |Zk:1). (7)

If at one particular instant of time tl the component den-
sities pν (x1:nl ) are symmetric under permutation of the
target labels,

∀σ ∈ Sn : pν (x1:nl |Zk:1) = pν (x
σ (1:n)
l |Zk:1), (8)

this property is preserved in the iterative calculation
process of the densities that will become clear later.
Symmetry in this sense can thus be imposed on the
“noninformative” initial prior density as some structural
information. As sketched in the introduction, the sym-
metric probability densities pν can either be considered
in themselves, that is, instead as a square of symmetric
functions, this bosonic case being denoted by
p+

ν (x
1:n
k |Zk:1), or be written as the square of func-
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tions ψν that are antisymmetric under permutation of
the target labels:

p−
ν (x

1:n
k |Zk:1) =

(
ψν (x1:nk |Zk:1)

)2
. (9)

With Dirac’s6 antisymmetrizing operator A, see [11,
p. 248],

A f
(
x1:n

) =
∑
σ∈Sn

(−1)σ f
(
xσ (1:n)

)
, (10)

where the symbol (−1)σ is 1 for even and −1 for odd
permutations σ . Let ψν be given by a weighted sum of
Gaussians with positive and negative weighting factors:

ψν (x1:nk |Zk:1) =
√
cν
k|k AN (

x1:nk ; xν
k|k, P

ν
k|k

)
(11)

=: ψ
(
x1:nk ; xν

k|k,P
ν
k|k

)
(12)

that are characterized by joint state expectation vectors
xν
k|k, corresponding covariance matricesPν

k|k, and a prop-
erly defined normalization constant (see Section A.1 in
Appendix A):

1/cν
k|k =

∫
dx1:nk

(
ψ

(
x1:nk ; xν

k|k,P
ν
k|k

))2
. (13)

Under these modeling assumptions, the fermionic com-
ponent densities p−

ν are therefore given by correctly
normalized, well-defined Gaussian mixture densities
with possibly negative weighting factors that sum up
to 1. More general non-Gaussian representations are
possible.

With the symmetrizing operator S ,
S f (x1:n) =

∑
σ∈Sn

f
(
xσ (1:n)

)
, (14)

let the bosonic components be given by

p+
ν (x

1:n
k |Zk:1) = 1

n!
S N (

x1:nk ; xν
k|k, P

ν
k|k

)
. (15)

With these definitions, the overall densities p±(x1:nk |Z1:k)
are symmetric under permutation of the target labels.
The symmetrizing and antisymmetrizing operators S
and A are projectors into disjunct function subspaces.

B. Fermionic Prediction

Let F′
k|k−1 andD′

k|k−1 denote the evolution and plant
noise covariance matrices describing the temporal evo-
lution of the identical targets as usual in the tracking lit-
erature. With Fk|k−1 = 1n ⊗ F′

k|k−1 and Dk|k−1 = 1n ⊗
D′
k|k−1, where 1n denotes the n-dimensional unity ma-

trix and theKronecker product is used, a Gauss–Markov

6Paul Adrien Maurice Dirac (1902–1984) shared the 1933 Nobel Prize
in Physics with Erwin Schrödinger (1887–1961).

transition density for n identical independently moving
targets is defined by

p(x1:nk |x1:nk−1) = N (
x1:nk ; Fk|k−1x1:nk−1, Dk|k−1

)
. (16)

Since all identical targets obey the same evolution
model, the multiple identical target transition density
has the following property:

∀σ ∈ Sn : p(x1:nk |x1:nk−1) = p(xσ (1:n)
k |xσ (1:n)

k−1 ). (17)

While the bosonic prediction update is quite straight-
forward, the fermionic version of it requires some care.
The square root of the transition density is given by (see
Section A.2 in Appendix A)

π (x1:nk |x1:nk−1) = |8πDk|k−1|1/4 N (
x1:nk ; Fk|k−1x1:nk−1, 2Dk|k−1

)
.

(18)
For modeling the prediction step in the tracking process,
we consider predictive ψ functions defined by

ψ
(
x1:nk |Zk−1:1

) =
∑

ν

pν
k ψ

(
x1:nk ; xν

k|k−1,P
ν
k|k−1

)
(19)

with mixture components given by

ψ
(
x1:nk ; xν

k|k−1,P
ν
k|k−1

) =
√
cν
k|k AN (

x1:nk ; xν
k|k−1, P

ν
k|k−1

)
(20)

with properly defined normalizing constants cν
k|k−1 and

the standard, though “relaxed”Kalman prediction step:

xν
k|k−1 = Fk|k−1xν

k−1|k−1, (21)

Pν
k|k−1 = Fk|k−1Pν

k−1|k−1F
�
k|k−1 + 2Dk|k−1. (22)

The predicted fermionic density is thus given by

p−(x1:nk |Zk−1:1) =
∑

ν

pν
k

(
ψ

(
x1:nk ; xν

k|k−1,P
ν
k|k−1

))2
.

C. Intrinsic Symmetry in Sensor Models

Likelihood functions represent imperfect and am-
biguous information on the target states x1:nk that is pro-
vided by a set of sensor data Zk at time tk as well as
context knowledge on the sensor performance and the
sensing environment.For identical targets, the likelihood
functions necessarily have to be symmetric under per-
mutation of the target labels, since otherwise the targets
could be distinguished from each other via sensor data
processing.

Likelihood functions �(x1:nk ;Zk) are up to a multi-
plicative constant determined by the conditional densi-
ties p(Zk|x1:nk ):

�(x1:nk ;Zk) ∝ p(Zk|x1:nk ). (23)

The potential origin of ambiguous sensor data Zk is
explained by a set of data interpretation hypotheses
hk ∈ Hk, which are assumed to be exhaustive and mu-
tually exclusive, yielding a representation by a weighted
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sum:

�(x1:nk ;Zk) ∝
∑
hk∈Hk

p(hk) p(Zk|x1:nk ,hk). (24)

Following well-established and fairly general modeling
assumptions for the sensors considered [6, Sec. 7.1], the
likelihood functions can be rearranged as a sum of par-
tial sums over classesHμ

k of data interpretation hypothe-
ses that are similar in the sense that they differ only in a
permutation of the target labels:

�(x1:nk ;Zk) =
∑

μ

�μ(x1:nk ;Zk) (25)

with �μ(x1:nk ;Zk) ∝
∑
hk∈Hμ

k

p(hk) p(Zk|x1:nk ,hk). (26)

As a result, the component likelihood functions �μ re-
lated toHμ

k are symmetric under permutation of the tar-
get labels:

∀σ ∈ Sn : �μ(x1:nk ;Zk) = �μ(x
σ (1:n)
k ;Zk). (27)

This can be shown by assuming false measurements that
are Poisson distributed in number with a spatial false
measurement density ρF and uniformly distributed in
the measurement space, missing measurements occur-
ring according to a detection probability PD, and the
measurements zk ∈ Zk being mutually independent.
Moreover, let a resolved measurement z jk related to tar-
get i be characterized by a Gaussian likelihood

p(z jk|xik) = N (
z jk; Hkxik, R

j
k

)
(28)

withmeasurement and error covariancematricesHk and
R j
k.
Inherently, antisymmetry and the exclusion principle

it implies are only relevant for targets that may move
closely spaced. Due to the finite resolution capabilities
of real-world sensors, such targets are expected to transi-
tion frombeing resolved to unresolved and back again. It
is thus inevitable to model the sensors’ resolution capa-
bility appropriately and to take this phenomenon explic-
itly into account. In practical applications, only a small
number of targets are expected to be jointly unresolved.

Let an unresolved measurement zuk produced by a
group of n closely spaced targets be modeled as a mea-
surement of the group centroid that is characterized by
the Gaussian likelihood

p(zuk|x1:nk ) = N (
zuk; Hgx1:nk , Rg

)
(29)

with Rg denoting the measurement error of unresolved
measurements and a measurement matrix given by

Hg = (1, . . . , 1) ⊗ Hk. (30)

The probability Pu(x1:nk ) of n targets being jointly unre-
solved is modeled by pseudo-measurement “zero”of the
distances between the targets [6, Sec. 7.1], where the sen-
sor resolution in the measured quantities such as range
and cross range, αr and αxr, can be considered as stan-
dard deviations entering a related pseudo-measurement

error covariance matrixAu:

Pu(x1:nk ) = |2πAu|1/2 N (
0; Hdx1:nk , Au

)
, (31)

where the corresponding pseudo-measurement matrix
Hd that describes mutual distances is given by

Hd =

⎛
⎜⎜⎜⎜⎝

1 −1 0 . . .

0
...

... 0
...

... 1 −1
−1 0 . . . 1

⎞
⎟⎟⎟⎟⎠ ⊗ Hk. (32)

BothGaussians related to unresolvedmeasurements are
evidently symmetric under permutation of the target
labels:

∀σ ∈ Sn :
N (

zuk; Hgx1:nk , Rg
) = N (

zuk; Hgx
σ (1:n)
k , Rg

)
,

N (
0; Hdx1:nk , Ru

) = N (
0; Hdx

σ (1:n)
k , Ru

)
.

In order to pinpoint the effects of antisymmetry, a fully
detailed discussion of this fairly general approach in the
limiting case of two closely spaced targets is provided in
Section III.

D. Fermionic Filtering

The data update of the fermionic density follows
from Bayes’ rule; that is, it is provided by normalizing
the product of the sensor likelihood �(Zk; x1:nk ) and the
predicted density p−(x1:nk |Z1:k−1):

p−(x1:nk |Zk:1) = ck|k �(x1:nk ;Zk) p−(x1:nk |Zk−1:1) (33)

with 1/ck|k =
∫
dx1:nk p(Zk|x1:nk ) p−(x1:nk |Z1:k−1).

We can therefore write the fermionic density function of
the joint state as a mixture density:

p−(x1:nk |Z1:k) = ck|k
∑
μ,ν

�μ(x1:nk ;Zk)

×
(
ψ

(
x1:nk ; xν

k|k−1,P
ν
k|k−1

))2
. (34)

If it is possible to rewrite the symmetric component
likelihood functions �μ as squares of symmetric func-
tions, the fermionic filtering update consists in updating
the antisymmetric component ψ functions and squaring
them. To keep the discussion simple, let us consider a
tracking problem of reduced complexity that is still rich
enough to be practically relevant.

III. EXAMPLE WITH POSSIBLY UNRESOLVED TARGETS

While applicable for n targets, the effects of antisym-
metry in identical target tracking can more easily be an-
alyzed in the case of two targets that may move closely
spaced for a while. Depending on the sensor-to-target
geometry, the finite sensor resolution may even play a
dominant role in target tracking.
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In order to preserve antisymmetry of the fermionic
ψ functions in the filtering update, the likelihood func-
tions need to be modified appropriately. To do so, let us
be guided by some sort of “correspondence principle” in
the sense that for well-separated fermionic targets the
effect of fermionically modified likelihood functions is
the same as that for bosonic targets. If there is no need
for any linear Gaussianity as in case of direct numeri-
cal calculation [24] where the square roots can be drawn
directly, no modification is necessary.

A. Components of the Likelihood Function

For two targets moving in a cluttered environment,
five different classes Hm

k ,m = 1, . . . , 5, of data interpre-
tation hypotheses exist [6, Sec. 7.1]. The likelihood func-
tion for the bosonic and femionic filtering update has
thus a sum representation:

�±(x1:nk ;Zk) ∝
5∑
i=1

�±
i (x

1:2
k ;Zk), (35)

where the five component likelihood functions are sym-
metric under permutation of the target labels and corre-
spond to the following data interpretation classes.

1) H1
k—Both targets were resolvable, but not detected;

all mk measurements in Zk are false (one interpretation):
The component likelihood �1 is the same for bosonic and
fermionic tracking and given by

�±
1 (x

1:2
k ;Zk) = ρ2

F(1 − PD)2
(
1 − Pu(x1:2k )

)
. (36)

2) H2
k—Both targets were neither resolvable nor detected

as a group;all measurements in Zk are assumed to be false
(one interpretation hypothesis): Also here, there is no
difference between the bosonic and fermionic cases:

�±
2 (x

1:2
k ;Zk) = ρF(1 − PuD)Pu(x

1:2
k ). (37)

3) H3
k—Both targets were not resolvable but detected as a

group with probability PuD, z
j
k ∈ Zk representing the cen-

troid measurement; all remaining returns are false (mk

data interpretations): Up to constant factors, the cor-
responding component likelihood is equivalent to joint
centroid and distance measurements; that is, the single
unresolved group measurement z jk provides under this
hypothesis a measurement of the full joint position of
the targets:

�±
3 (x

1:2
k ;Zk) = ρFPuDPu(x

1:2
k )

mk∑
j=1

N (
z jk; Hgx1:2k , Rg

)

(38)

= ρFPuD |2πRu|1/2
mk∑
j=1

N (
z j,1:2k ; Hux1:2k , Ru

)
,

(39)

z j,1:2k = (z jk, 0), Hu = diag[Hg,Hd], and Ru =
diag[Rg,Au].

4) H4
k—Both objects were resolvable but only one object

was detected, z jk is the measurement,mk−1measurements
are false (2mk interpretations): With the abbreviation

λ4
(
z jk;Hkx1:2k ,R j

k

) = N (
z jk; Hkx1k, R

j
k

)

+N (
z jk; Hkx2k, R

j
k

)
, (40)

the bosonic component likelihood is given by

�+
4 (x

1:2
k ;Zk) = ρFPD(1 − PD)

(
1 − Pu(x1:2k )

)

×
mk∑
j=1

λ4
(
z jk;Hkx1:2k ,R j

k

)
. (41)

For applying this component likelihood in the filtering
updatewhere the antisymmetric structure ofψ functions
is to be preserved,we need a representation by appropri-
ate “squares.”According to the introductory remarks, let
us make an “ansatz”:

�−
4 (x

1:2
k ;Zk) = ρFPD(1 − PD)

(
1 − Pu(x1:2k )

)

×
mk∑
j=1

λ4
(
z jk;Hkx1:2k , 2R j

k

)2
. (42)

5) H5
k—Both objects were resolvable and detected, zik and

z jk are the measurements, mk − 2 measurements are false
(mk(mk − 1) interpretations): With the abbreviation

λ5
(
x1:2k ; zi jk ,Ri j

k

) = S N (
zi jk ; Hkx1:2k , Ri j

k

)
, (43)

the bosonic component likelihood is given by

�+
5 (x

1:2
k ;Zk) = P2

D

(
1 − Pu(x1:2k )

) mk−1∑
i=1

mk−i∑
j=1

λ5
(
x1:2k ; zi jk ,Ri j

k

)
,

(44)
while we assume for the fermionic component

�−
5 (x

1:2
k ;Zk) = P2

D

(
1 − Pu(xk)

) mk−1∑
i=1

mk−i∑
j=1

×
(
λ5

(
zi jk ;Hi j

k x
1:2
k , 2Ri j

k

))2
. (45)

Note the “relaxed” measurement error covariance ma-
trix in the fermionic versions of the component likeli-
hood functions �−

4 and �−
5 .

Each component likelihood is symmetric under per-
mutation of the target labels. If an unresolved group
is assumed, two measurements are to be processed: a
real measurement of the group centroid and a pseudo-
measurement “zero”of the distance between the objects.
We can thus speak of a piece of negative sensor informa-
tion, as the lack of a second target measurement conveys
information on the target position, since in the case of a
resolution conflict, the relative target distances must be
smaller than the sensor resolution.
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B. Fermionic Filtering Update: Discussion

The general structure of the filtering update in case of
two targets becomes visible even in the absence of clut-
ter, ρF = 0, and in case of perfect detection, PD = 1.
This means that at a given instant of time tk either two
resolved measurements z1k and z2k or a single unresolved
measurement zk has to be processed. Let the predictive
ψ function be given by

ψ
(
x1:2k |Zk−1:1

) = ψ
(
x1:2k ; xk|k−1,Pk|k−1

)
(46)

or by a weighted sum of such components.

1) Unresolved measurement: In this case, the bosonic
and fermionic updates use the same component likeli-
hood.Up to a constant, the square root of the likelihood
is given by (see Section A.2 in Appendix A)

λ3(x1:2k ; zk) ∝ N (
zu,1:2k ; Hux1:2k , 2Ru

)
. (47)

The filtering update by a measurement that is assumed
to be unresolved yields a ψ function ψ(x1:2k ; xk|k,Pk|k)
characterized by a standardKalman update based on the
“relaxed”measurement error covariance matrix 2Ru:

x1:2k|k = x1:2k|k−1 + Wk(z
u,1:2
k − Hux1:2k|k−1), (48)

P1:2
k|k = P1:2

k|k−1 − WkSkW�
k (49)

with innovation covariance and gain matrices given by
Suk = HuP1:2

k|k−1H
�
u + 2Ru and Wu

k = P1:2
k|k−1H

�
u S

u−1

k .

2) Resolved measurements: In this case, we obtain for
the fermionic update (see Section A.3 in Appendix A)

ψ(x1:2k |Z1:k) ∝ λ5
(
x1:2k ; zi jk , 2Ri j

k

)
ψ

(
x1:2k ; xk|k−1,Pk|k−1

)
(50)

= p12k ψ
(
x1:2k ; x12k|k,P12

k|k
) + p21k ψ

(
x1:2k ; x21k|k,P21

k|k
)
, (51)

where xi jk|k and Pi j
k|k result from the standard Kalman up-

date equations with measurement vectors zi jk = (zik, z
j
k).

The weighting factors result from the corresponding in-
novation:

pi jk = N (
zi jk ; Hi j

k xk|k−1, S
i j
k

)
(52)

with Si jk = Hi j
kPk|k−1H

i j�
k + Ri j

k . Via symmetrized mo-
ment matching [10, Sec. IV-B], an increasing number
of mixture components by the fermionic update can be
avoided:

ψ(x1:2k |Z1:k) ≈ ψ
(
x1:2k ; xk|k,Pk|k

)
. (53)

IV. EXAMPLE: GMTI TRACKING OF ROAD MOVING
VEHICLES

Tracking of road moving targets using data from air-
borne GMTI (ground moving target indicator) radar is
a relevant problem. Since here the state space has only
one spatial dimension, the impact of antisymmetry can
easily be visualized.

Fig. 2. Two road moving vehicles observed with GMTI radar.

A. Description of a Characteristic Vignette

Let us therefore consider a straight road given by the
x-axis of the chosen coordinate system with a road map
error of 5 m. See [6, Sec. 9.1] for details and general-
izations to winding roads. As a function of time, Fig. 2
shows the position of vehicle 1 moving uniformly with
the speed v1 = 14 m/s. At time t1 = 120 s, it smoothly ac-
celerates with a = 2m/s2 over 4 s and continues to move
uniformly with v2 = 22 m/s.Vehicle 2 approaches vehicle
1 with the initial speed v2. At time t2 = 58 s, it deceler-
ates with−a over 4 s and follows vehicle 1 at a distance of
20 m until vehicle 1 is accelerating.

Let this vignette be observed by a typical GMTI
radar positioned at s1 = (1, 40) km. For the sake of sim-
plicity, we neglect the phenomenon of GMTI Doppler
blindness [6, Sec. 7.2].Moreover, we assume for resolved
and unresolved measurements the same standard devia-
tions of themeasurement errors in range and cross range
that are given by σr = 10 m and σxr = 70 m, respectively,
while the sensor resolution parameters are αr = 15m and
αxr = 100 m.

Fig. 2 also shows the variation of the resolution prob-
abilities in time and a time series of GMTI plots that are
simulated according to these assumptions. Apparently,
the vehicles are unresolved in the intermediate period
of the vignette. The measurement and resolution capa-
bilities of GMTI sensors strongly depend on the cho-
sen sensor-to-target geometry. This is clearly indicated
by the resolution probability of a second GMTI radar
located at s2 = (40, 0) km (dashed line).

B. Comparison of Fermionic and Bosonic Densities

For the first sensor-to-target geometry previously
discussed, we focus on four instants of time, shortly be-
fore the vehicles are becoming unresolvable (after 36 s),
after processing a fairly long sequence of unresolved
measurements (100 s), during the process of splitting off
(140 s), and well after the vehicles have split off again
(170). Figs. 3 (36, 100 s) and 4 (140, 170 s) show the
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Fig. 3. Spatial projection of p±(x1:2k |Zk:1 ) at two different instants of time (36, 100 s).

spatial projections of the fermionic (left) and bosonic
(right) joint densities representing the positional infor-
mation on them for these instants of time. For about
30 s from the beginning of the vignette, the vehicles are
well separated and characterized by two distinct Gaus-
sian peaks that are the same in the fermionic and bosonic
cases.

At time t1 = 36 s, however, the bosonic peaks are
close to merging, while the peaks of the fermionic den-
sity are separated by a notch along the line where the
vehicle positions are identical. This notch, which might
be called the Pauli notch, is even more pronounced at
time t2 = 100 s, when the bosonic peaks are completely
merged for quite a long time. With “a smiling wink of
the eye,” one might be tempted to speak of a Bose–
Einstein condensate of the two tracks. At time t3 =
140 s, the bosonic tracks are beginning to be separated
again, while at time t4 = 170 s, when the vehicles are well

separated again, the fermionic and the bosonic densities
look identical.

Fig. 5 (left-hand side) shows the corresponding ψ

function in a combined surface and contour plot where
the Pauli notch is clearly visible. This phenomenon re-
sembles the clutter notch in GMTI tracking [6, Sec. 7.2]
that also “forbids” certain state characteristics.The Pauli
notch vanishes when the vehicles become well sepa-
rated again as shown for t3 = 170 s. The square of
ψ function yields the fermionic density at this time
(Fig. 4, left-hand side), which is essentially the same
as in the bosonic case and in the beginning of the
vignette.

In our simulations, we have observed that both
fermionic and bosonic multiple identical target track-
ers mitigate the phenomenon of track coalescence,while
fermionic trackers react significantlymore agile to target
split-off.
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Fig. 4. Spatial projection of p±(x1:2k |Zk:1 ) at two different instants of time (134, 170 s).

V. INDISTINGUISHABILITY AND PUBLIC SECURITY

Since security of public life is a basic human de-
sire and a fundamental prerequisite of liberal societies,

its satisfaction raises an important question: How can
public security be improved by morally and legally
conformable and societally acceptable multiple sensor
surveillance systems in public spaces? Perhaps rather

Fig. 5. Fermionic ψ function for closely spaced and well-separated vehicles (36, 170 s).
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unexpectedly, bosonic and fermionic multiple target
tracking, that is, indistinguishable target tracking, seems
to play a key role seen from a systems engineering per-
spective whenever the problem of reconciling the values
of greater security with the values of the liberality, free-
dom, personal dignity, or privacy that an individual fore-
goes is to be solved.

In the context of public surveillance, the tracking
approach proposed here guarantees “indistinguishabil-
ity of the uninvolved,” a notion that seems to play
the role of a quite fundamental systems design prin-
ciple. By considering persons to be tracked as indis-
tinguishable targets, such security systems will be able
to preserve the anonymity of the vast majority of per-
sons until a certain level of suspicion is reached that
may finally justify the identification of an individual,
for example, by using the output of biometric sensors.
From a systems engineering point of view, we conclude
this paper discussing a prototypical realization that ad-
dresses security threats by hazardous materials in public
infrastructures.

At the Nuclear Security Summit 2016,7 radiological
terrorismwas identified as one of the greatest challenges
to international security. Compared to nuclear weapons,
improvised radiological dispersion devices (IRDDs) are
relatively easy to produce, for which radioactive isotopes
are used in many facilities, and often susceptible to theft.
With the explicit constraint of not compromising the in-
formational self-determination, an experimental public
security system was developed to detect IRDDs in per-
son streams and to make the security personnel aware
of potential suspects. This research was part of a re-
search project, which investigated the vulnerability of
the transnational high-speed train systems [25]. While
maintaining an open transport concept as far as possible,
an analysis of the infrastructure usually available in and
around railway stations shows that there are always ar-
eas suitable for continuous radiological monitoring. For
details, see [26].

A spatially distributed network of gamma sen-
sors records and classifies gamma radiation emitted
by the materials used for building IRDDs. Any ef-
fective shielding by the perpetrators is impractica-
ble. Such sensors provide data about the existence
of a radiological hazard, the materials involved, the
intensity, indications whether the material is incor-
porated for medical purposes or extracorporeal, and
other attributes derivable from gamma spectra. The re-
liable localization of the source of gamma radiation,
however, is not possible by considering spectrometers
only.

The assignment of a radiological threat detected and
classified to an individual is possible in a multiple sen-
sor approach that exploits besides the spectra from spa-

7Nuclear Security Summit, Washington, DC, USA, 2016,
http://www.nee2016.org, last accessed August 26, 2019.

tially distributed gamma sensors also the temporal di-
mension by tracking the persons while they are mov-
ing within the surveillance area. For tracking purposes,
time-of-flight (ToF) cameras, cheap mass products, are
used that are located in the ceiling above the surveillance
area. These sensors provide additionally depth informa-
tion in addition to the images. Person streams thus ap-
pear as “hilly landscapes” characterized by the moving
heads of the people.Each individual can thus be tracked
with high precision and without the risk of occlusions,
even in dense crowds.

The demonstration of the experimental system
shown in Fig. 6 shows persons walking around gamma
sensors that in practical realizations may well be hidden
in the walls or in the floor. The association of positive
signatures provided by the gamma sensors with an in-
dividual and its track over time is produced by a track-
while-classify (TwC) algorithm such as that described
in [27]. Indistinguishable target tracking is essential in
the TwC step that treats persons as fermionic targets. In
other words, the overall system preserves in a certifiable
sense personal privacy by the “indistinguishability of the
uninvolved” principle that we would like to see recog-
nized as a generally used principle of systems design in
public surveillance applications.

The key benefit of indistinguishable target tracking
in public security applications lies less in the fact that
“better” tracks in a certain respect are produced, for ex-
ample, in terms of accuracy or continuity, but to guar-
antee that no “uninvolved” person can be distinguished
from another as long as it is not “uninvolved” any more,
that is, until a sufficient level of “suspicion” has been
accumulated, thus establishing privacy by design. In a
crowd of persons, fermionic trackers may also provide
a certain gain in track continuity as discussed in the ex-
ample of the previous section.

VI. CONCLUSIONS AND WAY AHEAD

Based on the fundamental observation that real-
world targets cannot exist at the same time at the same
place, we have introduced Pauli’s exclusion principle
into multiple identical target tracking. Symmetry in tar-
get tracking, either in their fermionic variant or in their
bosonic variant, inherently implies a multiple hypothesis
structure where all measurements are associated with
all targets that should conceptually be distinguished
from classical enumeration of data interpretation
hypotheses.

� Antisymmetry can seamlessly be embedded into the
joint probability functions describing the kinematic
properties of identical targets. Preliminary simula-
tions indicate benefits in situation where targets may
move closely spaced.

� In particular, antisymmetry leads to Gaussian sum
representations with normalized weighting fac-
tors that are possibly negative. Such densities do
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Fig. 6. Lab view of demonstrating IRDD localization in person streams using five gamma sensors on stabs and ToF cameras at the ceiling
(invisible).

occur in target tracking for several reasons (see, e.g.,
[6, Sec. 7.4]).

� Extensive simulations will have to explore the proper-
ties and benefits of fermionic trackers quantitatively.
In particular, the width of the Pauli notches has to
be characterized and to be related to the targets’
properties.

� Suitable approximations have to be developed as well
and to be evaluated in view of practical implementa-
tions. Many-particle quantum physics has much more
to offer to the tracking community as it would seem.

� Symmetry and antisymmetry can be embedded into
group and extended target trackers, where the kine-
matics is described by random vectors and their shape
by random matrices [6, Sec. 8.2]. While group targets
might be dealt with as bosonic targets, extended tar-
gets are fermions.

� Antisymmetry is potentially present in every identi-
cal target tracking problem. Alternative methodolo-
gies are based on symmetric point processes [3, pp. 19,
240].There are results for anti/skew-symmetric or “de-
terminantal” point processes that are relevant to tar-
get tracking [19].

� Finally, symmetry and antisymmetry properties seem
to be linked to “spooky action at a distance,”
first observed in tracking by Dietrich Fränken,
Michael Schmidt, and Martin Ulmke [28]. Appar-
ently, entanglement is not restricted to the micro-
physical world. The physics literature may stimu-
late progress in understanding this paradox in target
tracking [29].

APPENDIX

A.1 Normalizing ψ Functions

With 
 defined by x1:2k = 
x2:1k , we obtain

∫
dx1:2k

(N (x1:2k ; xk|k, Pk|k)− N (x1:2k ; 
xk|k, 
Pk|k
�)
)2

= 2√|4πPk|k|
− 2N (

xk|k; 
xk|k, Pk|k + 
Pk|k
�)
.

(A.1)

A.2 Square Roots of Gaussians

According to the product formula for Gaussians, see
[6, A.5], for example, we obtain

(N (
z; x, 2P))2 = N (

z; z, 4P) N (
x; z, P)

. (A.2)

A.3 Fermionic Filtering Update

Since z1k and z2k are independent of each other,

λ5
(
z1:2k ;H1:2

k x1:2k ,R1:2
k

)
ψ

(
x1:2k ; xk|k−1,Pk|k−1

)
= N (

z1:2k ; H1:2
k x1:2k , R1:2

k

)N (
x1:2k ; xk|k−1, Pk|k−1

)
− N (

z2:1k ; H2:1
k x2:1k , R2:1

k

)N (
x2:1k ; xk|k−1, Pk|k−1

)
+ N (

z2:1k ; H2:1
k x1:2k , R2:1

k

)N (
x1:2k ; xk|k−1, Pk|k−1

)
− N (

z1:2k ; H1:2
k x2:1k , R1:2

k

)N (
x2:1k ; xk|k−1, Pk|k−1

)
.

From the product formula [6,A.5], the update equations
result.
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