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Three Mathematical Formalisms
of Multiple Hypothesis Tracking

SHOZOMORI
CHEE-YEE CHONG
KUO-CHU CHANG

This paper describes three mathematical formalisms, each of

which provides a solid foundation for developing multiple hypothe-

sis tracking (MHT) theories and algorithms, as solutions to detection-

based multiple target tracking (MTT) problems. The three formalisms

are 1) random finite sequence (RFSeq), 2) finite point process (FPP),

and 3) random finite set (RFSet) formalisms. We will discuss equiva-

lencies and some subtle differences among them. In addition, we will

discuss theoretical consequences of various assumptions on MHT hy-

pothesis evaluation, as well as recent RFSet-basedMTT algorithm de-

velopments claiming relationship to MHT.

I. INTRODUCTION

This paper is generally concernedwithmultiple target
tracking (MTT) problems, as defined in [1]–[3], i.e., prob-
lems of tracking a generally unknown number of ob-
jects, called targets,

1
based on noisy data. Specifically, we

are concerned with a particular class of MTT problems,
where the information is provided by generally multi-
ple sensors in terms of finite sets of noisy measurements,
called target detections,

2
without any explicit indication

of their origins. This class of problems is sometimes re-
ferred to as point target tracking, due to the fact that each
target is modeled as a point in a target state space, or
each target appears and is detected as a point in a sensor
measurement space. It may also be referred to as track-
ing small targets,

3
for the same reason. Our focus is on a

particular class of solutions based on systematic genera-
tion and evaluation ofmultiple data association hypothe-
ses, which hypothesize the number of detected targets
and partition the set of all the acquired detections ac-
cording to their hypothesized common origins, custom-
arily referred to asmultiple hypothesis tracking (MHT).

4

To the best of our knowledge, various approaches to
MTT problems were first comprehensively described in
an MTT survey paper [4]. It referenced the two semi-
nal works: one by C. L. Morefield [5] and the other by
D. B. Reid [41] (the work of which was subsequently
published as [6]

5
). These two works constitute, in our

opinion, the first two significant MHT developments. In
[5], C. L. Morefield established the MHT foundation by
defining association hypotheses, each of which is a set of
tracks, and proposed the best hypothesis selection us-
ing a zero–one integer linear programming algorithm.
D. B. Reid, in [6], presented a recursive MHT algorithm
that propagates and evaluates multiple tracks and hy-
potheses, both recursively. Subsequently in [7], a gen-
eralized recursive MHT algorithm was developed, as a
Bayesian optimal solution, showing the optimality as a
clear theoretical consequence of mathematical models
of targets and sensors,and a set of statistical assumptions,
complementing the developments by Morefield [5] and
Reid [6].

Generation and evaluation of multiple hypothe-
ses are often considered as an intermediate step to-
ward Bayesian estimation

6
of the states of an unknown

number of targets. However, in some applications, the
Bayesian estimation of measurement-to-measurement
(data-to-data) association is of primary interest and

1In MTT, a target is a generic name for any object to be tracked.
2Also called contacts, returns, or simplymeasurements or observations.
3As opposed to extended targets with possibly multiple observations
from each single target.
4In MHT, by hypotheses we always mean data association hypotheses.
5The introduction section of [6] contains an excellent summary of the
early works on MTT problems.
6ByBayesian estimation, we mean a process to obtain analytical or nu-
merical expressions of the conditional probability distributions of the
states to be estimated, conditioned by available data (information).
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an important task by itself. In that regard, the MHT
has maintained a unique and important realm within
the MTT universe. The evolution of various MHT and
MHT-related MTT algorithms over the last 40 years
was extensively and comprehensively described in [8],
and will not be repeated in this paper. It is not the ob-
jective of this paper to describe and compare various
MHT algorithms, or to discuss related implementation
issues, or to present yet another new algorithm. Instead,
our objective is to present three different mathematical
formalisms, any one of which provides a solid theoreti-
cal foundation to support MHT concept and algorithm
developments.

The three formalisms are 1) random finite sequence
(RFSeq) formalism, 2) finite point process (FPP) formal-
ism, and 3) random finite set (RFSet) formalism. These
three are seemingly quite distinct from each other on
the surface, but essentially equivalent to each other in a
specific sense, as we discuss in this paper.We will define
MHT problem in each formalism, with precise mathe-
matical definitions to commonly used terms that have
been often loosely defined, such as “originate from,”
“associated with,” “assigned to,” “tracks,” “hypotheses,”
etc. We hope that, showing the uses of these three for-
malisms, side by side, we will be able to present a clear
and precise picture of the past, and the potential future
MHT developments. An earlier version of this paper
was presented in [9], to which we added some analy-
ses on specific consequences of commonly used assump-
tions, and our perspectives on relations of a selected set
of recently developed RFSet-based MTT algorithms to
MHT.

The rest of the paper is organized as follows: Section
II presents the three mathematical formalisms for MTT,
including all the relevant mathematical concepts in alge-
bra, topology, and probability theories. Section III intro-
duces target and sensor models, in the three formalisms,
and defines data association hypotheses, to form a stan-
dardMHTproblem.Section IVdiscusses generation and
evaluation of association hypotheses, and describes the
optimal Bayesian solution to MHT problem, in each of
the three formalisms, under a set of commonly used as-
sumptions. It is followed by Section V that discusses re-
lationship of the MHT solution of Section IV with a se-
lected set [36]–[39] of recently developed RFSet-based
MTT algorithms. We will state our concluding remarks
in Section VI.

II. THREE MATHEMATICAL FORMALISMS

We define MTT as a process of estimating the states
of a generally unknown number of objects, called tar-
gets, generally changing their states over time with given
stochastic dynamics, based on information collected by
generally multiple sensors on regular or irregular obser-
vation schedules.As we often do, in this paper, any target
is identified with its state, i.e., a point in a state space E,
which we assume is a locally compact Hausdorff space

satisfying the second axiom of countability (LCHC2)
7

[10]. Any countable set with discrete topology, as well
as any Euclidean space, is LCHC2. Let B be the collec-
tion of Borel sets in E, i.e., the smallest σ -algebra con-
taining all the open sets in E, and we assume that a σ -
finitemeasureμ on themeasurable space (E,B) is given.
Throughout this paper,we will maintain the measure set
(E,B, μ) as the target state space. To track n targets,
(x1, ..., xn), each in E, we use the state space defined as

the nth-order direct product En =
n times︷ ︸︸ ︷

E × · · · × E with the
direct product topology (inheriting LCHC2), the direct
product σ -algebra Bn, and the direct product measure
μn.

The measure space (En,Bn, μ
n) with a fixed n pro-

vides us with a natural basis for the generalization
8
of

the probabilistic data association (PDA) (n = 1 [12])
and the joint PDA (JPDA) (n ≥ 1 [13]) algorithms to
track a fixed number n of targets, each of which has its
existence established, as target state xi within the joint
state

9
(xi)ni=1, and is given a unique distinct a priori iden-

tification i ∈ {1, ...,n}. The main focus of this paper is,
however, to present mathematical formalisms to provide
a basis for tracking targets without a priori identification
in the sense that 1) the number n of targets is generally
unknown a priori and 2) given n, any particular ordering
of the joint states (xi)ni=1 is arbitrary. These facts necessi-
tate 1) considering all the possible numbers n (any non-
negative integer) of targets and 2) requiring any partic-
ular joint target state probability distribution to be per-
mutable or symmetric, which is an important aspect of
this class of MTT that we are exclusively concerned with
in this paper.

Remark 1 (Notations: Finite Sequences and Finite
Sets): (xi)ni=1 ∈ En is shorthand

10
of (x1, ..., xn), a finite

sequence in spaceE with length n, or an n-tuple of points
in E. Sometimes, it will be necessary to use a nested ex-
pression to shorten ((y11, ..., y1m1 ), ..., (yK1, ..., yKmK )) as
((yk j)

mk
j=1)

K
k=1 with double-indexed variables yk j.We also

use continuous index,e.g., (xt )t∈[t0,∞) ∈ E[t0,∞) for a func-
tion defined on time index set [t0,∞). If the index set I
is a finite set, by (xi)i∈I , we mean a function x defined on
I, but we may also mean a sequence (xi1 , ..., xin ) with an
arbitrary enumeration (i1, ..., in) of set I. By {xi}ni=1, we
mean {xi}ni=1 = ⋃n

i=1 {xi}, which is a set of n elements if
xi’s are all distinct, where {x} is the singleton with only
single element x.

7Also known as locally compact Hausdorff second-countable topologi-
cal space. See Remark 2, later in this section, for more explanations on
the meaning of this choice of the state space as the basis of our paper.
8See Remark 6 in Section III-C, for more comments on PDA and
JPDA algorithms, and their generalizations.
9See Remark 1.
10We consciously avoided the notation such as (xi)i=1:n or x1:n, in favor
of (xi)ni=1, since 1:n or n:m, used as a “colon”MATLAB syntax, is also
used for a one-to-many or a many-to-many relationship in database
designs, while (xi)ni=1 is universally used in the mathematical literature
(although 〈xi〉ni=1 is used instead in [28]).
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Remark 2 (LCHC2): If an LCHC2 space is a vec-
tor space, the local compactness implies a finite dimen-
sion [11, Th. 1.22, p. 17], so that we are excluding any
infinite-dimensional state space in this paper. On the
other hand, the countability implies being metrizable
and separable (having a countable, dense subset) [10,
Ch. 6, p. 241]. Non-Euclidean examples include a hy-
brid space (direct product of a Euclidean space (e.g.,
for kinematic sates) and a finite set (e.g., for discrete at-
tribute states)), an ellipsoidal surface (for surface ship
tracking),other one- or two-dimensional manifolds (e.g.,
for targets in road networks), Lie group SO(3) (coupled
with Lie algebra so(3)), the space of unit quaternions
for attitude estimation, etc. Thus, it seems to us that this
LCHC2 assumption may specify a necessary mathemat-
ical sphere for us to cover for all the application domains
that we, engineers,may be interested in, beyond familiar
Euclidean spaces.On the other hand,we understand that
this LCHC2 assumption allows us to almost “freely” use
familiar notions of conditional probability distributions,
densities, Bayes rules, stochastic processes, etc., without
fear of any mathematical pathology.

A. RFSeq Formalism

Randomness of the number n of targets forces us to
consider all the spaces En, for n = 0, 1, 2, ..., together, as
the direct-sum space

11 ⋃∞
n=0 E

n, using the standard con-
vention E0 = {θ} with the symbol

12
θ for the sequence

of the zero length, signifying “nothing,” or in our case
“no target.” Algebraically,

⋃∞
n=0E

n is the free monoid
(FM) generated by E (as the set of its alphabets [14]

13
),

with the concatenation operator ∗ as an associative bi-
nary operator, defined by (xi)ni=1 = (xi)n

′
i=1 ∗ (xi)ni=n′+1

for any 0 ≤ n′ ≤ n and any (xi)ni=1 ∈ En with the iden-
tity element θ . Topologically,

⋃∞
n=0 E

n is also an LCHC2
with the direct-sum topology, which induces the direct-
sum σ -algebra

⋃∞
n=0 Bn, where each Bn is σ -algebra of

Borel sets in En, which allows the direct-sum measure∑∞
n=0 μn on it.
Then, we can define an RFSeq as a random ele-

ment X on the measurable space (
⋃∞

n=0 E
n,
⋃∞

n=0 Bn).
Although, in general, we may not know a priori how
many targets exist or we have to track, the number n of
all the targets (at least potentially to be detected) is al-
ways finite, but often with no known a priori upper limit.
For each n = 0, 1, 2, ..., let pn be the probability of the
number

14
of targets being n, and given any n, let the joint

11We assumeE 
= ∅ so thatEn 
= ∅ for any n, yet we haveEn∩En′ = ∅
for any n 
= n′.
12θ /∈ E (E0 = {θ}) is used as a special symbol (for the empty se-
quence) throughout this paper. It is also considered as a functionwhose
domain, image (range or codomain), and graph are all the empty set.
13A semigroup is a nonempty set with an associative binary operator.
A monoid is a semigroup with an identity (unit) element.
14We generally assume that the number n of targets is constant, for the
reasons explained by Remark 5 in Section III-A.

probability distribution of the n-tuple of target states,
(xi)ni=1 ∈ En, be F (n), called the nth-order probability
distribution (n-PDist), so that we can model targets, as
a whole, by an RFSeq X , with

15
F (n)(B) = Prob{X ∈

B|�(X ) = n} for each n and for each B ∈ Bn.
Our assumption that the targets are without a pri-

ori identification is translated into the assumption that,
for each n, F (n) is permutable,

16
in the sense F (n)(B) =

F (n)(π (n)
a (B)) for every B ∈ Bn and every a ∈ An, where

An is the set of all the permutations on {1, ...,n}, and
π

(n)
a ((xi)ni=1)

def= (xa(i))ni=1 for any (xi)ni=1 ∈ En and any
a ∈ An. If each permutable probability measure F (n) is
absolutely continuous with respect to the product mea-
sure μn, its Radon–Nikodym derivative f (n), called the
nth-order probability density (n-PD), is also permutable,
in the sense that f (n)(π (n)

a (x)) = f (n)(x) for all x ∈ En,
for any a ∈ An.

B. FPP Formalism

In [15, Ch. 5, p. 111], an RFSeq (xi)ni=1 ∈ En with
(pn,F (n))∞n=0 is called an FPP if each n-PDist F (n) is per-
mutable, and is characterized by a sequence (J (n))∞n=0
of measures, each of which, J (n), is a finite measure on
(En,Bn), defined by J (n)(B) = n!pnF (n)(B) for each
B ∈ Bn, called the nth-order Janossy measure (n-JM).

17

If n-JM
18 J (n) is absolutely continuous with respect to

the product measure μn, its Radon–Nikodym derivative
J(n) is called the nth-order Janossy density (n-JD), which
we can write as J(n)(x) = n!pn f (n)(x) for every x ∈ En,
with n-PD f (n) of each n-PDist F (n). Obviously, every
n-JM J (n) is permutable, and so is any n-JD J(n) if it
exists.

In this paper, as well as in [9] and [16], however, we
present an alternative but equivalent FPP formalism:
For each n and each x ∈ En, let the equivalence class
in En, obtained by ignoring the ordering of x = (xi)ni=1,

be [x], i.e., [x]
def= {π (n)

a (x)|a ∈ An} with π
(n)
a and An,

as defined earlier. For each n, let us symbolically de-
note En/n! = {[x]|x ∈ En}, using “n!” only as a sym-
bol in place of equivalence classes “[·] ” or relation “∼.”

15For any x ∈⋃∞
n=0 E

n, by �(x) we mean the length of finite sequence
x in E, i.e., �(x) = n ⇔ x ∈ En, and �(θ ) = 0.
16Synonymous to symmetric (permutation-symmetric), exchangeable,
interchangeable, etc. See Remark 3.
17According to [15], the term Janossymeasure originated from [17] that
references [18]. It is indicated [15, p. 124] that the constant n! in its
definition, as it distinctly appears in (1)–(4) also, is included to be ad-
vantageous in simplifying combinatorial formulae, so that, in a sense,
this constant n! uniquely identifies the n-JM, the n-JD, and the JMD
(introduced later), distinguishing themselves from other concepts.
18In this paper, we use superscripts (n) for n-PDist F (n), n-PD f (n), n-
JM J (n), and n-JD J(n), to signify the fact that they are applied to the
nth-order product space En, although, customarily, subscripts are used
instead as in Fn, fn,Jn, and Jn.
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En/n! is a quotient space induced by the quotient map
19

ϕn : x �→ [x] for each n. We may call [(xi)ni=1] an un-
ordered n-tuple, while (xi)ni=1 is an ordered n-tuple.

Algebraically, we may call
⋃∞

n=0E
n/n! the free com-

mutative monoid (FCM)
20
generated by E with the com-

mutative operation ∗ defined by [x] ∗ [x′] = [x ∗ x′]
for every (x, x′) ∈ En × En′

, and the identity element
[θ ] = {θ}. Topologically, each En/n! is a quotient topo-
logical space. Since each coordinate permutation π

(n)
a is

a homeomorphism (and hence a continuous open map),
every open set in En/n! can be written as the image
ϕn(B) of an open set B in En, and hence each En/n! is
LCHC2, and so is their direct sum

⋃∞
n=0E

n/n!, with the
σ -algebra

⋃∞
n=0 Bn/n! of Borel sets in it. We may con-

sider
⋃∞

n=0 E
n/n! as the quotient space through the map

ϕ :
⋃∞

n=0E
n → ⋃∞

n=0E
n/n! defined by ϕ(x) = ϕn(x) for

each x ∈ En (n > 0), and ϕ(θ ) = ϕ0(θ ) = [θ ] = {θ}.
Finally, an FPP can be defined as a random element

X on a measurable space (
⋃∞

n=0 E
n/n!,

⋃∞
n=0 Bn/n!),

with PDist � such that

�

( ∞⋃
n=0

ϕ (Bn)
)

= Prob
{
X ∈

∞⋃
n=0

ϕ (Bn)
}

=
∞∑
n=0

pnF (n)
(
ϕ−1
n (ϕn (Bn))

)
=

∞∑
n=0

1
n!J (n)

(
ϕ−1
n (ϕn (Bn))

) (1)

for any (Bn)∞n=0 ∈ ∏∞
n=0 Bn. Since each coordinate

permutation π
(n)
a is measurable, every measurable set

B ∈ ⋃∞
n=0 Bn/n! in

⋃∞
n=0E

n/n! can be expressed as⋃∞
n=0 ϕ(Bn) with some (Bn)∞n=0 ∈ ∏∞

n=0 Bn. The first
equality of (1), therefore, simply states the definition of
PDist � of a random element X , i.e.,�(B) = Prob{X ∈
B} for any B ∈ ⋃∞

n=0 Bn/n!. The second equality of
(1) means that, given PDist � of FPP X , there exists a
series (pn,F (n))∞n=0 of probabilities and permutable n-
PDists such that

21
pn = �(En/n!) = Prob{�(X ) = n}

for every n, and pnF (n)(ϕ−1
n (Bn)) = �(Bn) for every

Bn ∈ Bn/n!. It also implies that PDist � is uniquely de-
fined by a PDist (pn)∞n=0 and any permutable n-PDists
F (n) for each n. The third equality is nothing but the defi-
nition of each n-JM. For each n and each measurable set
Bn = ϕn(Bn) in En/n!, event {X ∈ Bn} can be viewed
as the event

⋃
a∈An

{x ∈ ϕ−1
n (Bn)}, where x is an arbi-

trary enumeration ofX .We should note ϕ−1
n (ϕn(Bn)) =⋃

a∈An
π

(n)
a (Bn), which is the set of all the enumerations

of equivalence classes in Bn = ϕn(Bn).
Using the collection (En,Bn, μ

n)∞n=0 of the mea-
sure spaces, we can define a positive linear functional

19Also known as identification map, natural map, canonical surjection
map, canonical projection map, etc. In topological algebra [19], En/n!
is called the nth-order symmetric product of E, SPn(E).
20Cf. [47, Sec. I.6.3, p. 16], for definition of free commutative semigroup,
which becomes FCM when given an identity element.
21For any [x] ∈ ⋃∞

n=0 E
n/n!, the length �(x) of any element in the

equivalent class [x] is the same, so that we let �([x]) = �(x). We have
�(
⋃∞

n=0 E
n/n!) =∑∞

n=0 �(En/n!) =∑∞
n=0 pn = 1.

L, defined on a set of bounded measurable function-
als ψ , and a measure M, both on measurable set
(
⋃∞

n=0E
n/n!,

⋃∞
n=0 Bn/n!), such that we have

22

L(ψ ) = ∫
⋃∞

n=0 En/n!

ψ (X )M(dX )

=
∞∑
n=0

1
n!

∫
En

ψ (ϕ(x))μn(dx),
(2)

where M(Bn) = μn(ϕ−1
n (Bn))/n! for every Bn ∈

Bn/n!, for each n. We may call the measure space
(
⋃∞

n=0E
n/n!,

⋃∞
n=0 Bn/n!,M), derived from the state

measure space (E,B, μ) in this way, the quotient mea-
sure space (QMS).

It follows from (1) and (2) that, if each n-JM J (n) of
(1) has n-JD J(n), then PDist � has the density φ, i.e.,
the Radon–Nikodym derivative of �, with respect to the
measure M, which we call the Janossy–Mahler density
(JMD), defined as φ(ϕn(x)) = Jn(x) for every x ∈ En,
for each n, such that

� (ϕ (
⋃∞

n=0 Bn)) = ∫
ϕ(
⋃∞

n=0 Bn)

φ(X )M(dX )

=
∞∑
n=0

1
n!

∫
ϕn−1(ϕn(Bn))

φ(ϕn(x))μn(dx)
(3)

for any (Bn)∞n=0 ∈∏∞
n=0 Bn.

Remark 3 (FM,FCM,FPP, and JMD):To call a ran-
dom element on FM

23
an RFSeq, and a random element

on FCM an FPP, is our own “invention,”which had most
probably not seen before our preliminary paper [9] (or
its predecessor [16]) was published. The introduction of
FM and FCM (or its variation), however, appeared in
[15] and [23]. In [15, p. 129], FM

⋃∞
n=0E

n is called the
canonical probability space, and an FPP as a random ele-
ment in the quotient space

⋃∞
n=0E

n/n! is also suggested.
In [23], FM

⋃∞
n=0 E

n is called the population state space,
and a version of FCM,

⋃∞
n=0E

n/n!, the symmetric popu-
lation state space. Furthermore, in [23], what we call an
FPP was called a symmetric point process, while what
we call an RFSeq was called simply a point process,

24
re-

flecting the distinction caused by the “commutativity”or
“permutability,”

25
or lack of it.

Both in [15, Ch. 5, p. 111] and [23], we may say that
an FPP is defined through a series of n-PDist or n-JM,

22We use the convention that
∫
E0 q(ξ )μ0(ξ ) = q(θ )μ0(E0) = q(θ ) for

any functional q on (E0,B0) = (E0, {∅,E0}) = ({θ}, {∅, {θ}}).
23By replacing the target indices by the discrete time indices, an FM
can be used as a mathematical model for a discrete-time dynamical
process with a variable end-of-the-process time, as shown in [21].
24According to [23], the term “point process” is attributed to [24].
25In [23], the permutability is treated as synonymous to “indistin-
guishability,” which, in our opinion, is misleading to a degree, because,
for example, two targets, as realizations of two random points, which
do not share the same state, can always be “distinguished,” even when
the distributions are “identical” and “independent.” We would prefer
that the distinction is considered as “targets with and without a priori
identifications,” rather than “distinguishability”and “indistinguishabil-
ity.”
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rather than a random element itself. A traditional defi-
nition of an FPP is, however, as a random counting mea-
sure

26
[22, Def. 1.1, p. 4], which can represent possibly

countably many points. In our MTT applications, how-
ever, we do not need to consider any set of countably
many points, and therefore, we may say that our defini-
tion of FPP,without ever considering a randommeasure,
is justified.

27
A counting measure representationN of an

FPP X = [(xi)ni=1], as a random measure on (E,B), can
be defined as N (B) = ∑n

i=1 I(xi;B) for each B ∈ B,
with an arbitrary enumeration (xi)ni=1 of FPPX , where I

is the generic indicator function defined as I(ξ ;A) = 1
if ξ ∈ A and zero otherwise for any set A.

We call the probability density φ that appears in (3)
in our FPP formalism, as well as in the RFSet formalism
described later in this section, the JMD, because of 1) its
obvious relation to the Janossy densities n-JDs, (J(n))∞n=0,
through φ(ϕ(x)) = J(n)(x) for any x ∈ En, and 2) our
understanding that the PD φ was first introduced by
Dr. R. P. S. Mahler as a single function, as opposed to
a series (J(n))∞n=0 of functions, in his finite set statistics
(FISST) formalism [25]–[27]. The JMD φ is called the
multiobject density function in [25, Sec. 11.3.3, p. 360] and
[26, Sec. 3.2.4, p. 62], and the global probability density
function in [27, Sec. 4.3.3, p. 162].

C. RFSet Formalism

For each n > 0, let Fn(E) = {X ⊆ E|0 < #(X ) ≤ n}
and F̃n(E) = {X ⊆ E|#(X ) = n}. Then, with F0 =
F̃0 = {�}, F (E) = ⋃∞

n=0 Fn(E) = ⋃∞
n=0 F̃n(E) is the

collection of all the finite sets in the state space E. Al-
gebraically, we may call F (E) the free idempotent com-
mutative monoid (FICM) with the set-theoretic union

28

as the binary operator on it. For each n > 0, redefine the
quotient map ϕn as ϕn : En → Fn(E) with ϕn((xi)ni=1) =
{xi}ni=1. It makes Fn(E) a quotient topological space that
is an LCHC2 with its open sets as the collections of the
images ϕn(B) of all the open sets B in En. F (E) is also
LCHC2 as the quotient space induced by the redefined
map ϕ :

⋃∞
n=0 E

n → F (E) with ϕ(x) = ϕn(x) for all
x ∈ En and ϕ(θ ) = ϕ0(θ ) = ∅.

An RFSet X can then be defined as a random el-
ement on measurable set (F (E), B(B)), where B(B)
is the σ -algebra of Borel sets in quotient topological

26A counting measure μ on any measurable space (E,B) is an integer-
valued functional defined byμ(B) = #(B) for eachB ∈ B.By #(A),we
mean the cardinality of (the number of elements in) any setA, through-
out this paper.
27In [15, p. 131], it is stated: “The main difficulty with this (Moyal’s)
approach from our point of view is that it does not extend readily to
random measures, which require for their own sake and for applica-
tions in later chapter.”
28The union operator ∪ on F (E) is associative and commutative with
the empty set as the unit element.F (E) is also idempotent, i.e., every
X ∈ F (E) is an idempotent, becauseX ∗X = X ∪X = X . Cf. [47, Sec.
I.6.3, p. 16], for definition of free idempotent commutative semigroup,
which becomes FICM when given an identity element.

spaceF (E). As the PDist � of RFSet X , (1) holds for
any (Bn)∞n=0 ∈ ∏∞

n=0 Bn, with the n-PDist F (n) (and
n-JM J (n) = n!pnF (n)) and the redefined quotient
map ϕ. Exactly in parallel to FPP formalism, through
the redefined quotient map ϕ, we can redefine L as
the positive linear bounded functional on the space of
bounded measurable functionals ψ on the measurable
space (F (E), B(B)), and themeasureM on themeasur-
able space (F (E), B(B)), as (2), and the JMD φ with re-
spect to the redefined measure space (F (E), B(B),M),
as (3).

The idempotency of the FICMF (E), however, poses
some peculiar problems: For example, a multidimen-
sional point, (xi)ni=1 in E

n with n > 1, is mapped into a
single point in F (E), when its elements are all identical,
i.e., x1 = · · · = xn. One way to avoid this peculiarity is
to “ignore” such coincidences. Namely, we may assume

that the setDn
def={(xi)ni=1 ∈ En|xi = xi′ for some i 
= i′} of

n-tuples with any repeated elements, which we call the
diagonal set in En, has the zero product measure, i.e.,
μn(Dn) = 0. We can then define the JMD φ in RFSet
formalism by φ(ϕ((xi)ni=1)) = φ({xi}ni=1) = J(n)((xi)ni=1)
for every (xi)ni=1 ∈ En, for each n.

However, in case where the state space E is count-
able with discrete topology

29
and counting measure μ,

μ2(D2) = 0 implies μ(E) = 0, which is obviously not
desirable. To remedy the situation, we need to modify
(2) and (3) slightly as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(ψ ) = ∫
F (E)

ψ (X )M(dX )

=
∞∑
n=0

1
n!

∫
En

ψ (ϕ(x)) μ̃n(dx)

� (ϕ (
⋃∞

n=0 Bn)) = ∫
ϕ(
⋃∞

n=0 Bn)

φ(X )M(dX )

=
∞∑
n=0

1
n!

∫
ϕ−1(ϕ(Bn))

φ(ϕ(x))μ̃n(dx)

(4)

using the modified measure,
30

μ̃n(B) = μn(B\Dn) for
every B ∈ Bn, for each n, to make μ̃n(Dn) = 0 with-
out affecting any product measure μn, withM(ϕ(B)) =
μ̃n(ϕ−1(ϕ(B)))/n! for any B ∈ Bn, and with the JMD
in RFSet formalism by φ(ϕ((xi)ni=1)) = φ({xi}ni=1) =
J(n)((xi)ni=1) for every (xi)ni=1 ∈ En. With this modifica-
tion, each component F̃n of FICM F (E) as the direct
sum F (E) = ⋃∞

n=0 F̃n(E) becomes the image of the
quotientmap ϕn in the μ̃n-a.e. sense. In the rest of this pa-
per, whenever the RFSet formalism is used, we assume
we are using the modified measures μ̃n’s, as in (4).

When E is countable with the discrete topology
and the counting measure μ, the measure M defined
in (4), using μ̃n’s, becomes a counting measure on
(F (E), B(B)), where B(B) becomes the power set of a

29Namely, every subset B of E is an open set, and hence, σ -algebra of
Borel sets B is the power set of E.
30By “\” we mean the set-theoretic subtraction operator, i.e., A\B =
{a ∈ A|a /∈ B}.
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countable set
31 F (E), so that the JMD φ, which is the

Radon–Nikodym derivative of the probability distribu-
tion � with respect the counting measure M, becomes
the probability mass function (PMF). In such a case, for
example, when we define data association, as an RFSet
in Section III-C , we will use the generic symbol

32
“P”

(instead of φ) for such JMD that is nothing but a PMF.
We call the measure space (F (E), B(B),M)

derived from the state measure space (E,B, μ)
for RFSet formalism the QMS. We also call
(
⋃∞

n=0 E
n/n!,

⋃∞
n=0 Bn/n!,M) for FPP formalism QMS.

If disambiguation is necessary, we will use FCM-QMS
or FICM-QMS.

Remark 4 (QMS): In Section II-B and II-C , we
defined the FCM-QMS and FICM-QMS for FPP and
RFSet formalisms, respectively, through the quotient
map ϕ, with which we defined the quotient topology and
the quotient measure M. An alternative, but an equiva-
lent, way to construct these measure spaces may be pos-
sible directly from the linear functionalsL, defined in (2)
or (4), first applied to an appropriate small class of func-
tionals ψ , and then appropriately extended to construct
measurable sets and measures, as shown in [28, Ch. 16,
p. 419] and [29]. In [25]–[27], what we have defined as
RFSet formalism in this paper is called FISST formal-
ism, in which the integral in (4) is called the set integral,
as its core concept, as we understand. We may interpret
the FISST formalism as the one in which the set inte-
gral plays this role to construct the appropriate measure
space (F (E), B(B),M).

As mentioned in [25, Appendix F, p. 711], FICM
F (E) can be topologized by the relative (subspace)
topology as the subset of the space C(E) of the closed
sets in E, with Fell–Matheron topology

33
[40, p. 3; 45,

p. 398]. Since the quotient map ϕ is continuous in this
topology [20, Prop. 2.4, p. 156], the quotient topology
(with which we have introduced RFSet formalism) is
stronger

34
than the Fell–Matheron topology. The FISST

formalism established in [25]–[27] motivated our defi-
nition of an FPP as a random element taking values in
FCM

⋃∞
n=0 E

n/n!.
In summary, among the three formalisms, the equiva-

lence betweenRFSeq and FPP is rather obvious. Instead
of calling an RFSeq (xi)ni=1 with permutable n-PDists an
FPP, we call a random element on FCM

⋃∞
n=0 E

n/n! an
FPP, forcing the permutability on the state space alge-
braic structure rather than on the n-PDists. By doing so,

31The countability of E implies the countability of F (E) under the ax-
iom of countable choice.
32As a general “rule,” we use the symbols, F and f , for PDist and PD
in E (F (n) and f (n) for En),P and p for the probability or the PMF for
the discrete, or density function of random elements of mixed nature,
and φ for the JMD for FPP or RFSet formalism.
33Also known as hit-or-miss topology. With this topology, C(E) is a
compact Hausdorff space satisfying the second axiom of countability
[40, Th. 1-2-1, p. 3], and F (E) is dense in C(E) [40, Cor. 2, p. 7].
34Hence, our introductions of the linear functional L and the measure
M are consistent with the Fell–Matheron topology.

we put an FPP and an RFSet into almost equivalence,
with the same JMD concept. The difference between an
FPP and an RFSet is, however, that the former allows re-
peated elements, while the latter does not. An FPP that
does not allow any repeated elements is called a simple
FPP, and it is shown in [15, Prop. 5.4.V, p. 138], the nec-
essary and the sufficient condition for the “simpleness”
is J (n)(Dn) = 0; i.e., the n-JM of the diagonal set Dn is
zero. In this sense, we may say an RFSet is just a simple
FPP.

We should note that the target state space E may be
a finite set itself, e.g., when the original state space is ap-
proximated by a set of small rectangular cells, as in the
target model used in [30]. In that case, it would be un-
reasonable to prohibit any two targets from occupying
a single state, so that RFSet formalism becomes inade-
quate,

35
while FPP formalism may become a perfect al-

ternative. This idempotency peculiarity becomes appar-
ent also when we consider the union of two independent
RFSets, as we see below.

D. Concatenation, Union, Superposition, and
Convolution

As a foundation for MHT, the binary operation on
FM, FCM, or FICM, i.e., concatenation or unionization,
of random elements, plays crucial roles.LetX1 andX2 be
two independent RFSets, i.e., two independent random
elements in (F (E), B(B),M), with JMDs φ1 and φ2, re-
spectively. Then, as described in [25, Sec. 11.5.3, p. 385],
JMD φ of the union X = X1 ∪X2 can be written as

φ(X ) =
∑
X1⊆X

φ1(X1)φ2(X\X1), (5)

which holds true only when each product measure
μ̃n1 × μ̃n2 of the modified measures satisfies

36
(μ̃n1 ×

μ̃n2 )(Dn1+n2 ) = 0. This condition, guaranteeing that
X1 ∩X2 = ∅ with probability 1, is satisfied if μn(Dn) = 0,
e.g., when target state space E has a continuous compo-
nent such as a Euclidean component.

In FPP formalism, which lacks the idempotency, for
any two independent FPPs, [(x1i)

n1
i=1] and [(x2i)

n2
i=1], with

JMDs φ1 and φ2, respectively, the JMD φ of the concate-
nation [(x1i)

n1
i=1] ∗ [(x2i)

n2
i=1] = [(x1i)

n1
i=1 ∗ (x2i)

n2
i=1] can al-

ways be written as

φ([(xi)ni=1]) =
∑

I⊆{1,...,n}
φ1([(xi)i∈I])φ2([(xi)i∈{1,...,n}\I]),

(6)
which is translated into the case where the n-JD of
the two RFSeqs with permutable n-PDists, with n-JDs,

35In [25,Appendix E,p. 705], it is indicated that the idempotency issues
should be resolved by the concept of multisets.
36In Section II-C,we defined μ̃n(B) = μn(B\Dn), which does not nec-
essarily imply (μ̃n1 × μ̃n2 )(Dn1+n2 ) = 0, because μ̃n1+n2 = μ̃n1 × μ̃n2
does not hold necessarily.
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(J(n1)1 )∞n1=0 and (J(n2 )2 )∞n2=0, is (J
(n))∞n=0, as

J(n)((xi)ni=1) =
∑

I⊆{1,...,n}
J(#(I))1 ((xi)i∈I )J

(n−#(I))
2 ((xi)i∈{1,...,n}\I ).

(7)
For the rest of this paper, we will denote the right-

hand side of (5) for RFSet formalism, or of (6) for FPP
formalism, by the convolution φ1 ⊗ φ2 of two JMDs φ1

and φ2. This convolution can be extended to N indepen-
dent RFSets or FPPs as φ1 ⊗· · ·⊗φN , in an obvious way.
When two independent FPPs are represented by random
measures N1 and N2, the random measure representa-
tion N of the concatenation (the union) is simply the
sum N = N1 + N2, which is called the superposition of
two FPPs with N1 and N2 [42, Ch. 5.1, p. 152].

III. TARGET AND SENSOR MODELS, AND DATA
ASSOCIATION HYPOTHESES

Whenever the word MHT is mentioned in the con-
text of MTT, we understand that by a “hypothesis” we
mean a data association hypothesis,which is the core con-
cept of the MHT. The ultimate goal of any MHT algo-
rithm is to estimate the target states, in either one of
the three formalisms described in the previous section,
while generation, evaluation, and maintenance of asso-
ciation hypotheses may constitute various intermediate
algorithmic steps. In some applications, however, deter-
mination of correlation or relations among the data in
terms of their origins, retroactively in many cases, is of
primary interests and importance. In this section, after
describing a general class of target and sensor models
for the rest of this paper, association hypotheses will be
defined as possible realizations of an RFSet, called data
association, or simply association, in a discrete space.

A. Target Model: Set of Stochastic Processes

Unlike almost all the targetmodels inRFSet (FISST)
formalism [25]–[27] where a set of an unknown number
of targets is modeled as a stochastic process on FICM,
i.e., the collection F (E) of finite sets in a given target
state space E, our target model assumes that

(A1) [Target Model]: The set of targets, as a whole,
is modeled as 1) an RFSeq ((xi(t))t∈[t0,∞))ni=1, 2) an FPP
[((xi(t))t∈[t0,∞))ni=1], or 3) an RFSet {(xi(t))t∈[t0,∞)}ni=1,
of stochastic processes on space E, over a continuous
time interval [t0,∞), with the probability pn = P(n)
of the number of targets being n with a finite mean, so
that, for each n, for any N-tuple, (sκ )Nκ=1 ∈ [t0,∞)N , of
distinct times, 1) RFSeq ((xi(sκ ))Nκ=1)

n
i=1 has permutable

n-PDist F (n)(·; (sκ )Nκ=1) and n-JM J (n)(·; (sκ )Nκ=1) on
(ENn,BNn, μ

Nn) with n-PD f (n)(·; (sκ )Nκ=1) and n-
JD J(n)(·; (sκ )Nκ=1), 2) FPP [((xi(sκ ))Nκ=1)

n
i=1] has PDist

37

37We are using the same notations for the PDist �, and the JMD φ

for both the FPP and RFSet formalisms. Distinction should be clear

�(·; (sκ )Nκ=1) on (
⋃∞

n=0E
Nn/n!,

⋃∞
n=0 BNn/n!,MN ) with

JMD φ(·; (sκ )Nκ=1), or 3) RFSet {(xi(sκ ))Nκ=1}ni=1
has PDist �(·; (sκ )Nκ=1) on (F (EN ), B(BN ),MN ) with
JMD φ(·; (sκ )Nκ=1), whereMN is the measure defined by
(2) or (4) (for FPP or RFSet formalism) withE replaced
by EN .

Remark 5 (Birth–Death Target Models): There are
two significant departures of our target model from the
commonly used target models: 1) Targets aremodeled as
an RFSeq, an FPP, or an RFSet of stochastic processes,
each on the target state space (E,B, μ), over a continu-
ous time interval [t0,∞), rather than a single stochastic
process on FM

⋃∞
n=0 E

n or FCM
⋃∞

n=0E
n/n! or FICM

F (E), and 2) the (generally unknown, and hence ran-
dom) number n of targets is constant over the entire time
interval [t0,∞). We contend that condition 1 is neces-
sary to define data association hypotheses as hypothe-
ses of the true association sharing the same origins, to
avoid any possibility of target identities from ever being
switched by the symmetrization as a consequence of us-
ing the FPP or the RFSet formalisms. We believe that
condition 2 can be defended froma “first principle”point
of view, as we argue in the following.

A real birth or death of any target occurs only un-
der very limited circumstances, most probably in bat-
tlefield type of environments, where, e.g., missiles are
launched or vehicles are destroyed.Evenmissiles before
being launched, however, may exist as ground targets. A
destroyed vehicle may be still called a damaged vehi-
cle, or a wreckage, with its existence intact, even if it is
dead. In many cases, an emergence of a persistent track
is at least partly a result of sensor management, and
should not be confused with a target birth,

38
which

should be a part of a purely target behavioral model, in-
dependent of any sensor.

In most realistic situations, what we call new targets
(or newly born targets) are actually those that had re-
mained undetected (and hence existed) but were de-
tected for the first time by a sensor that is capable of
detecting them. For the implementation of MHT algo-
rithms, therefore, the issue becomes how to calculate
the track initiation likelihood, or the newly detected tar-
get likelihood, as discussed in [35] as implementation of
track-oriented MHT, or in [36] as a part of overall al-
gorithm complexity as discussed in connection with the
RFSet-based algorithms. When hypotheses are evalu-
ated recursively, as discussed in Section III-C , the issue
is how to calculate the density of newly detected targets

from the context. In FPP or RFSet formalism,Assumption A1 implies
�(ENn/n!; (sκ )Nκ=1) = pn or �(Fn(EN ); (sκ )Nκ=1) = pn.
38In our opinion, a typical example of this type of confusion can be
seen in an assertion made in [2, p. 327]: “A true target is most generally
defined to be an object that will persist in the tracking volume for at
least several scans.” Although “many” true targets may be persistent
in any tracking volume (if it is well defined and well designed),we may
not know generally, a priori, any “true” target would appear at any time
in any portion of any tracking volume, depending on particular sensor
management strategies.
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in the sensor measurement space (as discussed in [41]).
In our opinion, the target birth–death model has more
often been used for the convenience of the algorithms
than for faithfully modeling the targets’ behaviors and
the sensor detection capabilities.

Moreover, the constant number n can be justified
even when the target birth–death is indeed supported by
some legitimate reality, by counting all the targets that
ever exist in a given time interval, e.g., [t0,∞), and by in-
cluding the augmented discrete states, such as {unborn,
alive, dead}, at any given time,with an appropriate target
dynamics, within the framework ofmultiple models [46].

B. Sensor Model: Random Assignments and False
Alarms

Our sensor model defines available information in
the form of a sequence yk, k = 1, 2, ..., of measurement
frames,

39
each of which, yk = (yk j)

mk
j=1, is an RFSeq, in an

appropriate measurement space
40
EMk with an appropri-

ate measure to let us properly define the mk-PD, com-
posed of mk measurements, yk j’s, collected at the same
time tk (t0 ≤ t1 ≤ t2 ≤ · · · ) by the same sensor.

41

The uncertainty of the origin of each measurement
yk j is modeled by an unobservable RFSet ak of pairs
of integers in {1, ...,n} × {1, ...,mk}, given the number n
of the targets and the number mk of the measurements
in frame k, called the target-to-measurement assignment
or simply target assignment at frame k. Let the domain
and the image (range) of ak be denoted by Dom(ak) =
{i|(i, j) ∈ ak for some j}, and Im(ak) = { j|(i, j) ∈
ak for some i}. Then, 1) i ∈ Dom(ak) means the ith tar-
get is detected at frame k, 2) (i, j) ∈ ak means

42
the jth

measurement of frame k originates from the ith target,
and 3) j /∈ Im(ak) means the jth measurement of frame
k is a false alarm (that does not originate from any tar-
get).

Throughout the rest of this paper, we maintain the
following two assumptions for each frame k:

(A2) [No Merged or Split Measurement]: There is
no merged measurement, i.e., #({i|(i, j) ∈ ak}) = 1 for
any j ∈ Im(ak), and there is no split measurement, i.e.,
#({ j|(i, j) ∈ ak}) = 1 for any i ∈ Dom(ak).

(A3) [Measurement Ordering]: Given the number
mk of measurements and given the set Dom(ak) of in-
dices of detected targets at frame k, the target assign-
ment ak is independent of the target states at time tk, and
all themk!/(mk − #(Dom(ak)))! possible realizations of
ak, under Assumption A2, are equally probable.

39Synonymous to scans, measurement sets, data sets, etc.
40We generally assume each measurement space EMk is also LCHC2
so that its conditional PD is well defined as the likelihood function that
is a measurable function of the state X (tk) in

⋃∞
n=0 E

n or
⋃∞

n=0 E
n/n!

or F (E). The measurement space EMk is essentially the field of view
of the sensor for frame k, and hence should be compact, or at least
bounded.
41Generally, one of the multiple sensors.
42We also write ak(i) = j to mean (i, j) ∈ ak, under Assumption A2.

Assumption A2 makes each target assignment ak a
one-to-one function, while Assumption A3 is to best re-
flect the fact that the actual process of how each sensor
orders the measurements (yk j)

mk
j=1 might be very com-

plex and different from sensor to sensor,making any or-
dering of the measurements not informative.

One of the most basic assumptions for any dynam-
ical state estimation problem to be tractable is condi-
tional independence of information. In our MTT cases,
that assumption is translated into the conditional inde-
pendence of the pair (yk, ak) of observations yk and un-
observable target assignments ak, for k = 1, 2, ....

(A4) [Conditional Independence]:For any sequence
(yk, ak)Kk=1 of measurement frames and target assign-
ments, we have

P
(
(yk, ak)Kk=1

∣∣ϕ (((xi(t))t∈[t0,∞))
n
i=1

))
=

K∏
k=1

P
(
yk, ak

∣∣ϕ ((xi(tk))ni=1

))
,

(8)

where ϕ(x) = x for RFSeq formalism, ϕ(x) = [x]
for FPP formalism, and ϕ((xi)ni=1) = {xi}ni=1 for RFSet
formalism, while ϕ(((xi(t))t∈[t0,∞))

n
i=1) should be un-

derstood as the σ -algebra of events generated by the
RFSeq, the FPP, or the RFSet of the entire stochastic
processes,modeling targets according to each formalism.

In (8), and in many of subsequent equations, to avoid
excessive notational complexities, we will use P or p as
the generic symbol for any conditional or unconditional
PD whenever its usage will not generate any confusion.
However, we should remember that, when the usage of
symbol P involves any discrete RFSet such as the target
assignment ak (and also the data association λK, defined
in Section III-C ), its PD is the JMD with respect to the
counting measure on the space of subsets of a countable
space, and, as discussed in Section II-C , is actually the
PMF.

Under Assumption A2, therefore, Assumption A3
can be written as a conditional PMF

P(ak|mk,Dom(ak),X (tk))
= P(ak|mk, #(Dom(ak))) = (mk−#(Dom(ak)))!

mk!
(9)

for each frame k,whereX (tk) is the target state set in any
of the three formalisms.With a straightforward Bayesian
expansion, we can write each scan-wise extended likeli-
hood function on the right-hand side of (8) as

43

P
(
(yk j)

mk
j=1, ak

∣∣∣ϕ ((xi(tk))ni=1

)) = (mk−#(Dom(ak)))!
mk!

P
(
(yk j)

mk
j=1

∣∣ak,mk, ϕ
(
(xi(tk))ni=1

))
P
(
mk
∣∣Dom(ak), ϕ

(
(xi(tk))ni=1

))
P
(
Dom(ak)|ϕ

(
(xi(tk))ni=1

))
,

(10)

43P((yk j )
mk
j=1, ak|X ) is the conditional joint PD for RFSeq (yk j )

mk
j=1

in EMk and RFSet ak on the space of pairs of integers. Whenever
we use any RFSeq such as (yk j )

mk
j=1, we need to remember that the

length mk is a random variable, so that we have P((yk j )
mk
j=1) =

P((yk j )
mk
j=1|mk)P(mk).
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the right-hand side of which consists of four factors: 1)
the equal probability of each realization of assignment
ak given only set Dom(ak) of indices for detected tar-
gets, and the number mk of measurements, as shown by
(9), 2) the PD of the values of themeasurements (yk j)

mk
j=1

in EMk, given the number mk of the measurements and
their origins specified by ak, 3) the probability of the
number of false alarms of being mFAk that is equal to
mk−#(Dom(ak)) underAssumptionA2,and 4) the joint
probability of detection/nondetection of the n targets.

We should note that, although each measurement
frame yk = (yk j)

mk
j=1 is modeled as an ordered set (i.e.,

RFSeq), the assignment is defined on an arbitrarily cho-
sen enumeration of the targets, modeled by RFSeq with
permutable n-PDist, or FPP, or RFSet of stochastic pro-
cesses. Consequently, in (8) and (10), (xi(tk))ni=1 means
target states with an enumeration that is arbitrary but
consistent throughout all the measurement frames that
we model.

By summing out the assignment ak in (10),we obtain
the measurement frame likelihood function in the ordi-
nary sense as

P
(
(yk j)

mk
j=1

∣∣∣ϕ ((xi(tk))ni=1

)) = 1
mk!

∑
ak∈Ā({1,...,n},{1,...,mk})

P
(
(yk j)

mk
j=1

∣∣ak,mk, ϕ
(
(xi(tk))ni=1

))
(mFAk!)P

(
mFAk

∣∣Dom(ak), ϕ
(
(xi(tk))ni=1

))
P
(
Dom(ak)|ϕ

(
(xi(tk))ni=1

))
,

(11)

wheremFAk = mk−#(Dom(ak)) and Ā (as well asA that
will be used later) is the symbol for the space of one-to-
one functions, which we may call assignment functions,
defined, for any pair of finite sets I and J, as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
A(I, J)

def=
{
a : I → J

∣∣∣∣I = Dom(a) and
#(Dom(a)) = #(Im(a))

}
,

Ā(I, J)
def=
{
a : D → J

∣∣∣∣D = Dom(a) ⊆ I and
#(Dom(a)) = #(Im(a))

}
.

(12)

It is significant that we define each measurement
frame (yk j)

mk
j=1 as an RFSeq (not as an FPP or an

RFSet) so that we can call each measurement as the
“jth” measurement at the “kth” frame, to define data
association hypotheses in the next section. Apparently,
both sides of (11) are permutable with respect to the
index j ∈ {1, ...,mk} of measurements (yk j)

mk
j=1, as well

as with respect to the index i ∈ {1, ...,n} of targets
(xi(tk))ni=1, as the likelihood function and hence (yk j)

mk
j=1

can be considered as an FPP or RFSet with conditional
JMD φMk([(yk j)

mk
j=1]|[(xi(tk))ni=1]) in FPP formalism, or

φMk({yk j}mk
j=1|{xi(tk)}ni=1) in RFSet formalism, dropping

1/mk! from (11), reflecting the fact that the order of the
measurements does not bear any information.

C. Association and Association Hypotheses

Measurement-to-measurement or data-to-data or
simply data association λK over given cumulative frames
(yk)Kk=1 = ((yk j)

mk
j=1)

K
k=1 is defined, from the multiframe

target assignment (ak)Kk=1, as

λK =
{

K⋃
k=1

{(k, j)|(i, j) ∈ ak}
∣∣∣∣∣ i ∈

K⋃
k=1

Dom(ak)

}
. (13)

We should note that we define the data association λK,
not as a partition of the cumulativemeasurements them-
selves (yk)Kk=1 = ((yk j)

mk
j=1)

K
k=1, but rather as a par-

tition of the cumulative set of measurement indices,

IK
def=⋃K

k=1 {k} × {1, ...,mk}. Each component of λK con-
stitutes the indices of all the measurements originating
from the same target, so that #(λK) targets are detected
in (yk)Kk=1, implying #(λK) ≤ n, while its complement
IK\(⋃ λK) is the set of all the measurement indices for
false alarms in (yk)Kk=1.We call any realization of associ-
ation λK a data association hypothesis

44
or simply an as-

sociation hypothesis or a hypothesis. As a consequence
of Assumption A2, the set 
K of all the association hy-
potheses on (yk)Kk=1 is given by


K =
{

λ ⊆ TK\{∅}
∣∣∣∣∣τ ∩ τ ′ = ∅ for any

(τ ,τ ′) ∈ λ × λ such that τ 
= τ ′

}
,

(14)
where

TK
def=
{

τ ⊆ IK

∣∣∣∣∣#
({
j ∈ {1, ...,mk}|(k, j) ∈ τ

}) ≤ 1

for any k ∈ {1, ...,K}

}
,

(15)
each member of which is called a track on (yk)Kk=1; i.e.,
each hypothesis is a consistent (i.e., nonoverlapping) set
of nonempty tracks.

In Section IV,we will describe issues concerning gen-
eration of data association hypotheses, and their evalu-
ation under additional sets of assumptions, completing
our definition of MHT in the three mathematical for-
malisms, which is the main goal of this paper.

Remark 6 (Hypotheses):Aswe call any possible real-
ization of the data association, i.e., an RFSet, a data asso-
ciation hypothesis, we may call any possible realization
of target assignment ak for each frame k, i.e., any element
in Ā({1, ...,n}, {1, ...,mk}), a target-to-measurement as-
signment hypothesis. The latter type of hypotheses was
introduced in the context of the PDA [12] and JPDA [13]
algorithms, assuming a fixed number of targets, predat-
ing the development of the MHT. In [2, Sec. 7.5.2, p. 431]
and [3, Sec. 4.2, p. 113], multiple-scan, non-Gaussian ex-
tension of the JPDA algorithms is discussed. In [3, Sec.
4.1.1, p. 109], in order to model an unknown number of

44Also known as data-to-data or measurement-to-measurement asso-
ciation hypothesis.We are using two different terms, “association” and
“assignment,” to make a clear distinction between two random sets λK
and ak.
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targets, it was proposed to augment target space E to
E ∪ {θ}, where “θ” is the “target does not exist” state,
and to use the joint state space (E ∪ {θ})N with a fixed
numberN (that serves as a priori upper boundN on the
number of targets), within the extended JPDA context
mentioned earlier.

As seen in (13), each association hypothesis λ ∈ 
K

can be viewed as an equivalence class of multiframe tar-
get assignment hypotheses (ak)Kk=1 ∈ ∏K

k=1Ā({1, ...,n},
{1, ...,mk}), the equivalence defined through the permu-
tation of the target indices. Given the number n of tar-
gets and cumulative frames (yk)Kk=1, through (13), each
multiframe target assignment (ak)Kk=1 is uniquely deter-
mined by a pair (λ, α) of data association λ ∈ 
K and
track-to-target assignment (or simply track assignment)
α ∈ A(λ, {1, ...,n}) so that we have τ = ⋃K

k=1{(k,
ak(α(τ )))|α(τ ) ∈ Dom(ak)} for any τ ∈ λK. The target
permutability, assumed by Assumption A1, implies that,
given ((yk)Kk=1, λK,n), every realization of track assign-
ment α inA(λ, {1, ...,n}) is equally probable.Moreover,
in FPP or RFSet formalism, any arbitrary enumeration
of the targets in (8)–(13) can be viewed as another ran-
dom assignment from the set of targets,X = [(xi)ni=1] or
X = {xi}ni=1, to its index set {1, ...,n} with n = �(X ) or
n = #(X ), i.e., a random element in A(X, {1, ...,n}).

Remark 7 (Merged and Split Measurements): For
many sensors, the no-merged-or-split-measurement as-
sumption (A2) is a reasonable assumption. It is very
likely that any occasional violation of this assump-
tion may be helped out by an effective recovery al-
gorithm. On the other hand, there have been many
efforts to generate and probabilistically evaluate, ex-
plicitly, merge/split measurement hypotheses, e.g., [34]
(merged measurements) and [35] (split measurements).

IV. HYPOTHESIS GENERATION AND EVALUATION

To our best knowledge, the concept of the data as-
sociation hypothesis, the core of the MHT, as described
in the previous section, was first clearly defined in [5],
in terms of tracks and hypotheses, together with an al-
gorithm for selecting the single best (most probable or
maximum a posteriori probability) hypothesis in a batch-
data-processingmode.Subsequently, an algorithm for si-
multaneously generating and evaluating tracks and hy-
potheses, using recursive formulas, was first systemati-
cally and comprehensively described in [6]. In this sec-
tion, we discuss hypothesis generation, and hypothesis
evaluation under commonly used assumptions, using the
three formalisms described in Section II, and the tar-
get/sensor models defined in Section III, which we may
view as a form of generalizations of the results described
in [5]–[7].

A. Hypothesis Generation and Management

For any pair ((yk)
K1
k=1, (yk)

K2
k=1) of cumulative frames

such that K1 < K2, we call a track τ1 ∈ TK1 a prede-

cessor of a track τ2 ∈ TK2 (or τ2 is a successor of τ1) if
τ1 = {(k, j) ∈ τ2|k ≤ K1} (including the case τ1 = �).
We call a hypothesis λ1 ∈ 
K1 a predecessor of a hy-
pothesis λ2 ∈ 
K2 (or λ2 is a successor of λ1) if, for each
track τ2 ∈ λ2, there exists a (necessarily unique) prede-
cessor τ1 in λ1 or otherwise track τ2 has an empty prede-
cessor τ1 = ∅ in TK1 . Then, both cumulative collections
of tracks and hypotheses,

⋃K
k=1 Tk and

⋃K
k=1 
k, respec-

tively, form arborescent (tree) directed graphs through
the predecessor–successor relations. For each hypothe-
sis λ ∈ 
K2 and each track τ ∈ TK2 , we denote their
unique predecessors in 
K1 and TK1 by λ|K1 and τ|K1 ,
respectively.

There may be many systematic methods for generat-
ing these trees. In [6], D. B. Reid called hypothesis tree
generation using each measurement yk j as a level vari-
able

45
the measurement-oriented approach, from which

the termmeasurement-orientedMHT originated, in con-
trast to the target-oriented approach in which a target-
to-measurement assignment tree is generated using
each target index as a level variable

46
(e.g., for PDA

and JPDA algorithms) with a fixed known number n
of targets.

The algorithm described in [5] recursively generates
and evaluates tracks (including the track likelihood de-
fined later in this section), in effect, building a track
tree.Using a batch-processing form of hypothesis evalu-
ation, it then selects the single best association hypoth-
esis on (yk)Kk=1 based on the a posteriori probability
P(λ|(yk)Kk=1) (defined in Section IV-B ) for each hypoth-
esis, using a zero–one integer programming technique,
where a set of association hypotheses is formed as feasi-
ble solutions to a system of binary linear equations.Over
the years, it has become customary to call any MHT al-
gorithm using this approach, which originated from [5],
a track-oriented MHT.

It is well known that the numbers, #(
K) and #(TK),
of hypotheses and tracks generally grow very rapidly, at
exponential rates in many cases, so that any practical
MHT implementation must have reasonable means of
controlling the growth. Common methods for control-
ling the growth of the number of association hypothe-
ses include gating, pruning, combining, and clustering, as
outlined in [6]. The single best hypothesis selection of
[5] over sliding windows of consecutive frames has been
widely used as means for pruning track trees in a vari-
ety of ways for many track-oriented MHT algorithms.
Many heuristic methods to control the numbers, #(
K)
and #(TK), generally known as hypothesis management
methods, have been devised in the past 40 years or so, as
described in [8].

45Assigning each measurement to tracks in hypotheses at each expan-
sion.
46Assigning each target to measurements at each expansion.
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B. Hypothesis Evaluation: Independence Assumptions

As mentioned in Remark 6 in Section III-C, in any
of the three formalisms, an immediate consequence of
Assumptions A1–A3 and the definition (13) of data as-
sociation is as follows: Given the data association λK ∈

K on cumulative frame (yk)Kk=1, and given the num-
ber n of targets such that n ≥ #(λK), any one of the
equally possible n!/(n − #(λK))! track assignments α’s
inA(λK, {1, ...,n}) will define uniquely a multiframe tar-
get assignment (ak)Kk=1 ∈ ∏K

k=1Ā({1, ...,n}, {1, ...,mk}).
Hence, if (13) holds,we haveP(λK|n, (yk)Kk=1, (ak)

K
k=1) =

1 and P((ak)Kk=1|n, (yk)Kk=1, λK) = (n− #(λK))!/n!. Both
are zero otherwise. Hence, we have

P(λK,n|(yk)Kk=1)
= P((yk)Kk=1)

−1 n!
(n−#(λK ))!

P((yk, ak)Kk=1,n).
(16)

On the right-hand side of (16), (ak)Kk=1 ∈ ∏K
k=1Ā({1, ...,

n}, {1, ...,mk}) is any one of the n!/(n − #(λK))! mul-
tiframe target assignment hypotheses that supports λK
(through (13)).

Since the sensor model defined in Section III-B al-
lows us to have multiple sensors, the sequence of mea-
surement frame times, (tk)Kk=1, may contain repeated
time stamps.We therefore need to consider a subset [K]
of {1, ...,K} to remove any repeated time, i.e., [K] ⊆
{1, ...,K}, #([K]) = #({tk}Kk=1) ≤ K, and K ∈ [K], for
hypothesis evaluation and target state estimation.

Under Assumptions A1–A4,P((yk, ak)Kk=1,n) in (16)
can be expanded by the target states, in RFSeq formal-
ism, as

P((yk, ak)Kk=1,n) = pn
∫

E#([K])n

(
K∏
k=1

P
(
yk, ak

∣∣(xi(tk))ni=1

))
f (n)

(
((xi(tκ ))κ∈[K])

n
i=1; (tκ )κ∈[K]

)
μ#([K])n

(
((dxi(tκ ))κ∈[K])

n
i=1

)
.

(17)
The product, n!pn f (n)(·; (tκ )κ∈(K)), which appears when
we substitute (17) into (16), is nothing but the
n-JD J(n)(·; (tκ )κ∈(K)), and hence should be replaced
by JMD φ([((xi(tκ ))κ∈(K))ni=1]; (tκ )κ∈(K)) in FPP formal-
ism, and JMD φ({(xi(tκ ))κ∈(K)}ni=1; (tκ )κ∈(K))in RFSet
formalism. Each frame-wise extended likelihood func-
tion P(yk, ak|ϕ((xi(tk))ni=1)) (with ϕ(x) = x, ϕ(x) = [x],
and ϕ((xi)ni=1) = {xi}ni=1 for RFSeq, FPP, and RFSet for-
malisms, respectively) can then be expanded by the sen-
sor model (10).

The a posteriori probabilities of each hypothesis
λK ∈ 
K and of the number n of targets are obtained
separately through marginalization of (16) with (17). To
evaluate them in a practical and hence meaningful way,
however, we need to divorce ourselves from target-to-
measurement assignments, (ak)Kk=1, which would require
a fewmore assumptions on the target and sensormodels,
including

(A5) [i.i.d. Targets]:Given the number n of targets,
assume the joint probability distribution for the set of

targets is i.i.d. with the common single-target joint PD
fTGT, in the sense that, for any (sκ )Nκ=1 ∈ [t0,∞)N of dis-
tinct times, for any ((xi(sκ ))Nκ=1)

n
i=1 ∈ ENn, we have f (n)

(((xi(sκ ))Nκ=1)
n
i=1; (sκ )Nκ=1) = ∏n

i=1 fTGT((xi(sκ ))Nκ=1;
(sκ )Nκ=1) in RFSeq formalism, and φTGT(ϕ(((xi
(sκ ))Nκ=1)

n
i=1); (sκ )Nκ=1) = n!pn

∏n
i=1 fTGT((xi(sκ ))Nκ=1;

(sκ )Nκ=1) in FPP (ϕ(x) = [x]) or RFSet (ϕ((xi)ni=1) =
{xi}ni=1) formalism.

Under this i.i.d. assumption, the target model
can conveniently be expressed by the intensity
measure density (IMD),

47
γTGT((ξκ )Nκ=1; (sκ )Nκ=1) =

ν fTGT((ξκ )Nκ=1; (sκ )Nκ=1), for any N, for any (ξκ, sκ )Nκ=1 ∈
(E × [t0,∞))N ,with a priori expected number of targets,
ν =∑∞

n=1 npn < ∞.
Another set of independence assumptions is con-

cerned with our sensor model:
(A6) [Independent Detections and i.i.d. False

Alarms]: For each measurement frame, yk = (yk j)
mk
j=1,

1) the target detection is target-wise independent and
determined by a common detection probability as a
function pDk of the target state, 2) the target-state-to-
measurement transition is also target-wise independent
with a common transition probability density

48
pMk, and

3) each false alarm in the frame is independent from the
target states and from other false alarms with a common
PD, pFAk, while the probability of the number of false
alarms in the frame beingmFAk is given as pNFAk(mFAk)
with finite mean νFAk = ∑∞

mFAk=1mFAkpNFAk(mFAk) <

∞.
By applying Assumption A6 to (10), for each k, we

have

P
(
(yk j)

mk
j=1, ak

∣∣∣ϕ((xi(tk))ni=1)
)

= LFAk({1,...,mk}\Im(ak))
mk!( ∏

i∈Dom(ak)
pMk(ykak(i)|xi(tk))pDk(xi(tk))

)
⎛
⎜⎝ n∏

i=1
i/∈Dom(ak)

(1 − pDk(xi(tk))

⎞
⎟⎠

(18)

47For an RFSeq (xi)ni=1, an FPP [(xi)ni=1], or an RFSet {xi}ni=1 in
(EN ,BN ), for any N = 1, 2, ..., the intensity measure (IM) � is a fi-
nite measure on (EN ,BN ) defined by �(B) = E(

∑n
i=1 I(xi;B)) (with

the random measure representation N of FPP formalism, �(B) =
E(N (B)).), for each B ∈ BN , using the generic symbols, E and I, for
mathematical expectation and indicator function. The IMD is its den-
sity, i.e., the Radon–Nikodym derivative with respect to the measure
μN .More commonly used name for IM is the first-order moment mea-
sure ([15, Sec. 5.4, p. 132], but we prefer IM and IMD because we only
use the moment measure of the first order. Another synonym is ex-
pectation measure. A conditional version of IMD is called probability
hypothesis density in [25]–[27].
48The use of a common pMk, equally for all themk measurements,yk j ’s,
in frame k, may not be justified when each measurement yk j has dif-
ferent measurement error characteristics from others. In that case, we
should use the measurement-index-dependent pMk j in place of pMk
(which we avoid for the sake of simplicity).
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with the frame-wise false alarm likelihood, defined for
each IFAk ⊆ {1, ...,mk}, as

LFAk(IFAk) = LNFAk(#(IFAk))
∏
j∈IFAk

γFAk(yk j), (19)

where γFAk(η) = νFAkpFAk(η) is the IMD of the false
alarms in frame k at each η ∈ EMk, and LNFAk(mFAk) =
(mFAk!/(νFAk)mFA )pNFAk(mFAk) is the likelihood on the
number mFAk of false alarms in frame yk = (yk j)

mk
j=1.

As shown in Appendix A, Assumptions A1–A6 al-
low us to derive a batch-mode hypothesis evaluation for-
mula,which we callMorefield form, in terms of the a pos-
teriori probability of the data association λK on cumula-
tive frame (yk)Kk=1, as

P(λK|(yk)Kk=1)

= C−1
MKLNDTK(#(λK))

( ∏
τ∈λK

LTRKK(τ )

)
L(K)

FA (λK)
(20)

with
1) the normalizing constant (Morefield constant),

CMK = P((yk)Kk=1)(
∏K

k=1mk!);
2) track likelihood

LTRKK(τ ) = ∫
E#([K])

(
K∏
k=1

qMDk(ξk; τ )
)

γTGT((ξκ )κ∈[K]; (tκ )κ∈[K])
∏

κ∈[K]
μ(dξκ )

(21)

defined for each track τ ∈ TK, derived from the a priori
joint IMD γTGT , and the extended target-wise state like-
lihood function qMDk(·; τ ), defined by, for each ξ ∈ E,

qMDk(ξ ; τ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pMk(y j|ξ )pDk(ξ ),
if (k, j) ∈ τ for some j ∈ {1, ...,mk},

1 − pDk(ξ ),

if (k, j) /∈ τ for any j ∈ {1, ...,mk};
(22)

3) likelihood LNDTK(nD) of the cumulative number
nD = #(λK) of detected targets defined by

LNDTK(nD) =
∑∞

n=nD
pn
n!
νn

(ν̂K)
n−nD

(n− nD)!
(23)

expressed by the a priori mean ν of the number of the
targets and the a posteriori expectation ν̂K = LTRKK(�)
of the number of the targets that remain undetected
through the cumulative frames (yk)Kk=1;

4)multiframe false alarm likelihood L(K)
FA , defined by

L(K)
FA (λ) =

K∏
k=1

LFAk
({
j ∈ {1, ...,mk}|(k, j) /∈ ∪λ

})
(24)

for each λ ∈ 
K through frame-wise false alarm likeli-
hood LFAk defined by (19).

As shown in [5], Morefield form (20) for evaluat-
ing hypotheses can be expressed as a form of zero–one
integer programming problem, by enumerating the set
∪
K = TK\{∅} of all the nonempty tracks as (τi)

NT
i=1, and

by mapping the set 
K of all the hypotheses into the
space {0, 1}NT through (ξi)

NT
i=1 = (I(τi; λ))NT

i=1 ∈ {0, 1}NT

for each λ ∈ 
K.

C. More on Hypothesis Evaluation: Markov and Poisson
Assumptions

We will now introduce two more commonly used as-
sumptions.

(A7) [Markov Assumption]: The targets are mod-
eled as an RFSeq, an FPP, or an RFSet of independent
stochastic processes, with a common a priori joint IMD
γTGT, which is Markovian, in the sense that, for any N-
tuple (sκ )Nκ=1 ∈ [t0,∞)N of distinct times, such that s1 <

s2 < · · · < sN , and for any (ξκ )Nκ=1 ∈ EN , we have

γTGT((ξκ )Nκ=1; (sκ )Nκ=1)

= γTGT(ξ1; s1)
N∏

κ=2
fTRN(ξκ |ξκ−1; sκ − sκ−1, sκ−1)

(25)

with a given state transition probability density (STPD),
fTRN(·|·;�s, s), on (E,B, μ), for each �s > 0 and s ∈
[t0,∞).

Markov assumption (A7) enables us to calculate
track likelihood LTRKK(τ ) for each nonempty track τ ∈
∪
K = TK\{∅} defined by (21), recursively as

LTRKk(τ|k) =

⎧⎪⎪⎨
⎪⎪⎩

γMNDk(yk j),
if k = k0(τ ) with (k, j) ∈ τ,

LTRK(k−1)(τ|(k−1))LMDk(τ|k),
if k > k0(τ )

(26)

for
49
k = k0(τ ),k0(τ ) + 1, ...,K, with the measure-

ment IMD γMNDk from newly detected targets, and the
measurement-or-no-detection likelihood LMDk, which
are defined by⎧⎪⎨
⎪⎩

γMNDk(yk j) = ∫
E
pMk(yk j|ξ )pDk(ξ )γ̄k(ξ )μ(dξ )

LMDk(τ|k) = ∫
E
qMDk(ξ ; τ|k) f̄k(ξ |τ|(k−1))μ(dξ )

(27)

for each k, any yk j ∈ EMk, and any track τ ∈ TK for any
K ≥ k. The recursive calculation (26) of track likelihood
can be done in parallel to a recursive process for obtain-
ing the updated track target state PD f̂k(·|τ|k) from the
predicted f̄k(·|τ|(k−1)), and generating the next predicted
f̄k+1(·|τ|k), for every ξ ∈ E, as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f̂k(ξ |τ|k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γMNDk(yk j)−1pMk(yk j|ξ )pDk(ξ )γ̄k(ξ ),
if k = k0(τ ) with (k, j) ∈ τ,

LMDk(τ|k)−1qMDk(ξ ; τ|k) f̄k(ξ |τ|(k−1)),

otherwise (τ|(k−1) 
= ∅),

f̄k(ξ |τ|(k−1)) =

⎧⎪⎪⎨
⎪⎪⎩
∫
E fTRN(ξ |ξ ′; tk − tk−1, tk−1)

f̂k−1(ξ ′|τ|(k−1))μ(dξ ′), if tk > tk−1,

f̂k−1(ξ |τ|(k−1)), if tk = tk−1.

(28)

49k0(τ )
def= min{k|(k, j) ∈ τ for some j} is the index of the first frame

where track τ obtains a measurement, i.e., track initiation frame.
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The predicted IMD γ̄k(ξ ) of the undetected targets in
(27) and (28) is obtained from the similar recursion,
along the updated IMD γ̂k(ξ ), for each k = 1, 2, ..., as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ̂k(ξ ) = (1 − pDk(ξ ))γ̄k(ξ )

γ̄k(ξ ) =

⎧⎪⎪⎨
⎪⎪⎩
∫
E fTRN(ξ |ξ ′; tk − tk−1, tk−1)γ̂k−1(ξ ′)μ(dξ ′),

if k > 1 and tk > tk−1,

γ̂k−1(ξ ), if k > 1 and tk = tk−1,

γTGT (ξ, t1), if k = 1
(29)

for every ξ ∈ E.
For each k = 1, ...,K, let ν̄k = ∫

E γ̄k(ξ )μ(dξ ) and
ν̂k = ∫

E γ̂k(ξ )μ(dξ ). Then, we have ν̄k = ν̂k−1 for any
k > 1 (reflecting our no-birth-no-death target model),
ν̄1 = ν is the a priori expectation of the number n of tar-
gets, and ν̂K = LTRKK(∅) is the a posteriori expectation
of the number of targets that are not detected in any of
the K frames, (yk)Kk=1.

Under Markovian assumption (A7), we can rewrite
Morefield form (20) in a recursive hypothesis evaluation
form, as

P(λ|(yk′ )kk′=1) = C−1
RkP(λ|(k−1)|(yk′ )k−1

k′=1)⎛
⎜⎝ ∏

τ∈λ
τ|(k−1) 
=�

LMDk(τ )

⎞
⎟⎠ · LNDTk(#(λ))

LNDT(k−1)(#(λ|(k−1) ))⎛
⎜⎝ mk∏

j=1
{(k, j)}∈λ

γMNDk
(
yk j
)⎞⎟⎠ · LFAk

⎛
⎜⎝ mk⋃

j=1
(k, j)/∈∪λ

{ j}

⎞
⎟⎠

(30)

for each k, for every λ ∈ 
k, where

1) CRk = (mk!)P(yk|(yk′ )k−1
k′=1) = J(mk)

Mk (yk|(yk′ )k−1
k′=1) is

the normalizing constant (Reid constant);
2) λ|(k−1) is the unique predecessor
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of λ ∈ 
k in 
k−1;

3) τ|(k−1) ∈ Tk−1 is the unique predecessor of each track
τ in a given hypothesis λ (including the case where
τ|(k−1) = ∅; in that case, τ is a singleton {(k, j)} for
some j ∈ {1, ...,mk}, i.e., a new track at frame yk);

4) LMDk(τ ) is the track-to-measurement likelihood of
old track τ|(k−1) and measurement yk j if (k, j) ∈ τ ,
and the missed detection likelihood otherwise (i.e., if
(k, j) /∈ τ ), defined in (27);

5) LNDTk and LNDT(k−1) are the likelihoods of the cu-

mulative numbers of detected targets, in (yk′ )kk′=1 and
(yk′ )k−1

k′=1, with ν̂k and ν̂k−1, as defined by (23);
6) γMNDk is the new detection IMD defined in (27);
7) LFAk(IFAk) is the false alarm likelihood defined by

(19).

We call this recursive hypothesis evaluation formula
(30), Reid form, which is the non-Poisson extension of

50For k = 1,we use the convention that 
̄0 = {∅} and P(λ̄|(yk′ )0k′=1) =
P(λ̄) = 1 for λ̄ = ∅.

the formulas in [6, eq. 16, p. 848] and [7, eq. 19, p. 405],
and was presented in [43, Th. 2, p. 231].
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Another common assumptions are Poisson assump-
tions on the a priori PDist (pn)∞n=0 of the number n of
the targets, and on the PDist (pNFAk(mFAk))∞mFAk=0 of the
numbermFAk of false alarms in each frame yk = (yk j)

mk
j=1.

(A8) [Poisson Assumptions]: 1) The PDist (pn)∞n=0
of the number of targets is Poissonwithmean ν, i.e., pn =
e−ννn/n!, for each n = 0, 1, 2, ..., and 2) for each frame
k = 1, 2, ..., the PDist pNFAk of the numbermFAk of false
alarms in frame yk = (yk j)

mk
j=1 is Poisson with mean νFAk,

i.e., pNFAk(mFAk) = e−νFAkν
mFAk
FAk /mFAk!, for each mFAk =

0, 1, 2, ....
With this Poisson assumption (A8), the likelihood

functions,LNDTK for the number of detected targets de-
fined by (23) and likelihood LNFAk for the number of
false alarms at each frame k, both become constants, as
LNDTK ≡ e−(ν−ν̂K ) and LNFAk ≡ e−νFAk , respectively. It
was proven in [31, Th. 2, p. 1136] that Poisson assump-
tion (A8) is also a necessary condition for those likeli-
hoods to be constants. With this assumption, Morefield
form (20) of hypothesis evaluation can be transformed
to a linear objective function of a zero–one linear inte-
ger programming problem, or equivalently to an objec-
tive function for a form of multidimensional assignment
algorithm described in [32].Any hypothesis selection al-
gorithm using Morefield form (20) became the core al-
gorithm for every so-called track-oriented MHT [8].

D. Target State Estimation

Under Assumptions A1–A3, given cumulative frame
(yk)Kk=1, for each assumed number n of targets and for
each data association λK ∈ 
K, there are n!/(n −
#(λK))! multiframe target assignments (ak)Kk=1’s, each
of which supports association λK (i.e., (λK, (ak)Kk=1) sat-
isfies (13)) and is uniquely determined by one of the
equally probable n!/(n− #(λK))! track assignments α ∈
A(λK, {1, ...,n}) as mentioned in Remark 6 of Section
III. Hence, in RFSeq formalism, we have

f (n)
(
((xi(tκ ))κ∈[K] )

n
i=1;(tκ )κ∈[K]

∣∣(yk)Kk=1

)
P(n|(yk)Kk=1)

= ∑
λK∈
K

f (n)
(
((xi(tκ ))κ∈[K] )

n
i=1;(tκ )κ∈[K]

∣∣λK, (yk)Kk=1

)
P(λK,n|(yk)Kk=1)

= ∑
λK∈
K

P(λK,n|(yk)Kk=1) ((n− #(λK))!/n!)∑
αK∈A(λK,{1,...,n})

f (n)
(
((xi(tκ ))κ∈[K] )

n
i=1;(tκ )κ∈[K]

∣∣(yk, ak)Kk=1

)
,

(31)
where, within the second summation, (ak)Kk=1 is the
multiframe assignment that is uniquely determined by
λK ∈ 
K and αK ∈ A(λK, {1, ...,n}), such that

51In [43], the statement of Theorem 2 (p. 231) contains a mis-
statement: LNDTk(#(λ)) in eq. (22) (p. 231) must be replaced by
LNDTk(#(λ))/LNDT(k−1)(#(λ̄)) where λ̄ = λ|(k−1) is the unique pre-
decessor of hypothesis λ, and accordingly, (ν̄ − ν̂k) in Corollary 2 of
[43, p. 233] should be replaced by (ν̂k−1 − ν̂k).
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(k, ak(αK(τ ))) ∈ τ for each τ ∈ λK and αK(τ ) ∈
Dom(ak). While P(λK,n|(yk)Kk=1) can be determined
through (16) and (17), f (n)(·;(tκ )κ∈[K]|(yk, ak)Kk=1) can be
expressed by the standard Bayes formula, under condi-
tional independence assumption (A4).

The target permutability of Assumption A1 implies
that, once f (n)(((xi(tκ ))κ∈[K])

n
i=1;(tκ )κ∈[K]|(yk, ak)Kk=1) is

evaluated for any particular (ak)Kk=1 determined by an
arbitrary (λK,n, α), each term of the second summation
of (31) can be obtained by appropriate coordinate per-
mutation defined by each α ∈ A(λK, {1, ...,n}).

With additional independence assumptions (A5 and
A6), in RFSeq formalism, (31) can be rewritten as

Ĵ(n)K ((xi(tK))ni=1) =
∑
λ∈
K

P(λ|(yk)Kk=1)P(n|λ, (yk)Kk=1)

(n− # (λ))!

(ν̂K)
n−#(λ)

∑
α∈A(λ,{1,...,n})

(∏
τ∈λ

f̂K(xα(τ )(tK)|τ )
)

⎛
⎜⎜⎝

n∏
i=1

i/∈Im(α)

γ̂K(xi)

⎞
⎟⎟⎠ (32)

with

p(n|λK,YK) =

⎧⎪⎨
⎪⎩
(LNDTK(#(λK)))

−1 (ν̂K )
n−#(λK )

(n−#(λK ))!
· n!

νn
pn,

if n ≥ #(λK),
0, otherwise,

(33)
where

1) Ĵ(n)K ((xi(tK))ni=1) = J(n)((xi(tK))ni=1;tK|(yk)Kk=1) is
the conditional n-JD of the current state (xi(tK))ni=1 con-
ditioned by (yk)Kk=1;

2) LNDTK(nD) is the likelihood of the hypothesized
number #(λ) of all the detected targets in the K frames
being nD, defined by (23);

3) ν̂K = LTRKK(∅) is the expected number of targets
remaining undetected throughout the K frames, defined
by (21) through qMDk as qMDk(·; ∅) = 1−pDk(·) for each
k = 1, ...,K;

4) for nonempty track τ ∈ ∪
K = TK\{∅}, f̂K(·|τ ) is
the track target (current) state PD defined by

f̂K(ξK|τ ) =
( ∫
E#([K])−1

(
K∏
k=1

qMDk(ξk; τ )
)

γTGT((ξκ )κ∈[K]; (tκ )κ∈[K])
∏

κ∈[K]\{K}
μ(dξκ )

)/
( ∫
E#([K])

(
K∏
k=1

qMDk(ξ ′
k; τ )

)

γTGT((ξ ′
κ )κ∈[K]; (tκ )κ∈[K])

∏
κ∈[K]

μ(dξ ′
κ )

)
;

(34)

5) γ̂K is the IMD of the targets remaining undetected
after the K frames, defined by

γ̂K(ξK) = ∫
E#([K])−1

(
K∏
k=1

(1 − pDk(ξk))
)

γTGT((ξκ )κ∈[K]; (tκ )κ∈[K])
∏

κ∈[K]\{K}
μ(dξκ )

(35)

for each ξK ∈ E.
By dropping the most current target-wise extended

track-to-measurement likelihood function qMDK(·; τ )
from both the denominator and the numerator of (34),
we have the prediction PD f̄K(·|τ|(K−1)), which can
then be used for the recursive calculation of the track
likelihood by (26), without Poisson (A8) or Marko-
vian (A7) assumptions.UnderMarkov assumption (A7),
with or without Poisson assumption (A8), f̂K(·|τ ) and
f̄K(·|τ|(K−1)) can be obtained through the familiar recur-
sion of (28). Similarly, by taking out (1− pDK(ξK)) from
the integrand of (35), we have the predicted IMD γ̄K of
the undetected targets, while, with Markovian assump-
tion (A7), γ̄k and γ̂k can be obtained recursively by (29).

With Poisson assumption (A8), with or without
Markov assumption (A7), we can rewrite (32) as

Ĵ(n)K ((xi(tK))ni=1) = e−ν̂K
∑

λ∈
K

P(λ|(yk)Kk=1)

∑
α∈A(λ,{1,...,n})

(∏
τ∈λ

f̂K(xα(τ )(tK)|τ )
)⎛⎜⎝ n∏

i=1
i/∈Im(α)

γ̂K(xi)

⎞
⎟⎠
(36)

and
52

p(n|λK,YK) =
{
e−ν̂K (ν̂K )

n−#(λK )

(n−#(λK ))!
, if n ≥ #(λK),

0, otherwise.
(37)

In FPP formalism, we have

φ̂K([(xi(tK))ni=1])
def= φ([(xi(tK))ni=1]; tK|(yk)Kk=1)

= Ĵ(n)K ((xi(tK))ni=1),

while

φ̂K({(xi(tK))ni=1})
def= φ({(xi(tK))ni=1}, tK|(yk)Kk=1)

= Ĵ(n)K ((xi(tK))ni=1)

in RFSet formalism, both being expressed by (32) (non-
Poisson cases) and (36) (Poisson cases), as the a posteri-
ori JMD.

V. RELATION OF MHT TO RFSET-BASED MTT
ALGORITHMS

We understand that the relation between MHT and
RFSet-based MTT algorithms has been actively dis-
cussed recently, e.g., in [36]–[39]. It was even claimed in

52Thus, the a posteriori probability distribution of the number of un-
detected targets is Poisson.
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[38] that MHT can be derived from an RFSet-based al-
gorithm. This development is interesting, as we remem-
ber that RFSet-based algorithms started to be devel-
oped as correlation-free

53
algorithms [44].As mentioned

earlier, it is not our objective to conduct the literature
survey. In this section, we will state our perspectives
of RFSet-based MTT algorithms, from our MHT view-
points presented in Sections I–IV. We will use what we
consider as typical RFSet-based MTT target and sensor
models.

A. RFSet Target and Sensor Models

Throughout this section, we basically maintain all
the assumptions made so far, i.e., Assumptions A1–
A8. Instead of the RFSet-of-stochastic-processes as-
sumption (A1), however, we assume a discrete-time
Markov process (Xk)Kk=1 (K ≤ ∞) on an FICM-QMS
(F (E), B(B),M), with the kth stateXk ∈ F (E) at time
tk of the kth measurement frame, such that t1 ≤ t2 ≤
· · · , defined by a transition JMD

54
φTRNk(Xk+1|Xk), and

a Poisson initial state JMD φ(X1) = e−ν̄1
∏

x∈X1
γ̄1(x)

with IMD γ̄1 and the expected number of targets, ν̄1 =∫
E γ̄1(x)μ(dx), at time t1.

As a “typical” RFSet-based model, let us assume
that the transition JMD φTRNk(Xk+1|Xk) (for tk+1 >

tk) includes a birth–death term, as
55

φTRNk(·|Xk) =
φTSk(·|Xk) ⊗ φBk(·), which is the convolution of 1) the
survival-transition JMD φTSk(·|Xk) defined as a condi-
tional multiple Bernoulli (MBe) (or Poisson binomial)
JMD,

φTSk(·|{xki}ni=1) = φTSBek(·|xk1) ⊗ · · · ⊗ φTSBek(·|xkn)
(38)

for each Xk = {xki}ni=1, with each conditional Bernoulli
(Be) JMD φTSBek(·|xki), defined by, for any X ∈ F (E),

φTSBek(X |xki) =
⎧⎨
⎩
1 − pSk(xki), if X = ∅,

fTk(xk+1|xki)pSk(xki), if X = {xk+1},
0, if #(X ) > 1

(39)
assuming target-wise independent, target-state depen-
dent survival probability pSk : E → [0, 1], and a discrete-
time STPD

56
fTk(xk+1|xk) = fTRN(xk+1|xk; tk+1 − tk, tk)

that is target-wise independent, and 2) a Poisson birth
JMD φBk(X ) = e−νBk

∏
x∈X γBk(x), defined through the

IMD γBk with νBk = ∫
E γBk(x)μ(dx), all generally de-

pending on k = 1, 2, ....
In Section III-B, we modeled the kth frame as an

RFSeq (yk j)
mk
j=1 with each measurement having a unique

53We understand that the “correlation” is a “traditional”U.S.Navy ter-
minology for data association.
54We assume that the transition JMD φTRNk is only defined for tk+1 >

tk, and that Xk+1 = Xk if tk+1 = tk.
55We assume, for Section V, that any diagonal set Dn in En has zero
product measure μn, i.e.,μn(Dn) = 0.
56 fTRN is the continuous time STPDofAssumptionA7,assuming�s =
tk+1 − tk > 0.

label. The likelihood function (11) is, however, per-
mutable with respect to bothmeasurements (yk j)

mk
j=1 and

the target states (xi(tk))ni=1. Therefore, we can consider
each measurement frame as an RFSet Yk = {yk j}mk

j=1 in
an LCHC2 measure space

57
(EMk,BMk, μMk), having a

conditional JMD φMk(·|Xk) = φMDk(·|Xk)⊗φFAk(·) that
is the convolution of 1) conditional JMD φMDk(·|Xk)
of target detections and 2) Poisson JMD φFAk(YFAk) =
e−νFAk

∏
η∈YFAk

γFAk(η) with νFAk = ∫
EMk

γFAk(η)μMk(dη)
for the set of false alarms.

With the independent detection assumption (A6),
the target detections are modeled by a conditional MBe
JMD,

φMDk(·|{xki}ni=1) = φMDBek(·|xk1) ⊗ · · · ⊗ φMDBek(·|xkn)
(40)

for Xk = {xki}ni=1, with each conditional Be JMD,
φMDBek(·|xki), defined as, for anyY ∈ F (EMk),

φMDBek(Y |xki) =
⎧⎨
⎩
1 − pDk(xki), if Y = �,

pMk(y|xki)pDk(xki), if Y = {y},
0, if #(Y ) > 1.

(41)
For k = 1, 2, ..., let φ̄k(Xk) and φ̂k(Xk) be the predicted
and the updated state JMD, i.e.,⎧⎨
⎩φ̄k(Xk)M(dXk) =

{
Prob{Xk ∈ dXk}, if k = 1,
Prob{Xk ∈ dXk|(Yk′ )k−1

k′=1}, if k > 1,
φ̂k(Xk)M(dXk) = Prob{Xk ∈ dXk|(Yk′ )kk′=1}.

(42)
Then, as shown in Appendix B, with the target and

sensor models described earlier, we can prove that pre-
dicted JMD φ̄k(Xk) and updated JMD φ̂k(Xk) can be
expressed as convolutions φ̄k = φ̄Dk ⊗ φ̄Uk and φ̂k =
φ̂Dk ⊗ φ̂Uk, respectively, where 1) conditional JMD φ̄Dk

or φ̂Dk for the detected targets is written as
58⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

φ̄Dk(X ) = ∑
λ̄∈
̄k

#(λ̄)=#(X )

p̄k(λ̄)
∑

ᾱ∈A(λ̄,X )

(∏
τ̄∈λ̄

f̄k(ᾱ(τ̄ )|τ̄ )
)

φ̂Dk(X ) = ∑
λ̂∈
̂k

#(λ̂)=#(X )

p̂k(λ̂)
∑

α̂∈A(λ̂,X )

(∏
τ̂∈λ̂

f̂k(α̂(τ̂ )|τ̂ )
)

(43)
and 2) conditional JMDs φ̄Uk and φ̂Uk for the undetected
targets are Poisson JMD as⎧⎨
⎩

φ̄Uk(X ) = e−ν̄k
∏
x∈X

γ̄k(x) with ν̄k = ∫
E

γ̄k(ξ )μ(dξ )

φ̂Uk(X ) = e−ν̂k
∏
x∈X

γ̂k(x) with ν̂k = ∫
E

γ̂k(ξ )μ(dξ )

(44)
for each X ∈ F (E), with undetected target IMD γ̄k and
γ̂k, where

57We also assume, for Section V, that any diagonal set DMkm in each
product measurement space Em

Mk has zero product measure μm
Mk, i.e.,

μm
Mk(DMkm) = 0 for each m.

58We understand that each JMDof (43), a probability-weighted sum of
the symmetrized asymmetric PD products, is called generalized multi-
Bernoulli (GMBe) in [33].
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1) 
̄k and 
̂k are sets of association hypotheses, each
hypothesis being as a collection of nonempty tracks,each
ofwhich is a subset of

⋃k−1
k′=1 {k′} ×Yk′ or

⋃k
k′=1 {k′} ×Yk′ ;

2) ( p̄k(λ̄))λ̄∈
̄k
and ( p̂k(λ̂))λ̂∈
̂k

are probabilistic
weights;

3) each nonempty track, τ̄ ∈ ⋃

̄k or τ̂ ∈ ∪
̂k, is

accompanied by track PD, f̄k(·|τ̄ ) or f̂k(·|τ̂ ), on the state
space E.

Thus, the predicted φ̄k is represented by parame-
ters, (( p̄k(λ̄))λ̄∈
̄k

, ( f̄k(·|τ̄ ))τ̄∈∪
̄k
, γ̄k), the updated JMD

φ̂k by (( p̂k(λ̂))λ̂∈
̂k
, ( f̂k(·|τ̂ ))τ̂∈∪
̂k

, γ̂k), through (43) and
(44). Those parameters, which we may call sufficient
statistics,

59
are recursively calculated as shown in the next

two sections.

B. RFSet Filtering Update

The conditional JMD is updated, from φ̄k to φ̂k, by
the Bayes update formula, as

φ̂k(Xk) = φMk(Yk|Xk)φ̄k(Xk)∫
F (E) φMk(Yk|X )φ̄k(X )M(dX )

. (45)

As proven in Appendix B, the updated parameter
( p̂(λ̂))λ̂∈
̂k

of the conditional JMD φ̂k(Xk) is obtained
from the parameters (( p̄(λ̄))λ̄∈
̄k

, ( f̄k(·|τ̄ ))τ̄∈∪
̄k
, γ̄k) of

the predicted JMD φ̄k(Xk) defined in (43) and (44), and
from the sensor model defined by (40) and (41) with
parameters (pDk, pMk, γFAk), as the Poisson version of
Reid form,

p̂k(λ̂) = C′−1
Rk p̄k(λ̄)

⎛
⎜⎝ ∏

τ̂∈λ̂
τ̂|(k−1) 
=�

LMDk(τ̂ )

⎞
⎟⎠

⎛
⎜⎝ ∏

y∈Yk
{(k,y)}∈λ̂

γMNDk(y)

⎞
⎟⎠
⎛
⎜⎝ ∏

y∈Yk
(k,y)/∈∪λ̂

γFAk(y)

⎞
⎟⎠

(46)

for each updated hypothesis λ̂ in the set 
̂k that is de-
fined as

60


̂k =
⎧⎨
⎩λOLDk(λ̄, ā) ∪ λNEWk(YNk)

∣∣∣∣∣∣
λ̄ ∈ 
̄k,

ā ∈Ā(λ̄,Yk) and
YNk ⊆ Yk\Im(ā)

⎫⎬
⎭

(47)
with⎧⎨
⎩

λOLDk(λ̄, ā) = {τ̄ ∪ {(k, ā(τ̄ ))}|τ̄ ∈ Dom(ā)}
∪ (λ̄\Dom(ā)),

λNEWk(YNk) = {k} ×YNk.

(48)

Equation (46) can be obtained by applying Pois-
son assumption (A8) to Reid form (30). The right-hand
side of (46) consists of 1) Poisson version C′

Rk of Reid

59These sufficient statistics are not finite dimensional unless the track
PDs and undetected target IMDs have finite-dimensional representa-
tions, which, most likely, exist only approximately.
60Using convention Ā(∅,Y ) = {θ} with Dom(θ ) = Im(θ ) = ∅.

constant, 2) the prior probability p̄k(λ̄) of the unique
predecessor λ̄ = λ̂|(k−1) of each λ̂ in 
̄k, 3) the ex-
tended track-to-measurement likelihood LMDk(τ̂ ) de-
fined in (27) with τ|k = τ̂ , 4) the newly detected target
measurement IMD γMNDk(y) defined in (27), and 5) the
false alarm IMD γFAk(y) of the Poisson false alarm JMD
φFAk. The rest of the parameters for the updated JMD
φ̂k(Xk) are updated to ( f̂k(·|τ̂ ))τ̂∈∪
̂k

and γ̂k in the first
equations of (28) and (29) from ( f̄k(·|τ̄ ))τ̄∈∪
̄k

and γ̄k,
respectively.

We should immediately note that (46) is the Reid
form for evaluating association hypotheses recursively,
shown in [6, eq. 16, p. 848], and that (47) expresses the
recursive hypothesis expansion that corresponds almost
exactly to the illustration in [6, Fig. 2, p. 846].

We should also note that, as seen in (48), each track
(and hence each hypothesis) is defined through the value
y ∈ Yk of eachmeasurement in each frameYk (that is de-
fined as an RFSet), not through the measurement index,
as having been done in Section III-C. Since we assume
that the diagonal setDMkm in each order-m productmea-
surement space (EMk)m has zero product measure, we
maintain the no-merged-or-split-measurement assump-
tion (A2). Since every measurement frame is data or ob-
servation, we can reorder (or relabel) measurements in
the RFSet-modeled frame in any arbitrary way (as we
wish), and yet we obtain the same permutable target
state likelihoods. For this reason, this difference in the
definition of hypothesis is inconsequential, and in that
sense, the hypothesis evaluation (46) is exactly the same
as Reid form (30), except for the Poisson assumption
(A8).

However, there is an important difference that we
should note: In Section III-C, we define the hypothe-
ses as possible realizations of an RFSet, which we call
“association,” so that their evaluation is to calculate the
conditional probabilities, while the hypotheses in this
section appear only as parameters to define weights in
(43). As shown in Appendix B, the fact that the set of
weights, ( p̂k(λ̂))λ̂∈
̂k

, is indeed in a unit simplex is a con-
sequence of the evaluation of the denominator of the
right-hand side of the update equation (45), i.e., the nor-
malizing constant, under the induction assumption that
( p̄k(λ̄))λ̄∈
̄k

is a set of probabilistic weights.

C. RFSet Filtering Extrapolation

Since the Markov process (X1,X2, ...) on measure
space (F (E), B(B),M) is defined in Section V-A with
the transition JMD φTRNk, for each tk < tk+1, the pre-
dicted JMD φ̄k+1 of Xk+1 conditioned on (Yk′ )kk′=1 is ob-
tained by extrapolating the previously updated JMD φ̂k,
as

φ̄k+1(Xk+1) =
∫

F (E)

φTRNk(Xk+1|Xk)φ̂k(Xk)M(dXk).

(49)
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As shown in Appendix B, the representa-
tion (parameters) (( p̂k(λ̂))λ̂∈
̂k

, ( f̂k(·|τ̂ ))τ̂∈∪
̂k
, γ̂k)

of the conditional JMD φ̂k is extrapolated to
(( p̄k+1(λ̄))λ̄∈
̄k+1

, ( f̄k+1(·|τ̄ ))τ̄∈∪
̄k+1
, γ̄k+1) for the condi-

tional JMD φ̄k+1 as
1) the extrapolated probabilistic weights

p̄k+1(λ̄) =
∑
λ̂∈
̂k
λ̂⊇λ̄

p̂k(λ̂)

⎛
⎝∏

τ̄∈λ̄

PSk(τ̄ )

⎞
⎠
⎛
⎝ ∏

τ̂∈λ̂\λ̄
(1 − PSk(τ̂ ))

⎞
⎠

(50)
for each predicted hypothesis λ̄ in


̄k+1 =
⋃

λ̂∈
̂k

F (λ̂) = {λ̄ ⊆ λ̂|λ̂ ∈ 
̂k} (51)

with the track survival probability PSk(τ̂ ) defined by

PSk(τ̂ ) =
∫
E

pSk(xk) f̂k(xk|τ̂ )μ(dxk) (52)

for each τ̂ ∈ ∪
̂k;
2) the extrapolated target state PD f̄k+1(·|τ̄ ) for any

surviving track τ̄ ∈ ∪
̄k+1 = ∪
̂k as

f̄k+1(xk+1|τ̄ ) = PSk(τ̄ )−1∫
E
fTk(xk+1|xk)pSk(xk) f̂k(xk|τ̄ )μ(dxk); (53)

3) the predicted IMD of the undetected targets that
are either surviving or newly born as

γ̄k+1(xk+1) = γBk(xk+1)
+ ∫

E
fTk(xk+1|xk)pSk(xk)γ̂k(xk)μ(dxk). (54)

Death of any previously detected target is hypothe-
sized by τ̂ ∈ λ̂\λ̄ through an updated hypothesis λ̂ ∈ 
̂k

and a predicted hypothesis λ̄ ∈ 
̄k+1 such that λ̄ ⊆ λ̂,
whichmay break the tree structure of the hypotheses de-
scribed in Section IV-A. The extrapolation, as described
earlier, should take place only when tk+1 > tk. In case
tk+1 = tk, we should let 
̄k+1 = 
̂k, p̄k+1 = p̂k, and
f̄k+1(·|τ ) = f̂k(·|τ ) for any τ ∈ ∪
̄k+1 = ∪
̂k, to avoid
any unwanted “jumps.”

D. Track Continuity

At least to the authors of this paper, it is rather
surprising to see that, when we eliminate the birth–
death model from the state transition described in
Section V-A, i.e., with γBk ≡ 0 and pSk ≡ 1, a purely
stochastic-process-on-FICMRFSet model of Section V-
A regenerates Reid form (30), exactly by (46), and the
state estimation of (36) by (43) and (44), in Section V-B,
with Poisson assumption

61
(A8). We should remember

that Reid form (30) was derived in Section IV, 1) with

61The RFSet filtering shown in Sections V-A to V-C should be easily
extended to non-Poisson cases.

target model of an RFSeq (or FPP or RFSet) of stochas-
tic processes and 2) with data association hypotheses de-
fined as the set of all the possible realizations of a ran-
dom element, called “data association.” This validates a
claim made in [38]: “The MHT can be derived from an
RFSet MTT algorithm.” We should note that, however,
in the RFSet-based algorithm as described in this sec-
tion, the hypotheses appear only as “indices,”with which
probabilistic weights over the GMBer terms of (43) are
expressed, not as the probabilistic evaluation of possi-
ble realizations of a random element as we defined as
association.

The target transition model in RFSet formalism, de-
scribed in Section V-A, does have an appearance that
targets may exchange their states among them because
the state transition is expressed asRFSet-state-to-RFSet
transition. In fact, our motivation of using a set of
stochastic processes, rather than a single stochastic pro-
cess on an FICM, is to avoid the target switches of this
kind, through the most obvious and explicit way. To the
best of our knowledge, there are at least two known ef-
forts to avoid these target switches. These two are based
on two quite different approaches: 1) the introduction
of the labeled RFSets in [33] and 2) the use of trajectory
states in [39]. The former adds an extra state element,
called a label to each single target state, to prevent target
exchange during the extrapolation step, according to our
interpretation. The latter extends

62
the individual target

state to the consecutive series, from the target’s birth to
the current state, again to prevent the “target exchange,”
which is characterized as the maintenance of the track
continuity in [39].

After having seen the re-creation of Reid form (30)
by (46) in this section, sharing the same conclusion by
[38], as we understand, we are not quite sure now if all
those precautions to maintain track continuity are re-
ally necessary, or if they are mere precauzione inutile. It
seems to us, at this point, that the track continuity issues
are implicitly taken care of by the use of the concept of
the tracks (and hypotheses),which is actually a core con-
cept of the MHT.

VI. CONCLUSIONS

We presented three mathematical formalisms, i.e.,
RFSeq, FPP, and RFSet formalisms, which provide us
with theoretical foundations for MTT problems in gen-
eral, and the basis forMHT in particular,when generally
multiple sensors provide target detections with uncer-
tain origins.MHT,as a concept for providing solutions to
MTT problems, has been studied over the last 40 years
extensively, as described in [8]. In this paper, using a gen-
eral class of target and sensor models, we revisited the

62By this extension, the trajectory-state estimation may be considered
as a variable-time-interval smoothing, i.e.,estimation of each target tra-
jectory from the moment of the birth to the current state or to the time
when the target is killed.
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generation and evaluation of data association hypothe-
ses, and provided some new perspectives, by presenting
them using, side by side, the three different formalisms.
Those three may appear quite differently on the surface
but are almost equivalent to each other except for subtle
differences, e.g., those caused by repeated elements that
are allowed in an RFSeq or an FPP but not in an RFSet.

Based on target models that use the concept of a
set of stochastic processes, rather than a single stochas-
tic process on FM (RFSeq), FCM (FPP), or FICM (RF-
Set), and sensor models with RFSeq outputs, we explic-
itly defined data association as a discrete-valued ran-
dom element. We called all of its possible realizations
data association hypotheses, as defined in Section III-C.
The twowell-known hypothesis evaluation forms,More-
field form and Reid form, were then derived in
Section IV-B and IV-C, with a gradual introduction of
commonly used assumptions, (A1–A8). Although hy-
potheses can be defined without the independence as-
sumptions, the familiar hypothesis–track structure of
MHT appeared only after the independence assump-
tions (A5 and A6) were introduced. The consequences
of the other assumptions were rather predictable: the
separation of evaluation of the probabilities of the num-
ber of newly detected targets and that of data associa-
tion hypotheses was obtained by the Poisson assumption
(A8), and the familiar extrapolation–update recursion
structure appeared with the introduction of the Markov
assumption (A7).

In Section V, we stated our perspectives on the
recently developed RFSet-based MTT algorithms, for
which intimate relations to MHT were claimed. We ob-
served that not only the MHT hypothesis–track struc-
ture emerged as described in [36], but also the exact
Reid formwas surprisingly re-created from a pureRFSet
model, which we think is consistent with the claim made
by Brekke and Chitre [38]. Our conjecture on the rea-
son for this reappearance of Reid form is the use of the
hypothesis/track structure that forces the desired conti-
nuity, well within the context of MHT.

The MTT algorithm developments based on RFSet
formalism, also known as FISST formalism [25]–[27],
were relatively new, compared with the long history of
FPP formalism, which is claimed to have started with
[24].The authors hope some oldwisdommay benefit our
efforts in advancing MTT technologies further.

APPENDIX A: DERIVATION OF HYPOTHESIS
EVALUATION EQUATIONS

Under Assumptions A1–A3, for any cumulative
frame (yk)Kk=1 = ((yk j)

mk
j=1)

K
k=1, it follows from (16) that

data association λK ∈ 
K on (yk)Kk=1 can be evaluated as

P(λK|(yk)Kk=1) =
∞∑

n=#(λK )
P(λK,n|(yk)Kk=1)

= P((yk)Kk=1)
−1

∞∑
n=#(λK )

n!
(n−#(λ))!P((yk, ak)

K
k=1,n),

(A.1)

where n is the number of targets and (ak)Kk=1 ∈∏K
k=1Ā({1, ...,n}, {1, ...,mk}) is, for a given (λK,n), any

one of the n!/(n − #(λ))! multiframe target assignment
hypotheses that support λK, in the sense that the pair
(λK, (ak)Kk=1) satisfies (13).

In the RFSeq formalism, with additional as-
sumptions (A4–A6), substitute (18) into (17),
and apply f (n)(((xi(tκ ))κ∈[K])ni=1; (tκ )κ∈[K]) =∏n

i=1 fTGT((xi(tκ ))κ∈[K]; (tκ )κ∈[K]).
Then, we have

P((yk, ak)Kk=1,n) = P(((yk j)
mk
j=1, ak)

K
k=1|n)pn

= pnν−n
(

K∏
k=1

LFAk({1,...,mk}\Im(ak))
mk!

)
∫

E#([K])n

(
K∏
k=1

( ∏
i∈Dom(ak)

pMk(ykak(i)|xi(tk))pDk(xi(tk))
)

⎛
⎜⎝ n∏

i=1
i/∈Dom(ak)

(1 − pDk(xi(tk)))

⎞
⎟⎠
⎞
⎟⎠

n∏
i=1

γTGT((xi(tκ ))κ∈[K]; (tκ )κ∈[K])μ
#([K])((dxi(tκ ))κ∈[K]),

(A.2)
where the a priori target state IMD, over (tκ )κ∈(K),
with a priori mean ν = ∑∞

n=1 npn < ∞ of the
number of targets, is γTGT((xi(tκ ))κ∈[K]; (tκ )κ∈[K]) =
ν fTGT((xi(tκ ))κ∈[K]; (tκ )κ∈[K]),andLFAk(IFAk) is the false
alarm likelihood defined by (19).

Let the integral in (A.2) over the set E#([K])n be
LTGTK((yk, ak)Kk=1;n). Then, when (ak)Kk=1 supports λK
(i.e., for which (13) holds) with #(λ) ≤ n, we have

LTGTK((yk, ak)Kk=1;n)

=
n∏
i=1

∫
E#([K])

⎛
⎜⎝ K∏

k=1
i∈Dom(ak)

pMk(ykak(i)|xi(tk))pDk(xi(tk))

⎞
⎟⎠

⎛
⎜⎝ K∏

k=1
i/∈Dom(ak)

(1 − pDk(xi(tk)))

⎞
⎟⎠

γTGT((xi(tκ ))κ∈[K]; (tκ )κ∈[K])

μ#([K])((dxi(tκ ))κ∈[K])

=
( ∏

τ∈λK

∫
E#([K])

(
K∏
k=1

qMDk(ξk; τ )
)

γTGT((ξκ )κ∈[K]; (tκ )κ∈[K])

μ#([K])((dξκ )κ∈[K])
)

( ∫
E#([K])

(
K∏
k=1

(1 − pDk(ξk))
)

γTGT((ξκ )κ∈[K]; (tκ )κ∈[K])μ
#([K])((dξκ ))κ∈[K]

)n−#(λK )

=
( ∏

τ∈λK

LTRKK(τ )

)
LTRKK(∅)n−#(λK )

=
( ∏

τ∈λK

LTRKK(τ )

)
(ν̂K)

n−#(λK ),

(A.3)
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where LTRKK(τ ) is the track likelihood defined by (21)
with (22), and ν̂K = LTRKK(∅) is the a posteriori ex-
pected number of targets that remain undetected over
the K frames. Then, substituting (A.3) into (A.2), and
substituting (A.2) into (A.1), we obtain Morefield form
(20), which completes the derivation of the hypothesis
evaluation in RFSeq formalism.

In FPP or RFSet formalism, the integral in (17), and
the n-PD f (n) in its integrand, should be replaced by
the set integral defined in (2) or (4), and by the JMD
φ(·; (tκ )κ∈(K)). The constant n!, included in the JMD in
either FPP or RFSet formalism, is cancelled out by 1/n!
included in the definition of the set integral in (2) or (4),
resulting in the same expression as the one by (A.3), and
hence,we have the same hypothesis evaluation equation,
i.e., Morefield form (20).

The recursive form hypothesis evaluation equation,
i.e.,Reid form (30), can be readily derived from its batch-
processing counterpart, Morefield form (20), with or
without Markov assumption (A7), and vice versa (i.e.,
from Reid form to Morefield form).

APPENDIX B : DERIVATION OF SOLUTION TO AN
RFSET FILTER

This appendix provides a proof to our assertion that,
under the assumptions made in Section V-A, the condi-
tional JMDs, φ̄k and φ̂k, defined by (42), can be written
as the convolutions of the GMBer JMDs, φ̄Dk and φ̂Dk,
defined by (43), and the Poisson JMDs, φ̄Uk and φ̂Uk, of
(44), respectively. Our proof is one by mathematical in-
duction, giving a proof to all the update and extrapola-
tion equations (46)–(48) and (50)–(54), together at the
same time.

For k = 1, we have 
̄1 = {∅}, and φ̄U1 = φ̄1 is the
Poisson initial-state JMD. For any k ≥ 1, let assume,
as the induction assumption, that φ̄k is the convolution
φ̄k = φ̄Dk ⊗ φ̄Uk of the GMBer φ̄Dk given in (43) and
Poisson JMD φ̄Uk in (44). This convolution can be
rewritten as
φ̄k({xi}ni=1) = e−ν̄k

∑
λ̄∈
̄k

p̄k(λ̄)

∑
ᾱ∈A(λ̄,{1,...,n})

(∏
τ̄∈λ̄

f̄k(xᾱ(τ̄ )|τ̄ )
)⎛⎜⎝ n∏

i=1
i/∈Im(ᾱ)

γ̄k(xi)

⎞
⎟⎠ .

(B.1)

The JMD likelihood function φMk for frame
Yk = {yk j}mk

j=1, defined as the convolution of MBe
JMD φMDk, defined by (40) and (41), and of Poisson
JMD φFAk, can be written as

φMk({yk j}mk
j=1|{xi(tk)}ni=1) = e−νFAk

∑
a∈Ā({1,..,n},{1,..,mk})( ∏

i∈Dom(a)
pMk(yka(i)|xi(tk))pDk(xi(tk))

)
⎛
⎜⎝ n∏

i=1
i/∈Dom(a)

(1 − pDk(xi(tk)))

⎞
⎟⎠
⎛
⎜⎝ mk∏

j=1
j/∈Im(a)

γFAk(yk j)

⎞
⎟⎠ .

(B.2)

It follows from (B.1) and (B.2) that

φMk({yk j}mk
j=1|{xi}ni=1)φ̄k({xi}ni=1)

= e−νFAk−ν̄k
∑

λ̄∈
̄k
#(λ̄)≤n

p̄k(λ̄)
∑

ᾱ∈A(λ̄,{1,...,n})

∑
a∈Ā({1,...,n},{1,..,mk})( ∏

i∈Im(ᾱ)∩Dom(a)
pMk(yka(i)|xi)pDk(xi) f̄k(xi|ᾱ−1(i))

)
( ∏
i∈Im(ᾱ)\Dom(a)

(1 − pDk(xi)) f̄k(xi|ᾱ−1(i))

)
( ∏
i∈Dom(a)\Im(ᾱ)

pMk(yka(i)|xi)pDk(xi)γ̄k(xi)
)

⎛
⎜⎝ n∏

i=1
i/∈Dom(a)∪Im(ᾱ)

(1 − pDk(xi))γ̄k(xi)

⎞
⎟⎠

⎛
⎜⎝ mk∏

j=1
j/∈Im(a)

γFAk(yk j)

⎞
⎟⎠ ,

(B.3)
where the five product factors,within the second summa-
tions overĀ({1, ...,n}, {1, ...,mk}), correspond to 1) tar-
gets detected before detected again, 2) targets detected
before but not detected by frame k, 3) targets detected
for the first time in frame k, 4) targets not detected
before and remaining undetected, and 5) false alarms.

Each of the first three factors in (B.3) in the second
summation can be written as the product of a particu-
lar assignment likelihood and the updated (or initiated)
track PD obtained assuming that assignment. For exam-
ple, pMk(yka(i)|xi)pDk(xi) f̄k(xi|τ̄ ) is the product of the
likelihood

∫
E pMk(yka(i)|ξ )pDk(ξ ) f̄k(ξ |τ̄ )μ(dξ ) of track

τ̄ being assigned to measurement yka(i), and the updated
track PD f̂k(xi|τ̄ ∪ {(k, yka(i))}).

When we calculate the denominator of (45)
by the “set integral” defined in (4), because
φMk({yk j}mk

j=1|{xi}ni=1)φ̄k({xi}ni=1) is permutable with
respect to (xi)ni=1 ∈ En, each term of the second sum-
mation over ᾱ ∈ A(λ̄, {1, ...,n}) of (B.3) becomes
the same values in the integral, i.e., n!/(n − #(λ̄))!
times the one term obtained by any arbitrarily chosen
ᾱ ∈ A(λ̄, {1, ...,n}). Thus, rearranging the summations
of (B.3) for the numerator of (45), the updated JMD is
calculated as

φ̂k({xi}ni=1) = e−ν̂k
∑

λ̂∈
̂k

p̂k(λ̂)
∑

α̂∈A(λ̂,{1,...,n})(∏
τ̂∈λ̂

f̂k(xα̂(τ̂ )|τ̂ )
)⎛⎜⎝ n∏

i=1
i/∈Im(α̂)

γ̂k(xi)

⎞
⎟⎠ ,

(B.4)

which is nothing but the convolution φ̂k = φ̂Dk ⊗ φ̂Uk

of φ̂Dk defined in (43) and of φ̂Uk defined in (44), with
parameters (( p̂k(λ̂))λ̂∈
̂k

, ( f̂k(·|τ̂ ))τ̂∈∪
̂k
, γ̂k) defined in

(46), (28), and (29).
To derive the extrapolation formulas in Section V-C,

we first should observe that φ̄k+1 = φ̄D(k+1) ⊗ φ̄U(k+1)
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with φ̄U(k+1) = φ̃U(k+1) ⊗ φBk, where⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ̄D(k+1)(XD(k+1)) = ∫F (E) φTSk(XD(k+1)|XDk)

φ̂Dk(XDk)M(dXDk)

φ̃U(k+1)(XU(k+1)) = ∫F (E) φTSk(XU(k+1)|XUk)

φ̂Uk(XUk)M(dXUk)

(B.5)

implying that φ̄D(k+1) and φ̃U(k+1) are independent
63
from

each other, since φ̂Dk and φ̂Uk are independent from each
other. φBk is independent from φ̄D(k+1) and from φ̃U(k+1)
because φTRNk(·|Xk) = φTSk(·|Xk) ⊗ φBk(·).

On the other hand, we can rewrite (38) and (39) as

φTSk({xi}ni=1|{x′
i′ }n′
i′=1) = ∑

a′∈Ā({1...,n′},{1,...,n})
#(Dom(a′))=n( ∏

i′∈Dom(a′)
fTk(xa′(i′)|x′

i′ )pSk(x′
i′ )

)
⎛
⎜⎝ n′∏

i′=1
i′ /∈Dom(a′)

(1 − pSk(x′
i′ ))

⎞
⎟⎠ .

(B.6)

By substituting the second equation of (43),and (B.6)
into the first equation of (B.5), following the definition
(4) of the “set integral,” we have

φ̄D(k+1)({xi}ni=1)
= ∫F (E) φTSk({xi}ni=1|{x′

i′ }n′
i′=1)

φ̂Dk({x′
i′ }n′
i′=1)M(d{x′

i′ }n′
i′=1)

=
∞∑
n′=0

1
n′!

∑
a′∈Ā({1,...,n′},{1,...,n})

#(Dom(a′))=n

∫
En′( ∏

i′∈Dom(a′)
fTk(xa′(i′)|x′

i′ )pSk(x′
i′ )

)
⎛
⎜⎝ n′∏

i′=1
i′ /∈Dom(a′)

(1 − pSk(x′
i))

⎞
⎟⎠

⎛
⎜⎜⎝ ∑

λ̂∈
̂k
#(λ̂)=n′

p̂k(λ̂)
∑

α̂∈A(λ̂,{1,...,n′})

∏
τ̂∈λ̂

f̂k(x′
α̂(τ̂ )|τ̂ )

⎞
⎟⎟⎠

n′∏
i′=1

μ(dx′
i′ )

=
∑
λ̂∈
̂k

p̂k(λ̂)
∑

a′′∈Ā(λ̂,{1,...,n})
#(Dom(a′′))=n

1

#(λ̂)!

∑
α̂∈A(λ̂,{1,...,#(λ̂)})( ∏

τ̂∈Dom(a′′)

∫
E
fTk(xa′′(τ̂ )|x′

α̂(τ̂ ))pSk(x′
α(τ̂ ))

f̂k(x′
α(τ̂ )|τ̂ )μ(dx′

α(τ̂ ))
)

( ∏
τ̂∈λ̂\Dom(a′′)

∫
E
(1 − pSk(x′

α(τ̂ )))

f̂k(x′
α(τ̂ )|τ̂ )μ(dx′

α(τ̂ ))
)

.

(B.7)

63More precisely, the RFSets represented by conditional JMT φ̄D(k+1)
and φ̃U(k+1) are independent.

For given any λ̂ ∈ 
̂k, the last summation of (B.7) is over
all the enumerations of the tracks in λ̂. The summation
for all the a′′’s inĀ(λ̂, {1, ...,n}) such that #(Dom(a′′)) =
n is the summation over all the choices of subsets λ̄ of λ̂,
such that #(λ̄) = n ≤ #(λ̂) = n′, plus all the possible
enumerations of the tracks in the “decimated” hypothe-
sis λ̄.Hence,we have (51),andwe can rewrite (B.7) in the
formof first equation of (43)with the index k replaced by
k+ 1, with the probabilistic weights ( p̄k+1(λ̄))λ̄∈
̄k+1

de-
fined by (50), and with the track PDs, ( f̄k+1(·|τ̄ ))τ̄∈∪
̄k+1

,
defined by (53).

Since φ̂Uk is Poisson and the transition PD φTSk of
(38) is target-wise independent, φ̃U(k+1) defined by the
second equation of (B.5) is also Poisson with the IMD
defined as the second term of the right-hand side of (54).
Since φ̃U(k+1) is independent of φBk, we have the Poisson
JMD φ̄U(k+1) = φ̃U(k+1)⊗φBk,which completes the proof
bymathematical induction for all the update and predic-
tion formulas in Section V-B and V-C.
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