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The maximum-likelihood probabilistic multi-hypothesis tracker
(ML-PMHT) is a tracking method whose flexibility and scalability de-
rive from relinquishing the assumption that each target emits at most
one “hit” per scan of the sensor. This is an ML method that essen-
tially reduces to an optimization problem —recursively maximizing a
likelihood function that is simple to evaluate given a batch of observa-
tions. Unlike maximum a posteriori or minimum mean squared error
(MMSE) trackers, this likelihood maximization tracker requires nei-
ther prior knowledge about target motion nor measurement associ-
ation, making it conceptually easy to work with. Here, this method is
used to track targets in a three-dimensional “global” space with obser-
vations provided by multiple two-dimensional sensors placed through-
out the global space. Since the observation model is non-linear, the
likelihood maximization is done via hill climbing. For this purpose, we
also address the issue of “hill finding.” Due to the presence of clutter
in the measurement model, the likelihood is a multi-modal function of
the parameter space. That is, there are multiple hills in the likelihood
function, and it is of great advantage to the tracker to initialize the hill
climber close to the right hill—the one whose peak is the global maxi-
mum. In this work, we present a data-driven method of initializing the

hill climber based on the received observations.
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[. BACKGROUND

The maximum-likelihood probabilistic multihy-
pothesis tracker (ML-PMHT) is an ML target track-
ing paradigm that is convenient in cases where data
association—the measurement-to-target assignment
processes prior to updating the estimate—involves
significant numerical complexity, generally (but not
always) due to heavy clutter. In some settings, it is
possible that a single target will result in multiple mea-
surements at a particular sensor and time (tracking of
“extended objects,” for instance). In such cases, filters
that employ “hard” data association (the JPDA [20]
and random finite set filters such as the multi-Bernoulli
[6], [15]) will be sub-optimal since they make the fun-
damental assumption that each target being tracked
produces at most one measurement per sensor per time
step. In contrast, the likelihood function used in the
ML-PMHT is formulated by considering each mea-
surement individually, and applying a probability mass
function over the possible measurement generating pro-
cesses (targets and clutter). That is, instead of assuming
that a particular measurement has come from a partic-
ular target and evaluating the measurement likelihood
with that assignment, the ML-PMHT formulates the
measurement likelihood with a “soft” assignment that
accounts for uncertainty as to the process from which
a particular measurement originated. This formulation
naturally allows for the possibility that a target has
originated multiple measurements in a single “scan” of
a sensor. Along with being a better representation of
reality in some settings, the soft assignment also avoids
the computational bookkeeping cost of the hard as-
signment problem that the data association filters must
solve for each scan with relatively expensive routines
like Murty’s k-Best Assignment Algorithm [12]. Thus,
the ML-PMHT approach may also be desirable in some
settings where computational cost is a consideration.

The ML-PMHT likelihood formulation is borrowed
from the PMHT framework [7], [10]. The ML-PMHT
differs, however, in that it treats the target state (joint
target state in the case of multiple targets) as an un-
known deterministic parameter, and obtains an ML esti-
mate of the parameter based on batches of measurement
scans. It has shown especially good performance in sce-
narios with high levels of clutter [14], [21].

This work will use the ML-PMHT to perform data-
batch-based tracking of targets in a three-dimensional
“global” space based on multiple passive sensors that
return two-dimensional measurements. A generalized
measurement model is presented that can be adapted to
any type of sensor that returns measurements that can
be transformed into lines-of-sight. Some common sensor
types that could be used with this model are focal plane
arrays (cameras) with measurements given in the two-
dimensional image space, or passive radars that return
azimuth and elevation angles (or azimuth and elevation
angle sines).
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It is assumed that all sensors report to a central pro-
cessor that performs likelihood maximization based on
all observed data. The central optimization reveals an-
other benefit of the ML-PMHT in that data from multi-
ple sensors are naturally included in the likelihood for-
mulation in a simple linear sum manner. While sequen-
tial updating over sensors is a common practice in data
association filters, it is theoretically sub-optimal [20]; and
optimality with multiple sensors according to the rules of
“hard” data association is computationally costly.

The ML-PMHT reduces to a conceptually straight-
forward optimization problem where likelihood maxi-
mization happens over a multi-dimensional parameter
space. However, an important practical consideration
in optimization problems is initialization: how to pick
the “initial guess” for the parameter value. Initializa-
tion is particularly important in the tracking setting since
we assume the presence of clutter measurements, which
makes the likelihood multi-modal. That is, coinciden-
tal “patterns” in clutter measurements can lead to false
maximums in the likelihood value that gradient-based
maximizers will reach in error if not initialized carefully.
Although the global maximum tends to occur at the true
parameter value, a maximizer must be initialized suffi-
ciently close to the global maximum in order to reach
it. For this purpose, a “hill finding” method is presented
where received measurements are used to identify sta-
tistically significant points in the global parameter space
that can be used to initialize the maximization. This
hill finding routine is conceptually separate from the
ML-PMHT, and is perhaps the most novel contribution
of this work. The method represents a means of identi-
fying pairs of line-of-sight measurements from separate
sensors that strongly correlate to a single point in three-
dimensional space. Thus, it could theoretically be used in
other settings where one would wish to identify points in
three-dimensional space that are statistically supported
by lower-dimensional measurements. (It could inform
the “target birth” process in the multi-Bernoulli filter, for
example.)

The benefit of central data processing and the re-
sulting ability to perform the “hill finding” is demon-
strated by comparing the method to a decentralized op-
tion where ML estimates are obtained individually by
each sensor, then fused in the global space. It is shown
that centralized optimization has a significant advantage
in settings with low target visibility. A comparison is
also made to the joint probabilistic data association filter
(JPDAF).

The paper is structured as follows. The models
used in the work are presented in Section II, in-
cluding the target parameter model, the measurement
model, and the model of the geometric arrangement
of sensors. The ML-PMHT likelihood formula is given
in Section III. The “hill finder” is presented in Sec-
tion IV, and a step-by-step summary of the overall
ML-PMHT method is given. Simulated results are
shown in Section V.

[I. MODELING ASSUMPTIONS

The model assumes a three-dimensional global space
in which targets are to be tracked. Measurements are re-
ceived from a group of N® sensors distributed around the
global space. This work uses a conventional Cartesian
coordinate system in the global space, but in theory it
could be replaced by a local north-east-down reference
frame or any other space where the following conditions
are fulfilled:

1) The motion of targets can be (approximately) param-
eterized in the space.

2) The pose of every sensor is known in the space.

The pose of a sensor parameterizes the transfor-
mation between the global coordinate system and the
sensor’s coordinate system. The sensors are assumed
to have six degrees of freedom (DOFs)—three transla-
tional (location) and three rotational (pointing). So the
pose consists of six known parameters for each sensor.
If a sensor’s pose changes over time, it is assumed to be
known for each point in time that a measurement is re-
ceived. The conventions used for the pose and the re-
sulting transformations are discussed in more detail in
Section II.C.

A. Target Motion

The user must choose a batch size parameter N°,
which is the number of scans from each sensor that will
be used in the likelihood evaluation. It is assumed that,
for all targets, the true target motion can be reasonably
approximated by a constant velocity model over the du-
ration of the batch. That is, for any discrete global time
index k, the motion of target j over the past N® — 1 sam-
pling periods (N® sampling points) is given by

n
Xje >~ Xk — Xj,k—Nh-&-l)ﬁ + X kN1

M

n=0,...,N°—1,

where X, denotes a three-element column vector con-
taining the target’s position in the global Cartesian space
at global time step £ and # is a local time index such that
t=k—N"+1+n.

A constant sampling period is assumed here, but
there is no loss of generality. With the batch size chosen,
the motion in (1) is entirely parameterized by X _nv 41
and X ; —the positions of target j at the start and end
times of the batch. Thus, the motion to be estimated via
likelihood maximization can be described with six pa-
rameters for each target. For a scenario with N' targets
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present, form a parameter vector

[ X k-nv1
X1k

xk & : . ®)

XNt k-Nv 41
XNk

We ultimately will be maximizing the log likelihood
function over this vector given Z¥—the batch of mea-
surements up to and including time step k—to obtain the
estimate

X{QL = arg max L(X/‘; Zk). (3)
xR

The definition of Z* and the formulation of the likeli-
hood function £(-) are discussed later. The maximiza-
tion is mentioned here to emphasize that the dimension-
ality of the space over which maximization is performed
increases by 6 for each additional target. This is a com-
putational consideration in a practical application.

In theory, this likelihood maximization requires only
the constant velocity assumption over the course of any
particular batch. However, it will be of use if the user has
some more prior knowledge about target motion. Specif-
ically, if there is knowledge available about the range of
possible target speeds, it will prove useful in the initial-
ization of the hill climber as discussed in Section IV.A.

Note that the particular six-parameter motion model
used here is not the only model compatible with batch
tracking. One could also choose —at the cost of compu-
tation time—to use a nine-parameter (initial position,
initial velocity, and acceleration) model or any other
method of parameterizing the target motion over the du-
ration of the batch.

B. Measurement Model

The tracker developed in this work uses line-of-sight
measurements. That is, it is assumed that each and ev-
ery sensor returns some form of two-element measure-
ments that can be used to parameterize a line-of-sight
beginning at the origin of its own coordinate system and
extending infinitely in the direction of sight. The line-
of-sight measurement model is a fundamental feature
of this work. However, there are multiple types of two-
dimensional measurements that provide a line-of-sight,
which allows the sensor type to remain ambiguous. Sim-
ple passive radar models directly provide line-of-sight
measurements. Also, a point in the image space of a cam-
era can be converted into a line-of-sight given the cam-
era model. The simplicity of radars in this context ren-
ders them rather uninteresting. Thus, cameras are as-
sumed in the peripheral theoretical modeling and verifi-
cation in this work, without loss of generalization in the
fundamental aspects of the work (likelihood maximiza-
tion). This section discusses the relationship between im-

I

\ (0,0,1)

Fig. 1. TIllustration of the sensor reference frame convention used in
this work. Two different measurement types are shown. Given the
coordinates of the vector x, one could solve for § and ¢, which is the
azimuth—elevation measurement model assumed throughout this
work. Given a point in the image plane (shaded) at a known distance
f from the origin (where f has the same length units as », ¢
coordinate system), one could also calculate the corresponding
azimuth and elevation angles.

age space and line-of-sight measurements within the co-
ordinate system of a sensor’s reference frame. The trans-
formation between a sensor’s coordinate system and the
global coordinate system is discussed in Section II.C.

When camera images are used with this algorithm,
it is necessary to first perform measurement extrac-
tion. The assumption when using cameras as sensors is
that targets have a contrasting appearance to the back-
ground. The extraction must find significantly bright or
dark spots in an image, and condense each spot down
to a point in the image space of the camera, which, in
turn, can be converted into line-of-sight measurements
via the camera model. Methods of extracting these mea-
surements from images are discussed in [3] and [11]. The
signal-to-noise ratio (SNR) of the scenario is an impor-
tant factor in the measurement extraction step. Note that
a significant portion of [3] is dedicated to defining the
SNR. The extraction process will have a certain proba-
bility of extracting “false” measurements, which we will
refer to as clutter.

Once measurement extraction has been performed
on the images, the resulting measurements must be con-
verted from the image space into lines-of-sight. Refer
to Fig. 1 for a summary of this conversion. The camera
model used here is the pinhole projection model [5],[23].
The image is treated as a plane parallel to the x—y plane
of the sensor coordinate frame, set at some non-zero fo-
cal distance f along the sensor z axis. Let the coordinate
system in the image plane be denoted by (n, ¢), which
is centered on the sensor z axis, and has directional con-
vention that agrees with the typical row—column format
of images. Then a point [, ¢] in the image plane coor-
dinate system has location [n, —¢, f] in the coordinate
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system of the sensor’s reference frame. Note that the im-
age plane is treated as a continuous space (as opposed
to a quantized space) since the measurement extraction
process yields continuous values. Azimuth—elevation an-
gles are used for parameterizing line-of-sight measure-
ments. The azimuth angle 6 is taken in the sensor y-z
plane, with zero defined as the positive z axis and the
positive direction defined as from the positive z axis to
the positive y axis. The elevation angle ¢ is the angle be-
tween the sensor y—z plane and the positive x axis, de-
fined as zero on the y—z plane and positive toward the
positive x axis. Under this choice of convention, a given
pointin the image plane [, ¢]’ yields line-of-sight angles

6 =tan~! <_—f§) , 4)

¢ =tan71 (\/§-2+—f2) . (5)

Note that this particular camera model is somewhat sim-
plistic. It does not account for image distortion or other
practical effects. If the user has a more accurate model
of the cameras, it will be compatible with this algorithm
so long as it provides a way to obtain lines-of-sight from
points in the image. Since the algorithm ultimately works
with line-of-sight measurements, this writing will occa-
sionally use the general term “measurements” when re-
ferring to azimuth—elevation measurements.

Overall, it is assumed that at a particular time, each
sensor i returns a set of line-of-sight measurements—
potentially after conversion with (4) and (5) —which in-
cludes any target-originated measurements along with
any measurements originating from the clutter process.
That is, the set of measurements returned by sensor i at
time ¢ can be denoted

- PRRRY)
Ziy={Ziom), = {[q&l‘,i,m :“ , (6)

m=1

where each z;,,, is a two-element column vector and
N7, is the number of measurements at the current
time/sensor.

It will be helpful later on, during formulation of the
likelihood function, to have a simple expected value
parameterization for the number of clutter and target-
originating measurements. The expected numbers of re-
ceived measurements are fundamentally tied to the mea-
surement extraction process, which is left non-specific
for most of this work. Let us assume some general ex-
traction process such that A;, and ¢; , are the expected
numbers of clutter measurements and target-originated
measurements, respectively, in the scan from sensor i at
time £. For the sake of more generality, allow each indi-
vidual target j to originate a potentially unique expected
number of measurements ¢; ; , such that

$ie = Z%’,j,z. (7
j

For purposes of simulation later in this work, it will
be assumed that the number of clutter measurements is
Poisson with some expected value A;. It will be further
assumed that, independently for each target present,
sensor i either reports a single measurement with “de-
tection probability” pg4; or “misses” the target. Thus, the
expected number of target-originated measurements
from each target is pq;, and ¢;, = pg;N* for all £. These
assumptions are made to fit with a typical model used
in other trackers for the sake of comparison. However,
one of the main benefits of the ML-PMHT likelihood
formulation is that it is more flexible than trackers
that consider one-to-one data associations. Whereas
the JPDA and its derivative algorithms must make
the fundamental assumption that each target produces
at most one measurement per scan, the ML-PMHT
formulation requires no such assumption. Some data
association tracking methods do exist for extended
targets (targets that produce more than one measure-
ment in a single scan), and usually involve recursive
estimation of properties (e.g., shape, size) of targets. The
ML-PMHT offers a relatively cheap way around this
extra estimation for the case when the extended target
measurement assumption is true, but the shape/size
properties of targets are not of particular interest. For
instance, a simple model could assume that the number
of measurements originating from target j is Poisson
random number with expected value g¢; ;.

It is assumed that any target-originated measure-
ments have a random additive measurement error. Since
the ML-PMHT is an objective function optimization
problem, the parameterization of the measurement er-
ror is somewhat flexible: Any objectively computable er-
ror probability density can be used. This work will use
the typical Gaussian error assumption. That is, if a par-
ticular measurement z; ¢ ,, originates from target j, then
it is a random vector given by

Zigm =Zijo+ Vije, (8

where Z; ; ¢ is the noiseless (zero-error) measurement by
sensor i due to target j at time £. Given the three-element
vector X; j, representing the Cartesian (x—y—z) position
of target j in the sensor i coordinate frame at time ¢, the
noiseless measurement for the azimuth—elevation model
is given by

bije

_ tan—l (Yi,,'.z)
_ Oi,j.e “it 9
Zije= = | et (e 0
\/ﬁjf*‘ﬁj,e

where x; j¢, Vije, Zije are the individual components
of x; j ¢. For a visual representation of this measurement
model refer to Fig. 1 and treat the orange vector as the
target position. The term v; j, in (8) is a two-element
multivariate random Gaussian vector with distribution

Vije ™ ./\/(0, Ri.e)7 (10)
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Fig.2. Step-by-step illustration of a three-DOF proper Euler rotation. The total rotation is the result of applying three elemental rotations
successively. The specific convention shown here and assumed in this work is a z—y—z intrinsic rotation. The focal plane shown in the figures
matches the orientation of the one shown in Fig. 1. The origin of the (u, v) coordinate system is marked by a dot. The rotations bring the plane
from the orientation marked by the red dot in (@) to the orientation marked by the black dot in (c). Orientations that are marked with a
common color are the same. Colored circles attempt to show planes of rotation.

where, in general, the covariance matrix R;; is allowed
to change from one sensor to the next and one time step
to the next. Measurement errors are assumed to be in-
dependent between sensors and between time steps.
Clutter measurements are assumed to be uniformly
distributed in the measurement space. It has been as-
sumed in this work that each sensor has a limited field
of view, modeled by setting limits on the azimuth and
elevation angles symmetrically around zero. Then for a
sensor i with a total azimuth field of view W/ and total
elevation field of view W;ﬁ ,the spatial distributions of the
individual components of clutter measurements are

et ~ (=W /2, WP /2), (11)

¢_clutter ~ U (_W?/Z, VV[¢/2) s

L

(12)

where, in general, different sensors are allowed to have
differently sized fields of view —hence the indexing with
i. For sensors with reasonably narrow fields of view
(within the range of realistic cameras), the uniform dis-
tributions in azimuth and elevation result in image space
measurements that are very close to uniform in the im-
age plane. See Figs. 7 and 8 for a visual example of mea-
surements in an image plane resulting from this model.

The total measurement batch Z* in (3) can be ex-
pressed as

Zk = ({Z; )=y =k

(=k—Nb+1 (13)

Or, in words, Z* is the set of all subsets of measurements
(both target and clutter originated) from all sensors for
the most recent N° sample times (up to and including
the current estimation time k).

C. Sensor-World Setup

Notice that in Fig. 1 and in the formulas in (8) and (9),
itis assumed thatx; ;  —the three-dimensional Cartesian
position of target j in the sensor i reference frame at

time £ —is given. Since the likelihood in (3) is being max-
imized over target motion parameters given in the global
reference frame, the relationship between the global ref-
erence frame and each sensor reference frame must be
defined.

Let the axes of the global coordinate system be de-
noted (X—Y—Z) and those of the sensor coordinate sys-
tem (x—y—z). The pose of the sensor is the position and
orientation of its reference frame relative to the global
reference frame, defined such that at a pose of zero, the
two coordinate systems are one and the same.

Let the three rotational DOFs be described by the
angles «; ¢, Bi¢, and y; . where the time index ¢ is noted
since the rotation of a sensor can change with time. There
are multiple choices of convention for the actual mean-
ing of these angles. To be exact, there are 12 unique ways
to describe every possible orientation in terms of three
angles.

The rotation convention used here is illustrated in
Fig. 2, where, for convenience, a particular sensor at a
particular time is considered and the indexing is momen-
tarily dropped. The sensor coordinate system is initially
aligned with the global coordinate system. The overall
rotation is the combination of three intrinsic rotations
performed sequentially.

(a) A rotation by « around the Z axis results in the new
coordinate system (x'-y'-z’).

(b) Then a rotation by B around the y’ axis to obtain
(x//_y//_zf/)

(c) Finally, a rotation by y around the z” axis gives the
fully rotated coordinate system (x”'—y"”'-z"").

Here, the positive direction for all rotations is given
by the “right-hand rule.” This describes what is com-
monly called an z—y—z intrinsic rotation. Here z—y-z
refers to the sequence of rotation axes, and intrinsic
refers to the fact that successive rotations are performed
around the axes of the rotating coordinate system (sen-
sor coordinate system) itself as opposed to rotating
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X

Fig.3. [Illustration of sensor-world setup for a particular sensor,
target, and time step. Given target location X in the global (X-Y-Z)
coordinates and sensor pose information I, &, the zero-error
measurements 8, ¢ in (9) are calculated by first evaluating x— the
target location in sensor (x—y-z) coordinates.

around the axes of the fixed global coordinate system.
There is nothing particularly special about the choice of
the z—y—z convention; in light of the camera model in
Fig. 1, it is merely a way that one could conceivably go
about orienting such a camera in a practical scenario. If
the rotation angles are in some other convention, they
will work just as well, and only the rotation matrix will
change. For a comprehensive description of Euler rota-
tions, see [22].

Referring now to Fig. 3, let the three-dimensional
Cartesian position of sensor i at time step £ be a vector
denoted by &; ,. After rotating the sensor coordinate sys-
tem, the final sensor coordinate system is given by trans-
lating the origin of the fully rotated system into the point
e

Now, given X ; , —a position vector for target j at time
¢ in the global reference frame —the resulting target po-
sition in the reference frame of sensor i is given by the
inversing transformation

Xije = r;zl Xje — &) (14)

Here, I';; is the 3 x 3 rotation matrix that transforms
Cartesian points from the fixed global frame to the ro-
tated (but non-translated) reference frame. For the par-
ticular rotation convention used in this work, the rota-
tion matrix is given by

cosa cos B cosy — sina siny
cosasiny + cos B cosy sina
—cosysingf

Ii,=

where the (i, £) indexing is removed from the angles for
convenience. Note that I';, entirely describes the rota-
tion of sensor i at time ¢. That is, the poses of all sensors
can be recorded as the set of data matrices

S={Ti, &%, Vi (16)

—Cos y sina — cos« cos 8 siny
COs o COS Yy — cos B sina sin y
sin § sin y

[ll. LIKELIHOOD EVALUATION

A fundamental feature of the ML-PMHT is that no
hard limit is assumed for the maximum number of mea-
surements originating from any one target in any one
sensor at any one sample time. This is a significant de-
parture from the assumptions made in data association
filters where various one-to-one measurement-to-target
assignment events are enumerated and considered. This
modeling relaxation allows the ML-PMHT formulation
to consider any particular measurement (indexed m) in-
dependently from all other measurements, and assign
a prior probability mass function over the set of possi-
ble measurement generating processes (clutter and all
targets)

Nl
Hi,g = (7'[,',]"@)]/-\,:‘0, s.t. Z?T,"j!/g = 1, (17)
j=0

where 7; ; , is the prior probability that any particular
measurement in the scan from sensor i originated from
process j, and j = 0 indicates the clutter process. For
now, allow the value of the priors to be ambiguous. Meth-
ods for setting the priors are discussed in Section IIL.A.

The most conveniently scaled statistic to maximize
is the log-likelihood ratio (LLR) of the target state A’
based on the measurement batch Z*. By definition, the
LLR is given by

k| 4ok

L(X* 25 =In (—p(Z i )), (18)

p(Z10)
where p(Z¥|@) represents the probability density func-
tion (pdf) of the measurement batch given that no tar-
gets are present—the pdf of the entire batch given that
everything is clutter-generated. Under the measurement
independence assumptions and the product to sum log-
arithm property, (18) can be written as

N k Ni,
L(xk 24y = Z Z Zln (P(Zi,e,mlxk)) . (19)

i=1 ¢=k—Tb m=1 p(2i.c.m9)

where N7, is the number of measurements in the scan
of sensor i at time step £. The term p(z; ¢ ,,|9) is the pdf
of a single measurement given that it originated from the
clutter process. Under the simplifying assumption in (11)

cosa sin 8
sin« sin 8
cos

: (15)

and (12), this pdf is uniform in azimuth-elevation space,
given by

1 1

P(ZiemlP) = 72 W,

Ve, m, (20)

ML-PMH TRACKING IN THREE DIMENSIONS FROM MULTIPLE TWO-DIMENSIONAL SENSORS 97



where V; is the total volume of the measurement space
of sensor i.

Under the ML-PMHT framework, the term in the
numerator on the right-hand side of (19) is given by

Nl
P(Zie.ml X*) = 0.0 p(2i0m|0) + Z 7 je P(Ziem|Xjie),
j=1
1)
which is a convex combination of the likelihoods based
on the different possible measurement generating pro-
cesses with the coefficients being the prior probabilities
in (17). The term X, is the global position of target j at
time step £ and is given in (1). The relation between X,
and the batch joint target motion vector X* is given by
(1) and (2).
Under the Gaussian measurement error assumption,
the term p(z; ¢, X ) is given by the multivariate Gaus-
sian density

1
Zioml X)) =
P(ZiomlXj0) R
(22)

Under the azimuth-elevation measurement model,
Z; j —the predicted measurement originating from tar-
get j at time step £ from sensor i—is given by (9). The
sensor reference frame target position x; ;¢ required in
the measurement prediction is given in terms of the
global target position X, by (14).

Combining (19)—(22) gives a final expression for the
LLR in (23).

6*0-5(21,&”, ~2.0) "R} (Ziem—Ti )

Nk N N
_ o7 VR (2 —7
ﬁ(Xk7 Zk) = Z Z Z ln 7Ti,0,£ + ‘/ici,(f Zn—i,i’e e 0.5(zi,e.m zl.j,i) R,‘yz (Zie.m z:,j.l)
j=1

i=1 ¢=k—Tb m=1
In (23), C; , is the Gaussian constant given by
1

V2Rl

Since the remainder of this work deals with maximizing
the LLR over the target motion space given a batch of
measurements at time step k, the function in (23) will be
denoted as £(X*) for simplicity.

Ci = (24)

A. Choice of Priors

The performance of the ML-PMHT has been shown
in pioneering works to be rather robust to changes in the
prior probabilities in (17), (21), and (23). Qualitatively
speaking, if it is expected that most of the measurements
in any one scan will be clutter, the prior for the clutter
process should be significantly higher than the priors for
targets.

The simplest option is to naively set the clutter prior
based on expected values. If A;, is the expected num-
ber of clutter measurements from sensor i at time ¢ and
@i j.¢ 1s the expected number of measurements originat-
ing from target j, the prior for the clutter process can

reasonably be set as
Aie

T =T 25
Mg+ 9ie )
and the prior for target j as
Di,je
Tijg= —————. 26
YR Y (26)

The priors also provide a convenient way of working
with sensors with restricted fields of view. If, for instance,
a target position x; ; . in the reference frame of sensor i is
such that either of the corresponding line-of-sight angles
is out of the sensor’s angular range (introduced in Sec-
tion II.A to model a restricted field of view), then the
corresponding “predicted observation”is Z; ; x = . That
is, target j is expected to be out of view of sensor i at
time £. A convenient way to deal with this is to simply set
i, jc = 0,and adjust the other priorsso that ) jmije =1

IV. LIKELIHOOD MAXIMIZATION

As stated earlier in (3), the ML batch estimate up to
time k is the X* that maximizes £(X*). Since £(X*)
is highly non-linear, an analytic solution is not obtain-
able. However, given a batch of measurements and some
fixed X%, it is easy enough to evaluate £(X%) using (9),
(14),and (23). Therefore, maximization can be done via a
hill climbing algorithm combined with other techniques
(discussed later) to get within the neighborhood of the
global maximum.

(23)

Generally speaking, any hill climbing algorithm func-
tions by stepping around a parameter space attempting
to find the global maximum in some function of the pa-
rameters. Obviously, the hill climber must be started at
some initial point in the parameter space. For some ap-
plications, it would be perfectly reasonable to sample the
initial point from a uniform distribution on the parame-
ter space. In other applications, the measurement space
and the parameter space are one and the same. In such
cases, one may simply treat some observed measurement
as the initial step in the hill climber. There are two main
challenges in the likelihood maximization in this work.
First, the measurement spaces are not the same as the
parameter space. Second, due to clutter, there is not a sin-
gle hillin the LLR (see Fig.4). Instead, there are multiple
“false” hills (local maxima) along with a single true hill
(global maximum). In general, the true hill will be taller
than the false hills. However, from the point of view of
the hill climber, there is no way to determine how tall
a given hill is at the start of climbing. This means that
the climber can get stuck climbing the wrong hill. Thus,
it would be to our advantage to have a method of ini-
tializing the climber as close to the true hill peak as pos-
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Fig. 4. The LLR surface centered on truth with two out of six
dimensions varied (the global X coordinate of both the start and end
point of the one target). The true hill (global max) is significantly
taller than the rest (local maxima). But since hill climber termination
is based on hill slope, the climber could potentially terminate at the
top of a false hill. This demonstrates why it is important to initialize
the climber as close to the true hill as possible.

sible. This routine will be referred to as “hill finding” in
this work. However, “hill finding” is somewhat of a mis-
nomer since the LLR surface has many hills. Precisely
speaking, the routine is an attempt to get close (in the
parameter space) to the one hill whose peak is the global
maximum; the term “hill finding” is used for concision.

A. Hill Finding

The parameter space in this application is described
by (2). For a scenario with N targets, the parameter ex-
ists in a 6N' dimensional space. Each six-dimensional
sub-space parameterizes a line segment in the three-
dimensional global tracking space—three dimensions
for the start point and three for the end point. The line
segments parameterized in this space will represent the
estimate of the corresponding target’s trajectory over
the course of a batch. With this formulation, a “point” in
the parameter space represents a group of N' line seg-
ments in the tracking space. Maximizing the likelihood
over this parameter space amounts to finding the group
of line segments that best represents the target trajecto-
ries based the batch of measurements.

“Good” initialization of the hill climber involves set-
ting the initial parameter vector to represent a “good
guess” as to the target trajectory segment(s) during the
batch. Given some prior knowledge of the targets’ be-
havior, it is possible to predict a parameter to use for ini-
tializing the climber. However, for the sake of robustness
and to deal with scenarios where no prior information
about the targets is available, we have developed a data-
driven method of initializing the hill finder. This method,
detailed in the rest of this section, obtains a parame-

ter initialization based only on the currently observed
batch of measurements. Thus, the tracker can be started
“blind” —with no prior information about the targets—
and the data-driven hill finding should cause the tracker
to converge on the target track(s) within a few batches.
Based on the formulation of the parameter space, the ul-
timate goal of the hill finder—presented in the following,
somewhat verbose discussion—is to obtain estimates of
target locations in the three-dimensional tracking space
at the start and end times of the batch of measurements.

Given the pose of sensor i at time step £, {T';¢, & ,},
and a single two-dimensional measurement z; ¢ ,, from
that sensor and time, there is not enough information
present to solve for a potential target location in three-
dimensional global space. There is, however, enough in-
formation to define a ray in three-dimensional global
space that starts at the origin of the sensor coordi-
nate system and extends infinitely in the line-of-sight
direction indicated by the measurement. The azimuth—
elevation measurement model is particularly convenient
here since it directly gives the azimuth and elevation of
this ray in the sensor reference frame.

Now since the algorithm is working with a group of
at least two sensors, consider a pair of sensors {a, b} at
time ¢ and a pair of measurements {z, 4, zj(}—one from
each sensor. Then consider the two corresponding line-
of-sight rays, one starting at the origin of sensor a ex-
tending in the direction indicated by z,, and the other
starting at the origin of sensor b extending in the direc-
tion indicated by z; .. In the absence of clutter and mea-
surement error, and given that the two measurements
originated from the same target, this pair of rays would
provide the precise location of the target as discussed in
(for example) [1] and [8] by finding the point where the
rays intersect. With additive measurement errors, how-
ever, these rays are unlikely to intersect. Furthermore, if
one or both of the measurements are clutter originated,
or if they do not originate from the same target, then
the measurements do not have any meaning when con-
sidered as a pair. However, if the measurements in the
pair both happen to originate from a target at a point p
in the global space, then the rays indicated by the two
measurements should “closely agree” on a point near p,
though they will not have an exact intersect due to the
measurement errors.

Recall that at sample time ¢, a single sensor i returns
a “scan”—a set of measurements Z;, that includes all
clutter-originated and target-originated measurements.
So for each possible pair of sensors, the hill finder rou-
tine should check for “hit points” in three-dimensional
space that both sensors “closely agree” upon. Obviously
not every pair of measurements will “closely agree” on
a point since many measurements are clutter-generated
and it is not guaranteed that the two sensors are even
“looking at” any of the same points (the sensors could,
for instance, be placed back-to-back and faced in oppo-
site directions). Thus, in a process of elimination, mea-
surement pairs are subjected to a series of increasingly
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strict tests. First of all, the tests must eliminate from con-
sideration pairs of measurements that could not pos-
sibly correspond to a single target location in three-
dimensional space. Then, pairs that are likely to be un-
related (one or both are clutter originated or they orig-
inate from different targets) must be eliminated. And,
finally, any measurement pairs that remain must be con-
densed into composite point measurements in the three-
dimensional tracking space —a point p upon which they
agree according to some criterion—and the “strength”
of agreement should be quantified so that the composite
measurements can be objectively ranked in quality.

1) Formation of Composite Point Measurements:
This series of tests is presented next for a single mea-
surement pair. The first level of tests are based on com-
puting the closest approach between the pair of line-of-
sight rays. This is heuristic but useful for computation-
ally cheap elimination of measurement pairs that are
most likely unrelated, which is especially useful in sce-
narios with large amounts of clutter in each scan. The fi-
nal, more strict test is based on the iterative least-squares
(ILS) estimator.

To formalize, consider a particular pair of sensors
{a,b}, a # b, at a particular time ¢. Take the pair of
scans {Z,¢, Zp.},and let

N/, =|Ziyl, i=a,b, (27)

be the number of individual measurements in the scans.
Now consider some pair of measurements (one from
each scan)

mefl,....N; ), ne{l,...,Ny,}.
(28)
Let us momentarily drop the time (¢) and measurement
pair (m,n) indexing and simply consider a particular
measurement from sensor a, call it z,, a particular mea-
surement from sensor b, call it z;,, with both measure-
ments taken at the same time. Each measurement can be
taken to represent a ray (half line). So the pair of mea-
surements yields a pair of rays parameterized by a pair of
origin points and a pair of unit vectors that indicate the
rays’ pointing directions in the global coordinate system.
The origin of the first ray is £, —the location of sensor
a, which is assumed to be known. Similarly, the second
ray has origin point &,. The direction vectors are found
by first obtaining the unit vectors in their respective sen-
sor reference frames and transforming them both into
the global reference frame with the known sensor orien-
tations. In the case of azimuth—elevation measurements,
the unit direction vectors are given by

{Zaﬁé,m’ Zb,l,n}a

sin ¢;
sin 6; cos ¢;
COs 60; cos ¢;

Vi = l"i = a, b, (29)

where 6;, ¢; are the individual components of z; and T;
is the rotation matrix of the ith sensor pose.

For any non-parallel pair of rays in three-
dimensional space, there is a single line segment

100

gax T

\
\

Fig.5. Notional illustration of the points of closest approach (red
and blue points) between two line-of-sight measurements.

somewhere that connects the rays and is perpendic-
ular to both rays. The end points of this line segment are
the points of closest approach of the rays, and the length
is the minimum distance between the rays [19]. For this
case, solve for the end points of the minimum distance
segment with

P =pvi+& i=ab (30)

where p™ is the location of the closest approach that lies
on ray i. The scalar values p,, pp determine the distance
along each ray at which the closest approach occurs. Let

¢ £ Eb - Ea’ (31)

then these scalar values are given by
. = _(va : Vb)(vb : c) + (va : c) , (32)

1— (Va-vp)?
e )Y ©) = (3 ©) )

1—(va- Vb)2 ’

where the dot indicates a vector dot product. Both values
are defined as long as the two measurement rays are not
perfectly parallel, which happens with probability zero.
Refer to Fig. 5 for an illustration of the closest approach
between an example pair of measurements.

First, a test can be performed by considering just the
signs of the scalar values p,, pp. These are the Carte-
sian distances along the rays where the closest approach
points occur. Thus, if either p, or p, is negative, it means
the corresponding closest approach point occurs “be-
hind the sensor.” (It is assumed that the negative z half of
the sensor coordinate frame is never observable.) So, if
either value is negative, reject the corresponding pair of
measurements as being indicative of a “hit” on a target.

Furthermore, in some settings, it would be reason-
able to set maximum limits for the values p,, p, such
that if either value exceeds its maximum, the pair of
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Fig.6. The empirical distributions of the normalized measurement
error squared under the binary hypotheses: H: the measurements
used in the ILS estimate are unrelated and H;: the measurements

used in the ILS estimate originated from the same target. The
one-DOF Chi-squared distribution is also plotted for reference. The
discrepancy between the theoretical Chi-squared distribution and
empirical distribution under H; is due to the thresholded termination
of the ILS. The distributions would match if the ILS was run to exact
termination with perfect numerical precision.

measurements is eliminated. For instance, if visibility is
such that the user knows that no sensor can see farther
than 10 000 m, and two measurement rays have a closest
approach point that is 15 000 m away from one of the
sensors, then that pair of measurements could also rea-
sonably be rejected as originating from a common target.
This would also be of use if it is known that the target
tracking space down range of one or both sensors has
a hard limit—e.g., the sensors are orbiting the earth at
some known altitude and are pointed toward the earth’s
surface.
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Fig.7 Example camera view of hits for a single scan for a clutter
level of A = 30.
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Fig.8. Example camera view of superimposed scans for an entire
batch for a clutter level of A = 30. Blue dots indicate true target hits
and red dots are clutter. Note that without the color coding, it is not
clearly evident to the human eye where the target track is located.
The blue outline shows the image edge that results from setting limits
on the azimuth and elevation angles.

A final heuristic test involves setting a threshold tg
on the length of the minimum distance segment such
that if

19 = P12 = Tmas (34)
then the measurement pair is eliminated from consider-
ation. The ideal value for t,4 depends on the particular
scenario and the desired level of restraint in eliminating
measurement pairs. Qualitatively speaking, the farther
down range the targets are expected to appear, the
greater the t,,4 should be. And, if it is found that the
algorithm is considering more measurement pairs than
the user finds reasonable, then 7,4 can be decreased.
This is perhaps the most heuristic of the series of tests.
However, in simulated scenarios with large amounts of
clutter, and sensors, which are known to be observing a
common space in which the targets are known to exist, it
has been found to be the workhorse test that eliminates
all but the most likely-to-be-related measurement pairs.

The tests presented thus far serve to eliminate line-
of-sight measurement pairs that either do not point to-
ward a common space, point at a space that is physi-
cally too far away for the sensors to observe, point at a
space where targets are not likely to exist, or are likely
unrelated based on not approaching each other within
a reasonably constrained space. Now, any measurement
pairs that remain must be either eliminated as well or
consolidated into a single composite measurement point
in three-dimensional space. Suppose that the measure-
ment pair under consideration—{z,, z,} —has passed the
simple tests involving the closest approach between the
lines-of-sight. If those tests were reasonably well-tuned
to the operating scenario, the fact that the measure-
ment pair has passed increases the likelihood that both
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Fig.9. The true hits received by each camera over the course of the entire scenario. Missed detections are accounted for (not visible).

measurements in the pair originated from a common tar-
get. Thus, a composite point measurement in the three-
dimensional tracking space based on the pair of mea-
surements is likely to be “meaningful” —an estimate of
a true target position.

The ILS estimator provides a mathematically rigor-
ous method to form a composite point measurement
based on the pair of line-of-sight measurements. It func-
tions by iteratively solving for the point p in the three-
dimensional tracking space, which minimizes the nor-
malized measurement error squared implied by the mea-
surement pair due to a target at point p, which is a scalar
value given by

€= Y (@—z(®)R; (2~ u(p)).

i=a,b

(35)

where (-)’ denotes the matrix transpose. The term z;(p)
is the zero-error measurement returned by sensor i due
to a target at p. Notice the implicit assumption that both
of the measurements in the pair have in fact originated
from the same target—something that cannot be known
for certain in this case. However, due to the previous se-
ries of tests based on the closest approach points, the ILS
estimate will be calculated only for likely-to-be-related
measurement pairs. Furthermore, the final minimized
value of € will be used as a final test statistic to eliminate
all but the strongest composite measurements.

The ILS estimator using line-of-sight measurements
in azimuth—elevation form is given in [13], and used for
related work in [9]. It is summarized here. First, form a
4 x 1 vector by stacking the pair of measurement column
vectors

(36)
and form the corresponding 4 x 4 covariance matrix
R, 0

R= ,
0 R,

where 0is a 2 x 2 matrix of zeros. Then p, —the ILS es-
timate at the gth iteration—is updated with an additive

(37)

term as
f’qul = pq + Aq» (38)
where the additive update term is calculated as
! 5y — -1 / 5 — —/a
A, =[H{RH,| HR [2-2(6)].  (39)

where the 4 x 1 zero-error measurement vector is given
by stacking the individual zero-error measurement vec-

tors as
o\ _ | Za(Pqg)
Z(pq) - [ih(f)q):| s

in which the individual vectors z;(p,) are obtained by
first setting X;, = P, in (14), and then substituting the
result into (9). The matrix H,, defined as
_0z(X)
X

(40)

, (41)
X=p,q

is the 4 x 3 Jacobian matrix of the stacked zero-error
measurement vector with respect to Cartesian position
in the global reference frame, evaluated at the current
ILS estimate.

The formulas for the individual elements of the Ja-
cobian matrix and the initialization of the ILS estimator
are given in the Appendix.

The ILS estimator is terminated by setting a thresh-
old 7, and iterating until

[Agll2 = Ta (42)
and recording the final estimate as
P=Pg1- (43)

Once the final ILS estimate is obtained, the mini-
mum normalized measurement error squared given by
(35) is theoretically Chi-squared distributed with one
DOF given that the pair of measurements used in the es-
timate originated from a common target [4].If the pair of
measurements used in the estimate is unrelated despite
having passed the previous tests, the distribution of the
minimum normalized measurement error has no known
closed form. However, the distribution is obtained em-
pirically through simulation and plotted in Fig. 6. The
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shape of this distribution is much like the Chi-squared
one DOF distribution, but with a much heavier tail. This
allows for a final thresholded test using € —calculated
with the formula in (35)—as the test statistic. That is,
if the value of € resulting from the ILS estimate based
on the measurement pair under consideration is above
some threshold z., then the pair and the resulting com-
posite measurement can be eliminated from considera-
tion. Otherwise, the composite measurement has passed
all elimination tests and is taken to correspond to an ac-
tual target. A composite measurement that passes this
final test can be assigned a quantitative score given by

o=1-xi(e) (44)

—the complement of the one DOF Chi-squared cumu-
lative distribution function (cdf) evaluated at the mini-
mized normalized measurement error squared. This will
provide a score in the range [0, 1], with better estimates
receiving higher scores.

The elimination tests above were presented in terms
of asingle pair of measurements from a particular pair of
sensors (a, b) at a single time step, and the indexes of the
measurement pair (m, n) and time step (£) were omitted
throughout. Now, suppose that the algorithm performs
the entire series of elimination tests for every element
of the set

{{Za,ﬁ,m’ Zb,[,n} 01 =mz= Nge 1 =n= Ngé}

—every possible pair of measurements from the scans of
sensors a and b at time £. Record to memory all the re-
sulting composite measurement points that have passed
all the elimination tests along with their corresponding
Chi-squared scores given by (44) as the set of parameter
pairs

P
(a,b).t

N
: (45)

Pp)e = {(fh G)p} »
where N&,b),[
from sensor pair (a, b) at time step £ that have not been
eliminated.

Notice that along with the obvious dependence on
time index ¢, P(, ) , is also dependent on the pair (a, b).
That is, the list of points obtained at a particular time
depends on which pair of sensors is being used to look
for points. With a group of N' > 2 sensors, find the list
of hit points from each possible pair of sensors and form
the total list

is the number of composite measurements

Pe= U Pb).e (46)

(a,b)er

where r is the set of all unordered pairs of the integers
[1, N¥].

2) Formation of Initial Parameter Estimates: To form
initial parameter vectors to pass to the climber at esti-
mation time step k, suppose that P, has been obtained
for every time step £ < k. Potential target track seg-
ments over the current batch are formed by pairing com-

posite measurements from the current batch start time
in P._yv,q With composite measurements from the cur-
rent batch “leading edge” time in Py, which parame-
terizes line segments in global three-dimensional space.
If the user has knowledge of a minimum and/or maxi-
mum possible target velocity (in units length/sampling
period), then it can be used here to select only the rea-
sonable potential track segments. The segments are also
assigned a score equal to the product of the Chi-squared
score of the composite measurements that make up its
end points. This is useful in quantitatively ranking which
segments are the best if the number of segments sent to
the hill climber must be limited.

Formally, let s = kK — N® + 1 be the batch start time
step, and form the set of parameter pairs given in (47),

@« [(o=[87] 5o

. b o A b
D Umin T = [1Ps,p _pk,q”Z < Umax T,

1<p<|Pl 1sqs|’Pk|}, (47)

where f; , is the pth composite measurement in the set
of composite measurements from the batch start time
step s, and oy, is the measurement’s Chi-squared score.
Similarly, px 4, ox 4 are the individual members of the
gth element in the set of composite measurements from
the batch leading edge time step k. Let [vmin, Vmax] T€P-
resent the range of possible target velocities and 7° =
NP — 1 be the duration of the batch in sampling periods.
Forgive the reuse of the index g—it was used in Section
IV.A.1 for an unrelated purpose.

To be verbose, each element of the set QF contains a
6 x 1 column vector parameterizing a line segment in
three-dimensional space that satisfies a length restric-
tion, paired with a scoring value that represents the “tar-
get indication strength” of the segment based on the
Chi-squared scores of the two composite point measure-
ments that parameterize the segment. Notice that only
composite measurements from the start and end time
steps of the batch are used to populate QF. If the user
finds that this does not provide enough target track seg-
ment estimates, then pairs of composite measurements
from intermediate batch times can be used to form seg-
ments that are projected to the start and end batch times.
That is, select pairs of composite measurements, one
from time step ¢ and one from time step ¢, such that
§ <t < £ < k and—based on the assumption of a
constant sampling period —compute the individual 3 x 1
components of the stacked vector Q in (47) as

L L—s\ . .
ps=pe+<£_t>(pf—pe), (48)
L k—t\ .
Pr =P+ (E) (Pe — Pr), (49)
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and assign the projected segment a score equal to the
product of the Chi-squared scores of the two compos-
ite measurements used in the calculation. This segment
projection is particularly useful in scenarios where all
sensors have a low probability of target detection in any
one scan since, for there to exist a meaningful composite
measurement at any one time step, at least two sensors
will need to have detected the same target at that sam-
pling instant.

The likelihood maximization will assume the num-
ber of targets based on the size of the initial parame-
ter vector it is passed. In order to choose a good ini-
tial vector that parameterizes N' targets, sample N' seg-
ments from QF without replacement, and stack the in-
dividual segment vectors into a 6N x 1 parameter vec-
tor of the form given in (2). The sampling should give
preference to segments with high § scores. A decent way
to accomplish this is to use a high-level function like
MATLAB’s datasample() and sample element r of Q*
with the weight of §, relative to all other § values. If
the number of segments in Q is small enough that it
will not be computationally prohibitive to simply run a
new instance of the hill climber for every possible ini-
tial parameter vector, then this sampling can be avoided
altogether.

Thus far, this section has discussed a method of using
observed data to initialize the hill climber. This has been
found to perform well enough as the sole method of
hill climber initialization at the beginning of each batch.
However, performance can be improved further if the
target motion for the current batch is predicted from the
best previous batch estimate (under the constant veloc-
ity assumption). The predicted segments along with seg-
ments sampled from Qk are then each used to initialize
individual instances of the hill climber. In simulation, it
was found that this prediction aids the tracker in “stick-
ing” to the track once it has a good estimate. On the other
hand, it cannot be used as the only method of initializing
the hill climber since the data-driven hill finder is needed
to converge on a good estimate in the first place and to
recover if the track is ever lost.

B. Hill Climbing

There are many types and variations of hill climbers.
The maximization in this work uses the conjugate gradi-
ent method implemented in Python’s SciPy “optimize”
library [24]. It should be pointed out that an elegant
expectation-maximization (EM) approach could also be
used (see [2]).

In some cases, the user might be interested in decid-
ing whether there is even a single target present or not
(target detection). In this case, one could pass the hill
climber an initial vector X¥ that implies a single target
(six elements), and allow the climber to run till it reaches
a peak. Then, compare the value of the LLR at this peak
to some threshold to decide if there is a target present.
That is, if the peak of hill is below some height, decide

that the hill is just due to a randomly occurring pattern
in clutter instead of an actual target. The challenge with
this is picking a good threshold for this test. The peak
height of a given LLR hill depends heavily on the num-
ber of sensors being used and the geometric arrange-
ment of the sensors relative to each other and the targets.
The simulated detection performance is discussed in
Section V.B.

C. Tracker Summary

Tracking is performed in a “sliding batch” fashion
where after an estimate is obtained, the leading edge of
the batch slides forward by some number of sampling
periods less than the length of the batch. This means
that consecutive batch estimates share some observa-
tions and are thus correlated. The following will give a
step-by-step synopsis of the algorithm:

1) At time step k, take the N® most recent scans from
each of the N® sensors to form the current measure-
ment batch. That is, k indicates the leading edge of
the batch.

2) For each time step in the batch, for each possible pair
of sensors, obtain via the process of elimination in
Section IV.A.1 pairs of measurements from the pair
of sensors that “strongly agree” on some point in the
global space. Record the resulting composite mea-
surements.

3) With composite measurements obtained in the pre-
vious step, form line segments representing target
tracks over the course of the batch. These segments
are parameterized by their start and end points. They
can be formed either by pairing hit points from the
start and end times of the batch or by considering
pairs of hit points from intermediate time steps and
projecting out to the end points of the batch. If infor-
mation is available about maximum and/or minimum
target speed, this can be used to eliminate segments
that are either too long or too short.

4) If working with a multi-target scenario with N' tar-
gets, then form potential target parameters by com-
bining line segments from the previous step into
groups of size N'. In a single target scenario, any one
of the line segments can be taken as a potential target
parameter.

5) (Optional) Form a predicted target parameter by us-
ing a constant velocity assumption to predict the tar-
get trajectories over the current batch based on the
ML estimate from the previous batch.

6) For each of the parameter vectors obtained in 4) and
5), evaluate the LLR. Keep the N best parameters
according the LLR value.

7) Initialize N hill climbers with each of the N best pa-
rameters from the previous step. Allow climbers to
run until terminal condition or until some maximum
number of steps has been exceeded. Take the param-
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eter indicated by the climber that reached the highest
peak in LLR to be the ML estimate for the current
batch.

8) Increment k by the desired batch slide amount. Re-
turn to 1).

It is of interest to summarize the computational
complexity of the method for a single batch estimate.
As presented, the expected computational complexity
of the hill finding is O ((A + paN)? W) where
A + paN' is the expected total number of measure-
ments per scan (clutter plus targets) and w is the
number of unique sensor pairs. That is, the point find-
ing (optimization-initialization, or hill finding) cost is
quadratic in both the number of measurements per scan
and in the number of sensors. While the expected num-
ber of measurements is usually dictated by “nature,” set-
tings with many sensors may require care when choosing
which sensor pairs are used to find points.

The evaluation of the likelihood in (23) has expected
complexity O ((A + paN')NN'). The likelihood maxi-
mization requires approximation of the gradient of the
objective likelihood function via two-point differencing,
which requires 6N' + 1 evaluations of the objective func-
tion (one for each element of the parameter vector plus a
reference evaluation). Thus, the overall likelihood max-
imization has complexity O ([A(N')*+ pa(N')*] N*).
The number of targets assumed by the optimization is
the most significant factor in computational cost. While
(N')? is the asymptotically dominant term, the entire ex-
pression A(N')? 4 pq(N')? is noted since, in most practi-
cal settings, A 3> pgN' (there is usually much more clut-
ter than target-originated measurements), so the clutter
level can dominate practical computation. Both the hill
finder and maximizer also have simple linear complexity
in the batch length N°.

V. RESULTS

The following sections present simulated results for
the sake of testing the presented method. The detection
performance (performance of a test to decide whether
or not a target is present) is given in Section V.B. The
tracking performance for a single target under various
states of nature is studied in Section V.C. In Section
V.D, a comparison is made to a decentralized method in
which each sensor obtains an ML estimate of the track
segment in its own measurement space, and then batch
estimates from pairs of sensors are fused to obtain track
segment estimates in the global space. This is in contrast
to the method presented in the main body of this work
could be considered a fuse-before-track method since
the likelihood involves measurements from all sensors.
Finally, a scenario with 2 targets is simulated, and a com-
parison is made between the tracking performance of
the presented method and the JPDA method presented
in [20].

A. Single Target Scenario Setup

The scenario has a single target and three sensors.
The target travels along an upward spiraling path at a
constant speed, see Fig. 9. Notice that, technically, the
curvature of the path violates the constant velocity as-
sumption in the target motion model. However, due to
the constant speed of the target and the small amount of
curvature that occurs over the course of any one batch,
constant velocity is a sufficient approximation.

Each simulated sensor has a restricted, conical field
of view with an angular range of 20°. The sensors are
placed so that, for the majority of the target’s trajectory,
itis in view of all sensors. The sensor locations are all out
of view in Fig. 11, but referring to the coordinate system
in the figure:

e Sensor 1 is stationary at position (—18000,0,0), and
aimed in the *X direction (toward the origin) and
slightly up. This mimics a camera viewing the sky from
the surface of the earth.

e Sensor 2 is stationary at position (0,0,60000), and
aimed toward the origin. This gives an overhead view
from a very high altitude.

e Sensor 3 is in motion. It orbits the Z axis at a height
of 12 000 above the X-Y plane and with a radius of
10000. Its orientation changes so that it is consistently
aimed down and in toward the origin. Its orbital speed
is such that it makes only half an orbit throughout the
scenario.

In a real scenario, the expected number of clutter A
and the probability of target detection pq4 are functions
of SNR and the threshold used in the measurement ex-
traction process. Qualitatively speaking, at a fixed SNR,
lower extraction threshold values will result in more clut-
ter but higher probability of target detection.

For simulation purposes, it is assumed that the mea-
surement extraction process is Gaussian as in [11]. That
is, assume some extraction threshold ., which, when
applied to a test for a measurement “hit” in some par-
ticular section of the sensor space where a target is not
present, results in a single clutter measurement with a
probability of “false alarm” given by

p=0(™),

o

(50)

where Q(-) is the Gaussian Q function and ty, has been
normalized by the measurement intensity standard devi-
ation o. Then, for a fixed SNR, the probability of target
detection is

pa=Q(Q'(pr) — SNR).

For the sake of simulation, it is assumed that there
are a Poisson random number of clutter measurements
in each scan with expected value A, and the expected
number is approximately related to the clutter level by

A
Ne

(51)

Pr= s (52)
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Fig. 10. The ROC curves for target detection based on the
ML-PMHT likelihood at different SNR levels. The probability of
target detection at individual sensors is fixed at pg = 0.45. This
implies a clutter level of A =~54 at an SNR of 0 dB and A =~74 at an
SNR of —1 dB

where N, represents some total number of resolved
“cells” in the sensor space that are tested by the mea-
surement extraction. It is assumed here that all sensors
have N, = 400.

The simulation uses azimuth-elevation measure-
ments. Target-originated measurements have Gaussian
additive error where the individual components are as-
sumed independent and each has standard deviation
o9 = o4 = 0.25°. The small measurement error vari-
ance is used to mimic the behavior of cameras, which
generally exhibit good measurement accuracy. The other
“error-inducing” processes (clutter and missed detec-
tions) are considered more interesting in this context.

Unless otherwise noted, results use a fixed batch size
NP = 18, and the batch slides five sampling periods from
one estimate to the next.

B. Detection Performance

It is of interest how well the algorithm does at de-
tecting the presence of a target. Detection would be per-
formed by choosing some threshold value and declaring
a detection if the LLR for the current batch exceeds the
threshold. To test the detection performance, the algo-
rithm is run for 100 Monte Carlo runs under the null
hypothesis—no target present. These data are combined
with the data from the simulation with a target present to
form the receiver operating characteristic (ROC) curves
shown in Fig. 10. When the target is present, each sensor
measures it with fixed probability of detection pg = 0.45.

At first glance, the detection performance appears
poor. However, it is important to note that detection is
performed on a batch-to-batch basis. That is, if the detec-
tion was operating at a point on the ROC with Pp = 0.3
and Pry = 0.03, then the user could expect to get a
detection within four batches of the target appearing,
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Fig. 11. The true target track (blue) plotted along with the batch
estimates (red) for a single Monte Carlo run with A = 54 and
pa = 0.45.

while expecting a false detection only once in every ~33
batches when there is no target present. When framed
in this manner, the detection performance is acceptable.
It is also important to emphasize that the detection and
false alarm probabilities on the axes of Fig. 10 are not
the same as the detection and false alarm probabilities
in (50) and (51), which are properties of the underlying
measurement extraction process.

C. Tracking Performance

When tracking with a single target present, the effect
of the hill finder can be seen in the first few ML batch es-
timates in Fig. 11. While the first few estimates are not on
track, the hill finder enables the tracker to converge on
the track within a handful of batches. If instead the hill
climbing was initialized randomly throughout the entire
tracking space, it would have a tendency to settle on false
hills instead of converging to the true track. There is a
point about one third of the way into the scenario where
the algorithm briefly does a poor job tracking the target.
This is due to the geometry of the target relative to the
sensors being less than ideal at that time —two sensors
have almost anti-parallel lines-of-sight on the target. The
resulting deviation in the estimate can be seen in Fig. 11
at the spot where the batch estimates drift away from
the true track and in Fig. 12 by the spike in estimation
error around time step 120. The spike in error is short-
lived, however, since the hill finder compensates as soon
as the sensors have good visibility on the target again.

We wish to also study the performance of the algo-
rithm in terms of how often it is on track. To do so, we
must first quantify what it means to be “on track.” One
way to define “on track” is to find the root mean square
error (RMSE) over the course of each batch. Then, if
the RMSE over the course of a particular batch is below
some threshold, declare the algorithm to be on track for
that batch. It is of interest to study the tracking perfor-
mance based on the operating characteristic of the mea-
surement extraction process. The SNR is fixed and sim-
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Fig.12. The RMS distance error between the estimate and true
target position versus time step. Averaged over 100 MC runs with
A =54 and pg = 0.45.

ulations are performed over a range of normalized mea-
surement extraction threshold values, which is equiva-
lent to a range of clutter levels via (50) and (52). The em-
pirical probability of the algorithm being on track (de-
noted Pr) is plotted for three different SNR values in Fig.
13. The RMSE threshold used to declare whether the al-
gorithm is on track or not is set at 200 using the results
in Fig. 12 —slightly higher than the RMSE to which the
algorithm empirically converges.

For each plot, a peak in tracking performance ap-
pears, above which the decreasing probability of target
detection has a negative effect on the hill finder, and be-
low which the increasing level of clutter results in de-
creasing estimation quality. The trend in the horizontal
location of the peaks suggests that the lower the SNR of
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Fig. 13. 'The probability of being on track versus the normalized
measurement extraction threshold. Different plots are for various
measurement extraction SNR values. Results are averaged over 20
Monte Carlo runs of the scenario—or 1400 batches—for each data
point.

/ AN W A\

Fig. 14. Notional representation of fusing two batch estimates from
two separate cameras (red segments) into a single estimate in global
space (orange segment).

the tracking scenario, the lower the ideal measurement
extraction threshold. That is, in scenarios with lower
target visibility, it is better to operate in a “high clut-
ter/high detection probability” regime. And when tar-
gets are more visible, it is ideal to compromise on the
detection probability with the pay-off of having less clut-
ter. The vertical location of the peaks are perhaps less
informative since the probability of detection is defined
in terms of an RMSE threshold (a peak would be higher
if a higher error threshold was used for declaring the al-
gorithm on track). However, when the same threshold is
used for each data series in Fig. 13, the predictable trend
of increasing peak performance with increasing SNR can
be observed.

These results assume a Gaussian intensity detection
structure for the measurement extraction, which repre-
sents a “worst case.” Of course, if there is some other ex-
traction process with which a higher detection probabil-
ity and/or a lower level of clutter can be obtained (if, for
instance, the preprocessing of images involved software
that used features like shape or size to further discrimi-
nate between targets and clutter), then the performance
of the tracker will be better.

D. Track-Before-Fuse Comparison

The tracker presented in this paper maximizes the
likelihood of the target state directly in the global three-
dimensional space. An alternative approach is to make a
batch estimate of the track in the measurement space of
each individual sensor and then fuse them into a batch
estimate in the global three-dimensional space. For a no-
tional representation of this process, refer to Fig. 14. If
the sensors are cameras, one could obtain batch esti-
mates of the target track in the image space of each cam-
era (red segments in Fig. 14) using measurements from
only the camera under consideration. Then, given the
poses of a pair of the cameras, one could triangulate to
a corresponding batch estimate in the global space (or-
ange segments in Fig. 14). This approach may be con-
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Fig.15. The RMS position error for the global space tracker (solid
line) and the RMSE for the image space tracker (dotted line) plotted
for implied measurement extraction SNR values. Errors are averaged

over 100 Monte Carlo runs and averaged over time.

sidered desirable in situations where communication of
data is restricted: In most realistic settings, the communi-
cation cost for sensors to send batches of measurement
scans to a central maximizer is higher than if each sen-
sor sends an ML estimate of a track segment. However,
this method has the obvious drawback of not having ac-
cess to the discriminatory power of the “hill finder” al-
gorithm in Section IV.A since the premise is that mea-
surement scans have not been sent to a central location.

We use this decentralized method as a benchmark
comparison at various SNR values. The expectation is
that the method presented in this paper should be more
robust—in terms of mean squared estimation error—as
the SNR decreases. This intuitive expectation is due to
the fact that both the hill finder and the centralized like-
lihood evaluation use the relative geometric arrange-
ment of the sensors, which creates a triangulation ef-
fect. In terms of the log likelihood, the effect is that the
hills climbed by the central tracker are much steeper and
taller than the hills in the individual sensor space track-
ers, which results in a better ML estimate from the cen-
tral tracker.

Monte Carlo simulations of the scenario described
in the previous section are performed as the SNR varies
from —1 to 3 dB. As the scenario progresses, both types
of tracking are performed simultaneously —tracking ac-
cording to the algorithm presented in this paper and
ML-PMHT tracking in the image spaces of the individ-
ual sensors and then fusing into three-dimensional space.
The RMSEs obtained with the two different methods are
plotted versus the SNR in Fig. 15.

E. JPDA Comparison

A scenario with two targets is simulated in order to
test the multi-target capabilities of the ML method pre-
sented in this work. For the sake of comparison, the sce-

nario is also subjected to the JPDA tracker, which is a
typical recursive maximum a posteriori method that has
been adapted in [20] to work with multiple sensors.

The sensor arrangement remains the same as the
simulation in Section V.A. Along with the original tar-
get from the scenario in Section V.A, an additional
target is simulated that starts from rest at the point
(1000.0, 0.0, 0.0) in the global space and accelerates lin-
early to arrive at the point (—1000.0, 0.0, 2000.0) at the
end of the scenario. The linear path of the second target
remains well-resolved from the first target in the three-
dimensional global space, although the targets may be-
come unresolved in the two-dimensional measurement
space of any one sensor. Although both targets violate
the constant velocity assumption of the ML-PMHT, it
remains a close approximation over the batch duration,
which is shortened to N® = 12 for this simulation. The
batch slide is also reduced to 1. That is, a batch estimate
is obtained at every time step based on the current scans
along with the scans from the past 11 time steps. This
ensures that the ML-PMHT is informed by every point
obtained by the hill finder routine.

The measurement error is the same as in Section V.A
(0p = 0, = 0.25°). The measurement extraction is as-
sumed to operate such that, for each target, the proba-
bility of receiving a hit at each sensor is pq = 0.5, and
the expected number of clutter measurements in each
scan of each sensor is A = 50.

For the JPDA, a single linear white noise accelera-
tion model is assumed for the targets with the process
noise parameterization being informed by the maximum
acceleration exhibited by the true targets.

Both the JPDA and the ML-PMHT are initialized
with a random joint state estimate distributed (with large
variance) around the truth, although the ML-PMHT is
also allowed immediate access to the hill finder as well,
so it has a chance of finding a better initialization for its
first batch estimate.

Fig. 16 shows the root-mean-squared position esti-
mate error versus the time step of the scenario aver-
aged over both targets. The benefit of the point finder
employed by the ML-PMHT is evident at the begin-
ning of the scenario—while both trackers are given the
same random initialization, the ML-PMHT immediately
makes use of the point finding, which, on average, re-
sults in faster convergence to the “steady-state” perfor-
mance. A test for statistical significance of the Monte
Carlo comparison, as given in [4], is as follows. For a par-
ticular Monte Carlo run mc, the RMSE from each of the
tracking methods is averaged over time, and the differ-
ence between the averages is noted as A, . After all runs
are completed, the sample mean and sample standard
deviation of the “deltas” are computed, and the signifi-
cance of the comparison is taken to be the sample mean
divided by the sample standard deviation. A value > 2
is taken to indicate that the performance difference is
present in a significant number of runs. The comparison
in this simulation was found to have a significance of 4.7.
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Fig. 16. The RMS position error for the maximum-likelihood
tracker (solid line) and the RMSE for the JPDA (dotted line) plotted
versus time step. Errors are averaged over 100 Monte Carlo runs and

averaged over both targets.

Note that this scenario simulates a relatively low SNR,
and previous work has suggested that the ML-PMHT
likelihood formulation is more suitable than the JPDA
in such settings [14], [21].

VI. CONCLUSION

The algorithm presented in this work is found to
outperform a similar track-before-fusing algorithm at
reasonably low SNR levels. This result is intuitively pre-
dictable given that the global space tracker is taking ad-
vantage of knowing the geometric layout of the sensors
relative to each other when evaluating the observation
likelihood. It is also shown that there is a performance
“sweet spot” for the underlying measurement extraction
(the process by which “point hits” are declared) where
the target detection probability is high enough for the
likelihood maximization to be effective, but the level of
clutter does not overwhelm the batch estimation.

The “point finding” method presented in Section
IV.A, culminating in the list of weighted points in (46),
is not fundamentally tied to the ML-PMHT. Instead,
it represents a standalone method for obtaining a
list of points in three-dimensional Cartesian space by
fusing “likely-to-be-related” pairs of two-dimensional
line-of-sight measurements from different sensors. The
extracted points are used in this work to initialize the
likelihood maximization, and are found to help the
ML-PMHT stay on track. However, the point extraction
could also be used in other fundamentally different
settings. For instance, the “target birth” process and
two-point-differencing, which is essential to track ini-
tialization in the multi-Bernoulli formulation, could be
informed by the presented point finding method in a
tracking scenario where targets exist in R* and multiple
sensors report two-dimensional measurements.

The formulation of the batch ML-PMHT presented
in this work allows for tracking multiple targets, and is
compared to the JPDA for a two-target scenario with
high clutter level and low probability of target detection.
The ML-PMHT is found to outperform the JPDA in this
case, which agrees with results in other works. In terms of
average computational cost, the ML-PMHT avoids the
expensive data-association step required by the JPDA,
but encounters the curse of dimensionality in the param-
eter space when dealing with multiple targets. Overall,
the results suggest that the ML-PMHT is a desirable op-
tion in settings where the user wishes to refine track es-
timates for relatively few targets in the presence of rel-
atively high levels of clutter and low detection probabil-
ity. Future work will insert the results of the ML-PMHT
to a generalized likelihood ratio test for target existence
using the threshold-setting techniques in [18], and will
compare to an automatically track-managed approach
such as the multi-Bernoulli filter [15].

APPENDIX A JACOBIAN COMPUTATION FOR ILS

Each iteration of the ILS estimator requires compu-
tation of (41): the Jacobian matrix of the stacked mea-
surement function of sensors a and b with respect to
Cartesian position of a target in the global space. In
keeping with the notation used in Sections II.B and
IV.A.1, this matrix is given by
X oY oz
a(ﬁﬂ a(ﬁﬂ a(f_)a
39X Y 9z
X Y 9z

X 9y 97

: (53)

X=p,

where X, Y, Z are the individual Cartesian coordinates
of the position vector X in the global reference frame.
Using the formula in (14), which transforms a point in
global coordinates into a point in the coordinate system
of sensor i, and, specifically, the rotation matrix defined
by (15), it can be shown that

Hq = [Hq,a r;:| s

‘ 54
H,,T, (54)

where I is the transpose of the rotation matrix of sensor
i,and we have used the property of a rotation matrix that
its inverse is equal to its transpose. The other sub-matrix
terms are given by

06 86, 9

axi Ay 9
HqJ‘: )

9 0b 3
dxi oy 9z dx=T)(p,—§;)

(55)

which is the Jacobian of the measurement vector of
sensor i with respect to a point in the coordinate sys-
tem of sensor i, evaluated at the current ILS estimate
transformed to the coordinate system of sensor i. Tak-
ing the corresponding partial derivatives of (9) yields the
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where x;, y;, z; are the individual Cartesian coordinates
in the sensor i reference frame. As indicated in (55), for
iteration g of the ILS, these terms are evaluated at the
coordinates of x; given by transforming the current ILS
estimate into the reference frame of sensor i with

X; = I‘;(f)q - Ei)7 (62)

which, when evaluated for both sensors a and b, will yield
H, via (54). Note that the notation used here is as in Sec-
tion IV.A.1 where, since the ILS is being run using a sin-
gle pair of measurements taken at a single point in time,
the time indexing has been omitted. However, in gen-
eral, the sensor rotation matrices I'; and positions &; will
be time-dependent.

(60)

(61)

APPENDIX B ILS INITIALIZATION AND A

COMPUTATION-SAVING TRICK

The initial estimate pg given to the ILS estimator can
be evaluated in various ways, and different works differ
in the initialization method. In this work, we found that
an initialization based on the closest approach between
the two line-of-sight measurements worked very well.
As discussed in Section IV.A.1, the closest approach will
have been previously evaluated for any measurement
pair being used in the ILS estimate. Thus, it costs no extra
computation to compute the initial estimate as

Pa
Pa + Pb

Po = (P —pa) + 1, (63)
where the positions p;“d for i = a, b are the end points of
the minimum distance segment connecting the lines-of-
sight indicated by measurements a and b evaluated via
(30). And, p,, pp are scalars given by (32) and (33), re-
spectively, which provide the Cartesian distance along
the lines-of-sight at which the minimum distance oc-
curs. Thus, (63) is a point on the minimum distance seg-
ment that lies proportionally closer to the line-of-sight

from the sensor that is physically closer to the closest
approach. The reasoning is that the farther the sensor
is from the target, the farther the corresponding line-
of-sight measurement will deviate from the target (in
Cartesian distance) due to some fixed measurement er-
ror. Thus, when considering a pair of sensors, the line-of-
sight from the sensor closer to the target tends to be —in
an expected value sense —more “trustworthy” in terms
of its Cartesian deviation from the target. This reason-
ing assumes that the measurement errors in each sensor
are identically distributed; if not, then the reasoning be-
comes less logical. The ILS estimate takes into account
non-identical measurement error distributions, however,
and (63) still serves as a good initialization in such cases.

If the measurement errors from both sensors are
identically distributed, the position given by (63) has
been found to be a relatively good estimate of the tar-
get position, without even running ILS. Of course, ILS
will always provide further refinement of the estimate.
However, under certain conditions, the composite mea-
surements obtained in Section IV.A.1 via ILS can be re-
placed by simple evaluation of (63) for any measurement
pairs that pass the elimination tests. This would only be
done in the name of saving the computation power in-
volved in running ILS for each composite measurement,
and if one has computation power to spare, it is not a rec-
ommended compromise. However, in simulations with
a large number of sensors (N* > 3) and in which all
pairs of sensors have good cross-range confirmation (see
geometric dilution of precision in [4]), composite mea-
surements via (63) were found to serve the purposes of
this algorithm rather well. This is due to the fact that the
composite measurements, regardless of the level of re-
finement, are, in turn, used only for the initialization of
the batch estimate, which is further refined via the hill
climber. Thus, any lack of refinement in the composite
measurements from pairs of sensors is quickly made up
for once the batch ML estimation is started using all sen-
sors. Qualitatively speaking, this is a good compromise
for scenarios with many sensors and small measurement
errors, becoming an increasingly poor practice with in-
creasing measurement error and/or decreasing number
of sensors.

If the user chooses to make the compromise laid
out above, the final thresholding test after ILS is run in
Section IV.A.1 can still be performed by replacing p in
(35) with py from (63). However, no quantitative state-
ments can be made concerning the distribution of the
resulting normalized measurement error squared ¢, re-
gardless of whether or not the measurement pair origi-
nated from a common target. That is, under the hypothe-
sis that the measurement pair did originate from a com-
mon target, it can no longer be claimed that the nor-
malized measurement error squared is Chi-squared dis-
tributed. However, referring to Fig. 17, it can be seen
that the shapes of the empirically obtained distributions
still lend themselves to a simple test by setting a thresh-
old such that, if the normalized estimation error squared
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Fig. 17 The empirical distributions of the normalized measurement
error squared resulting from the unrefined composite measurement
under the binary hypotheses: Hy: the line-of-sight measurements used
are unrelated and H;: the line-of-sight measurements used originated
from the same target.

exceeds the threshold, the composite measurement is re-
jected as being related to a target. However, compar-
ing to the distributions in Fig. 6, it can be seen that the
threshold used should be significantly larger than the
one used if the composite measurements are refined via
ILS. Furthermore, since the distribution under H; is no
longer Chi-squared, the convenient score based on the
Chi-squared cdf in (44) is no longer valid for finalized
composite measurements. They must be ranked objec-
tively according to their normalized measurement error
squared directly, with smaller errors being considered
better.
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